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Abstract In a model driven by a multi-dimensional local diffusion, we study the behavior of implied volatil-
ity o and its derivatives with respect to log-strike k and maturity T near expiry and at the money. We recover
explicit limits of the derivatives 97.0;"c for (T,x — k) approaching the origin within the parabolic region
|z — k| < M/T, with x denoting the spot log-price of the underlying asset and where X is a positive and ar-
bitrarily large constant. Such limits yield the exact Taylor formula for implied volatility within the parabola
|z — k| < M/T. In order to include important models of interest in mathematical finance, e.g. Heston, CEV,
SABR, the analysis is carried out under the weak assumption that the infinitesimal generator of the diffusion
is only locally elliptic.
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1 Introduction

This paper deviates from the mainstream literature on asymptotic methods in finance; in fact, our main
result does not add another formula to the plethora of approximation formulas for the implied volatility
(IV) already available in the literature. Rather, we prove an ezact result: a rigorous derivation of the exact
Taylor formula of IV, as a function of both strike and maturity, in a parabolic region close to expiry and
at-the-money (ATM).

This is done under general assumptions that allow to include popular models, such as the CEV and the
Heston models, as very particular cases: indeed, we consider a multivariate model driven by a stochastic
process that is a local diffusion in a sense that suitably generalizes the classical notion of diffusion as given
by IStroock and Varadhan (1979) and [Friedman (1975, [1976).

The literature on IV asymptotics is extensive and exploits a diverse range of mathematical techniques. Fo-

cusing on short-time asymptotics, well-known results were obtained by [Berestycki et all (2002), Berestycki et al.
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2 Stefano Pagliarani, Andrea Pascucci

(2004) and [Durrleman (2010). Deferring precise definitions until the body of this paper, we denote by
o(t,z; T, k) the IV related to a Call option with log-strike k£ and maturity 7', where x is the spot log-price
of the underlying asset at time ¢. [Berestycki et al! (2004) uses PDEs techniques to prove the existence of
the limits 1Lm+ o(t,z;T, k) in a generic stochastic volatility model and to characterize such limits in terms
of Varadhan’s geodesic distance (see also to |Gavalas and Yortsos (1980) for related results). More recently,
Durrleman (2010) gives conditions under which it is possible to recover the ATM-limits Th—>Htl+ 040 o (t, k; T, k)
using a semi-martingale decomposition of implied volatilities; although this approach performs also in non-
Markovian settings, the validity of the conditions for the existence of the limits is verified only under Marko-
vian assumptions and employing the results in [Berestycki et all (2004).

While it is common practice to consider the IV as a function of maturity and strike (T, k), the aforemen-
tioned papers examine only the vertical limits, as T — ¢+, of o(t,x; T, k). The aim of this paper is to give
conditions for the existence and an explicit representation of the limits of 9%.9;"c (¢, x; T, k), at any order
m,q, as (T —t,x — k) approaches the origin within the parabolic region Py := {|z — k| < AW/T — t}; here
A is an arbitrarily large positive parameter. From a practical perspective, P, is the region of interest where
implied volatility data are typically observed in the market. As a by-product, we also provide a rigorous and
explicit derivation of the exact Taylor formula (see formula (3] below) for the implied volatility o (¢, x; -, -)
in Py, around (T, k) = (t, x).

Berestycki et . (2004): limits of (0,0;T k) Durrleman (2010): limits of &7 (0,0;T k)
04 ; ; ; 04 : : :

03 03 03
T02 T 02 T 02
01 01 01
00 00 00

-05 00 05 -05 00 05 -05 00 05
k k k

PP limits of 73 (0,0,TK)

Fig. 1.1 Directions along which the limits are computed in [Berestycki et al! (2004), in [Durrleman (2010) and in this paper,

respectively.

The starting point is the analysis of the transition density first developed in a scalar setting in|/Pagliarani and Pascucci
(2012) and later extended to asymptotic IV expansions in multiple dimensions in |[Lorig et all (2015h), where
the authors derived a fully explicit approximation, hereafter denoted by &, for the IV at any given order
N € N. Our main result, Theorem [5.] below, gives a sharp error bound on 949} (0 — o) and leads to the
existence of the limits
lim 9497 (o0 —an)(t,a; T, k) =0, 2¢+m < N. (1.1)

(T,k)— (t,»)
|z —k|<AVT—%

In the one-dimensional case and for derivatives of order less than or equal to two, similar results were proved
in Bompis and Gobetl (2012) by using Malliavin calculus techniques. Our results are proved under mild
conditions on the driving stochastic process, which is assumed to be a Feller process and an inhomogeneous
local diffusion. Loosely speaking, we assume that the infinitesimal generator of the diffusion is only locally
elliptic (i.e. elliptic on a certain domain D C R?) and its coefficients satisfy suitable regularity conditions;
note that no ellipticity condition is imposed on the complementary set R? \ D. Results under such general
hypotheses appear to be novel compared to the existing literature. In particular, our analysis includes

processes with killing and/or degenerate processes: our assumptions do not even imply that the law of the



The exact Taylor formula of the implied volatility 3

underlying process has a density and therefore our results apply to many degenerate cases of interest, such
as the well-known CEV, Heston and SABR models, among others.
Formula (L)) implies that the limits of the derivatives 970" exist if and only if the limits of 950" o n

do exist, and in that case we have

: 7 gm . _ ; 7 gm .
(T,kl)lg}t,a:) 070 o (t,x; T, k) = (TYkl)uj}w) 070 an (t, x; T, k). (1.2)
lo—k|<AVT—T |z—k|<AVT—F

Note that, in general, the limits in (I2)) do not exist: a simple example is given in M}.ﬂ@a&kjl

), Section 6, who exhibit a log-normal model with oscillating time-dependent volatility. In that case

the results by [Berestycki et alJ (IZO_Oj), Berestycki et alJ (IM) and D]]rrlgmad 12!!1!1) do not apply, while

the approximation oy in i ) turns out to be exact at order N = 0. More generally, we shall

provide simple and explicit conditions ensuring the existence of the limits of 97.0;"5y, and consequently the
existence of those of 07.0;"c in (L2). A particular case is when the underlying diffusion is time-homogeneous:
in that case, o is polynomial in time and thus smooth up to 7' = t.
Denoting by 070;"dn (t, z) the limits in (IL2), whose explicit expression is known at any order, we get
the following exact parabolic Taylor formula for o:
oo on(t, x)
q'm!

o(t,x;T, k) = Z

2g+m<N

(T_t)q(k—x)mm((T_t)% +|k—3:|N), (1.3)

as (T, k) — (t,x) in Py. Here, the meaning of the adjective parabolic is twofold. On the one hand it refers to
the parabolic domain P, on which the Taylor formula is proved; on the other hand, it refers to nature of the
reminder, which is expressed in terms of the homogeneous norm typically used to describe the geometry in-
duced by a parabolic differential operator. Note that this formula describes the behavior of ¢ in a joint regime

of small log-moneyness and /or small maturity. This result appears to be novel compared to the existing litera-

ture and complementary to ), [Mj i¢ ) and
2014). In nd Led (2014) the asymptotic behavior of ¢ in joint regime of extreme strikes and short/long
time-to-maturity is studied; [Mij i¢ and Tankov (2016) studied, in an exponential Lévy model, the small-

time asymptotic behavior of ¢ along relevant curves lying outside the parabolic region P, for any A > 0;

eventually, in a very general setting, dZ_O_l_éﬂ) studied the asymptotics of ¢ for differ-
ent regimes of log-strikes and maturities, including the region P, where their result coincides with ours at
order zero.

A part from the mere interest of having at hand a Taylor formula like (L.3]), additional advantages of having
two-dimensional limits, as opposed to vertical ones, might come from applications such as the asymptotic
study of the IV generated by VIX options (see Barletta et alJ (IM)) In this case, the underlying value,

given by the price of the future-VIX, is not fixed but varies in time, meaning that the log-moneyness of an

ATM VIX-Call is not constantly zero, but approaches zero for small time-to-maturities along a curve which
is not a straight line.

The proof of our result proceeds in several steps. We first introduce a notion of local diffusion (Assump-
tion 21)): we study its basic properties and the existence of a local transition density. We provide a double
characterization of the local density in terms of the forward and the backward Kolmogorov equations (The-

orem [2:0)): the forward representation follows from Hormander’s theorem and is coherent with the classical

results by [Kusuoka and SLrQngI (Imti) On the other hand, the backward representation appears to be novel
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at this level of generality. Indeed, its proof is more delicate and requires the use the Feller property com-
bined with the classical pointwise estimates by IMosen (1971) for weak solutions of parabolic PDEs. Then
we derive sharp asymptotic estimates for the derivatives 970" u(t,z; T, k), with u representing the pricing
function of a Call option with maturity 7" and log-strike k. This will be done first in a uniformly parabolic
framework and then will be extended to a locally parabolic setting to include the majority of the models
used in mathematical finance. The second step is particularly interesting due to the very loose assumptions
imposed on the generator A; of the underlying diffusion. The main idea is to prolong A; with an operator ﬁt
which is globally parabolic and then to prove that locally in space the difference between the fundamental
solution of flt and the local density of the underlying process decays exponentially as the time-to-maturity
approaches zero. This last step requires an articulated use of some techniques first introduced by [Safonov
(1998). Eventually, the estimates on the derivatives 9.0 u are combined with some sharp estimates on the
inverse of the B&S pricing function and on its sensitivities to obtain the main results, Theorem [5.1] and the
Taylor formula (L3]).

The paper is organized as follows. In Section 2] we describe the general setting and show some illustrative
examples of popular models satisfying our standing assumptions. In Section [3 we briefly recall the asymptotic
expansion procedure proposed by [Lorig et all (2015bh). In Section @] we derive error estimates for prices and
sensitivities, first under the strong assumption of uniform parabolicity (Subsection EI]) and then in the
general case (Subsection [2)). In Section [l we prove our main result (Theorem [B.]) on the error estimates
of the IV and its derivatives, and the consequent parabolic Taylor formula. Finally, the Appendix contains
the proof of Theorem 4] and other auxiliary results, namely: some short-time/small-volatility asymptotic
estimates for the Black-Scholes sensitivities (Appendix [C]), an explicit representation formula for the terms
appearing in the proxy o (Appendix[D]), and a multi-variate version of the Faa di Bruno’s formula (Appendix
E).

Acknowledgments. The authors are grateful to Enrico Priola, Jian Wang and an anonymous referee

for their valuable comments and suggestions to improve the quality of the paper.

2 Local diffusions and local transition densities

In this section we describe the general setting and state the standing assumptions under which the main
results of the paper are carried out. We also show some examples and prove some conditions under which

such assumptions are satisfied. Generally we adopt definitions and notations from [Friedman (1975, [1976).

We fix Ty > 0 and consider a continuous R%-valued Markov process Z = (Zt)tejo,1p) With transition
probability function p = p(t, z; T, d(), defined on the space (2, F, (Fk)o<i<r<ty, (Pr,2)o<t<t,). For any

bounded Borel measurable function ¢, we denote by

Ei . [o(Zr)] :== (Trre)(2) := /

p(t, 2, T,d¢)p(C), 0<t<T<Ty z€RY (2.1)
Rd

the P, .-expectation and the semigroup associated with the transition probability function p, respectively
(cf. Chapter 2.1 in [Friedman (1975)).
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We assume that Z = (S,Y) where S is a non-negative martingaleEI and Y takes values in R?~!: here
S represents the risk-neutral price of a financial asset and Y models a number of stochastic factors in the
market. For simplicity, we assume zero interest rates and no dividendsﬁ.

Throughout the paper we assume the existence of a domairE D C Ry x R%1 on which the following
three standing assumptions hold. We would like to emphasize that in the following assumptions, we impose

only local conditions, satisfied by all the most popular financial models.

Assumption 2.1 The process Z is a local diffusion on D, meaning that for anyt € [0,Tp[, § > 0,1 < 4,5 <d

and H, compact subset of D, there exist the limits

p(t,z;t+ h,d p(t — h,z;t,d
]im / p( 7Z7 + ) C) — lim / p( 527 ) C) — 0, (2.2>
h—0t h h—0t h
{lz=¢|>8}nH {lz=¢|>0}nH
uniformly w.r.t. z € R>g X RI1. and the limits
p(t,z;t+ h,d p(t — h,z;t
]im p( 3 Z’ + 3 C) — ]im / p( ) Z? 3 dc) — O7 (2.3>
h—0t h h—0t h
|z—C|>0 |z—(|>d
: p(t, 2t + h, dQ) : / pt —h,zt,d0)
1 i—z) =1 i —2)—————— =441, %), 24
Jim (G = z) - Jim (G z) - ai(t, z) (2.4)
lz—¢l<d lz—¢l<o
: p(t, 23t + h, dQ) : pt —h,zt,d0)
Jim (G = z)(G = zg) = = m [ (G = 2)(G ) T =gt 2), (25)
lz—¢l<é lz—¢l<é

uniformly w.r.t. z € H.

The following lemma, whose proof is deferred to Subsection 2.3 collects some useful consequences of

Assumption 2.1

Lemma 2.2 Under Assumption[21), for any ¢ € Co([0,To] x D) and f € C3 ([0, Tp] x D) we have

i I l) = 0 s =0 29
T T ) — f(t.- _
lim e/ (@) Z ) (0 + Ae) f(2,°) =0, (2.7)
T—t—0+ T—t Lo (R xR4—1)
where
B 1 d
A= ;1 aij(t,2)0s,2, + ; ai(t,2)0,,  t€[0,Ty[, z€ D. (2.8)
Moreover, for any 0 <t <T < Tp and z € R>g x R4, we have
d _
77 (Ter f(T,)) (2) = Tor (0 +Ar) £(T,)) (2). (2.9)

1 We assume that S is a martingale in order to ensure that the financial model is well posed: however this assumption will
not be used in the proof of our main results.
2 The case of deterministic interest rates and/or dividends can be easily included by performing the analysis on the forward

prices.

3 Connected and open set.
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Many financial models are defined in terms of (stopped) solutions of stochastic differential equations. We
refer to Section 2.2 in|[Friedman (1975) for the definition and basic results about ¢-stopping times with respect

to a given Markov process. The following result shows that stopped solutions of SDEs satisfy Assumption

21
Lemma 2.3 Let (Zt)te[o,To] be a continuous Markov process defined as Z; = ZMT, where:

i) Z is a solution of the SDE
dZt = /L(t, Zt)dt + O'(t, Zt)th

where W is a multi-dimensional Brownian motion and the coefficients of the SDE are continuous and
bounded on [0,Ty] x D, with D a domain of R?;

i) T is the first exit time of Z from a domain D' C Rso x R4 containing D.
Then Z is a local diffusion on D in the sense of Assumption[21], with

a; = Wi, Qij = (UU*)ija 1<4,5<d. (2.10)

The proof of Lemma 23] is deferred to Subsection 2.3l
We refer to the operator A; in ([238) as the infinitesimal generator of Z on D. In the second standing
assumption we require that A; is a non-degenerate operator. Notice that A; is defined orrléy locally, on the

domain D. In the following assumption and throughout the paper N > 2 is a fixed integel.
Assumption 2.4 The operator A, satisfies the following conditions:

i) the coefficients a;;,a; € oNt 0,To[x D), where O denotes the usual parabolic Hélder space (see, for
J p P
instance, Chapter 10.1 in|Friedman (1976));
(ii) Az is elliptic on D, i.e. there exist M > 0 and € €]0, 1] such that

d
eMICP? < > @it 2)G¢ < M|C)?, te[0,Ty[, z€ D, (eR™

ij=1
Finally, we state the third standing assumption.

Assumption 2.5 Z is a Feller process on D, i.e. for any T €]0,To[ and ¢ € Co(R?) the function (t,z) —
(Ter9)(2) is continuous on [0, T[xD.

The following result summarizes some properties of the law of Z. In particular it states the existence of
a local transition density for Z on D, which is a non-negative measurable function I" = I'(t, z; T, ¢), defined
for 0 <t <T < Ty and z,¢ € D, such that, for any H € B(D) (Borel subset of D),

e 5T ) = [ (65T
H
Moreover, it provides a double characterization of such local density, first as a solution to a forward Kol-
mogorov equation (w.r.t. the ending point (T, ()) and then as a solution to a backward Kolmogorov equation
(w.r.t. the indtial point (t,z)). The existence and the forward representation follow from Hérmander’s the-

orem, [Hérmander (1967), after proving that the law is a local solution, in the distributional sense, of the

4 To simplify the presentation, we assume N > 2. However, the proofs of neither the results in dimension one (i.e. d = 1),

nor the results for the derivatives of order one or two in a generic dimension, do require this condition.
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adjoint of the infinitesimal generator of Z. This result is rather classical and is coherent with the well-known
results by [Kusuoka and Stroock (1985) (see also the more recent paper by [De Marcd (2011)). In order to
prove the backward formulation we still employ Hormander’s theorem, but in this case the proof is more
delicate and technically involved. In fact, to prove that the law is a distributional solution of the generator
of Z, it will be crucial to use the Feller property combined with the classical pointwise estimates by [Moser
(1971)) for weak solutions of parabolic PDEs. At this level of generality, the resulting backward representation

for the transition local density appears to be novel and of independent interest.

Theorem 2.6 Let Assumptions[21 and[2.4] be in force. Then Z has a local transition density I' on D such
that, for any (t,z) € [0, To[xD, ['(t,z;-,-) € Cp'* (t, To[x D) and solves the forward Kolmogorov equation

(Or — A7) f=0  on]t,To[xD. (2.11)

Here A% denotes the formal adjoint of Ar, acting as

d d
_ 1 B B
Arf =5 Y Ous, @(T,)f) = Y 0= (@i(T,)f).
ij=1 i=1
If in addition also Assumption[Z3 is satisfied, then I'(-,T,¢) € Cp T >1([0, T[x D) for any (T, <) €)0, To[x D,

and solves the backward Kolmogorov equation
(O +A) f=0  on[0,T[xD. (2.12)

We will give a detailed proof of Theorem 2.6]in Subsection 2.3l Before, in Subsections 2.1 and 2.2] we provide
illustrative examples of popular models that satisfy Assumptions 2.1 2.4l and 23] and to which our analysis
applies. Only in order to deal with the derivatives of a Call option price w.r.t. the strike, in Section [4.2] we

will introduce additional assumptions to ensure existence and local boundedness of such derivatives.

2.1 The CEV model

Consider the SDE
dS, = oSPaw,, (2.13)

where 0 > 0 and 0 < 8 < 1. It is well-known (cf. Tkeda and Watanabed (1989), p. 221, or IRevuz and Yor

(1999), Chapter 11) that (2I3) has a unique strong solution that can be represented, through the transfor-
3201-8)
mation X; = %, in terms of the squared Bessel process

dX, = 5dt + 2/ X dW,,

with § = % The process S has distinct properties according to the parameter regimes 5 < % and 8 >

To describe these properties, first we introduce the functions

1
5

$2(1-8) | g2(1-8)

_ 3728,/Se” 20-p2o2T 1)
Fult T, 8) = S5

(s8)1-
(1—=p)o%(T —t) Iiﬁ <(1 _B)QUQ(T—t)> ) (2.14)

where T, (x) is the modified Bessel function of the first kind defined by

2k

T\ V e X
Ly(x) = (5) ,CZ:O 22REIp (v + k+1)
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and I'g represents the Euler Gamma function. Both I'y and I"_ are fundamental solutions of (9; +.A) where
A is the infinitesimal generator of S

0'282'6

A= 0. (2.15)

Precisely, we have

(8t +‘A)Fﬂ:(aaT78) :Oa on [OvT[XR>O;
and

lim / Fie(t, 5T, 8)p(S)dS = o(5), 5 € Rog,
R>o

(t,8)—(T,5)
t<T

for any continuous and bounded function ¢.

The point 0 is an attainable state for S. In particular, if 8 > % then 0 is absorbing: if we denote by
7s = inf{7 | §7- = 0} the first time S hits 0 starting from §0 = s > 0, then we have §t =0 for t > 75.
The law of S has a Dirac delta component at the origin and the function I'y in (ZI4)) is the transition

semi-density of S on R<: more precisely, denoting by p the transition probability function of S , we have

s T H) = [ Tt sT.5)dS
H

for any Borel subset H of Ry and

+oo
/ Py (s T, S)dS < 1.
0

On the other hand, if 8 < % then S reaches 0 but it is reflected: in this case I'_, which integrates to one
on Ry, is the transition density of S. Moreover, S is a strict local martingale (cf. [Delbaen and Shirakawa
(2002) or Heston et all (2007)) that “cannot” represent the risk-neutral price of an asset: the intuitive idea
is that arbitrage opportunities would arise investing in an asset whose price is zero at the stopping time 7
but later becomes positive.

For this reason, in the CEV model introduced by [Cox (1975) the asset price is defined as the process
obtained by stopping the unique strong solution S, starting from So = s, of the SDE ([ZI3) at 7, that is

St = gt/\ﬂrs7 t Z 0.

For any 0 < 8 < 1, the transition semi-density of S is I'y in (ZI4). For this model, [Delbaen and Shirakawa
(2002) show that, for any 0 < 8 < 1, the process is a non-negative martingale.

Now let D be any domain compactly contained in Rso. By Lemma [2.3] the stopped process S is a local
diffusion on D and satisfies Assumption Il The infinitesimal generator A is the operator in (ZI5), has
smooth coefficients and is uniformly elliptic on D: thus Assumption B4 is satisfied for any N € N. Moreover,
the Feller property on D (Assumption [ZF]) follows from the explicit expression of the transition semi-density
or from the general results in[Ethier and Kurtz (1986), Chapter 8 (see Problem 3 p.382 and Thm. 2.1 p.371).

The CEV model (and also its stochastic volatility counterpart, the popular SABR model used in interest
rates modeling) is an interesting example of degenerate model because the infinitesimal generator is not
globally uniformly elliptic and the law of the price process is not absolutely continuous w.r.t the Lebesgue

measure.
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Remark 2.7 Durrleman (2010), p. 175, provided formulas for the implied volatility in a local volatility (LV)
model with LV-function ¢ = o(s). His expression for the time-derivative of the ATM implied volatility,
denoted by X, is equal to

WX (L, s)|t=0 = i52(5)20”(5) - 2520(5)0/(5)2 +

B —s0(s)%0'(s).

12
The latter is slightly different from the expression we get from our Taylor expansion that, in this particular
case, can be computed as in Section [3.2] and reads as

i50(5)20’(5). (2.16)

WX (L, s)|t=0 = i520(5)20”(5) - i520(5)0’(5)2 + B

12 24

Actually, simple numerical tests performed in the CEV model confirm that formula ([2.18) is correct. As a
matter of example, in Table [Z1] we show the values of 9;X(¢,1)|t—¢ in the CEV model with ¢ = Sy =1 (cf.

@13)) and s =0.1,...,0.9.

Table 2.1 ATM IV time-derivative

B Numerical approx. Taylor expansion  Durrleman
0.1 0.0337524 0.03375 -1.0125

0.2 0.0266639 0.0266667 -0.8

0.3 0.0204115 0.0204167 -0.6125

0.4  0.0149955 0.015 -0.45

0.5 0.0104115 0.0104167 -0.3125
0.6  0.00666029 0.00666667 -0.2

0.7  0.00374753 0.00375 -0.1125
0.8 0.00136839 0.00166667 -0.05

0.9 0.000415421 0.000416667 -0.0125

2.2 Multi-factor local-stochastic volatility models

We consider a pricing model defined as the solution of a system of SDEs of the form

dS; = m(t, Se, ) S dW 217
SO =sc ]R>07

d}/;f(Z) = Mi(ta St7 th)dt + nl(ta Stu K)th(Z)a 7’ = 27 ttt d’

(2.18)
Yo= Yy e ]Rd717
where W is a d-dimensional correlated Brownian motion with

dW D WDy, = pi(t, Sy, Yy)dt, i,j=1,...,d.

In the most classical setting, one assumes that the coefficients of the SDEs are measurable functions,
locally Lipschitz continuous in the spatial variables (s,y) uniformly w.r.t. ¢ € [0,Tp], and have sub-linear

growth in (s,y); for more details we refer, for instance, to condition (A’) p.113 of Chapter 5.3 in [Friedman



10 Stefano Pagliarani, Andrea Pascucci

(1975). In this case, a unique global-in-time solution (S,Y") exists, which is a Feller processH and a diffusion
(see Theorems 5.3.4 and 5.4.2 in [Friedman (1975)).

Usually, however, the above conditions are considered too restrictive and of limited practical use. Actually,
we shall see that Assumptions 211 2.4] and are satisfied under much weaker conditions. To see this, we
first note that the infinitesimal generator A of (S,Y’) is the operator of the form (Z8) with coefficients given
by

— — — 2 92 _ — — _ ..
ap =0, a; = g, ail = pums, a1; = G431 = P17 S, Qi = Qg5 = PijNi75 1,) =2, ,d.

Now, Assumption 24] is straightforward to verify and applies to the great majority of the models used in
finance, and thus, by Lemma 2.3] Assumption 2] is also satisfied provided that a solution to the system
@I7)-@2I8) exists. The Feller property in Assumption has to be verified case by case. Results en-
suring the Feller property for the solution of an SDE under weak regularity conditions on the coefficients
(Holder or local Lipschitz continuity) have been recently proved by Wang (2010) (see Proposition 2.1) and
by Wang and Zhang (2016). Moreover, the results of Chapter 8 in [Ethier and Kurtz (1986) cover several
SDEs related to financial models.

As a matter of example, we analyze the classical model proposed by [Heston (1993). Set d = 2 and

dS; = S/ Yeaw, ", So € Rso,
dY;, = k(0 — Y3)dt + 51/, dW, 2, Yy € Rso,

where § is a positive constant (the so-called vol-of-vol parameter), k,0 > 0 are the drift-mean and the
mean-reverting term of the variance process respectively, and W is a 2-dimensional Brownian motion with
correlation p €] — 1,1[. It is well known that the joint transition probability function p in (2] admits
an explicit characterization in terms of its Fourier-Laplace transform. Precisely, setting X; = log Sy, and

assuming for simplicity § = 1, we have

ﬁ(tu x,Y; Tu 57 77) = Et,w,y [ei£XT_nYT] = eimﬁ—yA(T—t,&,n)B(T - t7 67 77)7 (219)
where
_ b(g)g(gvn)eiD(E)(U7S) B a({) _ _—kba(&u g(ga 77) -1 20
Awbon) === e pepena 1~ Pleen=e " <g(€,n)e‘D(5)“ - 1) ’
with
o6 = 5T al€) = s6p—r+ DO, HE) =16~ DO, D) = VTG~ W TEET T

Using the explicit knowledge of the characteristic function of S, |Andersen and Piterbarg (2007), Proposition
2.5, prove that S is a martingale and can reach neither co nor 0 in finite time (see also [Lions and Musiela
(2007) for related results in a more general setting). The variance process Y can reach the boundary with
positive probability if the Feller condition 2k6 > 62 is violated and in this case the origin is a reflecting

boundary. In any case, the distribution of Y¥; has no mass at 0 for any positive ¢.

5 The definition of Feller process given in [Friedman (1975), Chapter 2.2, is slightly different from ours. However the Feller
property for solutions of SDEs is proved in [Friedman (1975) as a consequence of Lemma 5.3.3: this lemma also implies the

Feller property as given in Assumption
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By Lemma 23] Assumptions 2.Jlis verified on any domain D compactly contained in Rsy x R+ and the

generator A of (S,Y) reads as

ys? 52y
A= 7855 + 78%, + pdys Oy + k(6 — y)Oy, (s,y) € Rug X R>q.

It is also clear that Assumption 2.4]is satisfied on D for any N € N. Finally, the Feller property follows by
the explicit expression of the characteristic function in ([2.19]), and thus Assumption is also satisfied.

Remark 2.8 By Theorem [2.6] the couple (S,Y) in the Heston model has a smooth local transition density
on any domain D compactly contained in Rsg X R+ (. Therefore, since p(t, z;T,R?\ (Rso X R>0)) =0, the
process (S,Y) has a transition density on R?, which is smooth on Rsg x Rsq. In particular, the marginal

distribution of Sy has a smooth density on Rsq, which is consistent with idel Bafio Rollin et all (2010).

2.3 Proofs of Lemmas [2.2] and Theorem
Proof (of LemmalZ2) We first remark that in the statement of the lemma, the short notation (see (2.0]))

li Tere(T, ) —(t, ), =0
T—zlfr—I>10+ || t,TSD( ) ) 90( ) )Hoo ?

must be interpreted as

hlig)lJr ||Tt,t+h</7(t + ha ) - w(ta )”oo = hligl+ ||Tt7h,t90(t7 ) - @(t - h7 )”oo = 05

and analogously for (2.7)). Hereafter, for greater convenience, we shall use this abbreviation systematically.
Now let us prove ([2.0). For a given ¢ € Cy([0,Tp] x D), we denote by H,, the support of ¢ and consider a
compact subset H of D such that H, C [0,Ty] x H and é := dist(H,, [0, Tp] x (R?\ H)) > 0. Then we have

Tiro(T, z) — (t, z) = I 71 (2) + I, r2(2) + It 1,3(2)

where
Lra () = /H Bt, 2T, dC) (9(T, €) — (T, 2)).,
Lza(2) = (9(T, 2) — (t, 2)) / p(t, =T, d0),
H
Lors(z) = —t, 2) / Blt, =T, dC).

(R>oxRITH\H
Since ¢ is uniformly continuous, for any € > 0 there exists §. > 0 such that

Lora(z)| <e /

Bt 2 T, dC) + 2] / B(t, 2T, d¢)
‘Z_C‘S‘;s

HN{|z—¢|>6:}
and therefore, by (2.2)),

limsup [I;,11(2)| < e
T—t—0+

uniformly w.r.t. z € Rsg x R¥"1. Moreover we have

[Ie,72(2)] < (T, 2) = p(t, 2)| — 0
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as T — ¢ — 07, uniformly w.r.t. z. On the other hand, by ([2.3) we have

L75()] < [@lloe / Bt 25T, d¢) — 0
[z—¢|>0

as T —t — 0T, uniformly w.r.t. z € Hy, and I; 3(z) = 0 if z ¢ H,,. This concludes the proof of (2.6). Notice
that, for any z € D and r > 0 such that B(z,7) := {¢ | |z — ¢| < r} C D, we have

li p(t, 2T, d¢) = 1 2.20
plm B(z)r)p(,z, Q) =15 (2.20)

indeed for any ¢ € Cy(B(z,r)) such that |p| <1 and ¢(z) = 1, by [2.6]) we have
12 [ psTd0) 2 Tere() — p(a) = 1
B(z,r)

asT —t—0t.
The proof of [Z7) is similar: for any f € Cg ([0,Tp] x D) we have

T.rf(T,z)— f(t,2)
T—t

=Ii71(2)+ It 72(2)

where

_ = . f(T,C)—f(t,Z) - f(tvz) _ .
Liri(z) = /Hp(t,Z,T, dC)T, Iira(z) = ﬁ/(RZOXRdl)\Hp(t,Z,T, d¢), (2.21)

with H defined analogously to how it was defined in the proof of (2.0]). Again, by (2.3) the term I, 7 2(z) is
negligible in the limit. As for I 71(%), it suffices to plug the Taylor formula

d

f(T7 C) - f(tv Z) = (T - t)atf(tv Z) + Z(Cz - Zi)azz'f(t7 Z)

i=1
1
t3 > (G = 2)(G = 2)0sz, £, 2) + 0T = t]) + 0|z — ¢ ).
ij=1
into (ZZI) and pass to the limit using (Z20), (24) and (Z3]). This proves (Z.1).

Finally, we have

H Torinf @4 b ) =T fT) g g 4 Ar)F(T, )

h/ L“’(Rzo XRdil)
T T + h, *) T7 ) 1
_ HTt,T ( 71+ f( . )= f(T,) (Or + Ar)f (T, ))
L= (RsxRI—1)
- H Trorenf(T+h,) = f(T,)) (97 + Ar)f(T, ") —0, as h — 0%,
h L= (RsqxRI—1)

where the last limit follows from (2.7)). This proves the existence of the right derivative. For the left derivative
it suffices to use the identity
Tir nf(T—h,") =T f(T,)
—h

=Ti7rp (% — (Or + ﬂT)) f(T,) + (Tor—n — Tor) (00 + Ar) f(T, 1))

—Tur (00 + Ar) (T, "))

where I is the identity operator. This concludes the proof.
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Proof (of Lemmal2.3.) Step 1. We prove (22). Fix § > 0 and H, compact subset of D. Consider a family of
functions (¢, ),erae such that ¢, (2) =0, p,(¢) =1for € HN{|¢ — 2| > §} and ¢, € C§°(D) with all the
derivatives bounded by a constant C; which depends on D, H and § but not on z. By the It6 formula we

have

T T

0. (Z7) = 0 (Zs) + / Asp.(Zs)ds —I—/ V. (Zs)o(s, Zs)dWs, (2.22)
¢ t

with A as defined in (Z8) and a;,a;; as in (@I0). Notice that

‘./ISQDZ(ZS) < (s, s€0,To], z€ R,

n ‘chz(Zs)U(s, 24

with C dependent only on Cy and the L*°(]0,Tp] X D)-norm of the coefficients of the SDE. Let p(t, z; T, d()
denote the transition probability of the stopped process Zp = Zar. Then, by recalling the definition of 7

and since D C D’ and ¢, has compact support in D, we have
/ Plt, 5 T,dC) < By [ (Zrnr)] < il (Z)],
{lz=¢I>0}nH

and ([2.2)) follows from ([2:22)), the Holder inequality and Doob’s maximal inequality (in the form of Corollary
6.4 p.87 in [Friedman (1975) with m = 2). The proof of ([Z3) is analogous and is omitted.

Step 2. We prove ([24). Fix 1 < i < d and H, compact subset of D. We first remark that it is sufficient to
prove the thesis for § < ¢ := dist(H,dD). Indeed, we have

1 1
- (G —2z)p(t, 2 T,dQ) = —— (G — zi)p(t, 2, T,dC) + It v
T—tJ).—¢i<s T—=1J3.—¢<s

where, by 23)),
1
AT:———[ (G — 2)p(t, 7 T,dC) — 0
T =1t J5<)a—¢|<s

as T —t — 07, uniformly w.r.t z € H.
Next, we consider a family of functions (¢, ).cn such that ¢,(¢) = ¢; —z; for [(—z| < § and ¢, € C§°(D)
with all the derivatives bounded by a constant C; which depends on D, H and § but not on z. Note that

\Vo.(Zs)o(s, Zs)| < Ca, s€l0,Ty], z€H, (2.23)

with Co dependent only on C; and the L°°([0,Tp] x D)-norm of the coefficients of the SDE. Now, we set
@, (t,-) = Awp. and note that ¥, (t,¢) = a;(t,¢) for |¢ — z| < §. Denoting again by p(t, z; T, d¢) the transition
probability of the stopped process (ZTAT), we have

1
T3 (G —2z)p(t, T, d¢) —ai(t, 2) = Iyer,z + Log1,2
- |z—¢|<8

where, by (23),
1
Ilth = Z_)(t,Z,T,dC)QOZ(C)HO
o T =1 Jj—¢2s

as T —t — 07, uniformly in H, and
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(since by assumption D C D’ and ¢, has compact support in D, and using (222 and the fact that, by
[223), the stochastic integral is a true martingale)

= Et,z

1 T s
m/t As(pz(Zs/\T)dS _g/z(tuz)
1

= Et,z |:/ Wz(t + P(T - t), Z(t+p(T—t))AT)dp -, (t, Z):|
0

(by Fubini’s theorem)

= /O (Tt pr—0y) Pt + p(T — 1), ) (2) — W.(t, 2)) dp.

Thus, by (Z6]) and the fact that @,(t,-) € Co([0,Tp] x D) by definition, we infer that Iy ;1 , converges to
zero as T —t — 0T, uniformly w.r.t. z € H. We remark here explicitly that (28] in Lemma is proved
using (22) and (23] only, which in turn have already been proved for the stopped process in the previous
step; therefore, no circular argument has been used. The proof of (Z1]) is based on analogous arguments;

thus we leave the details to the reader.

Proof (of Theorem [2.8) We fix (t,z) € [0, To[xD and f € C2 ([0, To[x D), and show that the process

T
M = f(T, Zr) — f(t, Z;) —/t (0w + Au) f(u, Zy)du, t <T < Ty, (2.24)

is a Fl-martingale. First observe that, integrating (Z.9)), we get the identity

T
(Turf(T,) (2) = f(t,2) = / T, (0, +A) f(r.)) (z)dr. T €. Tol. (2.25)

Note that the integrand in (228]) is bounded, as a function of 7, because of Assumption [Z4] and since
f € C2([0,To[xD) and T, is a contraction. Now, for 7 € [t,T] we have

T
Bre [Mh | Fi] = ME+ Eee | £T.20) - f(r.20) - [

T

(8u + flu) flu, Z,)du | ff_]
=M!+b(1,Z,)

where, by the Markov property,

T —

f, Zy) — f(1,2) — / (3u —|—Au) flu, Z,)du

T

¢(T’ Z) = ET,Z

(by Fubini’s theorem)

T
= (T f (1) () = £(2) = [ Toa (04 ) Flu,0) ()

which is 0 by (2.25).
Notice that M} = 0, thus for any f € CZ (Jt, To[x D) we have

Ty -
0=, [ML] = /t /D p(t, % T, dC) (9 + Ar) f(T,C)dT. (2.26)
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Since f is arbitrary, equation (2.26]) means that p(t, z; -, -) satisfies equation (ZI1]) on |¢t, To[x D in the sense
of distributions. If the coefficients of the generator are smooth functions, then from Hérmander’s theorem
(see, for instance, Section V.38 in|Rogers and Williams (1987)) we infer that p(t, z; -, ) admits a local density
['(t,z;-,-) which is a smooth function and solves the forward Kolmogorov PDE on |t, To[x D. In the general
case, it suffices to use a standard regularization argument by smoothing the coefficients and then applying
Schauder’s interior estimates (cf. [Friedman (1976), Chapter 10.1): in regard to this, we refer for instance to
Kusuoka (2015). The first part of the statement then follows since z and r are arbitrary.

Next, we use the classical Moser’s pointwise estimates (see Mosen (1971) and the more recent and gen-
eral formulation in Corollary 1.4 in [Pascucci and Polidora (2004)) to prove a LS -estimate of I" that will
be used in the second part of the proof. More precisely, let us fix (¢,2) € [0,To[xD, T €]t,To[ and H,
compact subset of D, and set r = § min{\/To — T, v/T — t,dist(H,dD)}. Since I'(t, z;-,-) solves the PDE
(BT - fl}) [(t,z;-,-) =0 on |t, To[x D, by Moser’s estimate we have that

T+r2
I(t,2;T,¢) < 522 / / [(t, 2T, ¢)dCdT < 2cor™ 1, ¢ e H, (2.27)
r T—r2 JB((,r)

where the constant ¢y depends only on the dimension d and the local-ellipticity constant M of Assumption
[2} (i1). We notice explicitly that the constant ¢ in (2Z27)) is independent of z € D and ¢ € H.

To prove the second part of Theorem 2.6] we adapt the argument of Theorem 2.7 in lJanson and Tysk
(2006). We fix ¢ € Co(D), T €]0,To[, z0 € D and r > 0 such that the closure of the ball B(zg,r) is contained
in D. Then we denote by f the smooth solution of

(O +A) f=0 on [0, T[xB(zo,T),
f(tvz) = (Tt,T(p) (2) (tuz) €0p ([OvT] X B(Zo,’l“)) )

(2.28)

where

p ([0,T] x B(zo,7)) := ([0, T] x 0B(20,7) U ({T} x B(z0,7)))

is the parabolic boundary of the cylinder [0, 7] x B(zo,7). Such a solution exists because A; is uniformly
elliptic on [0, To[x D and (¢, z) — (T, r¢)(z) is continuous on [0, T x D by the Feller property (cf. Assumption

25)) and (Z3).
Now, we fix t € [0,T] and denote by 7y the t-stopping time defined as 70 = T' A 71 where 7 is the first
exit time, after ¢, of Z from B(zg,r). By the Fl-martingale property of the process M* in ([2.24)), with f as

in (228), and the Optional sampling theorem, we have the stochastic representation

f(t,2) = Btz [(Tro.00)(Z,)] -
On the other hand, for (¢, z) € [0, T[xB(zo,r) we have
(Ter0)(2) = Euz [p(Zr)] = Ey, [Et,z [‘P(ZT) | fio]] =

(by the strong Markov property)

= E; . [(Try 79)(Z,)] = f(t, 2), (2.29)

and in particular (¢,z) — (Tt 7¢)(2) solves the backward equation ([2.12]).
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Finally, we consider a sequence (¢, )nen of functions in Cy(D), approximating a Dirac delta d; for a fixed
zZ € D. We also fix a test function ¢ € C§°(]0,T[x D) and integrate by parts to obtain

T —
0= /O /D (0, + A2) (Toron) (2)0(t, 2)dtdz
T
= / / (Ter9n)(2) (—8t + f_lf) U(t, z)dtdz
0 D

T
— [ [ [ PesT.en0dc (-o0+ A7) wie, 2)dsd (2.30)
o JpJD
Note that ¢ — I'(t, z; T, ) is a continuous function for ¢ < 7', and therefore
| P57 00ndc — D5 7.0)

pointwisely. On the other hand, the L -estimate (227 of I" allows to pass to the limit as n — oo in (Z30),

loc

using the dominated convergence theorem, to get

T
/ / L(t, 2T, 2) (=0 + A;) ¥(t, 2)dtdz = 0.
o Jp

This shows that I'(-,-;T,¢) is a distributional solution of [ZIZ) on [0, T[xD and we conclude using again

Hormander’s theorem.

Remark 2.9 The same argument used to prove (2:29) applies to the case of p(s,y) = (s — K)T, and allows to
prove that the expectation Ey s, [(S7 — K)T| solves the backward equation [2I2) as a function of (¢, s, v).
Indeed, it suffices to use a standard localization technique and the fact that the Call payoff (St — K)T is

integrable because S is a martingale by assumption.

3 Analytical approximations of prices and implied volatilities

Here we briefly recall the construction proposed in [Lorig et all (2015b) of an explicit approximating series
for option prices, along with a consequent polynomial expansion for the related implied volatility. Such
construction relies on a singular perturbation technique that allows, in its most general form, to carry
out closed-form expansions for the local transition density; this leads to an approximation of the solution
to the related backward Cauchy problem with generic final datum ¢. Such technique has been recently
fully described in [Lorig et al! (2015a) in the uniformly parabolic setting, and subsequently extended in
Pagliarani and Pascucci (2014) to the case of locally parabolic operators and in[Lorig et all (2015d) to models
with jumps. Moreover, a recent extension of this technique to utility indifference pricing was proposed by
Lorig (2015).

We consider a model Z = (S,Y") that satisfies the Assumptions[Z1] 24 and 25 in Section 2l We denote by
Cy,1 K the time ¢t no-arbitrage value of a European Call option with positive strike K and maturity 7' < Tp,
defined as Cy 1,k = v(t, S, Yy; T, K) where

v(t,s,y; T, K) = Ey s ,[(ST — K)*], (t,s,9) €[0,T] x Rsg x R™L, (3.1)

Clearly@ we have v(¢,0,y; T, K) = 0 and therefore, to avoid trivial situations, we may assume a positive

initial price, i.e. s > 0. As a consequence of Theorem (see also Remark 29), for any positive K, the

6 Simply note that (Sp — K)T < St and S is a martingale by assumption.
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function v in @) is such that v(-, T, K) € Cp >'(]0, T[xD) N C([0,T] x D) and solves the backward
Kolmogorov equation (ZT2J):

(0 +A)v(-,5T,K)=0  on]0,T[xD.

As it will be shown in Section [3.2] in order to obtain an explicit expansion of the implied volatility, it
is crucial to expand the Call price around a Black&Scholes price. Since the perturbation technique that we
employ naturally yields Gaussian approximations at the leading term, we shall work in logarithmic variables.

Therefore, for any T €]0,Tp] and k € R, we set
u(t,z,y; T, k) = v (t, ey T, ek) , 0<t<T, (z,y) € R x RIL, (3.2)

where v is the pricing function in (B]). Here, z and k are meant to represent the spot log-price of the
underlying asset and the log-strike of the option, respectively. Note that, the function u is well defined
regardless of the process S hitting zero or not.

After switching to log-variables, the generator A; in ([Z8) is transformed into the second order operator

d d
1
A= 3 Z Qg (tvz)azl’zj- + Zai(taz)azia te [O,To], z = (:E,y) eRx Rdila (33)
ij=1 i=1
with
6—2;E
all(t,l',y) 26_21611 (t7e$7y)7 al(taxay) = - 2 dll (t7e$7y)7
and, for 7,5 = 2,...,d,
ali(t,l',y) = e_wdli(tuemuy)u aij(t7x7y) = dZ] (tueway)u ai(tuxuy) = di(tuemuy)'

For the reader’s convenience, we also recall the classical definitions of Black&Scholes price and implied

volatility given in terms of the spot log-price and the log-strike.

Definition 3.1 We denote by uPS the BlackéScholes price function defined as
2

1
uBS (o7, 2, k) := e"N(dy) — e"N(d_), dy := —— (:C —k+ %) , z,keR, o7 >0,
o\/T

where N is the CDF of a standard normal random variable.

Definition 3.2 The implied volatility o = o(t,x,y; T, k) of the price u(t,z,y; T, k) as in ([B.2)) is the unique

positive solution of the equation
BS/ . _ :
u>(o;T —t,x k) = u(t,z,y; T, k).

Note that Definition is well-posed because Cy 1 k is a no-arbitrage price and thus u(¢, z,y; T, k) belongs
to the no-arbitrage interval ](e® — e*)*, e*|.

The computations in the following two subsections are meant to be formal and not rigorous. They only
serve the purpose to lead us through the definition of an approximating expansion for prices and implied

volatilities. The well-posedness of such definitions will be clarified, under rigorous assumptions in Section [l
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3.1 Price expansion

We fix z = (Z,7) € R x R¥™1, such that (e?,7) € D with D as in Assumption 2.4 and expand the operator
Ay by replacing the functions a;; (¢, ), a;(t,-) with their Taylor series around z. We formally obtain

oo

A= A7)

n=0
where
(2) 4. DPayl(t,2) _ DF az (t,2) s
A = Z Z T( —2)%0,.., +Z (z—2)Pa., ). (3.4)
|Bl=n *i,j=1
The intuitive idea underlying the following procedure is inspired by the fact that, typically, the pricing
function (-, -; T, k) solves the backward Cauchy problem

(8, + A)u(-, T, k) =0, on [0, T[xR x Rd—1,

(3.5)
w(T,z,y; T, k) = (e”” — ek)+ , (z,y) e Rx RITL

Actually, (BH) holds automatically true if the operator (9; + A:) is uniformly parabolic and can be also
proved to be satisfied, case by case, in many degenerate cases of interest in mathematical finance, such as
the CEV model. Nevertheless, the validity of ([3.3]) is not necessary for our analysis and it is not required as
an assumption.

Next we assume that the pricing function u can be expanded as

u= Z ul®. (3.6)
n=0

Inserting (B4) and (30) into (BH) we find that the functions (u, (-, -; T, k))n>0 satisfy the following sequence
of nested Cauchy problems

(0 + Aro)ul” (-, T k) =0, on [0, T[xRY, a1
u$ (T, g Tk) = (e —eb) ', (2,y) € R x RI-1, '
and
O+ Aro)ul? (s Tok) = = 3 ABWE) (LT k), on [0, T[xRY,
) h=1 (3.8)
uw(T, 2T, k) =0, z e RY.

Note that, by Assumption 24 A, is an elliptic operator with time-dependent coefficients and therefore
problem ([B.7) can be solved to obtain

z z F 1T
()(t;p y: T, k) = ub (gé)7T—t,$,k), gé):gé)(t,T)_\/ﬁ/ ay1 (7, z)dr, (3.9)
—tJ

for any t € [0, 7] and (z,y) € R x R9~1. As for the n-th order correcting term uf), an explicit representation

in terms of differential operators acting on u((f) is available (see Theorem [D.T)).
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Definition 3.3 For fixed maturity date 7" and log-strike k, we define the N-th order approzimations of
u(-, T, k) as
N
un(t,z k) =Y uP(t,zT. k), te[0,T], ze RxR", (3.10)

n=0
where the functions u7 are explicitly defined as in (3.9)-(D.1)).

We recall that similar price expansions have been developed by Benhamou et all (2010),/Takahashi and Yamada

(2015) using Malliavin calculus techniques and by [Bayer and Laurence (2014) using heat kernel methods.

3.2 Implied volatility expansion

We briefly recall how to derive a formal polynomial IV expansion from the price expansion (B.6)-B1)-
B3). To ease notation, we will sometimes suppress the dependence on (¢, x,y; T, k). Consider the family of

approximate Call prices indexed by §
) N N
u®(§) = uP® (aff)) + )0 4+ N <u -y ugf>> . delo,1], (3.11)
n=1 n=0

with a(()g) as in (89) and the functions u? as in Subsection BIl Note that setting § = 1 yields the true

pricing function w. Defining
9(0) == (™) H(u(d)),  s€[0,1], (3.12)

we seek the implied volatility o = g(1). We will show in Section Bl Lemma [£.8] that under suitable assump-
tions u(5) €](e® —e*)T, e[ for any & € [0, 1]. This guarantees that g(d) in 312 is well defined. By expanding

both sides of (B.12) as a Taylor series in J, we see that o admits an expansion of the form

o=g(1)=o00+ 712::1 On, on = %8(?9(5)5:0. (3.13)
Note that, by (11 we also have
un = RGO lsms, 1SN,
and by applying the Faa di Bruno’s formula (Proposition [E]), one can find the recursive representation
U,(f) = L _1 iBn,h (1!052),2!052), oo (n—h+ 1)!0(2—)h 1) M, 1<n<N,
0o uPS (U(()Z)) i m 9, uBs (a(()z))

(3.14)
where B,, , denote the so-called Bell polynomials. It was shown in [Lorig et all (20151) (see also Proposition
[D3) that each term ol is a polynomial in the log-moneyness (k — x). Moreover, if the coefficients of the

model are time-independent, then the expansion turns out to be also polynomial in time.

Definition 3.4 For a Call option with log-strike k and maturity 7', we define the N-th order approzimation
of the implied volatility o(t,x,y; T, k) as

N
on(t 2,y Tok) ==Y ol (t,2,y; T, k), (3.15)

n=0

where oY) are as defined in (BI4).
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We recall that similar implied volatility expansions have been developed by Ben Arous and Laurence (2015),
Deuschel et all (2014), [Forde et all (2012), and |Gatheral et all (2012) among others.

4 Error estimates for prices and sensitivities

In this section we derive error estimates for prices and sensitivities. Let us introduce the following

Notation 4.1 For zy = (20,y0) € R x R~ and 0 < r < +o00, we set
D(zg,r) = B(xo,7) X B(yo,r),

with B(zo,7) = {x € R | |x — x0| < r} and B(yo,r) = {y € R | |y — yo| < r}. Moreover, for T €]0,Ty|,

we consider the cylinders H(T, zo,r), H(T, zo0,7) and the lateral boundary X (T, zo,r) defined by

H(T, zo,7) :=]0,T[xD(20,1), H(T, zp,7) :=[0,T[xD(z0,7), X(T, zo,7) := [0, T[xOD(z0,7),
respectively.

Since we work with logarithmic variables, we are going to restate Assumption 2.4l in terms of conditions on
the operator A; as defined in ([B3]). We recall that N > 2 is an integer constant that is fixed throughout the

paper.

Assumption 4.2 There exist My > 0, 0 < 7 < +oo and 2o = (20,y0) € R x R¥™! such that the operator
Az as in B3) coincides with .th on H(Ty, 20,7), where flt 1s a differential operator of the form

d d

~ 1 _ _ )
A= > it 2)0z., + Y dilt,2)0., [0, Tyf, z € R,

ij=1 i=1
such that, for some M €]0, Myp] and € €]0, 1], we have:

i) Regularity and boundedness: the coefficients a;;,a; € Cngl([O,To[de), with partial derivatives up to

order N 4+ 1 bounded by M.
ii) Uniform ellipticity:

d
eMICP < Y @iyt 2)G¢ < MICP?, te(0,To[, 2,¢ e RY
i,j=1

Note that, if Assumption is satisfied with r = +oo, then the operator A; is uniformly elliptic with
bounded coefficients. The forthcoming error bounds will be asymptotic in the limit of small M (T — t); in
particular, the constant C' appearing in the error estimates will be dependent on My but not on M.

Assumption [£2] is (locally) equivalent to Assumptions [Z4] Precisely, the former implies the latter on
the domain D =]e® =" e0¥"[x B(yo, r). Therefore, when Assumptions 211 and are in force, in light
of Theorem there exists a local transition density I" on D for the process (S,Y). We then define the

logarithmic local density I as

I(t,x,y; T,&n) = e T(t,e",y: T ef,m),

for any (Tagvn) € H(T07 205 T) and (ta xz, y) € H(Tv Z(),T)-
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Remark 4.8 Clearly Lemma and Theorem can be extended to I' through the logarithmic change of
variables. In particular, in this section we will use that:
(i) I'(t,z;-,) € Cg’l(]t,To[xD(zo,r)) for any (t,z) € H(Ty, z0,7);
(i) I'(-,T,¢) € Cg“’l(H(T, z0,1)) for any (T,¢) € H(Tp,z0,7) and solves the backward Kolmogorov
equation
(Or+A) f=0 on H(T, z,). (4.1)
Moreover, for any (T, z) € H(Ty, z0,7) and ¢ € Cy, (D(z0,7)), we have

Jm [ I T w0 = el
wzt?T ® D(Z[),’r’)

(ili) if w is the function as defined in ([B.2), then for any T' €]0,Tp[ and k € R, we have that u(-,;7T,k) €
C'}J;H'Q’l(H(T, 20,7)) N C([0,T] x D(z0,7)) and solves equation E.]).

Next we prove sharp error estimates for the derivatives 97" (u — @n). In Subsection [l we prove some global
bounds in the case r = 400 and then in Subsection we prove analogous local bounds in the general case

r < +00.

4.1 Error estimates for uniformly parabolic equations

Throughout this section we assume Assumption satisfied with r = +o00. Under this assumption u is the

unique] classical solution of the Cauchy problem (B3] and can be represented as

u(t,z) = /Rd F(t,z;T,g,n)(eE — ek)+d§d77, te0,T], z € R,

where I is the fundamental solution of the uniformly parabolic operator (9;+A:). In the following statement

uy is the Nth order approximation of u as defined in (B10).

Theorem 4.4 Let Assumptions[2.1], and[4.Q hold with r = +o00. Then, for any m,q € Ng with m+2q <
N, we have
N—m—2q+2
0407 (v — ) (t, @, y; T, k)| < Ce"MI(M(T —t)) 2, (4.2)
for0<t<T <Ty, z,k €R and y € R, The constant C in [E2)) depends only on Ty, Mo, e, N and the

dimension d. In particular, C' is independent of M.

The proof of Theorem .4 which is postponed to Appendix [A] is based on the following classical Gaussian
estimates (see, for instance Chapter 1 in|Friedmanl (1964), Corollary 5.5 in |[Corielli et all (2010) and [Pascucci
(2011))).

Lemma 4.5 Let I' = I'(t, z;T,¢) be the fundamental solution of (A:+ 0:). Then, for any ¢ > 1, ¢ € Ny and
B,7 € N& with |8] +2q < N, we have

[v[—181—2q

(2 = )OLDIT(t, 2, T,C)| < CMT(M(T —t)) = Lo(eM(T—1t),z2—¢), 0<t<T<Tp, z(€R?,

where Iy is the d-dimensional standard Gaussian function

2
Io(t,z) = (27rt)_% exp (—%) , t € Rso, 2 € RY, (4.3)

and C' is a positive constant that depends only on c, Ty, My,e, N and the dimension d.

7 The solution is unique within the class of non-rapidly increasing functions.
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4.2 Error estimates for locally parabolic equations

We now relax the global parabolicity assumption of Subsection [£.I] by assuming that the pricing operator
Ay is only locally elliptic: precisely, throughout this section we impose that Assumptions 2.1] and

hold for some r > 0. We first state the result in the one-dimensional case.

Theorem 4.6 Let d = 1. Under Assumptions[21], and [[-3, for any 6 €]0,1[, T €]0,Ty[ and m < N we
have

N—m+2

|8,2”u(t,z,T, k) - alrcnﬁN(taZ;Tv k)| < O(M(T_ t)) 2 ) (t,Z) € H(Ta 20,57”), |k - $0| < 5Ta

where C' is a positive constant that depends only on r, zg, 0, d, My, e, N and Ty. In particular, C is independent
of M.

The proof of Theorem is a simpler modification of that of Theorem below, and therefore will be
omitted. Theorem [£.9] is the main result of this section: it gives estimates for the derivatives of the price

function w.r.t. the log-strike & in dimension d > 2.

For the rest of the section we fix N € Ny, with N < N, and consider d > 2. By our general assumptions
(see, in particular, Remark 3] we have that, for any T €]0,Ty[, (t,2) € H(T,zo,7), |k — z0| < r and

d € [0, 1], the pricing function u can be represented as

u(t,z; T k) =11 5(t, 2, T, k) + Lo 5(t, 2, T, k), (4.4)
where
hsttsTh) = [ (=) s T 6 e,
D(z0,07)
st Tk = [ (e — e¥) " plt, 5 T, de, ),
R4\ D(z0,6T)

and p denotes the transition distribution of the process (log S,Y’). We note explicitly that, even if log S takes
value in [—o0, +00[ (due to the possibility for S to reach 0), we can exclude {—o0o} x R4~! from the domain
of integration of I 5 because the Call payoff function is null for £ < k.

Formula (4.4) is useful to study the regularity properties of u w.r.t. k and T In fact, by (i) of Remark
43 1, 5 is twice differentiable in k, with 9213 5(t, z;-,-) € CN (]t,To[xD(zo,r)), and we have

a{%alznll,zi(t; 2 Tv k) = Ul,q,m,é(tv Z5 Ta k) + U2,q,m,5(ta 2 Tv k)a (45)
where
xo+0r
U17Q7m;5(tuz;T7 k) = ek / / a%F(tuz7T7§7n)d§dn7
k In—yo|<ér

m—1 m—1 )
Us,qm.s(t, 2T, k) = eF Z < . > / 8%3,171F(t,z;T,k,77)d77,

j=1 J [n—yo|<or

for (t,2) € H(T, 29,7) and k € B(zg,dr). However, the assumptions imposed in Section 2l are not sufficient to
ensure the existence of the derivatives 0%.0;" I 5 (and consequently of 9%.9;"u). Indeed, a formal computation

gives

MO 5(t, 2T k) = Us gm,s(t, 2, Ty k) + Us g m,o(t, 2T, k), (4.6)
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where
U37¢17m;5(t72;T7 k) = 6%ek/ p(t727T7 dg,d’l’]),
[zo+06r,+oo[xRI—1
Usam.slts:7.1) = 407" | plt, = T, dg, di) (e€ — ).
lk,zo+8r[x (RE=1\B(yo,07))

Now, it is clear that Us gm,s depends smoothly on k. On the contrary, the existence and boundedness
properties of the derivatives Uy g,m,s depend on the tails of the distribution and cannot be deduced from the
general assumptions of Section 2] because of the local nature of such assumptions. Notice that this problem
only arises when d > 2 and therefore, in order to prove results in the most general setting, we need to impose

the following additional

Assumption 4.7 For any (t,z) € H(Ty, z0,7), the function u(t,z;-,-) € C’g (Jt, To[x D(zo,1)). Moreover,
in the case N > 2, there exist § €]0, 1] and some positive constants C and C such that

040 T (t, 2 T k)| < C, 2q+m < N, (4.7)
fOT any (Ta kv 77) € H(To, 20, 52T)7 (tv Z) € H(Ta 20, T) \ H(Ta 20, 5T>; and

|Us gm.o2(t, 5 T, k)| + |Un gm0 (8,2 T k) <, 2¢+m <N, (4.8)
for any (T, k) €]0, To[x B(z0,6%r) and (t,2) € H(T, 2, 6°r).
Remark 4.8 If log St (or, equivalently, St) has a marginal local density I's(t, z; T, k) such that
0301 I's(t, 23+, -) € C(Jt, To[x B(xo, 1)), 2¢q+m <N,

then the first part of Assumption [L7lis satisfied: in fact, u(t, z;+,-) € Cf.y (]t, To[x B(xo, r)) because it can be

represented as

k
w(t, T, k) = / Tt 2 T, €)(c€ — Myde + / ps(t, % T, d€) (e — ),
k [k,+oo[

for some k > k, where pg denotes the marginal transition probability of log S. This is the case, for instance,
of the Heston model where St has a smooth marginal density (see Remark [2.8]).

The need for conditions @) and 8] will be clarified in the proofs of Lemma .11l and Theorem F.3]
respectively. Condition (7)) is intuitively easy to understand: roughly speaking, it states that the derivatives
of the local density I'(t, z; T, () are locally bounded, away from the pole, all the way up to ¢t = T". This looks
like a sensible condition, given the boundedness hypothesis for the diffusion coefficients on the whole cylinder.
By opposite, condition (£8) might seem a little bit cryptic at a first glance; however, in most cases of interest
such hypothesis turns out to be substantially simplified. For instance, in many financial models such as the
Heston model, the local density I" is defined on the whole strip B(zg,r) x R?~! (see Remark 2.8), i.e. we

have

p(t,z;T,H) = /HF(t,z;T, ¢)d¢, He B(B(a:o,r) X Rdil).
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In this case, condition (L8]) is automatically satisfied for ¢ = 0 and m = 0, 1, whereas for 2 < m + 2¢ < N

it reduces to

/ BLT(t, 2 T, Q)d¢| + / 020 VO (¢, 2 T, kym)dn| < C,
[zo+dr,+o00o[xRI—1 [n—yo|>42

for any (T, k) €]0, To[x B(zo, 0%7), (t,2) € H(T, 2o, 5°7).

We are now ready to state the main result of this section.

Theorem 4.9 Let d > 2, and let Assumptions 21}, (2.3, [{.9 and [[.7] be in force. Then, for any m,q € N
with m 4+ 2¢ < N and T €0, Ty[, we have

N—m—2g+2
2

}8%821(u—ﬂN)(t,z;T, k)} <CMI(M(T —1t)) , (t, 2) EH(T,ZO,54T), |k — xo] < &tr,

where 6 €]0,1[ is as in Assumption [{.7, and the positive constant C depends only on r,zg,d, Mo, e, N, Ty
and, only if N > 2, also on & and the constants C and C in @X) and @R). In particular, C is independent
of M.

Lemma 4.10 Let Dy be a domain of R™ and
h(vaae) :H(TszaT) —>R7 (Tve) G]O,To[XDo,
such that:

i) for any (t,z) € [0, To[xD(z0,7), the function h(t, z;-,-) € CP(Jt, To[x Do) with derivatives O Dﬁh(t z;T,6)

locally bounded in (T,0), uniformly w.r.t. (t,z) € [0,T[x(D(z0,7) \ D(20, 007)) for a certain go €]0,1[;
i) for any (T,0) €]0,To[x Dy the function h(-,-;T,0) € C** (H(T,zo,r)) N C(H(T,zo,7)) and verifies
(0 + &) h(t 55 T.0) =0, (t,2) € H(T,20,7), W)
MT, 2z T,0) =0, z € D(zp,7).

Then for any multi-index B € N§ and any q € No with q + |5| < p, we have

, i )8‘1D6h(t zT,0) =0,  ze D(z0,7), (T,0) €]0, To[x Dy. (4.10)
t<T

Proof By induction on ¢ we prove ({10) and that, for any ¢ € [go, 1[, we have
T
OLDEN(t, 2T, 0) = / / P, (t, 2 5,C)0% D5 h(s, ¢ T, 0)dCds, (t,z) € H(T, 2, 0r),  (4.11)
dD(zg,0r

where P,, denotes the Poisson kernel of the uniformly parabolic operator ((% + ﬁt) on H(T, zg, or).

For ¢ = 0, differentiating the representation formula
T
MesTo) = [ Patss O GTOds,  (2) € H(T, 50, 00),
t dD(zo,0r
and using the terminal condition in ([@9]), we obtain

T
(DGt =5 T,0)] < [ DZhC5 T e s oy /t /8 e ParltszissQeds,(1:2) € H(T: 20, 0),
20,0T
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which in turn implies (£10) with ¢ = 0.
Next, we assume (LI0) and (@I]) true for ¢: by differentiating (ZI1]) we get

T DIN(t, 25T, ) :/ Py (t, 2T, C)0LDI (T, ¢; T, 0)dC
9D (zg,0r)

T
+ / / Por(t, 25, )05 DY (s, ¢; T, 0)dCds =
t 0D (zp,0r)

T
[ [ Paltss 00 DM GO, (12) € HIT. 20, 00).
t 9D (zp,0r)

Then, for (¢,2) € H(T, zo, or) we have

T
05 DI h(t, % T,60)] < |05 DR, 5 T, 9)||Lw(z<T,ZO,gr>>/t /w( )Pg’”(t’Z;S’OdgdS’
Z0,0T

which concludes the proof.

The following lemma is preparatory for the proof of Theorem A9 but it may also have an independent
interest: it shows that the difference between I and I’ , and of their derivatives, decays exponentially on

H(T, zo,r) as t approaches T

Lemma 4.11 Let N > 2 and let I be the Sfundamental solution of the uniformly parabolic operator ((% —l—ﬁt).
Then, under the assumptions of Theorem[{.9, for any m,q € Ny with m + 2¢q < N we have

ono (1 F) 5Tk < Ce TVHTT, (T k) € H(Ty, 20,6%r), (t,2) € H(T, 20,6%), (4.12)
where C is a positive constant that depends only on zy, 6, N,d, My,e, Ty, and on 5, C in @) and [A3).
Proof Step 1. Fix (T, k,n) € H(Ty, z0,0%r) and consider the function

Wa,m (L, 2) = OLO (I" — f‘) (t, 2T, k,m), (t,2) € H(T, 29,7).

We prove that

(6,5 —i—flt)wq,m =0, on H(T, z,7),

4.13
( %iH(lT 2) Wem(t,2) =0, Z€ D(zo, ). ( )
Fier

The first equation in (@I3) follows from the fact that A; and A; coincide on H(Tp, 29, 7). To prove the second

one, we set
Mtzik) = [ (P0T.0 - FEAT.O) 0~ k)l (62) € HTz0.7),
D(z0,r)
where .,
vz =[] (=) eRY
i=1
Notice that h(-,-; T, k,n) satisfies

(6,5 —i—flt)h(t, z; k) =0, (t,2) € H(T, zo,7),
h(t,z; k) =0, z € D(zg, 7).
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Moreover, we have

OROZ, - 02 h(t,z k) = (t,z; T, k,n) — I'(t, 2 T, k,n),

and therefore also
8%82““832 e 8,27dh(t, z k) = wgm(t, 2).

Hence, by applying Lemma [£10] to h we obtain the limit in (£I3]).

Step 2. 1t suffices to prove the thesis for T'— ¢ suitably small and positive. In (Pagliarani and Pascucci, 2014,

Theorem 3.1) we proved that there exist 7 > 0 and a non-negative function v such that

(85 + Ad)u(t, 2) = 0, (t,2) € [T — 7, T[xD(z,7), (410
oty 2) > 1, (t,2) € [T — 7, T[xdD(z0,7), '
and )
0<wv(t,z) <Ce VIT-D (t,2) € [T — 7, T[xD(z0,5°r), (4.15)

where the positive constant C' depends only on 8, My, €, Ty, zo and d. Now, by (£14), (1), and by the limit
in ([LI3) together with the bound (&T7]), one has

tlimir{lﬁ (51} — wq)m)(t,z) >0, (t,z) € ({T} X D(zo,r)) U ([T — T,T[XBD(ZO,T)).
el D (0,

Therefore, the maximum principle yields
[wg.m(t, 2)] < év(t,z), (t,z) € [T — 1, T[xD(z0,7),

and eventually, (£12) stems from (@.I5).

Proof (of Theorem [{.9) We only prove the statement for 2 < m < N, being the other cases simpler.
Throughout the proof, we denote by C every positive constant that depends at most on r, zg, d, d, My, e, N, Ty

and on C, C in {7) and @X).
Step 1. We fix T €]0, Ty[ and prove that

|wq,m(taZ;T7 k)| S Ov (t,Z) € H(Tv 20,537”), k € B(IOa(sST)v (416)

where wg,m, = 0507 (u — u) and

u(t,z; T, k) / / (t,z; T, &) (e* — €¥) dédn, (t,z) € [0, T[xR% (4.17)
Rd 1

Differentiating formula [@4) and recalling (@3] and (@), we get

4
0Ly ult, 2 T, k) = (=1)'Uigms(t, 2 T, k).
i=1

Analogously, differentiating ([@I7)) we obtain

m—1
oo u(t, z; T, k) = —e / / 8qF (t,z;,T,& n)dEdn + < > / 8%8Z_1f(t,z;T,k,n)dn.
Rd—1 Rd—1

Jj=1
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Thus we have

m—1
|wq)m(t, zZ; T, k)| S C(l + U4,q,m,52 (t, zZ; T, k) + Z (Jl,q,j,52 + JQﬁqﬁj)(;Q) (t, zZ; T, k))

Jj=1

m—1
< C(l + Z (Jl,q,j,(i2 + J2,q,j,52) (t,Z;T, k)) (by @))

j=1

for any k € B(xo,%r) and (t,2) € H(T, 29, 5°r), where

g7 0 = [ O30 (I = T)(t, 5 T )| d,

[n—yo|<d2r

J2,q,j,52 (t, zZ3 T, k) = /

[n—yo|>082r

(9%(9%_11:(@ 2Tk, 77)‘ dn.

Now, by applying Lemma [ATIT] and standard Gaussian estimates on the functions Jy , ;s and Jo 4 ;62
respectively, we obtain that the latter are bounded by a constant C for any k € B(zo,d%r) and (t,z) €
H(T, 29, 6%r). This proves (&16).
Step 2. Fix now (T, k) €]0,Ty] x B(xg,0?). Clearly, u(-,-; T, k) in (ZI7) is a classical solution to the Cauchy
problem

(9 + A)u(, T, k) =0, on [0, T[xRY,

w(T,x,y; T, k) = (e”” — ek)Jr , (m,y) € R4,

We set h(t, z; k) := (u— @) (¢, z; T, k) and notice that, by Remark [L3}(iii), we have

(9 + A)h(, k) =0,  on H(T,z,r), (4.18)
because A; and flt coincide on H (Tb, z0,7); moreover, we have

WT, z k) =0, z € D(zg,r).

Now, by estimate (LI6) the derivatives 949" h = w,,m, are bounded on X(T, zg, 6°r) for k € B(xo,%). Then,
from Lemma applied to h on H(T, zg, 5%r), we infer
lim  wgm(t,2;T,k) =0, z € D(z,8°r). (4.19)
(t,z)t?,}T,z)
By differentiating (Z.I8), we also have (9; + flt)wqm(-, T, k) = 0 on H(T, zy,8r). Thus we can use the
same argument used in Part 2 of the proof of Lemma [ZI1} precisely, we consider the function v satisfying

(@I2)-(@I8) and, by the maximum principle, (£19) and (ZI6) we infer

2

Wem(t, 2; T, k)| < {lwgm (-, T,k OVAM(T—) t,z) € H(T, zy, 6%r).
q, q,

)HL“’(E(T,ZD,zF”r))e
Eventually, by the triangular inequality we get
’7‘2 _
|08 (u = an)| < |wg,m| + 10 (@ — an)| < Ce VIT=D 4 |07 — a )], on H(T, zo,0"r),

and the statement follows from the asymptotic estimate of Theorem [£4] applied to the uniformly parabolic
operator (0; + ANt)
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5 Error estimates and Taylor formula of the implied volatility

In this section we establish error estimates for the N-th order implied volatility approximation &y (¢, z, y; T, k)
in Definition B4 and for its derivatives w.r.t. £ and T'. Such bounds are proved under the assumptions of
Subsection and are valid in the parabolic domain |z — k| < X\\/M(T —t), for any A\ > 0 and suitably
small time-to-maturity (7' —t), with M being the local-ellipticity constant in Assumption 2l We recall that
N,]\7 € Ny are fixed throughout the paper and such that N > 2 and N < N. Moreover zy = (z0,y0) €
R x R4~ is the center of the cylinder in Assumptions and [4£7

Theorem 5.1 Let d =1 (d > 2) and let the assumptions of Theorem [{.6] (Theorem[{.9) be in force. Then,
for any A > 0 and m,q € Ny with 2¢ +m < N, there exist two positive constants C and 19 such that

N-—m—2g+1

09.07a (t, 20, yo; T, k) — 0407 an (t, 20, yo; Ty k)| < CMI+3 (M(T —t)) 2,

forany 0 <t <T < Ty and k such that T —t < 19 and |xg — k| < A\\/M(T —t). The constants C' and 1o
depend only on r,zg,d, My, e, N, To, A and, if both d,N > 2, also on § and the constants C and C in @0
and [@3)). In particular, C and 7o are independent of M.

Before proving Theorem B, we show the following remarkable corollary which is the main result of the

paper.

Corollary 5.2 Let the assumptions of Theorem[51] hold and, for simplicity, assume N = N. Then for any
q,m € Ng with 2¢ +m < N, the two limits
Lo an (t, xo, yo; b, wo) := - k}im ) o an(t, xo,yo; T, k), (5.1)
WL
050 o (t, xo, yo; t, o) = lim %o o(t, xo,yo; T, k), (5.2)

(T, k)= (t,zg)
lzo—k|<AVT—T

exist, are finite and coincide for any X > 0 and t € [0,Ty[. Consequently, we have the following parabolic

N-th order Taylor expansion:

T — )9k —20)™ -y
U(t7x07y0;T7 k) = Z ( )q'(T)’L' 0) 6’,(11“6/6 O'N(t,.’L'Q,yo;t,(Eo) +RN(t7$07y07T7 k)u (53)
2g+m<N
with
Ry (t, 20,90, T, k) = o (|T L x0|N> L as (TLk) — (t,20) with |zo — k| < WT — 1.

Proof By Theorem 5.1 we have

- khm 6%(9?(0’ - 5’N)(t,$0,y0; T, k) =0, te [0, To[, A >0,
\m(oik)\ﬁgx:/z%

for any ¢, m € Ny with 2¢ +m < N. Therefore, the limit in (&I converges if and only if the limit (52) con-

verges and in that case they coincide. Now, by the representation formulas in Theorem [D.1] and Proposition
D3 on(t, 20,Y0;, ) € CN ([0, To[xR) and thus the limit in (E2) converges.

Remark 5.3 The derivatives appearing in the Taylor formula (53] can be computed explicitly (possibly with
the aid of a symbolic computation software) by means of the representation formulas of Theorem [D.1] and
Proposition [D.3]
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Remark 5.4 A direct computation shows that, at order N = 0, formula (5.3)) is consistent with the well-known
results by [Berestycki et all (2002) and Berestycki et al! (2004). Furthermore, again by direct computation,
one can check that in the special case d = 1, formula (B3]) with ¢ = 0 and m = 1 is consistent with the
well-known practitioners’ 1/2 slope rule, according to which the at-the-money slope of the implied volatility

is one half the slope of the local volatility function.

The rest of the section is devoted to the proof of Theorem Bl Hereafter A > 0 is fixed and we assume the
hypotheses of Theorem Bl to be in force. In particular, the center zp = (xo,yo) of the cylinder H(Tp, zo,7)
in Assumptions and 4.7 is fixed from now on.

Notation 5.5 If not explicitly stated, C and 19 will always denote two positive constants dependent at most
on X\, onr,zo,d, My,e, N, Ty, 8 appearing in Assumptions 21}, [Z8, and, only if both N,d > 2, also on 6’, C
in [@1) and @8). Note that, in particular, neither C nor 19 do depend on M.

The proof of Theorem [5.1]is based on some preliminary results.

Lemma 5.6 For any positive constants c,0,\, u with p < 1, there exists a positive T only dependent on

c, T, )\, 1, such that
uBS(po; 7,2, k) + ce®o?r <uPS(o;7, 2, k), (5.4)
for any T € [0,7], 0 <7 and |z — k| < Ao\/T.

Proof We recall the following expression for the Black&Scholes price (see, for instance, Roper and Rutkowski
(2009)):

Then we have

g 1 z—k |, wVT 2
UBS(U;T,I,]{I)—UBS(ILLU;T,I,]{I):6m1/%/ e 2(wﬁ+ 2 )dwz

no

(by using |z — k| < Aoy/T and 0 < 7)

[T _1i(apevm)?
> e” %e 2(“+ 2 ) 0(1—u)20€wo27,

for any 7 € [0, 7] where T is positive and suitably small constant, depending only on ¢, A,& and p.

Notation 5.7 Sometimes, in order to simplify the notation, we will use the shortcuts

uBS (0, k,T) BS(o;T —t, 20, k), c>0, keR, T>t,
’u’)

1

, =
B (b, T) = (uPS (5 T — t,20,k)) " (u) wel(e™ —eF)t, e, keR, Txt,

g

for the BlackéScholes price and its inverse function with respect to the volatility variable. To ease notations,
oF

for any function F of three variables 21, 22, z3, we also set O;F = 5, i = 1,2,3. Derivatives of compositions
of uPS and oBS will be expressed according this notation: for example, first order derivatives are given by

%uBS (o (u, k,T),k,T) = (01u"5) (6% (u, k,T), k,T) - 020" (u, k, T) + (92u"%) (6®°(u, k,T), %k, T),
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%UBS (O'BS (u,k,T),k,T) = (81uBS) (O'BS (u,k,T),k,T) - 03085 (u, k, T) + (83UBS) (UBS(U, k,T),k,T).

For any ¢ € [0,1], we introduce the functions
u(5a kv T) = ’U,((S, t; Zo, Yo, Ta k) = uBS (U(()w07y0)(ta T)v T — ta Zo, k) + R(67 ta Zo, Yo, Ta k)? (55)
N
R(67 ku T) = R(67 tu 20, Yo, T7 k) = Z 677/,“51:60,1/0) (t7 Zo, Yo T7 k) + 6N+1 (’U, - ﬂN) (tu 2o, Yo, T7 k)u
n=1

Recall that o(gm“’yo)(t,T) and usfo’y“)(t,xo,yo;T, k) are defined for any 0 < t < T < Ty and k € R, as
indicated by B9) and (B8)) respectively. Consequently, by Theorem [{.9 and by Corollary [D.2, Eq. (D.G)),
there exist C' and 19 as in Notation[5.H such that

\R(5,k,T)| < Ce™M (T —t), (5.6)

and, for any gom,h € Ng and j € N, with g+m +h >0, h,j < N +1 andm+2q§N,

J(h+1)—m—2q
2

L. ((agu(s, k,T))j)‘ < Ce™ MU(M(T — 1)) (5.7)

for any 0 <t <T < Ty and k such that T —t < 1o and |zg — k| < \\/M(T —t).
Lemma 5.8 There exists a positive 79 as in Notation such that

’UJBS(\/EW;T—t,ZEo,k) <u(0,k,T) < uBS(\/m;T—t,xo,k),
or equivalently

VEM < (uBS) " (u(8, k, T); T — t, o, k) < VAM, (5.8)

for any 6 €[0,1],0 <t <T < Ty and k € R such that T —t < 79 and |vg — k| < \\/M(T —t).
Proof Since u(8,k,T) — uPS (oémo’yO)(t,T);T —t, xo, k) = R(d,k,T), from estimate (.G we infer
WPS (W) (1, T) T = w0, k) ~Ce™ M (T = 1) < (8, b, T) < u (0" (t,T); T — t,0, k) +Ce™ M (T ~ 1),

(5.9)
with C as in Notation Now recall that, by Assumption along with definition (Bl), we have

V2eM < o™ (¢, T) < V2M < \/2M,

and therefore, for any fixed A > 0, the thesis follows by combining (5.9) with estimate (5.4) with p = 1.

Remark 5.9 In light of Lemma [5.8) the function oS (u(d,k,T),k,T) is well defined for any § € [0,1],
0<t<T<Tpand k € R such that T — ¢ < 79 and |zg — k| < A/ M (T — ).

Lemma 5.10 For any q,m,n € Ny, there ezist C, 79 > 0 as in Notation[2.0 such that

_ 7n+22q+n nk

(0785 080B) (u(8,k, T), k, T)| < CMT3 (M(T —t)) ek, (5.10)

forany § € 0,1, 0 <t <T < Ty and k € R such that T —t < 79 and |xo — k| < A\\/M(T —t). Here C also

depends on m, q and n.

Proof See Appendix Bl
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Lemma 5.11 For any q,m,n € Ny with 2g+m < N, there exist C, 79 > 0 as in Notation [5.3 such that

qatm
dT4 dkm (

m+2q+n
R ek

87aS) (u(8,k, T), k, T)| < CMTT2 (M(T — t))~ (5.11)

forany 6 € 10,1],0 <t <T < Ty and k € R such that T —t < 79 and |xvg — k| < \\/M(T —t). Here the

constant C' also depends on n.
Proof See Appendix [Bl

We are now ready to prove Theorem (.11

Proof (of Theorem [5.1]) We set
G(0,k,T) = o™ (u(5,k,T),k,T)

with ¢85 = oB5(u, k, T) and u = u(d, k, T) defined in Notation [5.7] and (5.5) respectively. By definition we
have

o(k,T)=g(1,k,T), (5.12)
where o(k,T) := o(t, xo, yo, k, T) is the exact implied volatility. Moreover, for o (k,T) := an (¢, zo, yo; k, T)
as defined in (BI5]), we have

N N

1
5N(k,T) = Z O',(Lmo’yo)(tal'OuyO;kaT) = Z Eagg(é,k,T)’(;:O, (513)
n=0 n=0 "

as, by (B8) and BI3), g(d,k,T)|s=0 = o(gm“ yo)(t,T), and 959(6,k,T)|,_ 0= oo yo)(t xo,y0; k, T) for 1 <
n < N. Now, by (512)-(513), there exists 0 € [0, 1] such that

= 1 N+1 (%
U(va) UN(va) (N ¥+ 1) a (57 kaT)
1 N+1 - - - ~
Y] (07039 (w(6,k,T), k,T) - Byir,n (9su(d, k,T),03u(8,k, T),..., 08 "*?u(3,k,T)),
" h=1

where the last equality stems from the Faa di Bruno’s formula (E.4)). Now, differentiating both the left and
the right-hand side m and ¢ times w.r.t. k£ and T respectively, we get

N+1 g m q—l+m
04010 (k, T) — 030y on (b, T < C YN d;fq ldkm - (ah BS) (u(S,k,T),k,T)‘
h=11=0 j=0
dHi Neht2 %
‘dTldk] Bny1,n (O5u(8,k,T),...,0; u(d,k,T))‘. (5.14)

Again by Faa di Bruno’s formula, we have

dH-J _
’dTlko B (Osu(0,k,T),. ,3§Vh+2u(6,k,T))}
<c Y ‘ag;a,gl (Bsu(3, k, T))"* --‘alTN*h”a,iN*M (BN 2u(8, ki, 7))

. J1se-JN—h+2 .
i1+ +HiN—h42=]
it +HIN_hyo=l
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(by @)

j420 , Jit o HiN_—pg2 | J1H202+ A+ (N—h+2)iN _pyo
-t 2 + 2

<C Z e(j1+"'+jN—h,+2)m0Ml(M(T _ t))

J1se-JN—h+2

(by both the identities in (E.6))

=C Z ehIO(M(T —t)) SRR Ce’””"Ml(M(T —t)) B (5.15)
J1s--JN—h+2
Combining Lemma [B1Tl and (515) with (&I4), we obtain
1 N+1—m—2q N+1
OFo(k,T) — Op'on (k, T)| < CMTF2 (M(T —t)) = Y etoh,
h=1
The statement then follows from the assumption |xg — k| < A/ M (T — )< \Tp.
A Proof of Theorem [4.4]
First observe that, for any z,z € R4, t < T and m < N, we have
_ T N _ _
ot u(t, z, T, k) — 8,’;”@5\7)(t,z;T, k) = / /F(t,z; 5,¢) Z (AS - flg?{) B?ugiln(s,(;T7 k)d¢ds, (A.1)
t n=0
Rd

where
“Z‘E,Zv)z = ZAE,ZB'
=0

In fact, when m = 0 the identity (A)) reduces to Lemma 6.23 inm (@) The general case easily follows by applying
the operator 9;" to (A1) with m = 0 and then shifting oy onto ugiln For clarity, we split the proof in two separate steps.

[Step 1: case ¢ =0 and 0 < m < N]
Let

a S, Dﬁ (o3 i
T 0= 30 Pt
[B]<n )

be the n-th order Taylor polynomial of the function ¢ + aa(s, (), centered at z. Setting Z = z and by definition of (A ;)o<i<n,
from (A.)) we obtain

o u(t, s T k) — O un (t, 5T, k) = > Ina
0<n<N
[ <2

where

T
_ . _ aa(s,) aqm, (2) .
fno= [ [ Pt25.0) (3060 = T257(0) DEOP L, (5, 5T, )i

Rd

(by Corollary [D:2))

T aq (s, )
Y[ ress0 (s6.0 - T ©) € -2
ylsN—n Tt
1<j<3(N-—n)

LT (s, T)OLT T ™ (5, G T ) dCds
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(integrating by parts m times)

T .
= Z ) /(-1)“Rg;¥'m3z;g'm’ﬂ dCds, (A.2)
1 S"; ‘SSSJ(VNifnn ) R
with
ROT™ = 071 (T(t,2:5,0) (aa (s, Q) — T2 (Q) (€ = 2)7)

RO = fNTm0m) (o 1Yo ) (5, G T B).

Note that Ry, 1 is well defined because aq (s, ) € CN+1(RY), by hypothesis, and m < N. Now, on the one hand, by repeatedly
applying the Leibniz rule, the mean value theorem and Lemma [£5 with ¢ = 2, we obtain

n—m-4|y|+1
2

R | < (s - 1) Io (2M(s —1),¢ = 2). (A3)

On the other hand, by (D4) and by Lemma[C3] we have

N—-n—|y|l-a;+1 N—-n—|y|-1
2 2

‘Rg;;mﬂ" < CeS (M(T — s)) < Cet (M(T — s)) (since a1 < 2). (A.4)

To conclude, it is enough to combine estimates (A4]) and (A3) with identity (A2). In particular, by using
/ To(2M(s —t),¢ — 2) eS1d¢ = eX1 HMs=8)/2,
Rd

we get

N—m+42 N—m+2

; T n—m+|y|+1 N—-n—|y|-1 > N-—m+2
[In,a| < Ce**M ™2 (s—1) 2 (T —s) 2 ds < Ce**(M(T —t)) =z ,
t

where we used the identity

T . I'g(j+1)I 1 ;
/ (T —s)"(s—1t)ds = 1246 +‘ Wp(n+ )(T — )i tntl
¢ I'e(j+n+2)
with I'g representing the Euler Gamma function.
[Step 2: case 0 < m + 2¢ < N]
We first prove that, for any m, g € No with m + 2g < N — 2, one has
- 71(2) 97 gm, (%)
i [ 129,03 (A = AGL) F 07 UL, (5. G T K)dC
Rd n=0
a1 (T,2)\? - . .
= () [ @ o) (00" (rs Tk (on (T k) = T2 ) ) dn (A5)
Rd—1

Set
)= 3 [ P50 (00,0 = 12507(©) DFOGOF U (.G T RS, 0<n< .
la]<2 R4
Now, by applying (D.3)) and integrating by parts m -+ 2§ + 2 times w.r.t. {1 (this is possible because aq (s, ) € CNT1(R?)), for
n< N —1we get

Iuft2) = (™22 S0 ST [ (a(5,0) = T (@) Dt 25, 0(C — )7) B g,

al<2 |[v[EN-n
lel<2 | SN Ty Re

with
R4 — fﬂ(/f\;in’q’m’()‘)(z;57T)82~.1+al*2u(()z)(s,(;T7 k),
and ff{fjfn’q’m’a) as in Corollary [D:2 Moreover, by (D) and by Lemma [C3] we obtain
|Re:T™I| < CMIe /M(T — s),
and thus

lim In(t,z) =0, 0<n<N-1,t<T, z€R% (A.6)

s—T—
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On the other hand, by (C.fl) and (D), we have

In(t,2) = / It 255,0) (As = ALY ) 03070 (5, G T, k) dC
R4

T‘ a s q m_ (z
= (5 / Pt,25,0) (.0 = T (©) (6, —00) ™ (1= 06) "5, G T ) C

(integrating by parts)

= (EEEY (@2, +00,) 7 (14 0)™ (Pt 255, (ann ,6) ~ TRV )))
Rd

’ (821 - 6(1)“(()Z)(57 ¢ T, k)dC.

From ([33) and (CH) we have

T T d
(02, - B, )us? (5,¢: T k) = €* I </ a11(r, z)dr, (1 — M —k> 7
S
where Iy denotes the Gaussian density in (£3) with d = 1. Noting that

T T d
Iy (/ all(r,z)dr,cl—M—k> — Ok, ass— T,

2
we obtain
T, q q 5 a .
lim Iy(t2) = (A e / (0% + )T (1+ 0)™ (D (2 Tk m) (s (T k) = TERT ) (ko)) ) dn. (AT)

RA—1

Finally, (AZ6) and (A7) yield (AF).

We now prove ([£2)). By repeatedly applying the Leibniz rule on (AJ) and (A5, we get

=0

T N _ q—1
L (u — an ) (t, z,y; T, k) = / /F(t, 580> (AS - ftgf,{) aLapu)  (s,G T, k)dCds + > T,
t Rd n=0
with

—1—1 73 : i m a
Ji = 037" <(W) [ @ o) a+oy (F(t,z;T,k,n)(au(T,k,n)—T;}JT*)(k,n)))dn)

RA—1

Now, by proceeding as in Step 1, it is easy to show that

T N _ R
/t / (t,2:5,C) Z (s = A2)) 007 u) (5, G T, kydCds| < Ce™ M (M(T — )72

Rd

Analogously, by repeatedly applying Leibniz rule along with Faa di Bruno’s Formula (Proposition [EI]) and Lemma[45] and by

using that
k _ (k—x)? Cle®
e [ DM =t =k = n)dy = e T <
Rd-1 VATM(T —t) M(T —¢)
with Iy as in (@3], one can also show
N—m—2q+2
|Ji| € Ce" M9 (M(T — 1)) 2=,  0<i<q-1,

which concludes the proof.
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B Proof of Lemmas 5.0 and (.11]
Proof (of Lemma [510) The case n = m = 0 has been already proved in (5.8]). To prove the general case, we proceed by
induction on m and n.

[Step 1: case m= ¢ =0].

By (C9) and by using |zo — k| < A\\/M (T —t), we have

k 2 2
T—t A2 M T—t) MN/M(T—t
8UuBS(U,k,T) > ¢ exp | — _e ( ) - ( )
V2 202 8 2
eFVT —1 M 2Ty M MoTo
2 CXp - - - 9
Vor 202 8 2

which, by ([5.8]), implies

B.1
2e 2 2 (B-1)

kT =% A2 MoTo MDMoTq
(81uBS) (UBS(u(é,k,T),k,T)) > eiexp( 020 ﬁ) .

T
Therefore, we obtain

1 C
<
(81uBS) (oBS (u(8,k,T), k,T)) ~ eky/T —t

0< (810BS) (u(6, k,T), k,T) =

which is (5I0) for m =0 and n = 1.

We now fix n € N, assume (B.10) to hold true for any n € Ng with n < 7 and prove it true for 7 4+ 1. Differentiating the
identity u = uBS(¢BS (u, k, T), k, T) and applying the univariate version of Faa di Bruno’s formula (see Appendix [ Eq. (E4)),
we obtain

Atl
At B (y, &, T) = — LZ (@1 uPS) (6B (u, k, T), k, T
! Y =, (01uBS) (oBS (u,k, T), k, T

)) B’7L+1,h <8IUBS (uv va)v s 78?7h+2UBS (uv va)> .

Now, by (B), Lemma and recalling the estimate of Lemma [5.8 for u = u(d, k,T), we get

(8fuBs) (O’BS (u(6, k,T),k,T), k, T)

h—1
<CM "2 .
(01uBS) (oBS (u(8, k,T),k,T),k,T) | ~

Moreover, for any h = 2,...,7 + 1, we have

‘Bﬁ+1,h (ala—BS (’U,, k7 T)7 EERE a?*hﬁ*?o_BS (’U,, k7 T)) ‘u:u(&,k)’ <

(by (E) in Appendix [E])

Ji—h+2

<o 3 (00" @@ k1) k)" | (07774205 i,k ), B, T) <

J1ydn—h42

(by inductive hypothesis)

co Y VE(AVETD) i () T

J1sodn—h+2
, —n—1
<cM*% (ek\/M(T - t)) "
where the last inequality follows from the identities (E.f]) in Appendix [El This concludes the proof of (5I0) with m = 0.

[Step 2: case g = 0]
We proceed by induction on m. The sub-case m = 0 has already been proved in Step 1. Now fix m € N, assume (G.10) to hold
for any n,m € No, m < m and prove it true for m = m + 1 and n € Ng. First note that differentiating w.r.t. k& the identity

o= o5 (uPS(0, k,T),k,T), >0, (B.2)

we get
(820’BS> (uBS(J7 k,T),k,T) = - (810]38) (uBS(U,k,T),k,T> -82uBS(U,k,T),
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or equivalently, setting u = uPBS (o, k, T) that is ¢ = 685 (u, k, T),
02075 (u, b, T) = —01075 (u, b, T) - (0205 (%S (u, b, T), b, T), w€](e™ — €5t ef. (B.3)

Fix n € Np: differentiating (B:3), n times w.r.t. u and /m times w.r.t. k, we get

_ dn+ﬁ1
n gm+1 __BS _ BS BS BS
ROy P (u kT = - (610 (u,k,T) - (82u ) (05 (u, k,T)7k7T)>
- Zn: i (") (m) (051057 0B5 (u,k,T) ) & (02uS) (o5 (u, b, T), b, 7).
Lo La\)\j ! 2 duidki
=0 7=0
(B.A)
Now, by inductive hypothesis, for any i, j,n € Ng with ¢ <n and j < m, we have
| (87171057035 ) (u(s, b, 7).k, T)| < OV (M(T — 1)) =75 e (mri=idk, (B.5)
The proof will be concluded once we show that
dti BS BS —i -1k
T (82u ) (08 (u, b, T), 5, T sy | < C(M(T =) 5 e . (B.6)

Indeed (B.6l), combined with (BA]) and (B4), yields (5I0) for m + 1.

More generally, we prove that for any 4, j,v1,7v2,v3 € No with y1 + y2+7v3 > 0 and j < m (here m is fixed in the inductive
hypothesis at the beginning of Step 2), we have

diti
dutdki

1—i—j—yg—2 )
(671032032 uP®) (o7 (u, k, T), &, T)] <OMWTF (MT 1) = ek (B

u=u(8,k,T) ’

We prove (B) by using another inductive argument on j.
[Step 2-a): case j =0].
By the univariate version of the Faa di Bruno’s formula (see Appendix [E] Eq. (E4)), for any i,71,7v2 € No we have

di
du’

A
(67103203 uPS) (075 (u,k, T) b, T) = > (0171 632035uS ) (o™ (u,k, T) K, T) -
h=1 .

-Bip (BlaBS (u, laT),B%JBS (u, k,T),..., 8i7h+10BS (u, k7T)) .

By Lemmas and [5.8] using that v1 + v2+73 > 0, we have

ht+vy 1—v0—2v3
2 .

‘ (8T+71 6;28;311’38) (JBS (uv va) 7k7T)|u:u(5,k,T)‘ S C’ekM"/B;* 2 (M(T - t)) (B,Q)

Moreover, by (G10) with m = 0 (already proved in Step 1) and by the relations (E-f]) we have
‘Bi,h (alo'BS (u7 k7 T)7 a%UBS (u7 k7 T): s 7aiih+1gBS (u7 kv T)) ‘u:u(&,k,T) ‘ < CM% (M(T - t))iéeiikv
which, combined with (BX9) and (B8], proves (B for j = 0 and any i,v1,v2 € No with v1 + v2+73 > 0.

[Step 2-b): case 1 < j < m]
Fix jo € N with jo < m — 1: we assume (B.) to hold for any 4,v1,72,73 € No with v1 + 2473 > 0 and 0 < j < jp and prove
it true for ¢,v1,7v2,7v3 € No with y1 +v2+v3 > 0 and j = jo + 1. We have

ditio+1
St (9010201 uPS) (0P (u,k, ) k. T)
dtio 1+71 572 573,,BS BS BS
- W(<61 0203 u )(a (u7k7T),k7T> - 990 B8 (u, k, T)
+ (a;h aéﬂza;/suBs) (0B (u, k,T) ,k,T)) (B.10)
i Jo . . hitq ‘
= ¥\ (Jo d 1+v1 972 973,,BS BS gi—hajo—q+1_BS
_hZ—Oq;O(h)<q) (duhqu (017032 03°uP%) (07 (w, b, 7)) ) - 0170 1o sk, T)
ditio

1
o (07103772032 uPS) (o5 (u, b, T) , 5, T).
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By inductive hypothesis we have

dh+a

1 _ i+l _htatyot2y3-1
G (T 03203 %) (o7 (u,k,T>,k,T)lu:u<a,k,T>’SGMWS T (M(T 1) 2 e (D,
and ”
drtJio i4+jo+v2+2 .
el CARME T Ca (u,k,T>7k7T>lu_u<MT>’ SOM™STF(M(T 1)~ e Dk,
» —u(s,k,

Now we recall that we are assuming, by inductive hypothesis, that (5I0) holds for any n € No and m < m: thus, since
jo — q+ 1 < m by assumption, we get

i—h+jg—q+1 .
A —(i—h)k

ai*hagO*Q“FloBS (uv k7 T)'u:u(S,k,T) ‘ S CM% (M(T - t))7
The last three estimates combined with (BIQ) yield (B) for j = jo + 1.

[Step 3: case g € N]
It is analogous to Step 2. For simplicity, we only prove the case ¢ = 1. By identity (B.2]) we get

(83035) (uBS(a,k,T),k,T) S (alaBS) (uBS(o,k,T),k,T) - 95uBS (0, k, T),
or equivalently, setting u = uPBS (o, k, T) that is ¢ = o8BS (u, k, T),
03055 (u, k,T) = —010°5 (u, k, T) - (aguBS) (B (u, k,T), k,T),  wel(e® —e)t ekl (B.11)

Fix n,m € Np: differentiating (B-I1)), » and m times w.r.t. u and k respectively, and once w.r.t. T, we get

dn+m
BS _ BS BS) (_BS
O 05" 05075 (u b T) = ————— (610 (u,k, ) - (95uPS) (™S (u, b, T), &, T))
S zn:i (”) (m) (a"“*ia’”*joBs(u, k,T)) i (63uBS) (o8 (u, k,T), k, T).
Lo La\;)\j 1 2 duidki
1=0 j=0
(B.12)
Now, by (I0) with ¢ = 0, for any i, j,n € Ng with ¢ < n and j < m, we have
| (93410576 ) (u(6, b, 1), b T)| < OMB (M(T 1) im0k, (B.13)
whereas, by (B.7), we obtain
diti Bs) , .BS —HEE —G-Dk
duiar (02%) (@ (w k), k,T>|u:u<5,k,T)\ SOM(M(T —1)" 2 e (DR, (B.14)

Eventually, (B-I3) and (B4 combined with (BI2) prove (5I0) for ¢ = 1.

Remark B.1 The inductive argument of the previous proof shows that estimate (B.7) is valid for any i, j,v1,72,73 € No, with
Y1+ v2+7v3 >0and § € [0,1],0 <t < T < Tp and k € R such that T — ¢t < 79 and |xg — k| < A\\/M(T —t). In this case, the
constant C' in (B also depends on i, j,v1,7v2 and 7s3.

Proof (of Lemma (511])) For simplicity, we split the proof in two separate steps.

[Step 1: case ¢ = 0]
By the bivariate version of Fad di Bruno’s formula (see Appendix [E] Proposition [E1]), we obtain

;% (01:0™5) (u(s, b, T),k,T)
- g‘l (V"0 0BS) (u(s, K, T), £, T) % By s ((a’““(i’k’ﬂ), (az“(‘zk’T))7..,,(a£nh“()“(‘;”“’T))) -

(by exploiting the first relation in (E8]))

8ku(67k7T)>j1

h
7 gn (08, 7) (V07167 ) (o, b 1), b T) (1

171=0

M

(B.15)

R
Il
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where “¥” denotes the tensorial scalar product (see (E2)) and

m—h+1
m,h 3 Ji
Gh,j, (6, k,T) = > A 1T (@iu, k1) (B.16)
J25dm—ht1 i=2
for some constants c;.rll’]f' e and the sum in (B6) is taken over all sequences ja,...,Jm_nrt1 of non-negative integers

verifying the identities in (E.6]). Now, by estimate (5.7) and by the relations (E.6]), we obtain

m—h

|gn,jr (8., T)| < Cel" V=0 (M(T — 1))~ "= . (B.17)

Moreover we have

Opu(d, k, T))j1

(o170 in - (4

< Cjzl ‘(8?+h7‘183035> (u(8, k, T), k,T)’ ‘(aku(57k7gp))j1—q‘
q=0

and therefore, by Lemma [5.10] and estimate (5.7, we get

< Qe (nHh=0k+(i—0)z0 /AT (M(T — 1))~ 5. (B.18)

’(vjla?+hjloBS) (w(8,k,T), k,T) * <3ku(51, k,T))J'l

Eventually, (511) follows by combining (B.17)-(BI8) with (BI5) and by observing that

e(hfq)(acofk) < em\x(,fk:\ < emA A{(Tft)’

since |zo — k| < A/ M(T —t).

[Step 2: case ¢ € N]

It is analogous to Step 1. For simplicity, we only prove the case ¢ = 1. Leibniz rule yields

amod o
Tk dT ( 1UBS> (w(0,k,T),k,T)

= ;L—m ((BTu(67 k) (071 0P) (u(d,k, T), b, T) + (070305 ) (u(s, b, T), k,T))
G m m—1 dl 1 an n
= > (") (O orus, k1)) 2= (071 0PS) (w6, b, T), b, T) + —— (8703075 ) (u(0, k. T), k. T).
i=0
(B.19)

By (&II) with ¢ =0, by (57), and by using that |z — k| < A\(T — t), we get

m+2+4n nk

‘(8}?”8m(5,mT))%(ai‘“oBs)(u(&k,T),k,T)‘SCM”%(M(T—t))* ek (B.20)

On the other hand, by proceeding exactly as in Step 1, one can show

dm m+24n

i (a{lagaBS) (u(67k7T),k7T)‘ < OMYWE(M(T —t))~ "2 " ek,

dk™
which, combined with (B:220) and (B19), proves (511 for ¢ = 1.

C Short-time/small-noise estimates in the Black&Scholes model

We collect here the short-time estimates for the sensitivities with respect to o,  and k of the Black&Scholes function uBS(c) =

uBs (o;7,2,k), needed to prove the results of Section [Bl In this appendix Iy denotes the Gaussian density in (@3] with d = 1.

Lemma C.1 For any n € Ng and ¢ > 1 we have

(%)nfo(t,x)Sﬁ(ﬁ)%ﬂ)(cmx), t € Rso, z € R.
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Proof Set z = % For any ¢ > 1 we have

(4) neor = e (—;) — Veg()To(ct, ),

9(2) = 2" exp (-% (1_ %)) . 2>

The statement now follows by observing that g attains a global maximum at z, = ,/ ccfl and that

g(zn):e*%( en )n/z.

c—1

with

Lemma C.2 For any n € Ng and ¢ > 1 we have
|0PTo(t, @) < Ct~3 Iy(ct,z),  tE€Rso, x €R, (C.1)
where C' is a positive constant only dependent on n and c.

Proof Then, by definition (£3) we have

xT

O To(t,z) =t 2Hy [ ——
x O( ) L(m

) Io(t, ),

and thus the statement easily stems from Lemma [C1]

In what follows we will make use of the representation of the Black&Scholes price in term of the Gaussian density Iy in (@3],

i.e.

+oo 2
uBS(U) = uBS(J; T, x, k) = / Io (027,90 2T y) (ey — ek) dy, (C.2)
k 2
and of the family of Hermite polynomials defined as
2 2
H,(z):=¢€" e, n € Np. (C.3)
Lemma C.3 For any m,n € Ng and M > 0 we have
aroruBS (o; T,:L‘,k))‘ < Ce” (Uﬁ)(liminmo , z,k€R, 0<ovT<M, (C.4)

where a A b = min{a, b} and C is a positive constant only dependent on m,n and M.

Proof Throughout this proof we will denote by C any generic constant that depends at most on m,n and M. We first prove
the statement for m = 0. If also n = 0 then the thesis easily follows by writing uBS as an expectation. If n > 1 then by C2)

we have
+oo 2
nuPS(oy 7z, k) = / aorTo (027,90 — % — y) (ey — ek) dy =
k
(since Oz = —0yIp and integrating by parts)
oo 2
= /k a1, (027,:1: — % — y) evdy. (C.5)

Thus, by the Gaussian estimate (CI) with ¢ = 2 we obtain
A" uPS (o T,x,k)’ <C (0\/7—_)—n+1 /]R Iy (2U2T,m — % - y) eVdy = Ce”*% (0\/7__),”+1
which proves the statement for m = 0. The case m > 1 now trivially stems from the identity
0,uPS (o; 7,2, k) = uPS (0 7, 2, k) — 8,uP5 (057, 3, k), (C.6)

along with (CA4) with m = 0.
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Proposition C.4 Fiz (t,T,k,0) and let { = % and T =T —t. Then for any n > 2 we have
= 5 S et () ()T 0
q=0 p=0
where the coefficients (cn,n—2k) are defined recursively by
cn,n =1, and Cnn—2¢ = (M —2¢+1)cn_1,n—2q+1 + Cn—1,n—2¢—1, qge{1,2,---,|n/2]}.
Proof See Proposition 3.5 in [Lorig et al! (20151).
Lemma C.5 For any m,q,n € Ng with m +q+n > 0 we have
oL uUBS (07,2, k)| < Cekbo "2 (o/7) T keR, 0<oyT< M, (C.7)

where C' is a positive constant only dependent on m, q, n and M. If ¢ =0, then C is independent of M ..

Proof We split the proof in three steps.

[Step 1: case ¢ =n =0].
Here we will denote by C' any generic constant that depends at most on m. For any m € N, by (C:2) we have

2
al’cnuBS(o;T,m,k) = 82”71 (ek/ Io (cr T,y —x+ —) dy)
k
m—1
1 oo 2
= Z (m ) )ekai/ Iy (0'27',y —x+ g) dy. (C.8)
0 ? k 2
Now, we have [>° Iy (UZT,y —x+ %) dy €]0, 1] and, for i > 1, we have

) 2 . 2
8}6/ Fo(o T,y —x—i—%)dy:—alz;lf‘o(U2T,k—m+%).

Thus by applying the Gaussian estimate (C.I)) with ¢ = 2, we obtain

Bi/koofo(a'ry—x—l——)dy‘<0(a\/7) (2ark—x+—)<c(af)

which, combined with (C.8)), proves (C7).

[Step 2: case ¢ =0, n > 1].

Here we will denote by C' any generic constant that depends at most on m and n. A direct computation shows

2
9,uPS (o7, k) = P JTFO(UTz—k—%):ek\ﬁﬂ)(l,(), (C.9)
with { = % Therefore we have
0 < ,uPS( K< VT kER, 0,7 €R
Uu U; T7x7 —_— b x? b U7T )
o >0
which proves ([C) for n =1 and m = 0. Notice that
1 —-m
97T (1,0 = 7 |00 (1LO| S C (ovD) ™™, me N,
(O’\/2T> ¢

where the last inequality follows from (C.IJ). Then, by differentiating (C.9), it is straightforward to show that

‘BgﬁznuBs (o;7,z, k)‘ < CeFy/7 (ov/T) ™, m € Np.
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For n > 2, by combining Proposition with (C9), we have

n/2] n—q—1 n—ag—1
P uPS (oy 7,2, k) =¥ V/T Z Z Cn,n72q0'n72q71Tn7q71< a )
=0 p=0 p (C.10)
1 ptn—q—1
(55) Ty (1,¢) Hpneqe1(0).
Now notice that
07 (Fo (1,0) Hy Q)] = |0 08 1o (1,0)| = G f A o7 (1,0 < ¢ (ovm) ™ (C.11)

Then the thesis follows by differentiating formula (CI0) and using (CIT)).

[Step 3: case ¢ > 1].
Here we will denote by C' any generic constant that depends at most on m, g, n and M. By applying the identity

)

o

0ruBS (057, 2, k) —(82 ) BS(oi 7, @, k) = ?(8,% —Bg)uBs(o;T,m,k)

we get
2\ 9
an o2 uBS (o 7, k) = O (92 — 8 ) T O ((%) uBS(o; 7, 2, k)).

The statement now follows by applying Faa di Bruno’s formula (Proposition [E]) along with (C.7) for ¢ = 0.

D Explicit representation for the volatility expansion

Here we recall an explicit representation formula for the n-th order correcting terms u, and o, appearing in the price expansion
B6) and the implied volatility expansion ([B.I3)), respectively. The following result is a particular case of , ,
Theorem 3.2).

Theorem D.1 Let N € N, z € R? and assume that Dfaa(~72) € L*>°([0,T)) for any 1 < |a| <2 and |8] < N. Then, for any
1 <n < N, the function u, in (B3] is given by

WPt 2) = £, T, 2)ulP(t,2),  te0,T] zeR% (D.1)

In (D), Lgf) (¢, T, z) denotes the differential operator acting on the z-variable and defined as

2) =~ [T T T 2) ©)
L (t,T, 2) :=Z/ d51/ d82~~~/ dsp D G (ts1,2) -G, (t,sn, 2), (D.2)
h=1"% 51 Sh—1 i€l p
whers@
Inp={i=(i1,...,ip) EN" | iy + - +ip=n}, 1<h<mn,

and the operator 9512)(15, s, z) is defined as
9,(12)@7 $,2) = A,(f) (s,z—z+ m® (¢, 5) + CO)(t, s)Vz),

with m(?) (t,s) and c® (t, s) being, respectively, the vector and the matriz whose components are given by

- s _ s
mgz)(u s) = /t a;(r, Z)dr, CZ(-JZ-)(t7 s) = /; aij(r, Z)dr, ,j=1,...,d.

Corollary D.2 Let N € No, and let Assumption [{-4 be in force. Then, for any n,m,q € Ng with n,2q < N, and for any

multi-index o € Ng, we have

0L D u) (t, =Tk = > f ™Y (54, T) (2 — 2)103 Rt u T (¢, 2 T k), (D.3)

0<|v[<n
1<j<3n

8 For instance, for n = 3 we have I3 3 = {(1,1,1)}, Is2 = {(1,2),(2,1)} and I31 = {(3)}.
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with
n—lyl+J
2

| Fmame) (z4,T)| < CMIM(T - )3, (D.4)
for any 0 <t <T < Ty, 2,2 € D(z0,7) and k € R. Consequently, we have

(1—m—2g)A0
2

.07l (1,2 T, )| < Cem Ma(M (T — ) (D.5)
and, forn > 1,
]aqTa,;nu;Z>(t, %7, k)’ < Ce® MUM(T — )22, (D.6)

In (D4), (O:E) and ([O8), C is a positive constant only dependent on e, Mo, To, N, |a| and m.

Proof Using the explicit formulas (D1)-(D-2) and noting that uég) (t,2; T, k) does not depend on z2, . .., 24, it is straightforward
to prove that

uD TR = > (T - 2700wl (8,2 T k), (D.7)
Ogj"égn
with
i e(n) i n—|yl+j—2i i
|07 £, (z:4, T)| < CM*(M(T — 1)) 2 , 0<2i<N. (D.8)

The general statement now follows from (D.7)-(D.8]) along with the identities (C.6) and

all(Tv 2)

BTu(()Z) (t,z;T, k) = (831 — 0z )u(()g) (t, 2T, k). (D.9)

Estimate (D.3) follows from Lemma [C3]l By combining (D3) with (C)) eventually we get estimate (D.6]).

Furthermore, we recall the following result (m, M7 Proposition 3.6).

Proposition D.3 For every n € N and z € R?, the ratio uf)/aguBs (O'(()Z)) in BI4) is a finite sum of the form

u? %) -m (5 z—k—L1o2(T—1t)
— G = a5 V2T - mmon Hm ) = - 207 7
D,uPS (o)) ; ( o v t)) X (©) ¢ o0y/2(T — t)

foranyt <T, z= (z,y) € R? and k € R, where the coefficients X,(f,i)n = Xs,z;)n (t,z; T, k) are explicit functions, polynomsal in

the log-moneyness (k — x). Here, H,;, represents the m-th order Hermite polynomial defined in (C3).

E Multivariate Faa di Bruno’s formula and Bell polynomials

In this section we recall a multivariate version of the well-known Faa di Bruno’s formula (see m (@) and m
)) and more precisely, its Bell polynomial version.

For greater convenience, we recall some elements of tensorial calculus. For any given n,h € N, we denote by A a rank-h
tensor on R™, i.e. an array A = (Ai)ie{l,...,n}h7 with A; € R. Moreover, by definition a rank-0 tensor is a real number,
independently of the dimension n.

Let us now fix the dimension n € N. For any couple of tensors A, © of rank h; and hg respectively, we define the tensorial
product A ® © as the rank-(h1 + h2) tensor given by

. hi+h
A®8i1,~~,ih1;ih1+1»m;ih1+h2 = 8i1,~~~,ih1 Ai1,~~~»ih27 i€{l,...,n} 1R, (E.1)

We also set A0 =1, A1 = A and
A= ARA®---®A, i>2
—_—
(i—1) times

Furthermore, if A and © have the same rank h, we define the tensorial scalar product A x © as the rank-0 tensor given by

Ax0= > A6 (B.2)
ie{l,...,n}h

We say that a rank-h tensor A is symmetric if A; = A, (;) for any i € {1,...,n}" and for any permutation v of the indexes

(i1, ,in).
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Consider now a polynomial p in the variables = (x1,...,x;), homogeneous of degree h, of the form
B .
p(a)= Y bgait---ald. (E.3)
BeN
|Bl=h
For any rank-h symmetric tensor A and any family of rank-1 tensors {©1,...,0;}, it is well defined the scalar

_ B Bj
Axp(O1,...,0;) = Ax Z‘ bO' ® - @O
BEN)
[Bl=h
Note that, the tensor p(©1,...,0;) is not well-defined on its own because the tensorial product (ET) is not commutative.
Nevertheless, by assuming A to be symmetric, the scalar product (E.3)) is well-defined as it does not depend on the specific
order of the tensorial products inside the sum.

We are ready to state the following

Proposition E.1 (Multivariate Faad di Bruno’s formula) Let G : R — R™ and F : R" — R be two smooth functions.
Then, for any m € N we have

d2 dm*thl

dm
SO S G ) (B.4)

LFG@) = 3 (VF) (G * B (6,
h=1

dx™
where V' F is the rank-h tensor with dimension n of the h-th order partial derivatives of F, i.e.

V'"Fi =0 -+ 0,

F, ie{l,...,n}",

and B, is the family of the Bell polynomials defined as

By (2) = > L (Zl)jl (ZZ)” ( Zm—h+1 )!)j’””‘“ ., 1<h<m, (E5)

i ligle g P\ 21 _
J15325 2 Jm—h+41 Jutj2t s Jmenrt M 2 (m—h+1
where the sum is taken over all sequences j1,j2,...,jm—nh+1 of non-negative integers such that

i+t Fim-ht1=h and j1+2j2+ -+ (m—h+1)ju_p1 =m. (E.6)
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