This is the final peer-reviewed accepted manuscript of:

The final published version is available online at:

https://doi.org/10.1016/j.ejor.2017.04.057

© 2017 This manuscript version is made available under the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) 4.0 International License

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.
Using a general-purpose Mixed-Integer Linear Programming solver for the practical solution of real-time train rescheduling

Matteo Fischetti
DEI, Università di Padova, Via Gradenigo 6/A, I-35131 Padova, Italy
matteo.fischetti@unipd.it

Michele Monaci
DEI, Università di Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy
michele.monaci@unibo.it

June 30, 2020

Abstract

At a planning level, train scheduling consists of optimizing the routing and scheduling for a set of trains on a railway network. In real-time operations, however, the planned schedule constantly needs to be verified and possibly updated due to disruptions/delays that may require train rerouting or cancelation. In practice, an almost immediate reaction is required when unexpected events occur, meaning that trains must be rescheduled in a matter of seconds. This makes the time-consuming optimization tools successfully used in the planning phase completely inadequate, and ad-hoc (heuristic) algorithms have to be designed.

In the present paper we develop a simple approach based on Mixed-Integer Linear Programming (MILP) techniques, that uses an ad-hoc heuristic preprocessing on the top of a general-purpose commercial solver applied to a standard event-based MILP formulation. A computational analysis on real cases shows that our approach can be successfully used for practical real-time train rescheduling, as it is able to deliver (almost) optimal solutions within the very tight time limits imposed by the real-time environment.

Key words: {O} Combinatorial optimization; railways optimization; train rescheduling; mixed-integer linear programming; real-time optimization.

1 Introduction

Train scheduling consists of routing and scheduling a set of trains traveling on a railway network, satisfying some operational constraints and optimizing some measure of the efficiency of the infrastructure. Different models have been proposed in the literature for describing this problem: the reader is referred to Szpigiel (1973), Jovanovic and Harker (1991), Oliveira and Smith (2000), Caprara et al. (2002) and Mascis and Pacciarelli (2002), among others, and to Caprara et al. (2007), D’Ariano et al. (2014) for recent surveys on this topic.

In principle, the above models could be used not only for planning but also at an operational real-time level. In this latter context, the nominal train timetable
is fixed but some unexpected events (e.g., delays and/or disruptions) occur on
the network, introducing possible conflicts and making the nominal schedule
infeasible. In this case, suitable repair operations must be quickly decided and
implemented to recover feasibility, a task that often involves several trains with
a redefinition of their timetable and/or routing.

Typically, rescheduling has the main objectives to produce a conflict-free
schedule that is as close as possible to the ideal (or nominal) planned timetable,
while minimizing operational costs related to the rescheduled trains. To restore
the timetable within a reasonable time horizon, rescheduling usually needs to
consider only a subset of the trains, meaning that the size of the rescheduling
problem is not as large as in the planning phase. However, a main complication
is that recovery actions must be decided in a very short time, as they must be
validated by a human operator and henceforth implemented. Thus, an auto-
matic support decision system must be able to propose conflict-free solutions in
real-time. Typically, the available time for producing a new schedule after the
originating event has been detected ranges from 2 to 10 seconds, depending on
the time-window size and of the number of affected trains.

In this paper we describe the outcome of our collaboration with Alstom
Ferrovia SpA (just Alstom in what follows), a global leader in the world for
railways infrastructure. Alstom developed in recent years a proprietary decision
support system, called ICONIS, to monitor and control railway traffic in sta-
tions and railway lines. In 2013, Alstom activated international collaborations
with experts in the field, with the aim of improving its dispatching system. In
particular, a set of real instances has been provided to all collaborators, repre-
senting simulated disruption within a given time horizon for a line nearby the
city of London.

The test bed is made by 29 instances: 10 small (disruption time horizon of
15 minutes), 9 medium (30 minutes) and 10 large (60 minutes) instances. Even
the small instances involve reordering and rerouting of several trains (up to 41),
so they are far from trivial. The interested reader is referred to (D’Ariano et al.,
2014) for a description of this project and of its challenges. Reasonable time
limits for computation were set by Alstom to 2 seconds (small instances), 5 sec-
onds (medium instances), and 10 seconds (large instances), on “any reasonable
hardware”—meaning even a local cluster with tens PCs running in parallel, if
required.

In view of our specific integer programming expertise, we were asked to pro-
vide a feasibility study to answer a challenging question: In view of the greatly
improved technology, can a modern general-purpose Mixed-Integer Linear Pro-
gramming (MILP) solver be successful in performing real-time rescheduling in
a practically effective way? This paper answers to that question essentially in
the affirmative. We found that, even for the small instances, modern MILP
technology is still not able to solve the rescheduling models within the few-
second time frame required. However, to our own pleasant surprise we found
that simple heuristic preprocessing operations have a dramatic effect in the
MILP performance, and allow one to achieve the orders-of-magnitude speedup
required in practice.

We want to stress here that we do not claim that our approach beats all the
sophisticated ad-hoc methods from the literature, and in fact we do not compare it with any such methods (many of which are proprietary). As a matter of fact, similar methods have already been considered; see, e.g., (Cacchiani et al., 2014, Fang et al., 2015, Pellegrini et al., 2015). Rather, we want to share with the reader the lesson we learnt from this project—train rescheduling can become much easier once an apparently trivial preprocessing step is applied. We are confident that, in spite of its simplicity, this is an important message that will attract the attention of researchers and practitioners working in the field.

The remaining part of the paper is organized as follows. In Section 2 we sketch the MILP model proposed by Mascis and Pacciarelli (2002), D’Ariano et al. (2008) and Mannino and Mascis (2009) that we used in our experiments, and computationally analyze it in by using a state-of-the-art commercial MILP solver (IBM ILOG Cplex 12.6.2). In Section 3, we introduce two heuristic preprocessing procedures based on bound tightening and variable fixing, and analyze their practical performance in Section 4. Some comments are finally drawn in Section 5.

2 State of the art

As already mentioned, train (re)scheduling can be modeled by using the MILP paradigm. In our approach, we use a standard event-based model for job-shop scheduling problems (Balas, 1969) where variables are associated with the time instant in which relevant operations take place.

The model, specialized for train scheduling by Mascis and Pacciarelli (2002), is based on the definition of an alternative graph used to model event incompatibilities and involves big-M coefficients to express disjunctive terms. Main variables of the model are binary variables \(y \) selecting at most one of the possible routes for each train to be rescheduled, binary variables \(x \) associated with (unknown) precedences between events using a same unsplittable resource (e.g., a track or a platform), and continuous variables \(t \) expressing the unknown time instant when a certain event will be rescheduled. The model also involves additional continuous variables \(z_j \) giving the delay of some relevant events \(j \) with respect to planned time. The objective function used in our experiments is the average of all such \(z_j \)'s. As customary in scheduling models, the alternative graph contains a dummy node \(\omega \) (say) that represents the end of the schedule. By construction, variable \(z_\omega \) gives the maximum delay in the schedule—a feature that plays an important role in our approach. The reader is referred to Mascis and Pacciarelli (2002), D’Ariano et al. (2008), Mannino and Mascis (2009) and D’Ariano et al. (2014) for details on the alternative-graph model and on the corresponding MILP model, and to Lamorgese and Mannino (2015), Lamorgese et al. (2016) for a recent solution approach based on advanced decomposition techniques. For the sake of completeness, the full model we used in our study is reported in the Appendix.

A possible way for rescheduling trains on a rail network is of course to solve the model above by using a general-purpose MILP solver. To the best of our knowledge, however, this approach was never used for real applications as the
associated computing times would be by far too large for the real-time setting. Actually, computational experiences reported in the literature (see, e.g., Lamorgese and Mannino (2015), Lamorgese et al. (2016)) show that this approach is not suitable for real-time applications. To verify whether this is still the case when using the most recent and powerful MILP solvers, we performed a preliminary set of experiments aimed at directly solving the instances in our testbed. As mentioned, our dataset includes 10 “small” instances associated with a time horizon of 15 minutes (numbered from 1 to 10), 9 “medium” instances with a 30-minute horizon (numbered from 11 to 19), and 10 “large” instances for which the time horizon is 60 minutes (numbered from 20 to 29). For these instances, a good (almost optimal) solution needs to be computed within 2, 5 and 10 seconds, respectively.

Table 1: Solution of our instances using Cplex in two different settings by using 10 quadcore PCs (1h time limit). Boldface entries meet the target computing time of 2/5/10 sec.s

<table>
<thead>
<tr>
<th>Instance ID</th>
<th>NT</th>
<th>NR</th>
<th>#cols</th>
<th>#rows</th>
<th>z_{BST}</th>
<th>t_{TOT}</th>
<th>z_{FIN}</th>
<th>t1</th>
<th>z1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33</td>
<td>55</td>
<td>4508</td>
<td>8528</td>
<td>0.90</td>
<td>1.57</td>
<td>0.90</td>
<td>1.52</td>
<td>13.46</td>
</tr>
<tr>
<td>2</td>
<td>37</td>
<td>46</td>
<td>3499</td>
<td>6289</td>
<td>15.76</td>
<td>0.89</td>
<td>15.76</td>
<td>0.51</td>
<td>68.57</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>62</td>
<td>5331</td>
<td>10127</td>
<td>151.02</td>
<td>8.86</td>
<td>151.02</td>
<td>2.41</td>
<td>290.28</td>
</tr>
<tr>
<td>4</td>
<td>38</td>
<td>58</td>
<td>10056</td>
<td>19653</td>
<td>58.46</td>
<td>22.72</td>
<td>22.72</td>
<td>1.44</td>
<td>51.39</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>43</td>
<td>2867</td>
<td>4548</td>
<td>15.51</td>
<td>0.50</td>
<td>15.51</td>
<td>0.47</td>
<td>15.51</td>
</tr>
<tr>
<td>6</td>
<td>34</td>
<td>42</td>
<td>7542</td>
<td>10606</td>
<td>13.44</td>
<td>2.55</td>
<td>2.55</td>
<td>0.62</td>
<td>3.86</td>
</tr>
<tr>
<td>7</td>
<td>36</td>
<td>44</td>
<td>4994</td>
<td>9187</td>
<td>13.67</td>
<td>1.42</td>
<td>1.42</td>
<td>1.03</td>
<td>14.01</td>
</tr>
<tr>
<td>8</td>
<td>32</td>
<td>40</td>
<td>5742</td>
<td>10606</td>
<td>13.67</td>
<td>0.71</td>
<td>0.71</td>
<td>0.62</td>
<td>3.86</td>
</tr>
<tr>
<td>9</td>
<td>33</td>
<td>45</td>
<td>9363</td>
<td>17827</td>
<td>13.67</td>
<td>1.42</td>
<td>1.42</td>
<td>0.62</td>
<td>3.86</td>
</tr>
<tr>
<td>10</td>
<td>37</td>
<td>48</td>
<td>6994</td>
<td>13226</td>
<td>13.67</td>
<td>1.42</td>
<td>1.42</td>
<td>0.62</td>
<td>3.86</td>
</tr>
<tr>
<td>11</td>
<td>40</td>
<td>73</td>
<td>14506</td>
<td>28139</td>
<td>13.67</td>
<td>1.42</td>
<td>1.42</td>
<td>0.62</td>
<td>3.86</td>
</tr>
<tr>
<td>12</td>
<td>48</td>
<td>79</td>
<td>15182</td>
<td>19759</td>
<td>13.67</td>
<td>1.42</td>
<td>1.42</td>
<td>0.62</td>
<td>3.86</td>
</tr>
<tr>
<td>13</td>
<td>54</td>
<td>72</td>
<td>16232</td>
<td>30958</td>
<td>13.67</td>
<td>1.42</td>
<td>1.42</td>
<td>0.62</td>
<td>3.86</td>
</tr>
<tr>
<td>14</td>
<td>52</td>
<td>59</td>
<td>8529</td>
<td>15181</td>
<td>13.67</td>
<td>1.42</td>
<td>1.42</td>
<td>0.62</td>
<td>3.86</td>
</tr>
<tr>
<td>15</td>
<td>49</td>
<td>53</td>
<td>7318</td>
<td>12559</td>
<td>13.67</td>
<td>1.42</td>
<td>1.42</td>
<td>0.62</td>
<td>3.86</td>
</tr>
<tr>
<td>16</td>
<td>42</td>
<td>51</td>
<td>11996</td>
<td>22459</td>
<td>13.67</td>
<td>1.42</td>
<td>1.42</td>
<td>0.62</td>
<td>3.86</td>
</tr>
<tr>
<td>17</td>
<td>44</td>
<td>57</td>
<td>12683</td>
<td>24020</td>
<td>13.67</td>
<td>1.42</td>
<td>1.42</td>
<td>0.62</td>
<td>3.86</td>
</tr>
<tr>
<td>18</td>
<td>43</td>
<td>54</td>
<td>9081</td>
<td>16778</td>
<td>13.67</td>
<td>1.42</td>
<td>1.42</td>
<td>0.62</td>
<td>3.86</td>
</tr>
<tr>
<td>19</td>
<td>41</td>
<td>55</td>
<td>15145</td>
<td>28876</td>
<td>13.67</td>
<td>1.42</td>
<td>1.42</td>
<td>0.62</td>
<td>3.86</td>
</tr>
<tr>
<td>20</td>
<td>49</td>
<td>53</td>
<td>7318</td>
<td>12559</td>
<td>13.67</td>
<td>1.42</td>
<td>1.42</td>
<td>0.62</td>
<td>3.86</td>
</tr>
<tr>
<td>21</td>
<td>47</td>
<td>83</td>
<td>34339</td>
<td>67124</td>
<td>13.67</td>
<td>1.42</td>
<td>1.42</td>
<td>0.62</td>
<td>3.86</td>
</tr>
<tr>
<td>22</td>
<td>58</td>
<td>87</td>
<td>58036</td>
<td>114982</td>
<td>13.67</td>
<td>1.42</td>
<td>1.42</td>
<td>0.62</td>
<td>3.86</td>
</tr>
<tr>
<td>23</td>
<td>64</td>
<td>80</td>
<td>26061</td>
<td>49277</td>
<td>13.67</td>
<td>1.42</td>
<td>1.42</td>
<td>0.62</td>
<td>3.86</td>
</tr>
<tr>
<td>24</td>
<td>58</td>
<td>91</td>
<td>41827</td>
<td>81587</td>
<td>13.67</td>
<td>1.42</td>
<td>1.42</td>
<td>0.62</td>
<td>3.86</td>
</tr>
<tr>
<td>25</td>
<td>66</td>
<td>97</td>
<td>34052</td>
<td>76203</td>
<td>13.67</td>
<td>1.42</td>
<td>1.42</td>
<td>0.62</td>
<td>3.86</td>
</tr>
<tr>
<td>26</td>
<td>90</td>
<td>128</td>
<td>52542</td>
<td>101789</td>
<td>13.67</td>
<td>1.42</td>
<td>1.42</td>
<td>0.62</td>
<td>3.86</td>
</tr>
<tr>
<td>27</td>
<td>59</td>
<td>64</td>
<td>19014</td>
<td>34616</td>
<td>13.67</td>
<td>1.42</td>
<td>1.42</td>
<td>0.62</td>
<td>3.86</td>
</tr>
<tr>
<td>28</td>
<td>85</td>
<td>105</td>
<td>56520</td>
<td>108630</td>
<td>13.67</td>
<td>1.42</td>
<td>1.42</td>
<td>0.62</td>
<td>3.86</td>
</tr>
<tr>
<td>29</td>
<td>52</td>
<td>59</td>
<td>8529</td>
<td>15181</td>
<td>10.75</td>
<td>2.08</td>
<td>2.08</td>
<td>0.64</td>
<td>66.17</td>
</tr>
</tbody>
</table>

Table 1: Solution of our instances using Cplex in two different settings by using 10 quadcore PCs (1h time limit). Boldface entries meet the target computing time of 2/5/10 sec.s

Table 1 reports the main characteristics of each instance, namely the number of trains (NT) to be rescheduled, the total number of alternative routes (NR), the number of variables and constraints in the associated MILP model (#cols and #rows, respectively), and the value z_{BST} of the best known solution. (Using the notation in the Appendix, $NT = |\Theta|$ and $NR = \sum_{\theta \in \Theta} |R|$.)

Computational results refer to one of the best commercial solvers on the mar-
ket, namely IBM ILOG Cplex in its version 12.6.2 (Cplex in the following), with a time limit of 1 hour on a quadcore Intel Xeon E3-1220V2 running at 3.1 GHz, with 16 GB of RAM.

We report results for Cplex in its default settings as well as in a heuristic version that proved to be more effective in our experiments, in which all cut-generation procedures are disabled. To take advantage of the effects of erraticism of the MILP solver (Fischetti and Monaci, 2014, Lodi and Tramontani, 2014), each version of Cplex was run 10 times using 10 different random seeds. For each algorithm, we report the best result obtained among the 10 executions, namely: the minimum computing time t_{TOT} required to solve the instance, the value z_{FIN} of the best solution found, the minimum time t_1 required to compute a feasible solution and the associated value z_1. All times are expressed in wall-clock seconds; entries in bold face in column z_1 refer to the cases where this solution was found within the target computing time of $2/5/10$ seconds. Observe that our experiments simulate the behavior of an architecture in which 10 identical PCs are available and used in parallel to solve the same instance, and all PCs are halted whenever one solves the instance to optimality or reaches the 1-hour time limit (columns t_{TOT} and z_{FIN}) or when one finds its first feasible solution (columns t_1 and z_1).

The results of Table 1 confirm that, even using a state-of-the-art MILP solver and 10 fast quadcore PCs, the direct solution of the model above is not a viable option for real-life applications. Indeed, in some cases Cplex is not even able to compute a feasible solution within 5 minutes. Even restricting to the smallest instances, there are cases with less than 40 trains for which computing a feasible solution takes more than 10 seconds. Results are slightly better for the heuristic version of Cplex, but even in this case a feasible solution can be found within the target computing time only in 13 out of 29 cases. Though the use of faster computers could in principle reduce the reported times, it is clear that a speedup of 1-2 orders of magnitude would be required to make this approach sufficiently reliable to be used in operation.

Finally, note that none of the 10+10 Cplex runs could find a feasible solution for instance 28 even within the 1-hour time limit, hence we removed this instance from our testbed in our next experiments.

3 Model preprocessing

In the attempt of improving Cplex’s heuristic performance, we implemented and tested a number of ideas. Eventually, we found a satisfactory implementation that allowed us to meet the tight real-time time limits imposed by Alstom. We then followed an inverse path and disabled/simplified the new features until we found which are the ideas that really made a difference. It turned out that the performance boost was due to just two very simple preprocessing operations, that we describe in the following.
3.1 Heuristic bound tightening

A main reason for the hardness of the MILP model is the presence of big-M coefficients that are used to activate/deactivate constraints according to the alternative arcs and/or train routes that are selected in the solution. It is well known that the presence of such large coefficients may lead to weak continuous relaxations, making the model unsolvable in practice. Indeed, reducing the value of these coefficients may be highly beneficial for a MILP solver; see, e.g., the very recent experience reported in (Belotti et al., 2016).

In event-based models for scheduling applications, big-M reduction boils down to the determination of tight lower and upper bound on variables t_j giving the time instant in which operations take place. As a matter of fact, modern MILP solvers are quite successful in tightening the model coefficients (including variable bounds) by using sophisticated probing and propagation algorithms akin to those successfully used in Constraint Programming.

During our preliminary experience, we performed a number of tests to evaluate the sensitivity of the MILP solver with respect to the imposed variable bounds. We soon discovered that the single upper bound on variable z_ω has a prominent role, in that imposing a tight upper bound on z_ω triggers the tightening of the domain of many other variables. Indeed, as we already observed, in our MILP model variable z_ω gives the maximum delay in the schedule among all relevant events, hence its upper bound immediately affects all the delay variables z_j’s. As a consequence, imposing a restrictive upper bound on z_ω typically allows the automatic MILP preprocessing to reduce the number of possible routes for each train, to fix many binary variables, and to tighten some constraint coefficients.

We therefore implemented a simple scheme where we heuristically define a value UB_ω (say) and impose an upper bound to the time of the last operation with through the (possibly invalid) constraint $z_\omega \leq UB_\omega$. Reasonably small values of UB_ω likely produce good heuristic solutions, as the objective function for rescheduling problems is naturally driven towards the case where z_ω is close to its smallest-possible value. (This is in fact what happens in the Alstom’s instances addressed in our computational study.) In addition, small values of UB_ω allow for large variable fixings and bound tightenings, hence they can have a dramatic effect in reducing computing times. Of course, if UB_ω is too small, the resulting problem becomes infeasible—a property that is typically discovered almost immediately by MILP preprocessing.

As one is interested in automatically estimating the smallest UB_ω that does not lead to infeasibility, in our code we perform a number of iterations starting with a “small” value for UB_ω and increasing this value until a feasible solution is found and the MILP solver is applied with the given time limit. As already observed, infeasible UB_ω’s are typically detected very quickly by MILP preprocessing, so the overhead spent in the initial trials with too-small UB_ω’s is acceptable and the overall approach is quite effective in practice.

It is worth mentioning that, in a first version of our code, we implemented an ad-hoc heuristic check (based on longest-path computations on an acyclic digraph) to determine whether a given value of UB_ω would produce an infea-
sible instance, thus quickly discarding too-small values for UB_ω. According to our computational experience, however, the MILP-solver internal preprocessing (that also implements propagation for bound tightening) was equally fast in detecting this kind of infeasibility, so in the end we decided to remove our ad-hoc check to simplify our implementation as much as possible.

3.2 Heuristic variable fixing

The second complication in our MILP model is the presence of many binary variables y associated with alternative routes for each train. These variables appear in big-M constraints, as the precedence constraints must be disabled for paths that are not used in the solution. Therefore, to reduce the complexity of the model one can heuristically reduce, for each train, the number of available routes.

Without loss of generality, we assume that the first available route for each train is the ideal route, i.e., the route corresponding to the nominal schedule before disruption. Routing each train along its ideal route is a desirable option, denoted as non-rerouting by the planners, as this does not require major changes in the resources required by the train but only adds appropriate delays in the planned timetable. Using different routes, instead, introduces many more complications—though it can be unavoidable in case of major disruptions.

A natural heuristic choice is to force non-rerouting for all trains, meaning that one is allowed to delay some trains at some points but cannot change their paths. However, this choice may lead to problems that are infeasible with respect to the actual UB_ω value, i.e., it may be impossible to reschedule all trains within the given time horizon without rerouting some of them. Thus, an alternative strategy is to choose one route for each train, in a random way, removing all the remaining routes and checking the resulting problem for feasibility.

4 Computational experiments

In this section we report on the performance of our heuristic approach built on top of IBM ILOG Cplex 12.6.2. All the experiments in this section were performed on a set of identical computers, each equipped with the Intel Core i7-2820QM quadcore processor running at 2.3 Ghz and with 16 GB ram. This processor is a second-generation Intel Core i7 launched at the beginning of 2011. Note that significantly faster Intel Core i7 seventh-generation processors are available at the time of writing (February 2017), that are about twice as fast as the one used in our tests.

All runs are executed by using Cplex in its default mode (including cut generation) unless otherwise specified. In case of multi-thread runs, we selected the opportunistic parallel mode as this is most appropriate in a real-time setting where speed is more important than reproducibility of the results.

To obtain diversified results, we ran our heuristic in parallel on NPC (say) independent computers, without communication between the single runs. For example, case $NPC = 4$ simulates a situation in which 4 identical computers are available and the same instance is solved in parallel on each computer, without
any communication: when the time limit is reached, all runs are stopped, the individual solutions are compared and the best one is selected. We report results for $NPC = 1, 4$ and 8.

Each run has an input parameter $s = \{1, 2, \cdots, NPC\}$ that is used both as the “random seed” for Cplex (parameter CPX_PARAM_RANDOMSEED, that ensures different runs for each computer), and to produce diversified route-fixing strategies according to the scheme described below. To further diversify the runs, for s odd an aggressive presolve strategy is selected (parameter CPX_PARAM_PRESLVLND = 3). The runs with $s \in \{1, 8\}$ are executed without any route-fixing. Run with $s = 2$ fixes the first (i.e., ideal) path for each train, while for $s \in \{3, \cdots, 7\}$ the path is selected in a random way using s to initialize the internal random sequence.

Each run uses the mechanism outlined in Subsection 3.1 to automatically determine a suitable upper bound for z_ω by trying, in sequence, values $UB_\omega = 600, 900, 1200, 2000, 2500, 3000, 4000, 5000, +\infty$, until the problem becomes feasible or the time limit is exceeded. To be more specific, at the very beginning of the run we read the input file containing the MILP model, and define the Cplex’s parameters (and possibly fix a certain path for each train) according to the input parameter s. Then we fix $UB_\omega = 600$, and invoke the Cplex’s MILP solver on the resulting model for the allowed time limit reduced by the wall-clock time spent so far. On return from Cplex, if the time limit was not exceeded we check whether the current model was proved to be infeasible by Cplex, in which case we consider the next UB_ω value in the sequence (900, 1200 etc.) and repeat; otherwise we just stop. According to our computational tests, for each instance in our testbed (except of course the removed instance 28), at least one among the parallel runs was able to determine the first feasible UB_ω in very short computing time. Indeed, for the runs on $NPC = 8$ parallel PCs, for $2/3$ of our instances the very first attempt (i.e., $UB_\omega = 600$) produced a feasible solution and preprocessing took no time. For some hard instances, one had to try several UB_ω values (at most 7, in our experiments) but the required preprocessing time was always below 0.2 seconds.

It is worth observing that preprocessing time is included in the reported runtimes, hence this phase is taken into account in the time limit. As already explained, each parallel run on a different PC autonomously computes its own UB_ω value, that also depends on the different routes that are fixed. Again, we stress that in our scheme there is absolutely no communication among the parallel runs—such a communication would in fact require some kind of synchronization, and could even result into a slow-down of the overall computation.

Table 2 gives the summary of the results for our heuristic algorithm with different configurations, assuming a time limit of 2 (for the small instances 1-10), 5 (for the medium instances 11-19) or 10 (for the large instances 20-29) wall-clock seconds. For each instance and configuration of our algorithm, we report the ratio between the best solution found within the time limit and the optimal (or best known) solution value for the given instance, the latter value being reported in column z_{BST}. The left-hand-side part of the table (columns labeled “Standard PC”) refers to experiments performed on our (relatively old) hardware. As already noticed, computing times could be significantly reduced.
by using a more recent processor. So in the columns labeled “50% Faster PC” we also report the results obtained after 3, 7 and 15 seconds on our hardware, which would meet the Alstom’s requirement assuming the use of a more recent processor with a modest 50% speedup.

Reported results are obtained by using $NPC = 1, 4$ and 8 computers, in parallel. On each computer, we consider both the 4-thread option (which is the default setting on our quadcore PCs) as well as the 1-thread option, the latter being interesting for very short time limits as single-thread runs have a faster access to memory and can trigger automatic overclocking of the processor (the so-called “turbo boost” feature of Intel Core i7).

To better evaluate the practical impact of our preprocessing and train-path fixing strategies, Table 2 also reports the performances of our code when these two latter features are disabled, but all remaining Cplex’s parameters are set as in our own code. The two columns labeled “cpx.8/cpx.4” in the table (one for “Standard PC” and the other for “50% Faster PC”) refer to runs with $NPC = 8$ PCs and #threads = 4, and are intended be compared with the two columns labeled “8/4” that appear on their left in the same table.

Results for $NPC = 1$ (hence $s = 1$) clearly show the impact of the variable bound $z_\omega \le UB_\omega$ described in Subsection 3.1: using a single PC (4 threads) already allows one to compute, within the given time limit, a feasible solution in 16 cases out of 29—remind that this figure was equal to 13 for the heuristic version of Cplex executed on 10 PCs. Further improvements are obtained when heuristically fixing some paths in the solution. Using $NPC = 8$ standard PCs, we are able to compute a feasible solution within the given time limit for 26 instances. In addition, in most cases the value of the solution found is very close to the optimal (or best known) solution value. In only 3 cases the ratio is about 2, which is considered acceptable by Alstom’s experts.

Using a more recent architecture (columns “50% Faster PC”) and $NPC \in \{4, 8\}$ PCs (both 1-thread and 4-threads), we were able to find a very good solution in most of the cases within the time limit—except for instance 28, for which no feasible solution could be found even by the best-tuned Cplex on 10 PCs with a one-hour time limit, hence it is not reported in the table. The solution quality at the time limit is very good in all cases.

A comparison of columns “cpx.8/cpx.4” with their “8/4” counterpart clearly shows the very significant performance improvement obtained by the preprocessing and path-fixing strategies described in the present paper. Indeed, removing these latter features leads to a much less effective heuristic that is able to find a feasible solution in 12 (out of 28) cases only, even in the most powerful “50% Faster PC” hardware setting with 8 4-thread computers—while our proposed heuristic was successful in all those 28 instances.

Note that, as expected, using more PCs typically improves the heuristic performance. However, it can be the case that a worse solution is obtained with a larger number of PCs, due to the use of the opportunistic parallel mode (compare, e.g., the “50% Faster PC” entries associated with instance 16).

Though the motivation for our study was to evaluate the possible use of MILP technology to solve the train rescheduling problem, we mention here that alternative approaches that do not make an explicit use of a MILP model have
<table>
<thead>
<tr>
<th>Instance</th>
<th>Standard PC</th>
<th>50% Faster PC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NPC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>#threads</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 4 8 1 4 8 cpx</td>
<td>1 4 8 1 4 8 cpx</td>
</tr>
<tr>
<td>ID</td>
<td>z_{BST}</td>
<td>tl</td>
</tr>
<tr>
<td>1</td>
<td>0.90</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>15.76</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>151.02</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>8.52</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>15.51</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>8.82</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>13.44</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>3.86</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>40.50</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>90.78</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>3.41</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>44.11</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>25.36</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>10.75</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>24.30</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>67.53</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>23.84</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>11.91</td>
<td>5</td>
</tr>
<tr>
<td>19</td>
<td>58.81</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>189.35</td>
<td>10</td>
</tr>
<tr>
<td>21</td>
<td>7.36</td>
<td>10</td>
</tr>
<tr>
<td>22</td>
<td>14.62</td>
<td>10</td>
</tr>
<tr>
<td>23</td>
<td>37.14</td>
<td>10</td>
</tr>
<tr>
<td>24</td>
<td>8.82</td>
<td>10</td>
</tr>
<tr>
<td>25</td>
<td>44.75</td>
<td>10</td>
</tr>
<tr>
<td>26</td>
<td>69.11</td>
<td>10</td>
</tr>
<tr>
<td>27</td>
<td>34.57</td>
<td>10</td>
</tr>
<tr>
<td>28</td>
<td>10.75</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 2: Ratio between the value of the best solution found by our heuristic (within the required time limit of 2, 5 and 10 sec.s) and the value of the best known solution.
been tested on our benchmark. In particular, the results reported in (D’Ariano et al., 2014) show that the integration of the branch-and-bound algorithm of D’Ariano et al. (2007) with the tabu search scheme of Corman et al. (2010), allows for the solution of all our instances within 30 seconds of computation on a Intel Core 2 Duo E6550@2.33GHz. However, D’Ariano et al. (2014) only report the time needed to compute the best solution found (9 seconds, on average) and provide no detailed information about the quality of the solution found within the required time limit of 2, 5 and 10 sec.s. As a consequence, a direct comparison with our approach is not possible, not even to report the number of instances for which a feasible solution was found within the tight given time limits. In any case, we believe it is fair to conclude that both our method and the one by D’Ariano et al. (2014) are viable options in a practical setting.

5 Conclusions

We have addressed the possibility of using a black-box MILP solver for the train rescheduling problem in a real-time context. Our computational experience, as well as that reported by many other authors including D’Ariano et al. (2014), Lamorgese and Mannino (2015), Lamorgese et al. (2016), has shown that the direct usage of such a solver may require a computing time that is not compatible with the allowed time limits.

In the present paper, we have presented a simple heuristic preprocessing framework (to be implemented on the top of the MILP solver), that leads to a dramatic performance improvement and makes the black-box MILP approach viable in practice. We have also shown how our heuristic can be effectively run in parallel on a set of independent computers.

We have reported experiments on a real-world testbed provided by Alstom Ferroviaria SpA (a global leader in the world for railways infrastructure) for an UK railway network. Our results show that the proposed approach qualifies as an effective way to solve the rescheduling problem in real-time. Indeed, our heuristic algorithm has been able to compute high-quality solutions within computing times of just few seconds, which are compatible with real-time requirements. Finally, we have also shown that the same MILP solver (run on the same hardware and with exactly the same parameter configuration) without our preprocessing phase has a much degraded performance, in that it failed in even finding any feasible solution in many cases—hence it cannot be considered a reliable tool to be used in practice.

Future work should address the applicability of similar ideas to different real-time train rescheduling contexts. Indeed, in our preprocessing phase we did not take into account the relative importance of trains (e.g., passenger trains against freight trains), while in practice one can allow for large delays for one category in order to reduce delays for the other. Also of interest is the generalization of our approach to more complex objective functions, e.g., to the non-convex step functions that are often used by train operators to assess punctuality.
Acknowledgements

We want to thanks Alstom Ferroviaria SpA for proving us all data used in the experiments. Special thanks are due to Massimo Rosti and Davide Nucci for their helpful support. MILP instances in our experiments have been provided by D’Ariano et al. (2014). This research was partially supported by MiUR, Italy (PRIN project “Mixed-Integer Nonlinear Optimization: Approaches and Applications”), and by the Vienna Science and Technology Fund (WWTF) through project ICT15-014. Thanks are also due to three anonymous referees for their constructive comments.

Appendix: mathematical model

We next sketch the alternative graph model for train rescheduling, and refer to Mascis and Pacciarelli (2002), D’Ariano et al. (2008), Mannino and Mascis (2009), D’Ariano et al. (2014) for details.

Let us denote by $\Theta = \{1, \ldots, NT\}$ the index set of the trains to be rescheduled, e.g., those that are traveling on a certain area within a given time horizon. Each train θ has an associated set R_θ of alternative routes, characterized by different operations to be performed in different points of the network. In the corresponding alternative graph $G = (N, F \cup A)$, node set N contains a node for each operation associated with any alternative routes of the trains, plus two dummy nodes α and ω that act as source and terminal nodes, respectively. The arc set $F \cup A$ is instead constructed as follows. For each train $\theta \in \Theta$ and route $r \in R_\theta$, we have a set $F_r\theta$ of fixed arcs, each arc corresponding to a pair of operations that must be executed according to a given order (fixed and known in advance). In addition, for each pair of routes (r_1, r_2) associated with two different trains, there is a set $A_{r_1r_2}$ of pairs of alternative arcs, each pair including an arc associated with route r_1 and an arc associated with r_2. These arcs are mutually incompatible in that they require the use of a same resource, hence they must be scheduled according to a certain precedence (to be decided by the optimizer). In the arc set, $F = \bigcup_{\theta \in \Theta, r \in R_\theta} F_r\theta$ contains all the fixed arcs and models all known precedences among operations (including the obvious ones that define the journey of a train along a certain route), whereas A includes all the alternative arcs and corresponds to unknown precedences.

The MILP model we use is based on the definition of the following decision variables:

\[y_{r\theta} = \begin{cases} 1 & \text{if train } \theta \text{ is routed through route } r; \\ 0 & \text{otherwise} \end{cases} \quad \theta \in \Theta; r \in R_\theta \quad (1) \]

\[x_{kjhi} = \begin{cases} 1 & \text{if arc } (k, j) \text{ is selected while arc } (h, i) \text{ is not; } \\ 0 & \text{otherwise} \end{cases} \quad ((k, j), (h, i)) \in A \quad (2) \]

where $A = \bigcup_{\theta_1, \theta_2 \in \Theta, \theta_1 < \theta_2, r_1 \in R_{\theta_1}, r_2 \in R_{\theta_2}} A_{r_1r_2}$ contains all the pairs of incompatible arcs.

In addition the model uses, for each operation j, the two variables t_j and z_j to represent the time instant in which the operation takes place and the
associated delay, respectively. As to the dummy event \(\omega \), variable \(z_\omega \) is actually used to indicate the maximum delay among all operations.

The model can be stated as follows:

\[
\min f(z) \quad (3)
\]
\[
\sum_{r \in R_\theta} y_r \theta = 1, \quad \theta \in \Theta \quad (4)
\]
\[
z_j \geq t_j - p_j, \quad j \in N \quad (5)
\]
\[
t_\alpha = 0 \quad (6)
\]
\[
t_j - t_i + M(1 - y_r \theta) \geq d_{ij}, \quad \theta \in T, r \in R_\theta, (i, j) \in F_{r \theta} \quad (7)
\]
\[
t_i - t_h + M(1 - y_{r_1} \theta_1) + M(1 - y_{r_2} \theta_2) + Mx_{kji} \geq d_{hi}, \quad \theta_1, \theta_2 \in \Theta, \theta_1 < \theta_2, r_1 \in R_{\theta_1}, r_2 \in R_{\theta_2}, \quad \{(k, j), (h, i)\} \in A_{r_1 r_2} \quad (8)
\]
\[
t_j - t_k + M(1 - y_{r_1} \theta_1) + M(1 - y_{r_2} \theta_2) + M(1 - x_{kji}) \geq d_{kj}, \quad \theta_1, \theta_2 \in \Theta, \theta_1 < \theta_2, r_1 \in R_{\theta_1}, r_2 \in R_{\theta_2}, \quad \{(k, j), (h, i)\} \in A_{r_1 r_2} \quad (9)
\]
\[
z_\omega \leq UB_\omega \quad (10)
\]
\[
z_j \geq 0, \quad j \in N \quad (11)
\]
\[
x_{kji} \in \{0, 1\}, \quad \{(k, j), (h, i)\} \in A \quad (12)
\]
\[
y_{r \theta} \in \{0, 1\}, \quad \theta \in \Theta, r \in R_\theta \quad (13)
\]

where \(f(\cdot) \) denotes some linear objective function, to be defined by the user, and \(M \) denotes a very large positive value (big-M). In the model, each arc \((i, j)\) has an associated duration \(d_{ij} \) representing the minimum time difference between operations \(i \) and \(j \), in case both are executed. In addition, each operation \(j \) has associated an input “release time” \(p_j \) that is used to define the associated delay \(z_j \) in (5). In our experiments, the objective function \(f(z) = \frac{1}{N} \sum_{j \in N} z_j \) measures the average delay in the final solution.

Constraints (4) ensure that exactly one route is selected for each train, while (5) define the delay variables \(z_j \) used in the objective function. Constraints (7) model the implications “\(y_{r \theta} = 1 \rightarrow t_j \geq t_i + d_{ij} \)”, i.e., they force the precedences related to the fixed arcs for selected routes, while they are deactivated in case \(y_{r \theta} = 0 \). Similarly, because of the big-M coefficients constraints (9)–(10) are only active when \(y_{r_1 \theta_1} = y_{r_2 \theta_2} = 1 \), in which case they impose the disjunction “\(t_i \geq t_h + d_{hi} \) \lor \(t_j \geq t_k + d_{kj} \)” corresponding to the incompatible arc pair \(\{(k, j), (h, i)\} \in A_{r_1 r_2} \). Finally, (10) imposes an input upper \(UB_\omega \in \mathbb{R}_+ \cup \{+\infty\} \) on variable \(z_\omega \) representing the maximum delay occurred in the schedule—this is due to an ad-hoc definition of the duration \(d_{i \omega} \) of the arcs \((i, \omega)\) entering the
terminal node ω.

References

