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Abstract In a model driven by a multi-dimensional local diffusion, we study the behavior of implied volatil-

ity σ and its derivatives with respect to log-strike k and maturity T near expiry and at the money. We recover

explicit limits of the derivatives ∂qT∂
m
k σ for (T, x − k) approaching the origin within the parabolic region

|x− k| ≤ λ
√
T , with x denoting the spot log-price of the underlying asset and where λ is a positive and ar-

bitrarily large constant. Such limits yield the exact Taylor formula for implied volatility within the parabola

|x− k| ≤ λ
√
T . In order to include important models of interest in mathematical finance, e.g. Heston, CEV,

SABR, the analysis is carried out under the weak assumption that the infinitesimal generator of the diffusion

is only locally elliptic.

Keywords: implied volatility, local-stochastic volatility, local diffusions, Feller process
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1 Introduction

This paper deviates from the mainstream literature on asymptotic methods in finance; in fact, our main

result does not add another formula to the plethora of approximation formulas for the implied volatility

(IV) already available in the literature. Rather, we prove an exact result: a rigorous derivation of the exact

Taylor formula of IV, as a function of both strike and maturity, in a parabolic region close to expiry and

at-the-money (ATM).

This is done under general assumptions that allow to include popular models, such as the CEV and the

Heston models, as very particular cases: indeed, we consider a multivariate model driven by a stochastic

process that is a local diffusion in a sense that suitably generalizes the classical notion of diffusion as given

by Stroock and Varadhan (1979) and Friedman (1975, 1976).

The literature on IV asymptotics is extensive and exploits a diverse range of mathematical techniques. Fo-

cusing on short-time asymptotics, well-known results were obtained by Berestycki et al. (2002), Berestycki et al.
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2 Stefano Pagliarani, Andrea Pascucci

(2004) and Durrleman (2010). Deferring precise definitions until the body of this paper, we denote by

σ(t, x;T, k) the IV related to a Call option with log-strike k and maturity T , where x is the spot log-price

of the underlying asset at time t. Berestycki et al. (2004) uses PDEs techniques to prove the existence of

the limits lim
T→t+

σ(t, x;T, k) in a generic stochastic volatility model and to characterize such limits in terms

of Varadhan’s geodesic distance (see also to Gavalas and Yortsos (1980) for related results). More recently,

Durrleman (2010) gives conditions under which it is possible to recover the ATM-limits lim
T→t+

∂qT∂
m
k σ(t, k;T, k)

using a semi-martingale decomposition of implied volatilities; although this approach performs also in non-

Markovian settings, the validity of the conditions for the existence of the limits is verified only under Marko-

vian assumptions and employing the results in Berestycki et al. (2004).

While it is common practice to consider the IV as a function of maturity and strike (T, k), the aforemen-

tioned papers examine only the vertical limits, as T → t+, of σ(t, x;T, k). The aim of this paper is to give

conditions for the existence and an explicit representation of the limits of ∂qT ∂
m
k σ(t, x;T, k), at any order

m, q, as (T − t, x − k) approaches the origin within the parabolic region Pλ := {|x − k| ≤ λ
√
T − t}; here

λ is an arbitrarily large positive parameter. From a practical perspective, Pλ is the region of interest where

implied volatility data are typically observed in the market. As a by-product, we also provide a rigorous and

explicit derivation of the exact Taylor formula (see formula (1.3) below) for the implied volatility σ(t, x; ·, ·)
in Pλ, around (T, k) = (t, x).
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Fig. 1.1 Directions along which the limits are computed in Berestycki et al. (2004), in Durrleman (2010) and in this paper,

respectively.

The starting point is the analysis of the transition density first developed in a scalar setting in Pagliarani and Pascucci

(2012) and later extended to asymptotic IV expansions in multiple dimensions in Lorig et al. (2015b), where

the authors derived a fully explicit approximation, hereafter denoted by σ̄N , for the IV at any given order

N ∈ N. Our main result, Theorem 5.1 below, gives a sharp error bound on ∂qT∂
m
k (σ − σ̄N ) and leads to the

existence of the limits

lim
(T,k)→(t,x)

|x−k|≤λ
√

T−t

∂qT ∂
m
k

(
σ − σ̄N

)
(t, x;T, k) = 0, 2q +m ≤ N. (1.1)

In the one-dimensional case and for derivatives of order less than or equal to two, similar results were proved

in Bompis and Gobet (2012) by using Malliavin calculus techniques. Our results are proved under mild

conditions on the driving stochastic process, which is assumed to be a Feller process and an inhomogeneous

local diffusion. Loosely speaking, we assume that the infinitesimal generator of the diffusion is only locally

elliptic (i.e. elliptic on a certain domain D ⊆ R
d) and its coefficients satisfy suitable regularity conditions;

note that no ellipticity condition is imposed on the complementary set Rd \D. Results under such general

hypotheses appear to be novel compared to the existing literature. In particular, our analysis includes

processes with killing and/or degenerate processes: our assumptions do not even imply that the law of the
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underlying process has a density and therefore our results apply to many degenerate cases of interest, such

as the well-known CEV, Heston and SABR models, among others.

Formula (1.1) implies that the limits of the derivatives ∂qT ∂
m
k σ exist if and only if the limits of ∂qT ∂

m
k σ̄N

do exist, and in that case we have

lim
(T,k)→(t,x)

|x−k|≤λ
√

T−t

∂qT∂
m
k σ(t, x;T, k) = lim

(T,k)→(t,x)

|x−k|≤λ
√

T−t

∂qT ∂
m
k σ̄N (t, x;T, k). (1.2)

Note that, in general, the limits in (1.2) do not exist: a simple example is given in Roper and Rutkowski

(2009), Section 6, who exhibit a log-normal model with oscillating time-dependent volatility. In that case

the results by Berestycki et al. (2002), Berestycki et al. (2004) and Durrleman (2010) do not apply, while

the approximation σ̄N in Lorig et al. (2015a) turns out to be exact at order N = 0. More generally, we shall

provide simple and explicit conditions ensuring the existence of the limits of ∂qT ∂
m
k σ̄N , and consequently the

existence of those of ∂qT∂
m
k σ in (1.2). A particular case is when the underlying diffusion is time-homogeneous:

in that case, σ̄N is polynomial in time and thus smooth up to T = t.

Denoting by ∂qT∂
m
k σ̄N (t, x) the limits in (1.2), whose explicit expression is known at any order, we get

the following exact parabolic Taylor formula for σ:

σ(t, x;T, k) =
∑

2q+m≤N

∂qT∂
m
k σ̄N (t, x)

q!m!
(T − t)q(k − x)m + o

(
(T − t)

N
2 + |k − x|N

)
, (1.3)

as (T, k) → (t, x) in Pλ. Here, the meaning of the adjective parabolic is twofold. On the one hand it refers to

the parabolic domain Pλ on which the Taylor formula is proved; on the other hand, it refers to nature of the

reminder, which is expressed in terms of the homogeneous norm typically used to describe the geometry in-

duced by a parabolic differential operator. Note that this formula describes the behavior of σ in a joint regime

of small log-moneyness and/or small maturity. This result appears to be novel compared to the existing litera-

ture and complementary to Gao and Lee (2014), Mijatović and Tankov (2016) and Caravenna and Corbetta

(2014). In Gao and Lee (2014) the asymptotic behavior of σ in joint regime of extreme strikes and short/long

time-to-maturity is studied; Mijatović and Tankov (2016) studied, in an exponential Lévy model, the small-

time asymptotic behavior of σ along relevant curves lying outside the parabolic region Pλ for any λ > 0;

eventually, in a very general setting, Caravenna and Corbetta (2014) studied the asymptotics of σ for differ-

ent regimes of log-strikes and maturities, including the region Pλ where their result coincides with ours at

order zero.

A part from the mere interest of having at hand a Taylor formula like (1.3), additional advantages of having

two-dimensional limits, as opposed to vertical ones, might come from applications such as the asymptotic

study of the IV generated by VIX options (see Barletta et al. (2015)). In this case, the underlying value,

given by the price of the future-VIX, is not fixed but varies in time, meaning that the log-moneyness of an

ATM VIX-Call is not constantly zero, but approaches zero for small time-to-maturities along a curve which

is not a straight line.

The proof of our result proceeds in several steps. We first introduce a notion of local diffusion (Assump-

tion 2.1): we study its basic properties and the existence of a local transition density. We provide a double

characterization of the local density in terms of the forward and the backward Kolmogorov equations (The-

orem 2.6): the forward representation follows from Hörmander’s theorem and is coherent with the classical

results by Kusuoka and Stroock (1985). On the other hand, the backward representation appears to be novel
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at this level of generality. Indeed, its proof is more delicate and requires the use the Feller property com-

bined with the classical pointwise estimates by Moser (1971) for weak solutions of parabolic PDEs. Then

we derive sharp asymptotic estimates for the derivatives ∂qT∂
m
k u(t, x;T, k), with u representing the pricing

function of a Call option with maturity T and log-strike k. This will be done first in a uniformly parabolic

framework and then will be extended to a locally parabolic setting to include the majority of the models

used in mathematical finance. The second step is particularly interesting due to the very loose assumptions

imposed on the generator At of the underlying diffusion. The main idea is to prolong At with an operator Ãt

which is globally parabolic and then to prove that locally in space the difference between the fundamental

solution of Ãt and the local density of the underlying process decays exponentially as the time-to-maturity

approaches zero. This last step requires an articulated use of some techniques first introduced by Safonov

(1998). Eventually, the estimates on the derivatives ∂qT∂
m
k u are combined with some sharp estimates on the

inverse of the B&S pricing function and on its sensitivities to obtain the main results, Theorem 5.1 and the

Taylor formula (1.3).

The paper is organized as follows. In Section 2 we describe the general setting and show some illustrative

examples of popular models satisfying our standing assumptions. In Section 3 we briefly recall the asymptotic

expansion procedure proposed by Lorig et al. (2015b). In Section 4 we derive error estimates for prices and

sensitivities, first under the strong assumption of uniform parabolicity (Subsection 4.1) and then in the

general case (Subsection 4.2). In Section 5 we prove our main result (Theorem 5.1) on the error estimates

of the IV and its derivatives, and the consequent parabolic Taylor formula. Finally, the Appendix contains

the proof of Theorem 4.4 and other auxiliary results, namely: some short-time/small-volatility asymptotic

estimates for the Black-Scholes sensitivities (Appendix C), an explicit representation formula for the terms

appearing in the proxy σ̄N (Appendix D), and a multi-variate version of the Faà di Bruno’s formula (Appendix

E).

Acknowledgments. The authors are grateful to Enrico Priola, Jian Wang and an anonymous referee

for their valuable comments and suggestions to improve the quality of the paper.

2 Local diffusions and local transition densities

In this section we describe the general setting and state the standing assumptions under which the main

results of the paper are carried out. We also show some examples and prove some conditions under which

such assumptions are satisfied. Generally we adopt definitions and notations from Friedman (1975, 1976).

We fix T0 > 0 and consider a continuous R
d-valued Markov process Z = (Zt)t∈[0,T0] with transition

probability function p̄ = p̄(t, z;T, dζ), defined on the space (Ω,F , (F t
T )0≤t≤T≤T0 , (Pt,z)0≤t≤T0). For any

bounded Borel measurable function ϕ, we denote by

Et,z [ϕ(ZT )] := (Tt,Tϕ)(z) :=

∫

Rd

p̄(t, z;T, dζ)ϕ(ζ), 0 ≤ t < T ≤ T0, z ∈ R
d, (2.1)

the Pt,z-expectation and the semigroup associated with the transition probability function p̄, respectively

(cf. Chapter 2.1 in Friedman (1975)).
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We assume that Z = (S, Y ) where S is a non-negative martingale1 and Y takes values in R
d−1: here

S represents the risk-neutral price of a financial asset and Y models a number of stochastic factors in the

market. For simplicity, we assume zero interest rates and no dividends2.

Throughout the paper we assume the existence of a domain3 D ⊆ R>0 × R
d−1 on which the following

three standing assumptions hold. We would like to emphasize that in the following assumptions, we impose

only local conditions, satisfied by all the most popular financial models.

Assumption 2.1 The process Z is a local diffusion onD, meaning that for any t ∈ [0, T0[, δ > 0, 1 ≤ i, j ≤ d

and H, compact subset of D, there exist the limits

lim
h→0+

∫

{|z−ζ|>δ}∩H

p̄(t, z; t+ h, dζ)

h
= lim

h→0+

∫

{|z−ζ|>δ}∩H

p̄(t− h, z; t, dζ)

h
= 0, (2.2)

uniformly w.r.t. z ∈ R≥0 × R
d−1, and the limits

lim
h→0+

∫

|z−ζ|>δ

p̄(t, z; t+ h, dζ)

h
= lim

h→0+

∫

|z−ζ|>δ

p̄(t− h, z; t, dζ)

h
= 0, (2.3)

lim
h→0+

∫

|z−ζ|<δ

(ζi − zi)
p̄(t, z; t+ h, dζ)

h
= lim

h→0+

∫

|z−ζ|<δ

(ζi − zi)
p̄(t− h, z; t, dζ)

h
=: āi(t, z), (2.4)

lim
h→0+

∫

|z−ζ|<δ

(ζi − zi)(ζj − zj)
p̄(t, z; t+ h, dζ)

h
= lim

h→0+

∫

|z−ζ|<δ

(ζi − zi)(ζj − zj)
p̄(t− h, z; t, dζ)

h
=: āij(t, z), (2.5)

uniformly w.r.t. z ∈ H.

The following lemma, whose proof is deferred to Subsection 2.3, collects some useful consequences of

Assumption 2.1.

Lemma 2.2 Under Assumption 2.1, for any ϕ ∈ C0([0, T0]×D) and f ∈ C2
0 ([0, T0]×D) we have

lim
T−t→0+

‖Tt,Tϕ(T, ·)− ϕ(t, ·)‖
L∞(R≥0×Rd−1) = 0, (2.6)

lim
T−t→0+

∥∥∥∥
Tt,T f(T, ·)− f(t, ·)

T − t
−
(
∂t + Āt

)
f(t, ·)

∥∥∥∥
L∞(R≥0×Rd−1)

= 0, (2.7)

where

Āt :=
1

2

d∑

i,j=1

āij(t, z)∂zizj +
d∑

i=1

āi(t, z)∂zi t ∈ [0, T0[, z ∈ D. (2.8)

Moreover, for any 0 ≤ t < T < T0 and z ∈ R≥0 × R
d−1, we have

d

dT
(Tt,T f(T, ·)) (z) = Tt,T

((
∂T + ĀT

)
f(T, ·)

)
(z). (2.9)

1 We assume that S is a martingale in order to ensure that the financial model is well posed: however this assumption will

not be used in the proof of our main results.
2 The case of deterministic interest rates and/or dividends can be easily included by performing the analysis on the forward

prices.
3 Connected and open set.
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Many financial models are defined in terms of (stopped) solutions of stochastic differential equations. We

refer to Section 2.2 in Friedman (1975) for the definition and basic results about t-stopping times with respect

to a given Markov process. The following result shows that stopped solutions of SDEs satisfy Assumption

2.1.

Lemma 2.3 Let (Zt)t∈[0,T0]
be a continuous Markov process defined as Zt = Ẑt∧τ , where:

i) Ẑ is a solution of the SDE

dẐt = µ(t, Ẑt)dt+ σ(t, Ẑt)dWt

where W is a multi-dimensional Brownian motion and the coefficients of the SDE are continuous and

bounded on [0, T0]×D, with D a domain of Rd;

ii) τ is the first exit time of Ẑ from a domain D′ ⊆ R≥0 × R
d−1 containing D.

Then Z is a local diffusion on D in the sense of Assumption 2.1, with

āi = µi, āij =
(
σσ∗)

ij
, 1 ≤ i, j ≤ d. (2.10)

The proof of Lemma 2.3 is deferred to Subsection 2.3.

We refer to the operator Āt in (2.8) as the infinitesimal generator of Z on D. In the second standing

assumption we require that Āt is a non-degenerate operator. Notice that Āt is defined only locally, on the

domain D. In the following assumption and throughout the paper N ≥ 2 is a fixed integer4.

Assumption 2.4 The operator Āt satisfies the following conditions:

(i) the coefficients āij , āi ∈ CN,1
P ([0, T0[×D), where CN,α

P denotes the usual parabolic Hölder space (see, for

instance, Chapter 10.1 in Friedman (1976));

(ii) Āt is elliptic on D, i.e. there exist M > 0 and ε ∈]0, 1[ such that

εM |ζ|2 ≤
d∑

i,j=1

āij(t, z)ζiζj ≤M |ζ|2, t ∈ [0, T0[ , z ∈ D, ζ ∈ R
d.

Finally, we state the third standing assumption.

Assumption 2.5 Z is a Feller process on D, i.e. for any T ∈]0, T0[ and ϕ ∈ C0(R
d) the function (t, z) 7→

(Tt,Tϕ)(z) is continuous on [0, T [×D.

The following result summarizes some properties of the law of Z. In particular it states the existence of

a local transition density for Z on D, which is a non-negative measurable function Γ̄ = Γ̄ (t, z;T, ζ), defined

for 0 ≤ t < T < T0 and z, ζ ∈ D, such that, for any H ∈ B(D) (Borel subset of D),

p̄(t, z;T,H) =

∫

H

Γ̄ (t, z;T, ζ)dζ.

Moreover, it provides a double characterization of such local density, first as a solution to a forward Kol-

mogorov equation (w.r.t. the ending point (T, ζ)) and then as a solution to a backward Kolmogorov equation

(w.r.t. the initial point (t, z)). The existence and the forward representation follow from Hörmander’s the-

orem, Hörmander (1967), after proving that the law is a local solution, in the distributional sense, of the

4 To simplify the presentation, we assume N ≥ 2. However, the proofs of neither the results in dimension one (i.e. d = 1),

nor the results for the derivatives of order one or two in a generic dimension, do require this condition.
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adjoint of the infinitesimal generator of Z. This result is rather classical and is coherent with the well-known

results by Kusuoka and Stroock (1985) (see also the more recent paper by De Marco (2011)). In order to

prove the backward formulation we still employ Hörmander’s theorem, but in this case the proof is more

delicate and technically involved. In fact, to prove that the law is a distributional solution of the generator

of Z, it will be crucial to use the Feller property combined with the classical pointwise estimates by Moser

(1971) for weak solutions of parabolic PDEs. At this level of generality, the resulting backward representation

for the transition local density appears to be novel and of independent interest.

Theorem 2.6 Let Assumptions 2.1 and 2.4 be in force. Then Z has a local transition density Γ̄ on D such

that, for any (t, z) ∈ [0, T0[×D, Γ̄ (t, z; ·, ·) ∈ CN,1
P (]t, T0[×D) and solves the forward Kolmogorov equation

(
∂T − Ā∗

T

)
f = 0 on ]t, T0[×D. (2.11)

Here Ā∗
T denotes the formal adjoint of ĀT , acting as

Ā
∗
T f =

1

2

d∑

i,j=1

∂zizj (āij(T, ·)f)−
d∑

i=1

∂zi (āi(T, ·)f) .

If in addition also Assumption 2.5 is satisfied, then Γ̄ (·, ·;T, ζ) ∈ CN+2,1
P ([0, T [×D) for any (T, ζ) ∈]0, T0[×D,

and solves the backward Kolmogorov equation

(
∂t + Āt

)
f = 0 on [0, T [×D. (2.12)

We will give a detailed proof of Theorem 2.6 in Subsection 2.3. Before, in Subsections 2.1 and 2.2, we provide

illustrative examples of popular models that satisfy Assumptions 2.1, 2.4 and 2.5, and to which our analysis

applies. Only in order to deal with the derivatives of a Call option price w.r.t. the strike, in Section 4.2 we

will introduce additional assumptions to ensure existence and local boundedness of such derivatives.

2.1 The CEV model

Consider the SDE

dS̃t = σS̃β
t dWt, (2.13)

where σ > 0 and 0 < β < 1. It is well-known (cf. Ikeda and Watanabe (1989), p. 221, or Revuz and Yor

(1999), Chapter 11) that (2.13) has a unique strong solution that can be represented, through the transfor-

mation Xt =
S̃

2(1−β)
t

σ2(1−β)2 , in terms of the squared Bessel process

dXt = δdt+ 2
√
XtdWt,

with δ = 1−2β
1−β

. The process S̃ has distinct properties according to the parameter regimes β < 1
2 and β ≥ 1

2 .

To describe these properties, first we introduce the functions

Γ̄±(t, s;T, S) =
s

1
2−2β

√
Se

− s2(1−β)+S2(1−β)

2(1−β)2σ2(T−t)

(1− β)σ2(T − t)
I± 1

2(1−β)

(
(sS)1−β

(1− β)2σ2(T − t)

)
, (2.14)

where Iν(x) is the modified Bessel function of the first kind defined by

Iν(x) =
(x
2

)ν ∞∑

k=0

x2k

22kk!ΓE(ν + k + 1)
,
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and ΓE represents the Euler Gamma function. Both Γ̄+ and Γ̄− are fundamental solutions of (∂t + Ā) where

Ā is the infinitesimal generator of Ŝ:

Ā =
σ2s2β

2
∂ss. (2.15)

Precisely, we have

(∂t + Ā)Γ̄±(·, ·;T, S) = 0, on [0, T [×R>0,

and

lim
(t,s)→(T,s̄)

t<T

∫

R>0

Γ̄±(t, s;T, S)ϕ(S)dS = ϕ(s̄), s̄ ∈ R>0,

for any continuous and bounded function ϕ.

The point 0 is an attainable state for S̃. In particular, if β ≥ 1
2 then 0 is absorbing: if we denote by

τs := inf{τ | S̃τ = 0} the first time S̃ hits 0 starting from S̃0 = s ≥ 0, then we have S̃t = 0 for t ≥ τs.

The law of S̃ has a Dirac delta component at the origin and the function Γ̄+ in (2.14) is the transition

semi-density of S̃ on R>0: more precisely, denoting by p̃ the transition probability function of S̃, we have

p̃(t, s;T,H) =

∫

H

Γ̄+(t, s;T, S)dS

for any Borel subset H of R>0 and
∫ +∞

0

Γ̄+(t, s;T, S)dS < 1.

On the other hand, if β < 1
2 then S̃ reaches 0 but it is reflected: in this case Γ̄−, which integrates to one

on R>0, is the transition density of S̃. Moreover, S̃ is a strict local martingale (cf. Delbaen and Shirakawa

(2002) or Heston et al. (2007)) that “cannot” represent the risk-neutral price of an asset: the intuitive idea

is that arbitrage opportunities would arise investing in an asset whose price is zero at the stopping time τs

but later becomes positive.

For this reason, in the CEV model introduced by Cox (1975) the asset price is defined as the process

obtained by stopping the unique strong solution Ŝ, starting from S̃0 = s, of the SDE (2.13) at τs, that is

St := S̃t∧τs , t ≥ 0.

For any 0 < β < 1, the transition semi-density of S is Γ̄+ in (2.14). For this model, Delbaen and Shirakawa

(2002) show that, for any 0 < β < 1, the process is a non-negative martingale.

Now let D be any domain compactly contained in R>0. By Lemma 2.3, the stopped process S is a local

diffusion on D and satisfies Assumption 2.1. The infinitesimal generator Ā is the operator in (2.15), has

smooth coefficients and is uniformly elliptic on D: thus Assumption 2.4 is satisfied for any N ∈ N. Moreover,

the Feller property on D (Assumption 2.5) follows from the explicit expression of the transition semi-density

or from the general results in Ethier and Kurtz (1986), Chapter 8 (see Problem 3 p.382 and Thm. 2.1 p.371).

The CEV model (and also its stochastic volatility counterpart, the popular SABR model used in interest

rates modeling) is an interesting example of degenerate model because the infinitesimal generator is not

globally uniformly elliptic and the law of the price process is not absolutely continuous w.r.t the Lebesgue

measure.
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Remark 2.7 Durrleman (2010), p. 175, provided formulas for the implied volatility in a local volatility (LV)

model with LV-function σ = σ(s). His expression for the time-derivative of the ATM implied volatility,

denoted by Σ, is equal to

∂tΣ(t, s)|t=0 =
1

12
s2(s)2σ′′(s)− 4

3
s2σ(s)σ′(s)2 +

1

12
sσ(s)2σ′(s).

The latter is slightly different from the expression we get from our Taylor expansion that, in this particular

case, can be computed as in Section 3.2 and reads as

∂tΣ(t, s)|t=0 =
1

12
s2σ(s)2σ′′(s)− 1

24
s2σ(s)σ′(s)2 +

1

12
sσ(s)2σ′(s). (2.16)

Actually, simple numerical tests performed in the CEV model confirm that formula (2.16) is correct. As a

matter of example, in Table 2.1 we show the values of ∂tΣ(t, 1)|t=0 in the CEV model with σ = S0 = 1 (cf.

(2.13)) and β = 0.1, . . . , 0.9.

Table 2.1 ATM IV time-derivative

β Numerical approx. Taylor expansion Durrleman

0.1 0.0337524 0.03375 -1.0125

0.2 0.0266639 0.0266667 -0.8

0.3 0.0204115 0.0204167 -0.6125

0.4 0.0149955 0.015 -0.45

0.5 0.0104115 0.0104167 -0.3125

0.6 0.00666029 0.00666667 -0.2

0.7 0.00374753 0.00375 -0.1125

0.8 0.00136839 0.00166667 -0.05

0.9 0.000415421 0.000416667 -0.0125

2.2 Multi-factor local-stochastic volatility models

We consider a pricing model defined as the solution of a system of SDEs of the form




dSt = η1(t, St, Yt)St dW

(1)
t ,

S0 = s ∈ R>0,
(2.17)




dY

(i)
t = µi(t, St, Yt)dt+ ηi(t, St, Yt)dW

(i)
t , i = 2, . . . , d,

Y0 = y ∈ R
d−1,

(2.18)

where W is a d-dimensional correlated Brownian motion with

d〈W (i),W (j)〉t = ρij(t, St, Yt)dt, i, j = 1, . . . , d.

In the most classical setting, one assumes that the coefficients of the SDEs are measurable functions,

locally Lipschitz continuous in the spatial variables (s, y) uniformly w.r.t. t ∈ [0, T0], and have sub-linear

growth in (s, y); for more details we refer, for instance, to condition (A′) p.113 of Chapter 5.3 in Friedman
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(1975). In this case, a unique global-in-time solution (S, Y ) exists, which is a Feller process5 and a diffusion

(see Theorems 5.3.4 and 5.4.2 in Friedman (1975)).

Usually, however, the above conditions are considered too restrictive and of limited practical use. Actually,

we shall see that Assumptions 2.1, 2.4 and 2.5 are satisfied under much weaker conditions. To see this, we

first note that the infinitesimal generator Ā of (S, Y ) is the operator of the form (2.8) with coefficients given

by

ā1 = 0, āi = µi, ā11 = ρ11η
2
1s

2, ā1i = āi1 = ρ1iηiη1s, āij = āji = ρijηiηj i, j = 2, · · · , d.

Now, Assumption 2.4 is straightforward to verify and applies to the great majority of the models used in

finance, and thus, by Lemma 2.3, Assumption 2.1 is also satisfied provided that a solution to the system

(2.17)-(2.18) exists. The Feller property in Assumption 2.5 has to be verified case by case. Results en-

suring the Feller property for the solution of an SDE under weak regularity conditions on the coefficients

(Hölder or local Lipschitz continuity) have been recently proved by Wang (2010) (see Proposition 2.1) and

by Wang and Zhang (2016). Moreover, the results of Chapter 8 in Ethier and Kurtz (1986) cover several

SDEs related to financial models.

As a matter of example, we analyze the classical model proposed by Heston (1993). Set d = 2 and

dSt = St

√
YtdW

(1)
t , S0 ∈ R>0,

dYt = κ(θ − Yt)dt+ δ
√
YtdW

(2)
t , Y0 ∈ R>0,

where δ is a positive constant (the so-called vol-of-vol parameter), κ, θ > 0 are the drift-mean and the

mean-reverting term of the variance process respectively, and W is a 2-dimensional Brownian motion with

correlation ρ ∈] − 1, 1[. It is well known that the joint transition probability function p̄ in (2.1) admits

an explicit characterization in terms of its Fourier-Laplace transform. Precisely, setting Xt = logSt, and

assuming for simplicity δ = 1, we have

p̂(t, x, y;T, ξ, η) := Et,x,y

[
eiξXT−ηYT

]
= eixξ−yA(T−t,ξ,η)B(T − t, ξ, η), (2.19)

where

A(u, ξ, η) =
b(ξ)g(ξ, η)e−D(ξ)(u−s) − a(ξ)

g(ξ, η)e−D(ξ)(u−s) − 1
, B(u, ξ, η) = e−κθa(ξ)u

(
g(ξ, η)− 1

g(ξ, η)e−D(ξ)u − 1

)2κθ

,

with

g(ξ, η) =
a(ξ)− η

b(ξ)− η
, a(ξ) = iξρ− κ+D(ξ), b(ξ) = iξρ− κ−D(ξ), D(ξ) =

√
(iξρ− κ)2 + ξ (ξ + i).

Using the explicit knowledge of the characteristic function of S, Andersen and Piterbarg (2007), Proposition

2.5, prove that S is a martingale and can reach neither ∞ nor 0 in finite time (see also Lions and Musiela

(2007) for related results in a more general setting). The variance process Y can reach the boundary with

positive probability if the Feller condition 2κθ ≥ δ2 is violated and in this case the origin is a reflecting

boundary. In any case, the distribution of Yt has no mass at 0 for any positive t.

5 The definition of Feller process given in Friedman (1975), Chapter 2.2, is slightly different from ours. However the Feller

property for solutions of SDEs is proved in Friedman (1975) as a consequence of Lemma 5.3.3: this lemma also implies the

Feller property as given in Assumption 2.5.



The exact Taylor formula of the implied volatility 11

By Lemma 2.3, Assumptions 2.1 is verified on any domain D compactly contained in R>0 ×R>0 and the

generator Ā of (S, Y ) reads as

Ā =
ys2

2
∂ss +

δ2y

2
∂yy + ρδys ∂sy + κ(θ − y)∂y, (s, y) ∈ R>0 × R≥0.

It is also clear that Assumption 2.4 is satisfied on D for any N ∈ N. Finally, the Feller property follows by

the explicit expression of the characteristic function in (2.19), and thus Assumption 2.5 is also satisfied.

Remark 2.8 By Theorem 2.6, the couple (S, Y ) in the Heston model has a smooth local transition density

on any domain D compactly contained in R>0 × R>0. Therefore, since p
(
t, z;T,R2 \ (R>0 × R>0)

)
= 0, the

process (S, Y ) has a transition density on R
2, which is smooth on R>0 × R>0. In particular, the marginal

distribution of St has a smooth density on R>0, which is consistent with del Baño Rollin et al. (2010).

2.3 Proofs of Lemmas 2.2, 2.3 and Theorem 2.6

Proof (of Lemma 2.2) We first remark that in the statement of the lemma, the short notation (see (2.6))

lim
T−t→0+

‖Tt,Tϕ(T, ·)− ϕ(t, ·)‖∞ = 0,

must be interpreted as

lim
h→0+

‖Tt,t+hϕ(t+ h, ·)− ϕ(t, ·)‖∞ = lim
h→0+

‖Tt−h,tϕ(t, ·)− ϕ(t− h, ·)‖∞ = 0,

and analogously for (2.7). Hereafter, for greater convenience, we shall use this abbreviation systematically.

Now let us prove (2.6). For a given ϕ ∈ C0([0, T0] ×D), we denote by Hϕ the support of ϕ and consider a

compact subset H of D such that Hϕ ⊆ [0, T0]×H and δ̄ := dist
(
Hϕ, [0, T0]× (Rd \H)

)
> 0. Then we have

Tt,Tϕ(T, z)− ϕ(t, z) = It,T,1(z) + It,T,2(z) + It,T,3(z)

where

It,T,1(z) =

∫

H

p̄(t, z;T, dζ) (ϕ(T, ζ)− ϕ(T, z)) ,

It,T,2(z) = (ϕ(T, z)− ϕ(t, z))

∫

H

p̄(t, z;T, dζ),

It,T,3(z) = −ϕ(t, z)
∫

(R≥0×Rd−1)\H
p̄(t, z;T, dζ).

Since ϕ is uniformly continuous, for any ε > 0 there exists δε > 0 such that

|It,T,1(z)| ≤ ε

∫

|z−ζ|≤δε

p̄(t, z;T, dζ) + 2‖ϕ‖∞
∫

H∩{|z−ζ|>δε}
p̄(t, z;T, dζ)

and therefore, by (2.2),

lim sup
T−t→0+

|It,T,1(z)| ≤ ε

uniformly w.r.t. z ∈ R≥0 × R
d−1. Moreover we have

|It,T,2(z)| ≤ |ϕ(T, z)− ϕ(t, z)| −→ 0
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as T − t→ 0+, uniformly w.r.t. z. On the other hand, by (2.3) we have

|It,T,3(z)| ≤ ‖ϕ‖∞
∫

|z−ζ|>δ̄

p̄(t, z;T, dζ) −→ 0

as T − t→ 0+, uniformly w.r.t. z ∈ Hϕ, and It,T,3(z) ≡ 0 if z /∈ Hϕ. This concludes the proof of (2.6). Notice

that, for any z ∈ D and r > 0 such that B(z, r) := {ζ | |z − ζ| < r} ⊆ D, we have

lim
T−t→0+

∫

B(z,r)

p̄(t, z;T, dζ) = 1; (2.20)

indeed for any ϕ ∈ C0(B(z, r)) such that |ϕ| ≤ 1 and ϕ(z) = 1, by (2.6) we have

1 ≥
∫

B(z,r)

p̄(t, z;T, dζ) ≥ Tt,Tϕ(z) −→ ϕ(z) = 1

as T − t→ 0+.

The proof of (2.7) is similar: for any f ∈ C2
0 ([0, T0]×D) we have

Tt,T f(T, z)− f(t, z)

T − t
= It,T,1(z) + It,T,2(z)

where

It,T,1(z) =

∫

H

p̄(t, z;T, dζ)
f(T, ζ)− f(t, z)

T − t
, It,T,2(z) =

f(t, z)

T − t

∫

(R≥0×Rd−1)\H
p̄(t, z;T, dζ), (2.21)

with H defined analogously to how it was defined in the proof of (2.6). Again, by (2.3) the term It,T,2(z) is

negligible in the limit. As for It,T,1(z), it suffices to plug the Taylor formula

f(T, ζ)− f(t, z) = (T − t)∂tf(t, z) +

d∑

i=1

(ζi − zi)∂zif(t, z)

+
1

2

d∑

i,j=1

(ζi − zi)(ζj − zj)∂zizjf(t, z) + o(|T − t|) + o(|z − ζ|2).

into (2.21) and pass to the limit using (2.20), (2.4) and (2.5). This proves (2.7).

Finally, we have
∥∥∥∥
Tt,T+hf(T + h, ·)−Tt,T f(T, ·)

h
−Tt,T ((∂T + ĀT )f(T, ·))

∥∥∥∥
L∞(R≥0×Rd−1)

=

∥∥∥∥Tt,T

(
TT,T+hf(T + h, ·)− f(T, ·)

h
− (∂T + ĀT )f(T, ·)

)∥∥∥∥
L∞(R≥0×Rd−1)

≤
∥∥∥∥
TT,T+hf(T + h, ·)− f(T, ·)

h
− (∂T + ĀT )f(T, ·)

∥∥∥∥
L∞(R≥0×Rd−1)

−→ 0, as h→ 0+,

where the last limit follows from (2.7). This proves the existence of the right derivative. For the left derivative

it suffices to use the identity

Tt,T−hf(T − h, ·)−Tt,T f(T, ·)
−h −Tt,T

(
(∂T + ĀT )f(T, ·)

)

= Tt,T−h

(
TT−h,T − I

h
− (∂T + ĀT )

)
f(T, ·) + (Tt,T−h −Tt,T )

(
(∂T + ĀT )f(T, ·)

)
,

where I is the identity operator. This concludes the proof.
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Proof (of Lemma 2.3.) Step 1. We prove (2.2). Fix δ > 0 and H , compact subset of D. Consider a family of

functions (ϕz)z∈Rd such that ϕz(z) = 0, ϕz(ζ) ≡ 1 for ζ ∈ H ∩ {|ζ − z| > δ} and ϕz ∈ C∞
0 (D) with all the

derivatives bounded by a constant C1 which depends on D,H and δ but not on z. By the Itô formula we

have

ϕz(ẐT ) = ϕz(Ẑt) +

∫ T

t

Āsϕz(Ẑs)ds+

∫ T

t

∇ϕz(Ẑs)σ(s, Ẑs)dWs, (2.22)

with Ās as defined in (2.8) and āi, āij as in (2.10). Notice that

∣∣∣Āsϕz(Ẑs)
∣∣∣+
∣∣∣∇ϕz(Ẑs)σ(s, Ẑs)

∣∣∣ ≤ C2, s ∈ [0, T0], z ∈ R
d,

with C2 dependent only on C1 and the L∞([0, T0]×D)-norm of the coefficients of the SDE. Let p̄(t, z;T, dζ)

denote the transition probability of the stopped process ZT = ẐT∧τ . Then, by recalling the definition of τ

and since D ⊆ D′ and ϕz has compact support in D, we have
∫

{|z−ζ|>δ}∩H

p̄(t, z;T, dζ) ≤ Et,z

[
ϕ4
z(ẐT∧τ )

]
≤ Et,z

[
ϕ4
z(ẐT )

]
,

and (2.2) follows from (2.22), the Hölder inequality and Doob’s maximal inequality (in the form of Corollary

6.4 p.87 in Friedman (1975) with m = 2). The proof of (2.3) is analogous and is omitted.

Step 2. We prove (2.4). Fix 1 ≤ i ≤ d and H , compact subset of D. We first remark that it is sufficient to

prove the thesis for δ < δ̄ := dist(H, ∂D). Indeed, we have

1

T − t

∫

|z−ζ|<δ

(ζi − zi)p̄(t, z;T, dζ) =
1

T − t

∫

|z−ζ|<δ̄

(ζi − zi)p̄(t, z;T, dζ) + It,T

where, by (2.3),

It,T =
1

T − t

∫

δ̄≤|z−ζ|<δ

(ζi − zi)p̄(t, z;T, dζ) −→ 0

as T − t→ 0+, uniformly w.r.t z ∈ H .

Next, we consider a family of functions (ϕz)z∈H such that ϕz(ζ) = ζi−zi for |ζ−z| < δ and ϕz ∈ C∞
0 (D)

with all the derivatives bounded by a constant C1 which depends on D,H and δ but not on z. Note that

|∇ϕz(Zs)σ(s, Zs)| ≤ C2, s ∈ [0, T0], z ∈ H, (2.23)

with C2 dependent only on C1 and the L∞([0, T0] × D)-norm of the coefficients of the SDE. Now, we set

Ψz(t, ·) = Ātϕz and note that Ψz(t, ζ) = ai(t, ζ) for |ζ− z| < δ. Denoting again by p̄(t, z;T, dζ) the transition

probability of the stopped process (ẐT∧τ ), we have

1

T − t

∫

|z−ζ|<δ

(ζi − zi)p̄(t, z;T, dζ)− āi(t, z) = I1,t,T,z + I2,t,T,z

where, by (2.3),

I1,t,T,z := − 1

T − t

∫

|z−ζ|≥δ

p̄(t, z;T, dζ)ϕz(ζ) −→ 0

as T − t→ 0+, uniformly in H , and

I2,t,T,z := Et,z

[
ϕz(ẐT∧τ )

T − t
− Ψz(t, z)

]
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(since by assumption D ⊆ D′ and ϕz has compact support in D, and using (2.22) and the fact that, by

(2.23), the stochastic integral is a true martingale)

= Et,z

[
1

T − t

∫ T

t

Āsϕz(Ẑs∧τ )ds− Ψz(t, z)

]

= Et,z

[∫ 1

0

Ψz(t+ ρ(T − t), Ẑ(t+ρ(T−t))∧τ )dρ− Ψz(t, z)

]

(by Fubini’s theorem)

=

∫ 1

0

((
Tt,t+ρ(T−t)Ψz(t+ ρ(T − t), ·)

)
(z)− Ψz(t, z)

)
dρ.

Thus, by (2.6) and the fact that Ψz(t, ·) ∈ C0([0, T0] ×D) by definition, we infer that I2,t,T,z converges to

zero as T − t → 0+, uniformly w.r.t. z ∈ H . We remark here explicitly that (2.6) in Lemma 2.2 is proved

using (2.2) and (2.3) only, which in turn have already been proved for the stopped process in the previous

step; therefore, no circular argument has been used. The proof of (2.5) is based on analogous arguments;

thus we leave the details to the reader.

Proof (of Theorem 2.6) We fix (t, z) ∈ [0, T0[×D and f ∈ C2
0 ([0, T0[×D), and show that the process

M t
T := f(T, ZT )− f(t, Zt)−

∫ T

t

(
∂u + Āu

)
f(u, Zu)du, t ≤ T < T0, (2.24)

is a F t-martingale. First observe that, integrating (2.9), we get the identity

(Tt,T f(T, ·)) (z)− f(t, z) =

∫ T

t

Tt,τ

((
∂τ + Āτ

)
f(τ, ·)

)
(z)dτ, T ∈]t, T0[. (2.25)

Note that the integrand in (2.25) is bounded, as a function of τ , because of Assumption 2.4 and since

f ∈ C2
0 ([0, T0[×D) and Tt,τ is a contraction. Now, for τ ∈ [t, T ] we have

Et,z

[
M t

T | F t
τ

]
=M t

τ + Et,z

[
f(T, ZT )− f(τ, Zτ )−

∫ T

τ

(
∂u + Āu

)
f(u, Zu)du | F t

τ

]

=M t
τ + Φ(τ, Zτ )

where, by the Markov property,

Φ(τ, z) = Eτ,z

[
f(T, ZT )− f(τ, z)−

∫ T

τ

(
∂u + Āu

)
f(u, Zu)du

]

(by Fubini’s theorem)

= (Tτ,T f(T, ·)) (z)− f(τ, z)−
∫ T

τ

Tτ,u

((
∂u + Āu

)
f(u, ·)

)
(z)du

which is 0 by (2.25).

Notice that M t
t = 0, thus for any f ∈ C2

0 (]t, T0[×D) we have

0 = Et,z

[
M t

T0

]
=

∫ T0

t

∫

D

p̄(t, z;T, dζ)
(
∂T + ĀT

)
f(T, ζ)dT. (2.26)
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Since f is arbitrary, equation (2.26) means that p̄(t, z; ·, ·) satisfies equation (2.11) on ]t, T0[×D in the sense

of distributions. If the coefficients of the generator are smooth functions, then from Hörmander’s theorem

(see, for instance, Section V.38 in Rogers and Williams (1987)) we infer that p̄(t, z; ·, ·) admits a local density

Γ̄ (t, z; ·, ·) which is a smooth function and solves the forward Kolmogorov PDE on ]t, T0[×D. In the general

case, it suffices to use a standard regularization argument by smoothing the coefficients and then applying

Schauder’s interior estimates (cf. Friedman (1976), Chapter 10.1): in regard to this, we refer for instance to

Kusuoka (2015). The first part of the statement then follows since z and r are arbitrary.

Next, we use the classical Moser’s pointwise estimates (see Moser (1971) and the more recent and gen-

eral formulation in Corollary 1.4 in Pascucci and Polidoro (2004)) to prove a L∞
loc-estimate of Γ̄ that will

be used in the second part of the proof. More precisely, let us fix (t, z) ∈ [0, T0[×D, T ∈]t, T0[ and H ,

compact subset of D, and set r = 1
2 min{

√
T0 − T ,

√
T − t, dist(H, ∂D)}. Since Γ̄ (t, z; ·, ·) solves the PDE

(
∂T − Ā∗

T

)
Γ̄ (t, z; ·, ·) = 0 on ]t, T0[×D, by Moser’s estimate we have that

Γ̄ (t, z;T, ζ) ≤ c0
rd+2

∫ T+r2

T−r2

∫

B(ζ,r)

Γ̄ (t, z; T̄ , ζ̄)dζ̄dT̄ ≤ 2c0r
−d, ζ ∈ H, (2.27)

where the constant c0 depends only on the dimension d and the local-ellipticity constant M of Assumption

2.4-(ii). We notice explicitly that the constant c0 in (2.27) is independent of z ∈ D and ζ ∈ H .

To prove the second part of Theorem 2.6, we adapt the argument of Theorem 2.7 in Janson and Tysk

(2006). We fix ϕ ∈ C0(D), T ∈]0, T0[, z0 ∈ D and r > 0 such that the closure of the ball B(z0, r) is contained

in D. Then we denote by f the smooth solution of






(
∂t + Āt

)
f = 0 on [0, T [×B(z0, r),

f(t, z) = (Tt,Tϕ) (z) (t, z) ∈ ∂P ([0, T ]×B(z0, r)) ,
(2.28)

where

∂P ([0, T ]×B(z0, r)) := ([0, T ]× ∂B(z0, r) ∪ ({T } ×B(z0, r)))

is the parabolic boundary of the cylinder [0, T ] × B(z0, r). Such a solution exists because Āt is uniformly

elliptic on [0, T0[×D and (t, z) 7→ (Tt,Tϕ)(z) is continuous on [0, T ]×D by the Feller property (cf. Assumption

2.5)) and (2.6).

Now, we fix t ∈ [0, T [ and denote by τ0 the t-stopping time defined as τ0 = T ∧ τ1 where τ1 is the first

exit time, after t, of Z from B(z0, r). By the F t-martingale property of the process M t in (2.24), with f as

in (2.28), and the Optional sampling theorem, we have the stochastic representation

f(t, z) = Et,z [(Tτ0,Tϕ)(Zτ0)] .

On the other hand, for (t, z) ∈ [0, T [×B(z0, r) we have

(Tt,Tϕ)(z) = Et,z [ϕ(ZT )] = Et,z

[
Et,z

[
ϕ(ZT ) | F t

τ0

]]
=

(by the strong Markov property)

= Et,z [(Tτ0,Tϕ)(Zτ0)] = f(t, z), (2.29)

and in particular (t, z) 7→ (Tt,Tϕ)(z) solves the backward equation (2.12).
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Finally, we consider a sequence (ϕn)n∈N of functions in C0(D), approximating a Dirac delta δz̄ for a fixed

z̄ ∈ D. We also fix a test function ψ ∈ C∞
0 (]0, T [×D) and integrate by parts to obtain

0 =

∫ T

0

∫

D

(
∂t + Āt

)
(Tt,Tϕn)(z)ψ(t, z)dtdz

=

∫ T

0

∫

D

(Tt,Tϕn)(z)
(
−∂t + Ā∗

t

)
ψ(t, z)dtdz

=

∫ T

0

∫

D

∫

D

Γ̄ (t, z;T, ζ)ϕn(ζ)dζ
(
−∂t + Ā∗

t

)
ψ(t, z)dtdz. (2.30)

Note that ζ 7→ Γ̄ (t, z;T, ζ) is a continuous function for t < T , and therefore
∫

D

Γ̄ (t, z;T, ζ)ϕn(ζ)dζ −→ Γ̄ (t, z;T, ζ̄)

pointwisely. On the other hand, the L∞
loc-estimate (2.27) of Γ̄ allows to pass to the limit as n→ ∞ in (2.30),

using the dominated convergence theorem, to get
∫ T

0

∫

D

Γ̄ (t, z;T, z̄)
(
−∂t + Ā∗

t

)
ψ(t, z)dtdz = 0.

This shows that Γ̄ (·, ·;T, ζ) is a distributional solution of (2.12) on [0, T [×D and we conclude using again

Hörmander’s theorem.

Remark 2.9 The same argument used to prove (2.29) applies to the case of ϕ(s, y) = (s−K)+, and allows to

prove that the expectation Et,s,v

[
(ST −K)+

]
solves the backward equation (2.12) as a function of (t, s, v).

Indeed, it suffices to use a standard localization technique and the fact that the Call payoff (ST − K)+ is

integrable because S is a martingale by assumption.

3 Analytical approximations of prices and implied volatilities

Here we briefly recall the construction proposed in Lorig et al. (2015b) of an explicit approximating series

for option prices, along with a consequent polynomial expansion for the related implied volatility. Such

construction relies on a singular perturbation technique that allows, in its most general form, to carry

out closed-form expansions for the local transition density; this leads to an approximation of the solution

to the related backward Cauchy problem with generic final datum ϕ. Such technique has been recently

fully described in Lorig et al. (2015a) in the uniformly parabolic setting, and subsequently extended in

Pagliarani and Pascucci (2014) to the case of locally parabolic operators and in Lorig et al. (2015c) to models

with jumps. Moreover, a recent extension of this technique to utility indifference pricing was proposed by

Lorig (2015).

We consider a model Z = (S, Y ) that satisfies the Assumptions 2.1, 2.4 and 2.5 in Section 2. We denote by

Ct,T,K the time t no-arbitrage value of a European Call option with positive strike K and maturity T ≤ T0,

defined as Ct,T,K = v(t, St, Yt;T,K) where

v(t, s, y;T,K) := Et,s,y [(ST −K)+], (t, s, y) ∈ [0, T ]× R≥0 × R
d−1. (3.1)

Clearly6 we have v(t, 0, y;T,K) ≡ 0 and therefore, to avoid trivial situations, we may assume a positive

initial price, i.e. s > 0. As a consequence of Theorem 2.6 (see also Remark 2.9), for any positive K, the

6 Simply note that (ST −K)+ ≤ ST and S is a martingale by assumption.
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function v in (3.1) is such that v(·, ·;T,K) ∈ CN+2,1
P (]0, T [×D) ∩ C([0, T ] × D) and solves the backward

Kolmogorov equation (2.12):

(
∂t + Āt

)
v(·, ·;T,K) = 0 on ]0, T [×D.

As it will be shown in Section 3.2, in order to obtain an explicit expansion of the implied volatility, it

is crucial to expand the Call price around a Black&Scholes price. Since the perturbation technique that we

employ naturally yields Gaussian approximations at the leading term, we shall work in logarithmic variables.

Therefore, for any T ∈]0, T0] and k ∈ R, we set

u(t, x, y;T, k) = v
(
t, ex, y;T, ek

)
, 0 ≤ t ≤ T, (x, y) ∈ R× R

d−1, (3.2)

where v is the pricing function in (3.1). Here, x and k are meant to represent the spot log-price of the

underlying asset and the log-strike of the option, respectively. Note that, the function u is well defined

regardless of the process S hitting zero or not.

After switching to log-variables, the generator Āt in (2.8) is transformed into the second order operator

A :=
1

2

d∑

i,j=1

aij(t, z)∂zizj +

d∑

i=1

ai(t, z)∂zi , t ∈ [0, T0], z = (x, y) ∈ R× R
d−1, (3.3)

with

a11(t, x, y) = e−2xā11
(
t, ex, y

)
, a1(t, x, y) = −e

−2x

2
ā11
(
t, ex, y

)
,

and, for i, j = 2, . . . , d,

a1i(t, x, y) = e−xā1i
(
t, ex, y

)
, aij(t, x, y) = āij

(
t, ex, y

)
, ai(t, x, y) = āi

(
t, ex, y

)
.

For the reader’s convenience, we also recall the classical definitions of Black&Scholes price and implied

volatility given in terms of the spot log-price and the log-strike.

Definition 3.1 We denote by uBS the Black&Scholes price function defined as

uBS(σ; τ, x, k) := exN(d+)− ekN(d−), d± :=
1

σ
√
τ

(
x− k ± σ2τ

2

)
, x, k ∈ R, σ, τ > 0,

where N is the CDF of a standard normal random variable.

Definition 3.2 The implied volatility σ = σ(t, x, y;T, k) of the price u(t, x, y;T, k) as in (3.2) is the unique

positive solution of the equation

uBS(σ;T − t, x, k) = u(t, x, y;T, k).

Note that Definition 3.2 is well-posed because Ct,T,K is a no-arbitrage price and thus u(t, x, y;T, k) belongs

to the no-arbitrage interval ](ex − ek)+, ex[.

The computations in the following two subsections are meant to be formal and not rigorous. They only

serve the purpose to lead us through the definition of an approximating expansion for prices and implied

volatilities. The well-posedness of such definitions will be clarified, under rigorous assumptions in Section 4.
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3.1 Price expansion

We fix z̄ = (x̄, ȳ) ∈ R× R
d−1, such that (ex̄, ȳ) ∈ D with D as in Assumption 2.4, and expand the operator

At by replacing the functions aij(t, ·), ai(t, ·) with their Taylor series around z̄. We formally obtain

At =
∞∑

n=0

A
(z̄)
t,n

where

A
(z̄)
t,n =

∑

|β|=n

( d∑

i,j=1

Dβaij(t, z̄)

β!
(z − z̄)β∂zizj +

d∑

i=1

Dβai(t, z̄)

β!
(z − z̄)β∂zi

)
. (3.4)

The intuitive idea underlying the following procedure is inspired by the fact that, typically, the pricing

function u(·, ·;T, k) solves the backward Cauchy problem




(∂t +At)u(·, ·;T, k) = 0, on [0, T [×R× R

d−1,

u(T, x, y;T, k) =
(
ex − ek

)+
, (x, y) ∈ R× R

d−1.
(3.5)

Actually, (3.5) holds automatically true if the operator (∂t + At) is uniformly parabolic and can be also

proved to be satisfied, case by case, in many degenerate cases of interest in mathematical finance, such as

the CEV model. Nevertheless, the validity of (3.5) is not necessary for our analysis and it is not required as

an assumption.

Next we assume that the pricing function u can be expanded as

u =

∞∑

n=0

u(z̄)n . (3.6)

Inserting (3.4) and (3.6) into (3.5) we find that the functions (un(·, ·;T, k))n≥0 satisfy the following sequence

of nested Cauchy problems





(∂t +At,0)u

(z̄)
0 (·, ·;T, k) = 0, on [0, T [×R

d,

u
(z̄)
0 (T, x, y;T, k) =

(
ex − ek

)+
, (x, y) ∈ R× R

d−1,
(3.7)

and





(∂t +At,0)u
(z̄)
n (·, ·;T, k) = −

n∑
h=1

A
(z̄)
t,hu

(z̄)
n−h(·, ·;T, k), on [0, T [×R

d,

u
(z̄)
n (T, z;T, k) = 0, z ∈ R

d.

(3.8)

Note that, by Assumption 2.4, At,0 is an elliptic operator with time-dependent coefficients and therefore

problem (3.7) can be solved to obtain

u
(z̄)
0 (t, x, y;T, k) = uBS

(
σ
(z̄)
0 ;T − t, x, k

)
, σ

(z̄)
0 ≡ σ

(z̄)
0 (t, T ) =

√
1

T − t

∫ T

t

a11(τ, z̄)dτ , (3.9)

for any t ∈ [0, T ] and (x, y) ∈ R×R
d−1. As for the n-th order correcting term u

(z̄)
n , an explicit representation

in terms of differential operators acting on u
(z̄)
0 is available (see Theorem D.1).
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Definition 3.3 For fixed maturity date T and log-strike k, we define the N -th order approximations of

u(·, ·;T, k) as

ūN(t, z;T, k) =

N∑

n=0

u(z)n (t, z;T, k), t ∈ [0, T ] , z ∈ R× R
d−1, (3.10)

where the functions u
(z)
n are explicitly defined as in (3.9)-(D.1).

We recall that similar price expansions have been developed by Benhamou et al. (2010), Takahashi and Yamada

(2015) using Malliavin calculus techniques and by Bayer and Laurence (2014) using heat kernel methods.

3.2 Implied volatility expansion

We briefly recall how to derive a formal polynomial IV expansion from the price expansion (3.6)-(3.7)-

(3.8). To ease notation, we will sometimes suppress the dependence on (t, x, y;T, k). Consider the family of

approximate Call prices indexed by δ

u(z̄)(δ) = uBS
(
σ
(z̄)
0

)
+

N∑

n=1

δnu(z̄)n + δN+1

(
u−

N∑

n=0

u(z̄)n

)
, δ ∈ [0, 1], (3.11)

with σ
(z̄)
0 as in (3.9) and the functions u

(z̄)
n as in Subsection 3.1. Note that setting δ = 1 yields the true

pricing function u. Defining

g(δ) := (uBS)−1(u(δ)), δ ∈ [0, 1], (3.12)

we seek the implied volatility σ = g(1). We will show in Section 5, Lemma 5.8, that under suitable assump-

tions u(δ) ∈](ex−ek)+, ex[ for any δ ∈ [0, 1]. This guarantees that g(δ) in (3.12) is well defined. By expanding

both sides of (3.12) as a Taylor series in δ, we see that σ admits an expansion of the form

σ = g(1) = σ0 +
∞∑

n=1

σn, σn =
1

n!
∂nδ g(δ)|δ=0. (3.13)

Note that, by (3.11) we also have

un =
1

n!
∂nδ u

BS(g(δ))|δ=0, 1 ≤ n ≤ N,

and by applying the Faa di Bruno’s formula (Proposition E.1), one can find the recursive representation

σ(z̄)
n =

u
(z̄)
n

∂σuBS
(
σ
(z̄)
0

) −
1

n!

n∑

h=2

Bn,h

(
1!σ

(z̄)
1 , 2!σ

(z̄)
2 , . . . , (n− h+ 1)!σ

(z̄)
n−h+1

) ∂hσuBS
(
σ
(z̄)
0

)

∂σuBS
(
σ
(z̄)
0

) , 1 ≤ n ≤ N,

(3.14)

where Bn,h denote the so-called Bell polynomials. It was shown in Lorig et al. (2015b) (see also Proposition

D.3) that each term σ
(z̄)
n is a polynomial in the log-moneyness (k − x). Moreover, if the coefficients of the

model are time-independent, then the expansion turns out to be also polynomial in time.

Definition 3.4 For a Call option with log-strike k and maturity T , we define the N -th order approximation

of the implied volatility σ(t, x, y;T, k) as

σ̄N (t, x, y;T, k) :=

N∑

n=0

σ(x,y)
n (t, x, y;T, k), (3.15)

where σ
(x,y)
n are as defined in (3.14).



20 Stefano Pagliarani, Andrea Pascucci

We recall that similar implied volatility expansions have been developed by Ben Arous and Laurence (2015),

Deuschel et al. (2014), Forde et al. (2012), and Gatheral et al. (2012) among others.

4 Error estimates for prices and sensitivities

In this section we derive error estimates for prices and sensitivities. Let us introduce the following

Notation 4.1 For z0 = (x0, y0) ∈ R× R
d−1 and 0 < r ≤ +∞, we set

D(z0, r) = B(x0, r)×B(y0, r),

with B(x0, r) = {x ∈ R | |x − x0| < r} and B(y0, r) = {y ∈ R
d−1 | |y − y0| < r}. Moreover, for T ∈]0, T0[,

we consider the cylinders H(T, z0, r), H̄(T, z0, r) and the lateral boundary Σ(T, z0, r) defined by

H(T, z0, r) :=]0, T [×D(z0, r), H̄(T, z0, r) := [0, T [×D(z0, r), Σ(T, z0, r) := [0, T [×∂D(z0, r),

respectively.

Since we work with logarithmic variables, we are going to restate Assumption 2.4 in terms of conditions on

the operator At as defined in (3.3). We recall that N ≥ 2 is an integer constant that is fixed throughout the

paper.

Assumption 4.2 There exist M0 > 0, 0 < r ≤ +∞ and z0 = (x0, y0) ∈ R × R
d−1 such that the operator

At as in (3.3) coincides with Ãt on H̄(T0, z0, r), where Ãt is a differential operator of the form

Ãt =
1

2

d∑

i,j=1

ãij(t, z)∂zizj +

d∑

i=1

ãi(t, z)∂zi , t ∈ [0, T0[, z ∈ R
d,

such that, for some M ∈]0,M0] and ε ∈]0, 1[, we have:

i) Regularity and boundedness: the coefficients ãij , ãi ∈ CN+1
P

(
[0, T0[×R

d
)
, with partial derivatives up to

order N + 1 bounded by M .

ii) Uniform ellipticity:

εM |ζ|2 ≤
d∑

i,j=1

ãij(t, z)ζiζj ≤M |ζ|2, t ∈ [0, T0[ , z, ζ ∈ R
d.

Note that, if Assumption 4.2 is satisfied with r = +∞, then the operator At is uniformly elliptic with

bounded coefficients. The forthcoming error bounds will be asymptotic in the limit of small M(T − t); in

particular, the constant C appearing in the error estimates will be dependent on M0 but not on M .

Assumption 4.2 is (locally) equivalent to Assumptions 2.4. Precisely, the former implies the latter on

the domain D =]ex0−r, ex0+r[×B(y0, r). Therefore, when Assumptions 2.1, 2.5 and 4.2 are in force, in light

of Theorem 2.6 there exists a local transition density Γ̄ on D for the process (S, Y ). We then define the

logarithmic local density Γ as

Γ (t, x, y;T, ξ, η) = eξ Γ̄
(
t, ex, y;T, eξ, η

)
,

for any (T, ξ, η) ∈ H(T0, z0, r) and (t, x, y) ∈ H̄(T, z0, r).
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Remark 4.3 Clearly Lemma 2.2 and Theorem 2.6 can be extended to Γ through the logarithmic change of

variables. In particular, in this section we will use that:

(i) Γ (t, z; ·, ·) ∈ CN,1
P

(
]t, T0[×D(z0, r)

)
for any (t, z) ∈ H̄(T0, z0, r);

(ii) Γ (·, ·;T, ζ) ∈ CN+2,1
P

(
H̄(T, z0, r)

)
for any (T, ζ) ∈ H(T0, z0, r) and solves the backward Kolmogorov

equation

(∂t +At) f = 0 on H̄(T, z0, r). (4.1)

Moreover, for any (T, z̄) ∈ H(T0, z0, r) and ϕ ∈ Cb (D(z0, r)), we have

lim
(t,z)→(T,z̄)

t<T

∫

D(z0,r)

Γ (t, z;T, ζ)ϕ(ζ)dζ = ϕ(z̄);

(iii) if u is the function as defined in (3.2), then for any T ∈]0, T0[ and k ∈ R, we have that u(·, ·;T, k) ∈
CN+2,1

P

(
H̄(T, z0, r)

)
∩ C

(
[0, T ]×D(z0, r)

)
and solves equation (4.1).

Next we prove sharp error estimates for the derivatives ∂mk (u− ūN ). In Subsection 4.1 we prove some global

bounds in the case r = +∞ and then in Subsection 4.2 we prove analogous local bounds in the general case

r < +∞.

4.1 Error estimates for uniformly parabolic equations

Throughout this section we assume Assumption 4.2 satisfied with r = +∞. Under this assumption u is the

unique7 classical solution of the Cauchy problem (3.5) and can be represented as

u(t, z) =

∫

Rd

Γ (t, z;T, ξ, η)
(
eξ − ek

)+
dξdη, t ∈ [0, T [, z ∈ R

d,

where Γ is the fundamental solution of the uniformly parabolic operator (∂t+At). In the following statement

ūN is the Nth order approximation of u as defined in (3.10).

Theorem 4.4 Let Assumptions 2.1, 2.5 and 4.2 hold with r = +∞. Then, for any m, q ∈ N0 with m+2q ≤
N , we have ∣∣∂qT∂mk

(
u− ūN

)
(t, x, y;T, k)

∣∣ ≤ CexM q (M(T − t))
N−m−2q+2

2 , (4.2)

for 0 ≤ t < T < T0, x, k ∈ R and y ∈ R
d−1. The constant C in (4.2) depends only on T0,M0, ε,N and the

dimension d. In particular, C is independent of M .

The proof of Theorem 4.4, which is postponed to Appendix A, is based on the following classical Gaussian

estimates (see, for instance Chapter 1 in Friedman (1964), Corollary 5.5 in Corielli et al. (2010) and Pascucci

(2011)).

Lemma 4.5 Let Γ = Γ (t, z;T, ζ) be the fundamental solution of (At+∂t). Then, for any c > 1, q ∈ N0 and

β, γ ∈ N
d
0 with |β|+ 2q ≤ N , we have

∣∣(z − ζ)γ∂qTD
β
ζ Γ (t, z;T, ζ)

∣∣ ≤ CM q (M(T − t))
|γ|−|β|−2q

2 Γ0(cM(T − t), z − ζ), 0 ≤ t < T ≤ T0, z, ζ ∈ R
d,

where Γ0 is the d-dimensional standard Gaussian function

Γ0(t, z) = (2πt)−
d
2 exp

(
−|z|2

2t

)
, t ∈ R>0, z ∈ R

d, (4.3)

and C is a positive constant that depends only on c, T0,M0, ε,N and the dimension d.

7 The solution is unique within the class of non-rapidly increasing functions.
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4.2 Error estimates for locally parabolic equations

We now relax the global parabolicity assumption of Subsection 4.1, by assuming that the pricing operator

At is only locally elliptic: precisely, throughout this section we impose that Assumptions 2.1, 2.5 and 4.2

hold for some r > 0. We first state the result in the one-dimensional case.

Theorem 4.6 Let d = 1. Under Assumptions 2.1, 2.5 and 4.2, for any δ ∈]0, 1[, T ∈]0, T0[ and m ≤ N we

have

|∂mk u(t, z;T, k)− ∂mk ūN (t, z;T, k)| ≤ C(M(T − t))
N−m+2

2 , (t, z) ∈ H̄(T, z0, δr), |k − x0| < δr,

where C is a positive constant that depends only on r, z0, δ, d,M0, ε,N and T0. In particular, C is independent

of M .

The proof of Theorem 4.6 is a simpler modification of that of Theorem 4.9 below, and therefore will be

omitted. Theorem 4.9 is the main result of this section: it gives estimates for the derivatives of the price

function w.r.t. the log-strike k in dimension d ≥ 2.

For the rest of the section we fix N̂ ∈ N0, with N̂ ≤ N , and consider d ≥ 2. By our general assumptions

(see, in particular, Remark 4.3) we have that, for any T ∈]0, T0[, (t, z) ∈ H̄(T, z0, r), |k − x0| < r and

δ ∈ [0, 1], the pricing function u can be represented as

u(t, z;T, k) = I1,δ(t, z;T, k) + I2,δ(t, z;T, k), (4.4)

where

I1,δ(t, z;T, k) =

∫

D(z0,δr)

(
eξ − ek

)+
Γ (t, z;T, ξ, η)dξdη,

I2,δ(t, z;T, k) =

∫

Rd\D(z0,δr)

(
eξ − ek

)+
p(t, z;T, dξ, dη),

and p denotes the transition distribution of the process (log S, Y ). We note explicitly that, even if logS takes

value in [−∞,+∞[ (due to the possibility for S to reach 0), we can exclude {−∞}×R
d−1 from the domain

of integration of I2,δ because the Call payoff function is null for ξ ≤ k.

Formula (4.4) is useful to study the regularity properties of u w.r.t. k and T . In fact, by (i) of Remark

4.3, I1,δ is twice differentiable in k, with ∂2kI1,δ(t, z; ·, ·) ∈ CN
P

(
]t, T0[×D(z0, r)

)
, and we have

∂qT∂
m
k I1,δ(t, z;T, k) = U1,q,m,δ(t, z;T, k) + U2,q,m,δ(t, z;T, k), (4.5)

where

U1,q,m,δ(t, z;T, k) = ek
∫ x0+δr

k

∫

|η−y0|<δr

∂qTΓ (t, z;T, ξ, η)dξdη,

U2,q,m,δ(t, z;T, k) = ek
m−1∑

j=1

(
m− 1

j

)∫

|η−y0|<δr

∂qT ∂
j−1
k Γ (t, z;T, k, η)dη,

for (t, z) ∈ H̄(T, z0, r) and k ∈ B(x0, δr). However, the assumptions imposed in Section 2 are not sufficient to

ensure the existence of the derivatives ∂qT∂
m
k I2,δ (and consequently of ∂qT∂

m
k u). Indeed, a formal computation

gives

∂qT∂
m
k I2,δ(t, z;T, k) = U3,q,m,δ(t, z;T, k) + U4,q,m,δ(t, z;T, k), (4.6)
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where

U3,q,m,δ(t, z;T, k) = ∂qT e
k

∫

[x0+δr,+∞[×Rd−1

p(t, z;T, dξ, dη),

U4,q,m,δ(t, z;T, k) = ∂qT ∂
m
k

∫

]k,x0+δr[×(Rd−1\B(y0,δr))

p(t, z;T, dξ, dη)
(
eξ − ek

)
.

Now, it is clear that U3,q,m,δ depends smoothly on k. On the contrary, the existence and boundedness

properties of the derivatives U4,q,m,δ depend on the tails of the distribution and cannot be deduced from the

general assumptions of Section 2 because of the local nature of such assumptions. Notice that this problem

only arises when d ≥ 2 and therefore, in order to prove results in the most general setting, we need to impose

the following additional

Assumption 4.7 For any (t, z) ∈ H̄(T0, z0, r), the function u(t, z; ·, ·) ∈ CN̂
P

(
]t, T0[×D(z0, r)

)
. Moreover,

in the case N̂ ≥ 2, there exist δ ∈]0, 1[ and some positive constants C̃ and C̄ such that

|∂qT ∂mk Γ (t, z;T, k, η)| ≤ C̃, 2q +m ≤ N̂ , (4.7)

for any (T, k, η) ∈ H(T0, z0, δ
2r), (t, z) ∈ H̄(T, z0, r) \ H̄(T, z0, δr), and

∣∣U3,q,m,δ2(t, z;T, k)
∣∣+
∣∣U4,q,m,δ2(t, z;T, k)

∣∣ ≤ C̄, 2q +m ≤ N̂, (4.8)

for any (T, k) ∈]0, T0[×B(x0, δ
2r) and (t, z) ∈ H̄(T, z0, δ

3r).

Remark 4.8 If logST (or, equivalently, ST ) has a marginal local density ΓS(t, z;T, k) such that

∂qT∂
m
k ΓS(t, z; ·, ·) ∈ C

(
]t, T0[×B(x0, r)

)
, 2q +m ≤ N̂ ,

then the first part of Assumption 4.7 is satisfied: in fact, u(t, z; ·, ·) ∈ CN̂
P

(
]t, T0[×B(x0, r)

)
because it can be

represented as

u(t, z;T, k) =

∫ k̄

k

ΓS(t, z;T, ξ)(e
ξ − ek)dξ +

∫

[k̄,+∞[

pS(t, z;T, dξ)(e
ξ − ek),

for some k̄ > k, where pS denotes the marginal transition probability of logS. This is the case, for instance,

of the Heston model where ST has a smooth marginal density (see Remark 2.8).

The need for conditions (4.7) and (4.8) will be clarified in the proofs of Lemma 4.11 and Theorem 4.9,

respectively. Condition (4.7) is intuitively easy to understand: roughly speaking, it states that the derivatives

of the local density Γ (t, z;T, ζ) are locally bounded, away from the pole, all the way up to t = T . This looks

like a sensible condition, given the boundedness hypothesis for the diffusion coefficients on the whole cylinder.

By opposite, condition (4.8) might seem a little bit cryptic at a first glance; however, in most cases of interest

such hypothesis turns out to be substantially simplified. For instance, in many financial models such as the

Heston model, the local density Γ is defined on the whole strip B(x0, r) × R
d−1 (see Remark 2.8), i.e. we

have

p(t, z;T,H) =

∫

H

Γ (t, z;T, ζ)dζ, H ∈ B
(
B(x0, r)× R

d−1
)
.
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In this case, condition (4.8) is automatically satisfied for q = 0 and m = 0, 1, whereas for 2 ≤ m+ 2q ≤ N̂

it reduces to
∣∣∣∣∣

∫

[x0+δr,+∞[×Rd−1

∂qTΓ (t, z;T, ζ)dζ

∣∣∣∣∣+
∣∣∣∣∣

∫

|η−y0|>δ2r

∂qT∂
(m−2)∨0
k Γ (t, z;T, k, η)dη

∣∣∣∣∣ ≤ C̄,

for any (T, k) ∈]0, T0[×B(x0, δ
2r), (t, z) ∈ H̄(T, z0, δ

3r).

We are now ready to state the main result of this section.

Theorem 4.9 Let d ≥ 2, and let Assumptions 2.1, 2.5, 4.2 and 4.7 be in force. Then, for any m, q ∈ N0

with m+ 2q ≤ N̂ and T ∈]0, T0[, we have

∣∣∂qT∂mk
(
u− ūN

)
(t, z;T, k)

∣∣ ≤ CM q (M(T − t))
N−m−2q+2

2 , (t, z) ∈ H̄(T, z0, δ
4r), |k − x0| < δ4r,

where δ ∈]0, 1[ is as in Assumption 4.7, and the positive constant C depends only on r, z0, d,M0, ε,N, T0

and, only if N̂ ≥ 2, also on δ and the constants C̃ and C̄ in (4.7) and (4.8). In particular, C is independent

of M .

Lemma 4.10 Let D0 be a domain of Rn and

h(·, ·;T, θ) : H(T, z0, r) −→ R, (T, θ) ∈]0, T0[×D0,

such that:

i) for any (t, z) ∈ [0, T0[×D(z0, r), the function h(t, z; ·, ·) ∈ Cp
(
]t, T0[×D0

)
with derivatives ∂qTD

β
θ h(t, z;T, θ)

locally bounded in (T, θ), uniformly w.r.t. (t, z) ∈ [0, T [×
(
D(z0, r) \D(z0, ̺0r)

)
for a certain ̺0 ∈]0, 1[;

ii) for any (T, θ) ∈ ]0, T0[×D0 the function h(·, ·;T, θ) ∈ C1,2
(
H̄(T, z0, r)

)
∩ C

(
H(T, z0, r)

)
and verifies





(
∂t + Ãt

)
h(t, z;T, θ) = 0, (t, z) ∈ H̄(T, z0, r),

h(T, z;T, θ) = 0, z ∈ D(z0, r).
(4.9)

Then for any multi-index β ∈ N
n
0 and any q ∈ N0 with q + |β| ≤ p, we have

lim
(t,z)→(T,z̄)

t<T

∂qTD
β
θ h(t, z;T, θ) = 0, z̄ ∈ D(z0, r), (T, θ) ∈]0, T0[×D0. (4.10)

Proof By induction on q we prove (4.10) and that, for any ̺ ∈ [̺0, 1[, we have

∂qTD
β
θ h(t, z;T, θ) =

∫ T

t

∫

∂D(z0,̺r)

P̺r(t, z; s, ζ)∂
q
TD

β
θ h(s, ζ;T, θ)dζds, (t, z) ∈ H(T, z0, ̺r), (4.11)

where P̺r denotes the Poisson kernel of the uniformly parabolic operator
(
∂t + Ãt

)
on H(T, z0, ̺r).

For q = 0, differentiating the representation formula

h(t, z;T, θ) =

∫ T

t

∫

∂D(z0,̺r)

P̺r(t, z; s, ζ)h(s, ζ;T, θ)dζds, (t, z) ∈ H(T, z0, ̺r),

and using the terminal condition in (4.9), we obtain

∣∣Dβ
θ h(t, z;T, θ)

∣∣ ≤
∥∥Dβ

θ h(·, ·;T, θ)
∥∥
L∞(Σ(T,z0,̺r))

∫ T

t

∫

∂D(z0,̺r)

P̺r(t, z; s, ζ)dξds, (t, z) ∈ H(T, z0, ̺r),
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which in turn implies (4.10) with q = 0.

Next, we assume (4.10) and (4.11) true for q: by differentiating (4.11) we get

∂q+1
T Dβ

θ h(t, z;T, θ) =

∫

∂D(z0,̺r)

P̺r(t, z;T, ζ)∂
q
TD

β
θ h(T, ζ;T, θ)dζ

+

∫ T

t

∫

∂D(z0,̺r)

P̺r(t, z; s, ζ)∂
q+1
T Dβ

θ h(s, ζ;T, θ)dζds =

(by (4.10))

=

∫ T

t

∫

∂D(z0,̺r)

P̺r(t, z; s, ζ)∂
q+1
T Dβ

θ h(s, ζ;T, θ)dζds, (t, z) ∈ H(T, z0, ̺r).

Then, for (t, z) ∈ H(T, z0, ̺r) we have

∣∣∂q+1
T Dβ

θ h(t, z;T, θ)
∣∣ ≤

∥∥∂q+1
T Dβ

θ h(·, ·;T, θ)
∥∥
L∞(Σ(T,z0,̺r))

∫ T

t

∫

∂D(z0,̺r)

P̺r(t, z; s, ζ)dξds,

which concludes the proof.

The following lemma is preparatory for the proof of Theorem 4.9, but it may also have an independent

interest: it shows that the difference between Γ and Γ̃ , and of their derivatives, decays exponentially on

H(T, z0, r) as t approaches T .

Lemma 4.11 Let N̂ ≥ 2 and let Γ̃ be the fundamental solution of the uniformly parabolic operator
(
∂t+Ãt

)
.

Then, under the assumptions of Theorem 4.9, for any m, q ∈ N0 with m+ 2q ≤ N̂ we have
∣∣∣∂qT ∂mk

(
Γ − Γ̃

)
(t, z;T, k, η)

∣∣∣ ≤ Ce
− 1

C
√

M(T−t) , (T, k, η) ∈ H(T0, z0, δ
2r), (t, z) ∈ H̄(T, z0, δ

2r), (4.12)

where C is a positive constant that depends only on z0, δ, N, d,M0, ε, T0, and on C̃, C̄ in (4.7) and (4.8).

Proof Step 1. Fix (T, k, η) ∈ H(T0, z0, δ
2r) and consider the function

wq,m(t, z) := ∂qT∂
m
k

(
Γ − Γ̃

)
(t, z;T, k, η), (t, z) ∈ H̄(T, z0, r).

We prove that 




(
∂t + Ãt

)
wq,m = 0, on H̄(T, z0, r),

lim
(t,z)→(T,z̄)

t<T

wq,m(t, z) = 0, z̄ ∈ D(z0, r).
(4.13)

The first equation in (4.13) follows from the fact that At and Ãt coincide on H̄(T0, z0, r). To prove the second

one, we set

h(t, z; k) :=

∫

D(z0,r)

(
Γ (t, z;T, ζ)− Γ̃ (t, z;T, ζ)

)
ψ(ζ − (k, η))dζ, (t, z) ∈ H̄(T, z0, r),

where

ψ(z) :=
d∏

i=1

ζ+i , ζ = (ζ1, . . . , ζd) ∈ R
d.

Notice that h(·, ·;T, k, η) satisfies





(
∂t + Ãt

)
h(t, z; k) = 0, (t, z) ∈ H̄(T, z0, r),

h(t, z; k) = 0, z ∈ D(z0, r).
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Moreover, we have

∂2k∂
2
η2

· · · ∂2ηd
h(t, z; k) = Γ (t, z;T, k, η)− Γ̃ (t, z;T, k, η),

and therefore also

∂qT ∂
2+m
k ∂2η2

· · · ∂2ηd
h(t, z; k) = wq,m(t, z).

Hence, by applying Lemma 4.10 to h we obtain the limit in (4.13).

Step 2. It suffices to prove the thesis for T − t suitably small and positive. In (Pagliarani and Pascucci, 2014,

Theorem 3.1) we proved that there exist τ > 0 and a non-negative function v such that






(
∂t + Ãt

)
v(t, z) = 0, (t, z) ∈ [T − τ, T [×D(z0, r),

v(t, z) ≥ 1, (t, z) ∈ [T − τ, T [×∂D(z0, r),
(4.14)

and

0 < v(t, z) ≤ Ce
− r2

C
√

M(T−t) , (t, z) ∈ [T − τ, T [×D(z0, δ
2r), (4.15)

where the positive constant C depends only on δ,M0, ε, T0, z0 and d. Now, by (4.14), (4.15), and by the limit

in (4.13) together with the bound (4.7), one has

lim inf
(t,z)→(t̄,z̄)

(t,z)∈[T−τ,T [×D(z0,r)

(
C̃v − wq,m

)
(t, z) ≥ 0, (t̄, z̄) ∈

(
{T } ×D(z0, r)

)
∪
(
[T − τ, T [×∂D(z0, r)

)
.

Therefore, the maximum principle yields

|wq,m(t, z)| ≤ C̃v(t, z), (t, z) ∈ [T − τ, T [×D(z0, r),

and eventually, (4.12) stems from (4.15).

Proof (of Theorem 4.9) We only prove the statement for 2 ≤ m ≤ N̂ , being the other cases simpler.

Throughout the proof, we denote by C every positive constant that depends at most on r, z0, δ, d,M0, ε,N, T0

and on C̃, C̄ in (4.7) and (4.8).

Step 1. We fix T ∈]0, T0[ and prove that

|wq,m(t, z;T, k)| ≤ C, (t, z) ∈ H̄(T, z0, δ
3r), k ∈ B(x0, δ

3r), (4.16)

where wq,m := ∂qT∂
m
k (u− ũ) and

ũ(t, z;T, k) :=

∫ ∞

k

∫

Rd−1

Γ̃ (t, z;T, ξ, η)
(
eξ − ek

)
dξdη, (t, z) ∈ [0, T [×R

d. (4.17)

Differentiating formula (4.4) and recalling (4.5) and (4.6), we get

∂qT∂
m
k u(t, z;T, k) =

4∑

i=1

(−1)iUi,q,m,δ(t, z;T, k).

Analogously, differentiating (4.17) we obtain

∂qT ∂
m
k ũ(t, z;T, k) = −ek

∫ ∞

k

∫

Rd−1

∂qT Γ̃ (t, z;T, ξ, η)dξdη +
m−1∑

j=1

(
m− 1

j

)
ek
∫

Rd−1

∂qT∂
j−1
k Γ̃ (t, z;T, k, η)dη.
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Thus we have

|wq,m(t, z;T, k)| ≤ C

(
1 + U4,q,m,δ2(t, z;T, k) +

m−1∑

j=1

(
J1,q,j,δ2 + J2,q,j,δ2

)
(t, z;T, k)

)

≤ C

(
1 +

m−1∑

j=1

(
J1,q,j,δ2 + J2,q,j,δ2

)
(t, z;T, k)

)
(by (4.8))

for any k ∈ B(x0, δ
2r) and (t, z) ∈ H̄(T, z0, δ

3r), where

J1,q,j,δ2(t, z;T, k) =

∫

|η−y0|<δ2r

∣∣∣∂qT ∂
j−1
k (Γ − Γ̃ )(t, z;T, k, η)

∣∣∣ dη,

J2,q,j,δ2(t, z;T, k) =

∫

|η−y0|≥δ2r

∣∣∣∂qT ∂
j−1
k Γ̃ (t, z;T, k, η)

∣∣∣dη.

Now, by applying Lemma 4.11 and standard Gaussian estimates on the functions J1,q,j,δ2 and J2,q,j,δ2

respectively, we obtain that the latter are bounded by a constant C for any k ∈ B(x0, δ
2r) and (t, z) ∈

H̄(T, z0, δ
3r). This proves (4.16).

Step 2. Fix now (T, k) ∈]0, T0]×B(x0, δ
3). Clearly, ũ(·, ·;T, k) in (4.17) is a classical solution to the Cauchy

problem 



(
∂t + Ãt

)
ũ(·, ·;T, k) = 0, on [0, T [×R

d,

ũ(T, x, y;T, k) =
(
ex − ek

)+
, (x, y) ∈ R

d.

We set h(t, z; k) := (u− ũ) (t, z;T, k) and notice that, by Remark 4.3-(iii), we have

(
∂t + Ãt

)
h(·, ·; k) = 0, on H̄(T, z0, r), (4.18)

because At and Ãt coincide on H̄(T0, z0, r); moreover, we have

h(T, z; k) = 0, z ∈ D(z0, r).

Now, by estimate (4.16) the derivatives ∂qT∂
m
k h = wq,m are bounded on Σ(T, z0, δ

3r) for k ∈ B(x0, δ
3). Then,

from Lemma 4.10 applied to h on H̄(T, z0, δ
3r), we infer

lim
(t,z)→(T,z̄)

t<T

wq,m(t, z;T, k) = 0, z̄ ∈ D(z0, δ
3r). (4.19)

By differentiating (4.18), we also have
(
∂t + Ãt

)
wq,m(·, ·;T, k) = 0 on H̄(T, z0, δ

2r). Thus we can use the

same argument used in Part 2 of the proof of Lemma 4.11: precisely, we consider the function v satisfying

(4.14)-(4.15) and, by the maximum principle, (4.19) and (4.16) we infer

|wq,m(t, z;T, k)| ≤
∥∥wq,m(·, ·;T, k)

∥∥
L∞(Σ(T,z0,δ3r))

e
− r2

C
√

M(T−t) , (t, z) ∈ H̄(T, z0, δ
4r).

Eventually, by the triangular inequality we get

|∂mk (u− ūN )| ≤ |wq,m|+ |∂mk (ũ− ūN )| ≤ Ce
− r2

C
√

M(T−t) + |∂mk (ũ− ūN)| , on H̄(T, z0, δ
4r),

and the statement follows from the asymptotic estimate of Theorem 4.4 applied to the uniformly parabolic

operator
(
∂t + Ãt

)
.
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5 Error estimates and Taylor formula of the implied volatility

In this section we establish error estimates for the N -th order implied volatility approximation σ̄N (t, x, y;T, k)

in Definition 3.4 and for its derivatives w.r.t. k and T . Such bounds are proved under the assumptions of

Subsection 4.2 and are valid in the parabolic domain |x − k| ≤ λ
√
M(T − t), for any λ > 0 and suitably

small time-to-maturity (T − t), with M being the local-ellipticity constant in Assumption 4.2. We recall that

N, N̂ ∈ N0 are fixed throughout the paper and such that N ≥ 2 and N̂ ≤ N . Moreover z0 = (x0, y0) ∈
R× R

d−1 is the center of the cylinder in Assumptions 4.2 and 4.7.

Theorem 5.1 Let d = 1 (d ≥ 2) and let the assumptions of Theorem 4.6 (Theorem 4.9) be in force. Then,

for any λ > 0 and m, q ∈ N0 with 2q +m ≤ N̂ , there exist two positive constants C and τ0 such that

|∂qT ∂mk σ(t, x0, y0;T, k)− ∂qT∂
m
k σ̄N (t, x0, y0;T, k)| ≤ CM q+ 1

2

(
M(T − t)

)N−m−2q+1
2 ,

for any 0 ≤ t < T < T0 and k such that T − t ≤ τ0 and |x0 − k| ≤ λ
√
M(T − t). The constants C and τ0

depend only on r, z0, d,M0, ε,N, T0, λ and, if both d, N̂ ≥ 2, also on δ and the constants C̃ and C̄ in (4.7)

and (4.8). In particular, C and τ0 are independent of M .

Before proving Theorem 5.1, we show the following remarkable corollary which is the main result of the

paper.

Corollary 5.2 Let the assumptions of Theorem 5.1 hold and, for simplicity, assume N = N̂ . Then for any

q,m ∈ N0 with 2q +m ≤ N , the two limits

∂qT ∂
m
k σ̄N (t, x0, y0; t, x0) := lim

(T,k)→(t,x0)

|x0−k|≤λ
√

T−t

∂qT∂
m
k σ̄N (t, x0, y0;T, k), (5.1)

∂qT ∂
m
k σ(t, x0, y0; t, x0) := lim

(T,k)→(t,x0)

|x0−k|≤λ
√

T−t

∂qT∂
m
k σ(t, x0, y0;T, k), (5.2)

exist, are finite and coincide for any λ > 0 and t ∈ [0, T0[. Consequently, we have the following parabolic

N -th order Taylor expansion:

σ(t, x0, y0;T, k) =
∑

2q+m≤N

(T − t)q(k − x0)
m

q!m!
∂qT∂

m
k σ̄N (t, x0, y0; t, x0) + RN (t, x0, y0, T, k), (5.3)

with

RN (t, x0, y0, T, k) = o
(
|T − t|

N
2 + |k − x0|N

)
, as (T, k) → (t, x0) with |x0 − k| ≤ λ

√
T − t.

Proof By Theorem 5.1, we have

lim
(T,k)→(t,x0)

|x0−k|≤λ
√

T−t

∂qT ∂
m
k

(
σ − σ̄N

)
(t, x0, y0;T, k) = 0, t ∈ [0, T0[, λ > 0,

for any q,m ∈ N0 with 2q+m ≤ N . Therefore, the limit in (5.1) converges if and only if the limit (5.2) con-

verges and in that case they coincide. Now, by the representation formulas in Theorem D.1 and Proposition

D.3, σ̄N (t, x0, y0; ·, ·) ∈ CN
P ([0, T0[×R) and thus the limit in (5.2) converges.

Remark 5.3 The derivatives appearing in the Taylor formula (5.3) can be computed explicitly (possibly with

the aid of a symbolic computation software) by means of the representation formulas of Theorem D.1 and

Proposition D.3.
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Remark 5.4 A direct computation shows that, at orderN = 0, formula (5.3) is consistent with the well-known

results by Berestycki et al. (2002) and Berestycki et al. (2004). Furthermore, again by direct computation,

one can check that in the special case d = 1, formula (5.3) with q = 0 and m = 1 is consistent with the

well-known practitioners’ 1/2 slope rule, according to which the at-the-money slope of the implied volatility

is one half the slope of the local volatility function.

The rest of the section is devoted to the proof of Theorem 5.1. Hereafter λ > 0 is fixed and we assume the

hypotheses of Theorem 5.1 to be in force. In particular, the center z0 = (x0, y0) of the cylinder H(T0, z0, r)

in Assumptions 4.2 and 4.7 is fixed from now on.

Notation 5.5 If not explicitly stated, C and τ0 will always denote two positive constants dependent at most

on λ, on r, z0, d,M0, ε,N, T0, δ appearing in Assumptions 2.1, 2.5, and, only if both N̂ , d ≥ 2, also on C̃, C̄

in (4.7) and (4.8). Note that, in particular, neither C nor τ0 do depend on M .

The proof of Theorem 5.1 is based on some preliminary results.

Lemma 5.6 For any positive constants c, σ̄, λ, µ with µ < 1, there exists a positive τ̄ only dependent on

c, σ̄, λ, µ, such that

uBS(µσ; τ, x, k) + cexσ2τ ≤ uBS(σ; τ, x, k), (5.4)

for any τ ∈ [0, τ̄ ], σ ≤ σ̄ and |x− k| ≤ λσ
√
τ .

Proof We recall the following expression for the Black&Scholes price (see, for instance, Roper and Rutkowski

(2009)):

uBS(σ; τ, x, k) =
(
ex − ek

)+
+ ex

√
τ

2π

∫ σ

0

e
− 1

2

(
x−k

w
√

τ
+w

√
τ

2

)2

dw.

Then we have

uBS(σ; τ, x, k)− uBS(µσ; τ, x, k) = ex
√

τ

2π

∫ σ

µσ

e
− 1

2

(
x−k

w
√

τ
+w

√
τ

2

)2

dw ≥

(by using |x− k| ≤ λσ
√
τ and σ ≤ σ̄)

≥ ex
√

τ

2π
e
− 1

2

(
λ
µ
+ σ̄

√
τ

2

)2

σ(1 − µ) ≥ cexσ2τ,

for any τ ∈ [0, τ̄ ] where τ̄ is positive and suitably small constant, depending only on c, λ, σ̄ and µ.

Notation 5.7 Sometimes, in order to simplify the notation, we will use the shortcuts

uBS(σ, k, T ) := uBS(σ;T − t, x0, k), σ > 0, k ∈ R, T ≥ t,

σBS(u, k, T ) :=
(
uBS(·;T − t, x0, k)

)−1
(u) u ∈](ex0 − ek)+, ex0 [, k ∈ R, T ≥ t,

for the Black&Scholes price and its inverse function with respect to the volatility variable. To ease notations,

for any function F of three variables z1, z2, z3, we also set ∂iF = ∂F
∂zi

, i = 1, 2, 3. Derivatives of compositions

of uBS and σBS will be expressed according this notation: for example, first order derivatives are given by

d

dk
uBS

(
σBS(u, k, T ), k, T

)
=
(
∂1u

BS
) (
σBS(u, k, T ), k, T

)
· ∂2σBS(u, k, T ) +

(
∂2u

BS
) (
σBS(u, k, T ), k, T

)
,
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d

dT
uBS

(
σBS(u, k, T ), k, T

)
=
(
∂1u

BS
) (
σBS(u, k, T ), k, T

)
· ∂3σBS(u, k, T ) +

(
∂3u

BS
) (
σBS(u, k, T ), k, T

)
.

For any δ ∈ [0, 1], we introduce the functions

u(δ, k, T) ≡ u(δ; t, x0, y0, T, k) := uBS
(
σ
(x0,y0)
0 (t, T );T − t, x0, k

)
+R(δ; t, x0, y0, T, k), (5.5)

R(δ, k, T ) ≡ R(δ; t, x0, y0, T, k) :=

N∑

n=1

δnu(x0,y0)
n (t, x0, y0;T, k) + δN+1 (u− ūN ) (t, x0, y0;T, k),

Recall that σ
(x0,y0)
0 (t, T ) and u

(x0,y0)
n (t, x0, y0;T, k) are defined for any 0 ≤ t < T ≤ T0 and k ∈ R, as

indicated by (3.9) and (3.8) respectively. Consequently, by Theorem 4.9 and by Corollary D.2, Eq. (D.6),

there exist C and τ0 as in Notation 5.5 such that

|R(δ, k, T )| ≤ Cex0M (T − t) , (5.6)

and, for any q,m, h ∈ N0 and j ∈ N, with q+m+ h > 0, h, j ≤ N + 1 and m+2q ≤ N̂ ,

∣∣∣∂qT∂mk
((
∂hδ u(δ, k, T )

)j)∣∣∣ ≤ Cex0M q(M(T − t))
j(h+1)−m−2q

2 , (5.7)

for any 0 ≤ t < T < T0 and k such that T − t ≤ τ0 and |x0 − k| ≤ λ
√
M(T − t).

Lemma 5.8 There exists a positive τ0 as in Notation 5.5 such that

uBS
(√
εM ;T − t, x0, k

)
≤ u(δ, k, T ) ≤ uBS

(√
4M ;T − t, x0, k

)
,

or equivalently

√
εM ≤

(
uBS

)−1
(u(δ, k, T );T − t, x0, k) ≤

√
4M, (5.8)

for any δ ∈ [0, 1], 0 ≤ t < T < T0 and k ∈ R such that T − t ≤ τ0 and |x0 − k| ≤ λ
√
M(T − t).

Proof Since u(δ, k, T )− uBS
(
σ
(x0,y0)
0 (t, T );T − t, x0, k

)
= R(δ, k, T ), from estimate (5.6) we infer

uBS
(
σ
(x0,y0)
0 (t, T );T − t, x0, k

)
−Cex0M (T − t) ≤ u(δ, k, T ) ≤ uBS

(
σ
(x0,y0)
0 (t, T );T − t, x0, k

)
+Cex0M (T − t) ,

(5.9)

with C as in Notation 5.5. Now recall that, by Assumption 4.2 along with definition (3.9), we have

√
2εM ≤ σ

(x0,y0)
0 (t, T ) ≤

√
2M ≤

√
2M0

and therefore, for any fixed λ > 0, the thesis follows by combining (5.9) with estimate (5.4) with µ = 1
2 .

Remark 5.9 In light of Lemma 5.8, the function σBS (u(δ, k, T ), k, T ) is well defined for any δ ∈ [0, 1],

0 ≤ t < T < T0 and k ∈ R such that T − t ≤ τ0 and |x0 − k| ≤ λ
√
M(T − t).

Lemma 5.10 For any q,m, n ∈ N0, there exist C, τ0 > 0 as in Notation 5.5 such that

∣∣(∂n1 ∂m2 ∂
q
3σ

BS
)
(u(δ, k, T ), k, T )

∣∣ ≤ CM q+ 1
2 (M(T − t))

−m+2q+n
2 e−nk, (5.10)

for any δ ∈ [0, 1], 0 ≤ t < T < T0 and k ∈ R such that T − t ≤ τ0 and |x0 − k| ≤ λ
√
M(T − t). Here C also

depends on m, q and n.

Proof See Appendix B.
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Lemma 5.11 For any q,m, n ∈ N0 with 2q+m ≤ N̂ , there exist C, τ0 > 0 as in Notation 5.5 such that

∣∣∣∣
dq+m

dT q dkm
(
∂n1 σ

BS
)
(u(δ, k, T ), k, T )

∣∣∣∣ ≤ CM q+ 1
2 (M(T − t))−

m+2q+n
2 e−nk (5.11)

for any δ ∈ [0, 1], 0 ≤ t < T < T0 and k ∈ R such that T − t ≤ τ0 and |x0 − k| ≤ λ
√
M(T − t). Here the

constant C also depends on n.

Proof See Appendix B.

We are now ready to prove Theorem 5.1.

Proof (of Theorem 5.1) We set

G(δ, k, T ) = σBS(u(δ, k, T ), k, T )

with σBS = σBS(u, k, T ) and u = u(δ, k, T ) defined in Notation 5.7 and (5.5) respectively. By definition we

have

σ(k, T ) = g(1, k, T ), (5.12)

where σ(k, T ) := σ(t, x0, y0, k, T ) is the exact implied volatility. Moreover, for σ̄N (k, T ) := σ̄N (t, x0, y0; k, T )

as defined in (3.15), we have

σ̄N (k, T ) =

N∑

n=0

σ(x0,y0)
n (t, x0, y0; k, T ) =

N∑

n=0

1

n!
∂nδ g(δ, k, T )

∣∣
δ=0

, (5.13)

as, by (5.5) and (3.13), g(δ, k, T )|δ=0 = σ
(x0,y0)
0 (t, T ), and ∂nδ g(δ, k, T )

∣∣
δ=0

= σ
(x0,y0)
n (t, x0, y0; k, T ) for 1 ≤

n ≤ N . Now, by (5.12)-(5.13), there exists δ̄ ∈ [0, 1] such that

σ(k, T )− σ̄N (k, T ) =
1

(N + 1)!
∂N+1
δ g(δ̄, k, T )

=
1

(N + 1)!

N+1∑

h=1

(
∂h1 σ

BS
) (
u(δ̄, k, T ), k, T

)
·BN+1,h

(
∂δu(δ̄, k, T ), ∂

2
δu(δ̄, k, T ), . . . , ∂

N−h+2
δ u(δ̄, k, T )

)
,

where the last equality stems from the Faà di Bruno’s formula (E.4). Now, differentiating both the left and

the right-hand side m and q times w.r.t. k and T respectively, we get

|∂qT∂mk σ(k, T )− ∂qT∂
m
k σ̄N (k, T )| ≤ C

N+1∑

h=1

q∑

l=0

m∑

j=0

∣∣∣∣
dq−l+m−j

dT q−ldkm−j

(
∂h1σ

BS
) (
u(δ̄, k, T ), k, T

)∣∣∣∣

·
∣∣∣∣
dl+j

dT ldkj
BN+1,h

(
∂δu(δ̄, k, T ), . . . , ∂

N−h+2
δ u(δ̄, k, T )

)∣∣∣∣ . (5.14)

Again by Faà di Bruno’s formula, we have

∣∣∣∣
dl+j

dT ldkj
BN+1,h

(
∂δu(δ̄, k, T ), . . . , ∂

N−h+2
δ u(δ̄, k, T )

)∣∣∣∣

≤ C
∑

j1,...,jN−h+2

i1+···+iN−h+2=j
l1+···+lN−h+2=l

∣∣∣∂l1T ∂
i1
k

(
∂δu(δ̄, k, T )

)j1 ∣∣∣ · · ·
∣∣∣∂lN−h+2

T ∂
iN−h+2

k

(
∂N−h+2
δ u(δ̄, k, T )

)jN−h+2
∣∣∣
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(by (5.7))

≤ C
∑

j1,...,jN−h+2

e(j1+···+jN−h+2)x0M l(M(T − t))−
j+2l

2 +
j1+···+jN−h+2

2 +
j1+2j2+···+(N−h+2)jN−h+2

2

(by both the identities in (E.6))

= C
∑

j1,...,jN−h+2

ehx0(M(T − t))
−j+h+N+1

2 = Cehx0M l(M(T − t))
−j−2l+h+N+1

2 . (5.15)

Combining Lemma 5.11 and (5.15) with (5.14), we obtain

∣∣∂mk σ(k, T )− ∂mk σ̄N (k, T )
∣∣ ≤ CM q+ 1

2

(
M(T − t)

)N+1−m−2q
2

N+1∑

h=1

eh(x0−k).

The statement then follows from the assumption |x0 − k| ≤ λ
√
M(T − t)≤ λT0.

A Proof of Theorem 4.4

First observe that, for any z, z̄ ∈ R
d, t < T and m ≤ N , we have

∂m
k u(t, z;T, k)− ∂m

k ū
(z̄)
N (t, z;T, k) =

∫ T

t

∫

Rd

Γ (t, z; s, ζ)
N∑

n=0

(

As − Ā
(z̄)
s,n

)

∂m
k u

(z̄)
N−n(s, ζ;T, k)dζds, (A.1)

where

Ā
(z̄)
t,n =

n∑

i=0

A
(z̄)
t,i .

In fact, when m = 0 the identity (A.1) reduces to Lemma 6.23 in Lorig et al. (2015a). The general case easily follows by applying

the operator ∂m
k to (A.1) with m = 0 and then shifting ∂m

k onto u
(z̄)
N−n. For clarity, we split the proof in two separate steps.

[Step 1: case q = 0 and 0 ≤ m ≤ N ]

Let

T
aα(s,·)
z,n (ζ) :=

∑

|β|≤n

Dβaα(s, z)

β!
(ζ − z)β

be the n-th order Taylor polynomial of the function ζ 7→ aα(s, ζ), centered at z. Setting z̄ = z and by definition of (At,i)0≤i≤N ,

from (A.1) we obtain

∂m
k u(t, z;T, k)− ∂m

k ūN (t, z;T, k) =
∑

0≤n≤N

|α|≤2

In,α

where

In,α =

∫ T

t

∫

Rd

Γ (t, z; s, ζ)
(

aα(s, ζ)− T
aα(s,·)
z,n (ζ)

)

Dα
ζ ∂

m
k u

(z)
N−n(s, ζ;T, k)dζds

(by Corollary D.2)

=
∑

|γ|≤N−n

1≤j≤3(N−n)

∫ T

t

∫

Rd

Γ (t, z; s, ζ)
(

aα(s, ζ)− T
aα(s,·)
z,n (ζ)

)

(ζ − z)γ ·

· f(N−n,0,m,α)
γ,j (z; s, T )∂j+m+α1

ζ1
u
(z)
0 (s, ζ;T, k) dζds
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(integrating by parts m times)

=
∑

|γ|≤N−n

1≤j≤3(N−n)

∫ T

t

∫

Rd

(−1)mRα,γ,m
n,1 Rα,γ,m,j

n,2 dζds, (A.2)

with

Rα,γ,m
n,1 = ∂m

ζ1

(

Γ (t, z; s, ζ)
(
aα(s, ζ)− T

aα(s,·)
z,n (ζ)

)
(ζ − z)γ

)

,

Rα,γ,m,j
n,2 = f

(N−n,0,m,α)
γ,j (z; s, T )∂j+α1

ζ1
u
(z)
0 (s, ζ;T, k).

Note that Rn,1 is well defined because aα(s, ·) ∈ CN+1(Rd), by hypothesis, and m ≤ N . Now, on the one hand, by repeatedly

applying the Leibniz rule, the mean value theorem and Lemma 4.5 with c = 2, we obtain

∣
∣
∣R

α,γ,m
n,1

∣
∣
∣ ≤ CM(M(s− t))

n−m+|γ|+1
2 Γ0 (2M(s− t), ζ − z) . (A.3)

On the other hand, by (D.4) and by Lemma C.3, we have

∣
∣
∣R

α,γ,m,j
n,2

∣
∣
∣ ≤ Ceζ1 (M(T − s))

N−n−|γ|−α1+1
2 ≤ Ceζ1 (M(T − s))

N−n−|γ|−1
2 (since α1 ≤ 2). (A.4)

To conclude, it is enough to combine estimates (A.4) and (A.3) with identity (A.2). In particular, by using

∫

Rd
Γ0 (2M(s− t), ζ − z) eζ1dζ = ez1+M(s−t)/2,

we get

|In,α| ≤ Cez1M
N−m+2

2

∫ T

t
(s− t)

n−m+|γ|+1
2 (T − s)

N−n−|γ|−1
2 ds ≤ Cez1(M(T − t))

N−m+2
2 ,

where we used the identity
∫ T

t
(T − s)n(s− t)j ds =

ΓE(j + 1)ΓE(n+ 1)

ΓE(j + n+ 2)
(T − t)j+n+1,

with ΓE representing the Euler Gamma function.

[Step 2: case 0 < m+ 2q ≤ N ]

We first prove that, for any m̄, q̄ ∈ N0 with m̄+ 2q̄ ≤ N − 2, one has

lim
s→T−

∫

Rd

Γ (t, z; s, ζ)
N∑

n=0

(

As − Ā
(z)
s,n

)

∂q̄
T ∂m̄

k u
(z)
N−n(s, ζ;T, k)dζ

=

(
a11(T, z)

2

)q̄

ek
∫

Rd−1

(
∂2
k + ∂k

)q̄(
1 + ∂k

)m̄
(

Γ (t, z;T, k, η)
(
a11(T, k, η) − T

a11(T,·)
z,N (k, η)

))

dη. (A.5)

Set

In(t, z) :=
∑

|α|≤2

∫

Rd

Γ (t, z; s, ζ)
(

aα(s, ζ)− T
aα(s,·)
z,n (ζ)

)

Dα
ζ ∂

q̄
T ∂m̄

k u
(z)
N−n(s, ζ;T, k)dζ, 0 ≤ n ≤ N.

Now, by applying (D.3) and integrating by parts m̄+ 2q̄ + 2 times w.r.t. ζ1 (this is possible because aα(s, ·) ∈ CN+1(Rd)), for

n ≤ N − 1 we get

In(t, z) = (−1)m̄+2q̄+2
∑

|α|≤2

∑

|γ|≤N−n

1≤j≤3(N−n)

∫

Rd

∂m̄+2q̄+2
ζ1

((
aα(s, ζ)− T

aα(s,·)
z,n (ζ)

)
Γ (t, z; s, ζ)(ζ − z)γ

)

Rα,γ,q̄,m̄,j
n dζ,

with

Rα,γ,q̄,m̄,j
n = f

(N−n,q̄,m̄,α)
γ,j (z; s, T )∂j+α1−2

ζ1
u
(z)
0 (s, ζ;T, k),

and f
(N−n,q̄,m̄,α)
γ,j as in Corollary D.2. Moreover, by (D.4) and by Lemma C.3 we obtain

∣
∣Rα,γ,q̄,m̄,j

n

∣
∣ ≤ CM q̄eζ1

√

M(T − s),

and thus

lim
s→T−

In(t, z) = 0, 0 ≤ n ≤ N − 1, t < T, z ∈ R
d. (A.6)



34 Stefano Pagliarani, Andrea Pascucci

On the other hand, by (C.6) and (D.9), we have

IN (t, z) :=

∫

Rd

Γ (t, z; s, ζ)
(

As − Ā
(z)
s,N

)

∂q̄
T ∂m̄

k u
(z)
0 (s, ζ;T, k)dζ

=
(a11(T, z)

2

)q̄
∫

Rd

Γ (t, z; s, ζ)
(
a11(s, ζ)− T

a11(s,·)
z,N (ζ)

)(
∂2
ζ1

− ∂ζ1
)q̄+1(

1− ∂ζ1
)m̄

u
(z)
0 (s, ζ;T, k)dζ

(integrating by parts)

=
(a11(T, z)

2

)q̄
∫

Rd

(
∂2
ζ1

+ ∂ζ1
)q̄(

1 + ∂ζ1
)m̄
(

Γ (t, z; s, ζ)
(
a11(s, ζ)− T

a11(s,·)
z,N (ζ)

))

·
(
∂2
ζ1

− ∂ζ1
)
u
(z)
0 (s, ζ;T, k)dζ.

From (3.9) and (C.5) we have

(
∂2
ζ1

− ∂ζ1
)
u
(z)
0 (s, ζ;T, k) = ekΓ0

(∫ T

s
a11(r, z)dr, ζ1 −

∫ T
s a11(r, z)dr

2
− k

)

,

where Γ0 denotes the Gaussian density in (4.3) with d = 1. Noting that

Γ0

(∫ T

s
a11(r, z)dr, ζ1 −

∫ T
s a11(r, z)dr

2
− k

)

−→ δk, as s → T−,

we obtain

lim
s→T−

IN (t, z) =
(a11(T, z)

2

)q̄
ek

∫

Rd−1

(
∂2
k + ∂k

)q̄(
1 + ∂k

)m̄
(

Γ (t, z;T, k, η)
(
a11(T, k, η) − T

a11(T,·)
z,N (k, η)

))

dη. (A.7)

Finally, (A.6) and (A.7) yield (A.5).

We now prove (4.2). By repeatedly applying the Leibniz rule on (A.1) and (A.5), we get

∂q
T ∂m

k

(
u− ūN

)
(t, x, y;T, k) =

∫ T

t

∫

Rd

Γ (t, z; s, ζ)
N∑

n=0

(

As − Ā
(z̄)
s,n

)

∂q
T ∂m

k u
(z̄)
N−n(s, ζ;T, k)dζds+

q−1
∑

i=0

Ji,

with

Ji = ∂q−1−i
T

((
a11(T, z)

2

)i

ek
∫

Rd−1

(
∂2
k + ∂k

)i(
1 + ∂k

)m
(

Γ (t, z;T, k, η)
(
a11(T, k, η) − T

a11(T,·)
z,N (k, η)

))

dη

)

.

Now, by proceeding as in Step 1, it is easy to show that

∣
∣
∣
∣
∣
∣
∣

∫ T

t

∫

Rd

Γ (t, z; s, ζ)
N∑

n=0

(

As − Ā
(z̄)
s,n

)

∂q
T ∂m

k u
(z̄)
N−n(s, ζ;T, k)dζds

∣
∣
∣
∣
∣
∣
∣

≤ CexMq (M(T − t))
N−m−2q+2

2 .

Analogously, by repeatedly applying Leibniz rule along with Faa di Bruno’s Formula (Proposition E.1) and Lemma 4.5, and by

using that

ek
∫

Rd−1
Γ0
(
2M(T − t), x− k, y − η

)
dη =

ek
√

4πM(T − t)
e
− (k−x)2

4M(T−t) ≤ Cex
√

M(T − t)
,

with Γ0 as in (4.3), one can also show

|Ji| ≤ CexMq (M(T − t))
N−m−2q+2

2 , 0 ≤ i ≤ q − 1,

which concludes the proof.
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B Proof of Lemmas 5.10 and 5.11

Proof (of Lemma 5.10) The case n = m = 0 has been already proved in (5.8). To prove the general case, we proceed by

induction on m and n.

[Step 1: case m= q = 0].

By (C.9) and by using |x0 − k| ≤ λ
√

M(T − t), we have

∂σu
BS(σ, k, T ) ≥ ek

√
T − t√
2π

exp

(

−λ2M

2σ2
− σ2(T − t)

8
− λ

√
M(T − t)

2

)

≥ ek
√
T − t√
2π

exp

(

−λ2M

2σ2
− σ2T0

8
− λ

√
M0T0

2

)

,

which, by (5.8), implies

(

∂1u
BS
)(

σBS(u(δ, k, T ), k, T )
)

≥ ek
√
T − t√
2π

exp

(

−λ2

2ε
− M0T0

2
− λ

√
M0T0

2

)

. (B.1)

Therefore, we obtain

0 <
(

∂1σ
BS
)

(u(δ, k, T ), k, T ) =
1

(∂1uBS)
(
σBS(u(δ, k, T ), k, T )

) ≤ C

ek
√
T − t

,

which is (5.10) for m = 0 and n = 1.

We now fix n̄ ∈ N, assume (5.10) to hold true for any n ∈ N0 with n ≤ n̄ and prove it true for n̄ + 1. Differentiating the

identity u = uBS(σBS(u, k, T ), k, T ) and applying the univariate version of Faà di Bruno’s formula (see Appendix E, Eq. (E.4)),

we obtain

∂n̄+1
1 σBS(u, k, T ) = −

n̄+1∑

h=2

(∂h
1 u

BS)
(
σBS(u, k, T ), k, T

)

(∂1uBS) (σBS(u, k, T ), k, T )
Bn̄+1,h

(

∂1σ
BS(u, k, T ), . . . , ∂n̄−h+2

1 σBS(u, k, T )
)

.

Now, by (B.1), Lemma C.5 and recalling the estimate of Lemma 5.8 for u = u(δ, k, T ), we get

∣
∣
∣
∣
∣

(
∂h
1 u

BS
) (

σBS(u(δ, k, T ), k, T ), k, T
)

(∂1uBS) (σBS(u(δ, k, T ), k, T ), k, T )

∣
∣
∣
∣
∣
≤ CM−h−1

2 .

Moreover, for any h = 2, . . . , n̄+ 1, we have

∣
∣
∣Bn̄+1,h

(

∂1σ
BS(u, k, T ), . . . , ∂n̄−h+2

1 σBS(u, k, T )
)

|u=u(δ,k)

∣
∣
∣ ≤

(by (E.5) in Appendix E)

≤ C
∑

j1,...,jn̄−h+2

∣
∣
∣

(

∂1σ
BS
)

(u(δ, k, T ), k, T )
∣
∣
∣
j1 · · ·

∣
∣
∣

(

∂n̄−h+2
1 σBS

)

(u(δ, k, T ), k, T )
∣
∣
∣
jn̄−h+2 ≤

(by inductive hypothesis)

≤ C
∑

j1,...,jn̄−h+2

√
M
(

ek
√

M(T − t)
)−j1 · · ·

√
M
(

ek
√

M(T − t)
)−(n̄−h+2)jn̄−h+2

≤ CM
h
2

(

ek
√

M(T − t)
)−n̄−1

,

where the last inequality follows from the identities (E.6) in Appendix E. This concludes the proof of (5.10) with m = 0.

[Step 2: case q = 0]

We proceed by induction on m. The sub-case m = 0 has already been proved in Step 1. Now fix m̄ ∈ N, assume (5.10) to hold

for any n,m ∈ N0, m ≤ m̄ and prove it true for m = m̄+ 1 and n ∈ N0. First note that differentiating w.r.t. k the identity

σ = σBS(uBS(σ, k, T ), k, T ), σ > 0, (B.2)

we get
(

∂2σ
BS
)(

uBS(σ, k, T ), k, T
)

= −
(

∂1σ
BS
)(

uBS(σ, k, T ), k, T
)

· ∂2uBS(σ, k, T ),
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or equivalently, setting u = uBS(σ, k, T ) that is σ = σBS(u, k, T ),

∂2σ
BS (u, k, T ) = −∂1σ

BS (u, k, T ) ·
(

∂2u
BS
)

(σBS(u, k, T ), k, T ), u ∈](ex0 − ek)+, ex0 [. (B.3)

Fix n ∈ N0: differentiating (B.3), n times w.r.t. u and m̄ times w.r.t. k, we get

∂n
1 ∂

m̄+1
2 σBS(u, k, T ) = − dn+m̄

dundkm̄

(

∂1σ
BS (u, k, T ) ·

(

∂2u
BS
)

(σBS(u, k, T ), k, T )
)

= −
n∑

i=0

m̄∑

j=0

(n

i

)(m̄

j

)(

∂n+1−i
1 ∂m̄−j

2 σBS(u, k, T )
)

· di+j

duidkj

(

∂2u
BS
)

(σBS(u, k, T ), k, T ).

(B.4)

Now, by inductive hypothesis, for any i, j, n ∈ N0 with i ≤ n and j ≤ m̄, we have

∣
∣
∣

(

∂n+1−i
1 ∂m̄−j

2 σBS
)

(u(δ, k, T ), k, T )
∣
∣
∣ ≤ C

√
M (M(T − t))−

n+1−i+m̄−j
2 e−(n+1−i)k. (B.5)

The proof will be concluded once we show that

∣
∣
∣
∣

di+j

duidkj

(

∂2u
BS
)

(σBS(u, k, T ), k, T )
∣
∣
u=u(δ,k,T )

∣
∣
∣
∣
≤ C (M(T − t))−

i+j
2 e−(i−1)k. (B.6)

Indeed (B.6), combined with (B.5) and (B.4), yields (5.10) for m̄+ 1.

More generally, we prove that for any i, j, γ1, γ2, γ3 ∈ N0 with γ1 + γ2+γ3 > 0 and j ≤ m̄ (here m̄ is fixed in the inductive

hypothesis at the beginning of Step 2), we have

∣
∣
∣
∣

di+j

duidkj

(

∂γ1
1 ∂γ2

2 ∂γ3
3 uBS

)

(σBS(u, k, T ), k, T )
∣
∣
u=u(δ,k,T )

∣
∣
∣
∣ ≤ CMγ3−

γ1
2 (M(T − t))

1−i−j−γ2−2γ3
2 e(1−i)k, (B.7)

We prove (B.7) by using another inductive argument on j.

[Step 2-a): case j = 0].

By the univariate version of the Faà di Bruno’s formula (see Appendix E, Eq. (E.4)), for any i, γ1, γ2 ∈ N0 we have

di

dui

(

∂γ1
1 ∂γ2

2 ∂γ3
3 uBS

)

(σBS (u, k, T ) , k, T ) =
i∑

h=1

(

∂h+γ1
1 ∂γ2

2 ∂γ3
3 uBS

)

(σBS (u, k, T ) , k, T )

·Bi,h

(

∂1σ
BS(u, k, T ), ∂2

1σ
BS(u, k, T ), . . . , ∂i−h+1

1 σBS(u, k, T )
)

.

(B.8)

By Lemmas C.5 and 5.8, using that γ1 + γ2+γ3 > 0, we have

∣
∣
∣

(

∂h+γ1
1 ∂γ2

2 ∂γ3
3 uBS

)

(σBS (u, k, T ) , k, T )|u=u(δ,k,T )

∣
∣
∣ ≤ CekMγ3−

h+γ1
2 (M(T − t))

1−γ2−2γ3
2 . (B.9)

Moreover, by (5.10) with m = 0 (already proved in Step 1) and by the relations (E.6) we have

∣
∣
∣Bi,h

(

∂1σ
BS(u, k, T ), ∂2

1σ
BS(u, k, T ), . . . , ∂i−h+1

1 σBS(u, k, T )
)

|u=u(δ,k,T )

∣
∣
∣ ≤ CM

h
2 (M(T − t))−

i
2 e−ik,

which, combined with (B.9) and (B.8), proves (B.7) for j = 0 and any i, γ1, γ2 ∈ N0 with γ1 + γ2+γ3 > 0.

[Step 2-b): case 1 ≤ j ≤ m̄]

Fix j0 ∈ N with j0 ≤ m̄− 1: we assume (B.7) to hold for any i, γ1, γ2, γ3 ∈ N0 with γ1 + γ2+γ3 > 0 and 0 ≤ j ≤ j0 and prove

it true for i, γ1, γ2, γ3 ∈ N0 with γ1 + γ2+γ3 > 0 and j = j0 + 1. We have

di+j0+1

duidkj0+1

(

∂γ1
1 ∂γ2

2 ∂γ3
3 uBS

)

(σBS (u, k, T ) , k, T )

=
di+j0

duidkj0

((

∂1+γ1
1 ∂γ2

2 ∂γ3
3 uBS

)(

σBS (u, k, T ) , k, T
)

· ∂2σBS(u, k, T )

+
(

∂γ1
1 ∂1+γ2

2 ∂γ3
3 uBS

)

(σBS (u, k, T ) , k, T )

)

=
i∑

h=0

j0∑

q=0

( i

h

)(j0

q

)( dh+q

duhdkq

(

∂1+γ1
1 ∂γ2

2 ∂γ3
3 uBS

)

(σBS (u, k, T ) , k, T )

)

· ∂i−h
1 ∂j0−q+1

2 σBS(u, k, T )

+
di+j0

duidkj0

(

∂γ1
1 ∂1+γ2

2 ∂γ3
3 uBS

)

(σBS (u, k, T ) , k, T ).

(B.10)
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By inductive hypothesis we have

∣
∣
∣
∣

dh+q

duhdkq

(

∂1+γ1
1 ∂γ2

2 ∂γ3
3 uBS

)

(σBS (u, k, T ) , k, T )
∣
∣
u=u(δ,k,T )

∣
∣
∣
∣
≤ CMγ3−

γ1+1
2 (M(T − t))−

h+q+γ2+2γ3−1
2 e−(h−1)k,

and ∣
∣
∣
∣

di+j0

duidkj0

(

∂γ1
1 ∂1+γ2

2 ∂γ3
3 uBS

)

(σBS (u, k, T ) , k, T )
∣
∣
u=u(δ,k,T )

∣
∣
∣
∣ ≤ CMγ3−

γ1
2 (M(T − t))−

i+j0+γ2+2γ3
2 e−(i−1)k.

Now we recall that we are assuming, by inductive hypothesis, that (5.10) holds for any n ∈ N0 and m ≤ m̄: thus, since

j0 − q + 1 ≤ m̄ by assumption, we get

∣
∣
∣∂i−h

1 ∂j0−q+1
2 σBS(u, k, T )|u=u(δ,k,T )

∣
∣
∣ ≤ CM

1
2 (M(T − t))−

i−h+j0−q+1
2 e−(i−h)k.

The last three estimates combined with (B.10) yield (B.7) for j = j0 + 1.

[Step 3: case q ∈ N]

It is analogous to Step 2. For simplicity, we only prove the case q = 1. By identity (B.2) we get

(

∂3σ
BS
)(

uBS(σ, k, T ), k, T
)

= −
(

∂1σ
BS
)(

uBS(σ, k, T ), k, T
)

· ∂3uBS(σ, k, T ),

or equivalently, setting u = uBS(σ, k, T ) that is σ = σBS(u, k, T ),

∂3σ
BS (u, k, T ) = −∂1σ

BS (u, k, T ) ·
(

∂3u
BS
)

(σBS(u, k, T ), k, T ), u ∈](ex0 − ek)+, ex0 [. (B.11)

Fix n,m ∈ N0: differentiating (B.11), n and m times w.r.t. u and k respectively, and once w.r.t. T , we get

∂n
1 ∂

m
2 ∂3σ

BS(u, k, T ) = − dn+m

dundkm

(

∂1σ
BS (u, k, T ) ·

(

∂3u
BS
)

(σBS(u, k, T ), k, T )
)

= −
n∑

i=0

m∑

j=0

(n

i

)(m

j

)(

∂n+1−i
1 ∂m−j

2 σBS(u, k, T )
)

· di+j

duidkj

(

∂3u
BS
)

(σBS(u, k, T ), k, T ).

(B.12)

Now, by (5.10) with q = 0, for any i, j, n ∈ N0 with i ≤ n and j ≤ m, we have

∣
∣
∣

(

∂n+1−i
1 ∂m−j

2 σBS
)

(u(δ, k, T ), k, T )
∣
∣
∣ ≤ CM

1
2 (M(T − t))−

n+1−i+m−j
2 e−(n+1−i)k , (B.13)

whereas, by (B.7), we obtain

∣
∣
∣
∣

di+j

duidkj

(

∂3u
BS
)

(σBS(u, k, T ), k, T )
∣
∣
u=u(δ,k,T )

∣
∣
∣
∣ ≤ CM

(
M(T − t)

)− i+j+1
2 e−(i−1)k. (B.14)

Eventually, (B.13) and (B.14) combined with (B.12) prove (5.10) for q = 1.

Remark B.1 The inductive argument of the previous proof shows that estimate (B.7) is valid for any i, j, γ1, γ2, γ3 ∈ N0, with

γ1 + γ2+γ3 > 0 and δ ∈ [0, 1], 0 ≤ t < T < T0 and k ∈ R such that T − t ≤ τ0 and |x0 − k| ≤ λ
√

M(T − t). In this case, the

constant C in (B.7) also depends on i, j, γ1, γ2 and γ3.

Proof (of Lemma (5.11)) For simplicity, we split the proof in two separate steps.

[Step 1: case q = 0]

By the bivariate version of Faà di Bruno’s formula (see Appendix E, Proposition E.1), we obtain

dm

dkm

(

∂n
1 σ

BS
)

(u(δ, k, T ), k, T )

=
m∑

h=1

(

∇h∂n
1 σ

BS
)

(u(δ, k, T ), k, T ) ∗Bm,h

(
(∂ku(δ, k, T )

1

)

,
(∂2

ku(δ, k, T )

0

)

, . . . ,
(∂m−h+1

k u(δ, k, T )

0

)
)

=

(by exploiting the first relation in (E.6))

=
m∑

h=1

h∑

j1=0

gh,j1 (δ, k, T )
(

∇j1∂n+h−j1
1 σBS

)

(u(δ, k, T ), k, T ) ∗
(∂ku(δ, k, T )

1

)j1

(B.15)



38 Stefano Pagliarani, Andrea Pascucci

where “∗” denotes the tensorial scalar product (see (E.2)) and

gh,j1 (δ, k, T ) =
∑

j2,...,jm−h+1

cm,h
j1,...,jm−h+1

m−h+1∏

i=2

(
∂i
ku(δ, k, T )

)ji (B.16)

for some constants cm,h
j1,...,jm−h+1

and the sum in (B.16) is taken over all sequences j2, . . . , jm−h+1 of non-negative integers

verifying the identities in (E.6). Now, by estimate (5.7) and by the relations (E.6), we obtain

∣
∣gh,j1 (δ, k, T )

∣
∣ ≤ Ce(h−j1)x0(M(T − t))−

m−h
2 . (B.17)

Moreover we have
∣
∣
∣
∣
∣

(

∇j1∂n+h−j1
1 σBS

)

(u(δ, k, T ), k, T ) ∗
(∂ku(δ, k, T )

1

)j1
∣
∣
∣
∣
∣

≤ C

j1∑

q=0

∣
∣
∣

(

∂n+h−q
1 ∂q

2σ
BS
)

(u(δ, k, T ), k, T )
∣
∣
∣

∣
∣
∣(∂ku(δ, k, T ))j1−q

∣
∣
∣

and therefore, by Lemma 5.10 and estimate (5.7), we get

∣
∣
∣
∣
∣

(

∇j1∂n+h−j1
1 σBS

)

(u(δ, k, T ), k, T ) ∗
(∂ku(δ, k, T )

1

)j1
∣
∣
∣
∣
∣
≤ Ce−(n+h−q)k+(j1−q)x0

√
M(M(T − t))−

n+h
2 . (B.18)

Eventually, (5.11) follows by combining (B.17)-(B.18) with (B.15) and by observing that

e(h−q)(x0−k) ≤ em|x0−k| ≤ emλ
√

M(T−t),

since |x0 − k| ≤ λ
√

M(T − t).

[Step 2: case q ∈ N]

It is analogous to Step 1. For simplicity, we only prove the case q = 1. Leibniz rule yields

dm

dkm
d

dT

(

∂n
1 σ

BS
)

(u(δ, k, T ), k, T )

=
dm

dkm

(
(
∂T u(δ, k, T )

)(
∂n+1
1 σBS

)
(u(δ, k, T ), k, T ) +

(

∂n
1 ∂3σ

BS
)

(u(δ, k, T ), k, T )

)

=
m∑

i=0

(m

i

)(
∂m−i
k ∂T u(δ, k, T )

) di

dki

(
∂n+1
1 σBS

)
(u(δ, k, T ), k, T ) +

dm

dkm

(

∂n
1 ∂3σ

BS
)

(u(δ, k, T ), k, T ) .

(B.19)

By (5.11) with q = 0, by (5.7), and by using that |x0 − k| ≤ λ(T − t), we get

∣
∣
∣
∣

(
∂m−i
k ∂T u(δ, k, T )

) di

dki

(
∂n+1
1 σBS

)
(u(δ, k, T ), k, T )

∣
∣
∣
∣ ≤ CM1+ 1

2 (M(T − t))−
m+2+n

2 e−nk. (B.20)

On the other hand, by proceeding exactly as in Step 1, one can show

∣
∣
∣
∣

dm

dkm

(

∂n
1 ∂3σ

BS
)

(u(δ, k, T ), k, T )

∣
∣
∣
∣
≤ CM1+ 1

2 (M(T − t))−
m+2+n

2 e−nk,

which, combined with (B.20) and (B.19), proves (5.11) for q = 1.

C Short-time/small-noise estimates in the Black&Scholes model

We collect here the short-time estimates for the sensitivities with respect to σ, x and k of the Black&Scholes function uBS(σ) =

uBS(σ; τ, x, k), needed to prove the results of Section 5. In this appendix Γ0 denotes the Gaussian density in (4.3) with d = 1.

Lemma C.1 For any n ∈ N0 and c > 1 we have

( |x|√
t

)n

Γ0(t, x) ≤
√
c

(
cn

(c− 1)
√
e

)n
2

Γ0(ct, x), t ∈ R>0, x ∈ R.
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Proof Set z =
|x|√
t
. For any c > 1 we have

( |x|√
t

)n

Γ0(t, x) =
zn√
2πt

exp

(

− z2

2

)

=
√
c g(z)Γ0(ct, x),

with

g(z) = zn exp

(

− z2

2

(

1− 1

c

))

, z ≥ 0.

The statement now follows by observing that g attains a global maximum at zn =
√

cn
c−1

and that

g(zn) = e−
n
2

(
cn

c− 1

)n/2

.

Lemma C.2 For any n ∈ N0 and c > 1 we have

|∂n
xΓ0(t, x)| ≤ C t−

n
2 Γ0(ct, x), t ∈ R>0, x ∈ R, (C.1)

where C is a positive constant only dependent on n and c.

Proof Then, by definition (4.3) we have

∂n
xΓ0(t, x) = t−

n
2 Hn

(
x√
2t

)

Γ0(t, x),

and thus the statement easily stems from Lemma C.1.

In what follows we will make use of the representation of the Black&Scholes price in term of the Gaussian density Γ0 in (4.3),

i.e.

uBS(σ) = uBS(σ; τ, x, k) =

∫ +∞

k
Γ0

(

σ2τ, x− σ2τ

2
− y

)(

ey − ek
)

dy, (C.2)

and of the family of Hermite polynomials defined as

Hn(x) := ex
2
∂n
x e

−x2
, n ∈ N0. (C.3)

Lemma C.3 For any m,n ∈ N0 and M > 0 we have

∣
∣
∣∂n

x ∂
m
k uBS(σ; τ, x, k)

∣
∣
∣ ≤ Cex

(
σ
√
τ
)(1−m−n)∧0

, x, k ∈ R, 0 < σ
√
τ ≤ M, (C.4)

where a ∧ b = min{a, b} and C is a positive constant only dependent on m,n and M .

Proof Throughout this proof we will denote by C any generic constant that depends at most on m,n and M . We first prove

the statement for m = 0. If also n = 0 then the thesis easily follows by writing uBS as an expectation. If n ≥ 1 then by (C.2)

we have

∂n
xu

BS(σ; τ, x, k) =

∫ +∞

k
∂n
xΓ0

(

σ2τ, x− σ2τ

2
− y

)(

ey − ek
)

dy =

(since ∂xΓ0 = −∂yΓ0 and integrating by parts)

=

∫ ∞

k
∂n−1
x Γ0

(

σ2τ, x− σ2τ

2
− y

)

eydy. (C.5)

Thus, by the Gaussian estimate (C.1) with c = 2 we obtain

∣
∣
∣∂n

x u
BS(σ; τ, x, k)

∣
∣
∣ ≤ C

(
σ
√
τ
)−n+1

∫

R

Γ0

(

2σ2τ, x− σ2τ

2
− y

)

eydy = C ex+
σ2τ
2
(
σ
√
τ
)−n+1

which proves the statement for m = 0. The case m ≥ 1 now trivially stems from the identity

∂ku
BS(σ; τ, x, k) = uBS(σ; τ, x, k)− ∂xu

BS(σ; τ, x, k), (C.6)

along with (C.4) with m = 0.
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Proposition C.4 Fix (t, T, k, σ) and let ζ =
x−k−σ2τ

2

σ
√
2τ

and τ = T − t. Then for any n ≥ 2 we have

∂n
σu

BS(σ)

∂σuBS(σ)
=

⌊n/2⌋
∑

q=0

n−q−1∑

p=0

cn,n−2qσ
n−2q−1τn−q−1

(n− q − 1

p

)( 1

σ
√
2τ

)p+n−q−1

Hp+n−q−1(ζ),

where the coefficients (cn,n−2k) are defined recursively by

cn,n = 1, and cn,n−2q = (n− 2q + 1)cn−1,n−2q+1 + cn−1,n−2q−1, q ∈ {1, 2, · · · , ⌊n/2⌋}.

Proof See Proposition 3.5 in Lorig et al. (2015b).

Lemma C.5 For any m, q, n ∈ N0 with m+ q + n > 0 we have

∣
∣
∣∂n

σ ∂
q
τ∂

m
k uBS(σ; τ, x, k)

∣
∣
∣ ≤ Cekσ−n+2q

(
σ
√
τ
)1−m−2q

, x, k ∈ R, 0 < σ
√
τ ≤ M, (C.7)

where C is a positive constant only dependent on m, q, n and M . If q = 0, then C is independent of M ..

Proof We split the proof in three steps.

[Step 1: case q = n = 0].

Here we will denote by C any generic constant that depends at most on m. For any m ∈ N, by (C.2) we have

∂m
k uBS(σ; τ, x, k) = ∂m−1

k

(

ek
∫ ∞

k
Γ0

(

σ2τ, y − x+
σ2τ

2

)

dy

)

=

m−1∑

i=0

(m− 1

i

)

ek∂i
k

∫ ∞

k
Γ0

(

σ2τ, y − x+
σ2τ

2

)

dy. (C.8)

Now, we have
∫∞
k Γ0

(

σ2τ, y − x+ σ2τ
2

)

dy ∈]0, 1[ and, for i ≥ 1, we have

∂i
k

∫ ∞

k
Γ0

(

σ2τ, y − x+
σ2τ

2

)

dy = −∂i−1
k Γ0

(

σ2τ, k − x+
σ2τ

2

)

.

Thus by applying the Gaussian estimate (C.1) with c = 2, we obtain

∣
∣
∣
∣∂

i
k

∫ ∞

k
Γ0

(

σ2τ, y − x+
σ2τ

2

)

dy

∣
∣
∣
∣ ≤ C

(

σ
√
2τ
)−i+1

Γ0

(

2σ2τ, k − x+
σ2τ

2

)

≤ C
(
σ
√
τ
)−i

,

which, combined with (C.8), proves (C.7).

[Step 2: case q = 0, n ≥ 1].

Here we will denote by C any generic constant that depends at most on m and n. A direct computation shows

∂σu
BS(σ; τ, x, k) = ekστΓ0

(

σ2τ, x− k − σ2τ

2

)

= ek
√
τ Γ0 (1, ζ) , (C.9)

with ζ =
x−k−σ2τ

2

σ
√
2τ

. Therefore we have

0 < ∂σu
BS(σ; τ, x, k) ≤ ek

√
τ√

2π
, x, k ∈ R, σ, τ ∈ R>0,

which proves (C.7) for n = 1 and m = 0. Notice that

|∂m
k Γ0 (1, ζ)| =

1
(

σ
√
2τ
)m

∣
∣
∣∂m

ζ Γ0 (1, ζ)
∣
∣
∣ ≤ C

(
σ
√
τ
)−m

, m ∈ N0,

where the last inequality follows from (C.1). Then, by differentiating (C.9), it is straightforward to show that

∣
∣
∣∂σ∂

m
k uBS(σ; τ, x, k)

∣
∣
∣ ≤ Cek

√
τ
(
σ
√
τ
)−m

, m ∈ N0.
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For n ≥ 2, by combining Proposition C.4 with (C.9), we have

∂n
σu

BS(σ; τ, x, k) = ek
√
τ

⌊n/2⌋
∑

q=0

n−q−1
∑

p=0

cn,n−2qσ
n−2q−1τn−q−1

(n− q − 1

p

)

·

·
(

1

σ
√
2τ

)p+n−q−1

Γ0 (1, ζ)Hp+n−q−1(ζ).

(C.10)

Now notice that

|∂m
k (Γ0 (1, ζ)Hp(ζ))| =

∣
∣
∣∂m

k ∂p
ζΓ0 (1, ζ)

∣
∣
∣ =

1
(
σ
√
τ
)m

∣
∣
∣∂

m+p
ζ Γ0 (1, ζ)

∣
∣
∣ ≤ C

(
σ
√
τ
)−m

. (C.11)

Then the thesis follows by differentiating formula (C.10) and using (C.11).

[Step 3: case q ≥ 1].

Here we will denote by C any generic constant that depends at most on m, q, n and M . By applying the identity

∂τu
BS(σ; τ, x, k) =

σ2

2

(
∂2
x − ∂2

x

)
uBS(σ; τ, x, k) =

σ2

2

(
∂2
k − ∂2

k

)
uBS(σ; τ, x, k)

we get

∂n
σ ∂

q
τ∂

m
k uBS(σ; τ, x, k) = ∂m

k

(
∂2
k − ∂k

)q
∂n
σ

((
σ2

2

)q

uBS(σ; τ, x, k)

)

.

The statement now follows by applying Faa di Bruno’s formula (Proposition E.1) along with (C.7) for q = 0.

D Explicit representation for the volatility expansion

Here we recall an explicit representation formula for the n-th order correcting terms un and σn appearing in the price expansion

(3.6) and the implied volatility expansion (3.13), respectively. The following result is a particular case of (Lorig et al., 2015a,

Theorem 3.2).

Theorem D.1 Let N ∈ N, z̄ ∈ R
d and assume that Dβ

z aα(·, z̄) ∈ L∞([0, T ]) for any 1 ≤ |α| ≤ 2 and |β| ≤ N . Then, for any

1 ≤ n ≤ N , the function un in (3.8) is given by

u
(z̄)
n (t, z) = L

(z̄)
n (t, T, z)u

(z̄)
0 (t, z), t ∈ [0, T [, z ∈ R

d. (D.1)

In (D.1), L
(z̄)
n (t, T, z) denotes the differential operator acting on the z-variable and defined as

L
(z̄)
n (t, T, z) :=

n∑

h=1

∫ T

t
ds1

∫ T

s1

ds2 · · ·
∫ T

sh−1

dsh
∑

i∈In,h

G
(z̄)
i1

(t, s1, z) · · ·G(z̄)
ih

(t, sh, z), (D.2)

where8

In,h = {i = (i1, . . . , ih) ∈ N
h | i1 + · · ·+ ih = n}, 1 ≤ h ≤ n,

and the operator G
(z̄)
n (t, s, z) is defined as

G
(z̄)
n (t, s, z) := A

(z̄)
n

(
s, z − z̄ +m(z̄)(t, s) +C(z̄)(t, s)∇z

)
,

with m(z̄)(t, s) and C(z̄)(t, s) being, respectively, the vector and the matrix whose components are given by

m
(z̄)
i (t, s) =

∫ s

t
ai(r, z̄)dr, C

(z̄)
ij (t, s) =

∫ s

t
aij(r, z̄)dr, i, j = 1, . . . , d.

Corollary D.2 Let N ∈ N0, and let Assumption 4.2 be in force. Then, for any n,m, q ∈ N0 with n, 2q ≤ N , and for any

multi-index α ∈ Nd
0, we have

∂q
T ∂m

k Dα
z u

(z̄)
n (t, z;T, k) =

∑

0≤|γ|≤n
1≤j≤3n

f
(n,q,m,α)
γ,j (z̄; t, T )(z − z̄)γ∂j+m+2q+α1

z1
u
(z̄)
0 (t, z;T, k), (D.3)

8 For instance, for n = 3 we have I3,3 = {(1, 1, 1)}, I3,2 = {(1, 2), (2, 1)} and I3,1 = {(3)}.
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with
∣
∣
∣f

(n,q,m,α)
γ,j (z̄; t, T )

∣
∣
∣ ≤ CMq(M(T − t))

n−|γ|+j

2 , (D.4)

for any 0 ≤ t < T < T0, z, z̄ ∈ D(z0, r) and k ∈ R. Consequently, we have

∣
∣
∣∂

q
T ∂m

k u
(z)
0 (t, z;T, k)

∣
∣
∣ ≤ CexMq(M(T − t))

(1−m−2q)∧0
2 . (D.5)

and, for n ≥ 1,
∣
∣
∣∂

q
T ∂m

k u
(z)
n (t, z;T, k)

∣
∣
∣ ≤ CexMq(M(T − t))

n+1−m−2q
2 . (D.6)

In (D.4), (D.5) and (D.6), C is a positive constant only dependent on ε,M0, T0, N, |α| and m.

Proof Using the explicit formulas (D.1)-(D.2) and noting that u
(z̄)
0 (t, z;T, k) does not depend on z2, . . . , zd, it is straightforward

to prove that

u
(z̄)
n (t, z;T, k) =

∑

|γ|≤n

0≤j≤3n

f
(n)
γ,j (z̄; t, T )(z − z̄)γ∂j

z1
u
(z̄)
0 (t, z;T, k), (D.7)

with
∣
∣∂i

T f
(n)
γ,j (z̄; t, T )

∣
∣ ≤ CM i(M(T − t))

n−|γ|+j−2i
2 , 0 ≤ 2i ≤ N. (D.8)

The general statement now follows from (D.7)-(D.8) along with the identities (C.6) and

∂Tu
(z̄)
0 (t, z;T, k) =

a11(T, z̄)

2

(
∂2
z1

− ∂z1
)
u
(z̄)
0 (t, z;T, k). (D.9)

Estimate (D.5) follows from Lemma C.3. By combining (D.3) with (C.4) eventually we get estimate (D.6).

Furthermore, we recall the following result (Lorig et al., 2015b, Proposition 3.6).

Proposition D.3 For every n ∈ N and z̄ ∈ R
d, the ratio u

(z̄)
n /∂σuBS

(
σ
(z̄)
0

)
in (3.14) is a finite sum of the form

u
(z̄)
n

∂σuBS
(
σ
(z̄)
0

) =
∑

m

(

σ
(z̄)
0

√

2(T − t)
)−m

χ
(z̄)
m,n Hm (ζ) , ζ =

x− k − 1
2
σ2
0(T − t)

σ0

√
2(T − t)

for any t < T , z = (x, y) ∈ Rd and k ∈ R, where the coefficients χ
(z̄)
m,n = χ

(z̄)
m,n(t, z;T, k) are explicit functions, polynomial in

the log-moneyness (k − x). Here, Hm represents the m-th order Hermite polynomial defined in (C.3).

E Multivariate Faà di Bruno’s formula and Bell polynomials

In this section we recall a multivariate version of the well-known Faà di Bruno’s formula (see Riordan (1946) and Johnson

(2002)) and more precisely, its Bell polynomial version.

For greater convenience, we recall some elements of tensorial calculus. For any given n, h ∈ N, we denote by Λ a rank-h

tensor on Rn, i.e. an array Λ = (Λi)i∈{1,...,n}h , with Λi ∈ R. Moreover, by definition a rank-0 tensor is a real number,

independently of the dimension n.

Let us now fix the dimension n ∈ N. For any couple of tensors Λ, Θ of rank h1 and h2 respectively, we define the tensorial

product Λ⊗ Θ as the rank-(h1 + h2) tensor given by

Λ⊗ Θi1,...,ih1
,ih1+1,...,ih1+h2

= Θi1,...,ih1
Λi1,...,ih2

, i ∈ {1, . . . , n}h1+h2 . (E.1)

We also set Λ0 = 1, Λ1 = Λ and

Λi := Λ⊗Λ⊗ · · ·⊗
︸ ︷︷ ︸

(i−1) times

Λ, i ≥ 2.

Furthermore, if Λ and Θ have the same rank h, we define the tensorial scalar product Λ ∗Θ as the rank-0 tensor given by

Λ ∗Θ =
∑

i∈{1,...,n}h
ΛiΘi. (E.2)

We say that a rank-h tensor Λ is symmetric if Λi = Λν(i) for any i ∈ {1, . . . , n}h and for any permutation ν of the indexes

(i1, . . . , ih).
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Consider now a polynomial p in the variables x = (x1, . . . , xj), homogeneous of degree h, of the form

p(x) =
∑

β∈N
j
0

|β|=h

bβx
β1
1 · · · xβj

j . (E.3)

For any rank-h symmetric tensor Λ and any family of rank-1 tensors {Θ1, . . . , Θj}, it is well defined the scalar

Λ ∗ p(Θ1, . . . , Θj) = Λ ∗
∑

β∈N
j
0

|β|=h

bβΘ
β1
1 ⊗ · · · ⊗Θ

βj

j .

Note that, the tensor p(Θ1, . . . , Θj) is not well-defined on its own because the tensorial product (E.1) is not commutative.

Nevertheless, by assuming Λ to be symmetric, the scalar product (E.3) is well-defined as it does not depend on the specific

order of the tensorial products inside the sum.

We are ready to state the following

Proposition E.1 (Multivariate Faà di Bruno’s formula) Let G : R → Rn and F : Rn → R be two smooth functions.

Then, for any m ∈ N we have

dm

dxm
F (G(x)) =

m∑

h=1

(

∇hF
)

(G(x)) ∗Bm,h

(
d

dx
G(x),

d2

dx2
G(x), . . . ,

dm−h+1

dxm−h+1
G(x)

)

, (E.4)

where ∇hF is the rank-h tensor with dimension n of the h-th order partial derivatives of F , i.e.

∇hFi = ∂i1 · · · ∂ihF, i ∈ {1, . . . , n}h,

and Bm,h is the family of the Bell polynomials defined as

Bm,h(z) =
∑

j1,j2,...,jm−h+1

m!

j1!j2! · · · jm−h+1!

( z1

1!

)j1
( z2

2!

)j2 · · ·
(

zm−h+1

(m − h+ 1)!

)jm−h+1

, 1 ≤ h ≤ m, (E.5)

where the sum is taken over all sequences j1, j2, . . . , jm−h+1 of non-negative integers such that

j1 + j2 + · · ·+ jm−h+1 = h and j1 + 2j2 + · · ·+ (m− h+ 1)jm−h+1 = m. (E.6)
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