ASPA 22nd CONGRESS
Perugia, June 13–16, 2017

Book of Abstracts

Guest Editors: Massimo Trabalza-Marinucci (Coordinator), Cesare Castellini, Emiliano Lasagna, Stefano Capomaccio, Katia Cappelli, Simone Ceccobelli, Andrea Giontella
Feed restriction (R vs AL) reduced the daily FI (7%, \(p < .001 \)) and the number of visits (27%, \(p < .001 \)), but increased FI per visit (20%, \(p = .001 \)) and the eating rate (10%, \(p = .032 \)). The dietary amino acid reduction applied in late finishing (LAA vs CAA) increased the daily FI (10.5%, \(p = .037 \)), tended to increase the eating rate (19.6%, \(p = .06 \)) with both feeding regimes, and tended to interact (\(p < .10 \)) with the feeding regime for other eating traits. In fact, under AL conditions, dietary amino acid reduction increased the daily FI and the visit frequency, but reduced the FI per visit, where the opposite occurred under R conditions. The coefficient of variation of all the behaviour traits (ranging 0.18 to 0.66) was always larger than that found for the daily FI (0.10). Strong relationships between FI per visit and the visit frequency (\(R^2 = 0.93 \)), and between the eating rate and the time spent eating (\(R^2 = 0.80 \)) were found. The behavioural flexibility of the pig in the attempt to achieve their desired feed intake was evidenced.

Acknowledgements

The research was funded by the University of Padua under grant number CPDR143385/14 and DOR16655405/16. The authors would like to thank Veronesi SPA (Quinto di Valpantena, Verona, Italy) for financial and technical support, and Aldo Gini Foundation (Via Portello, 15, Padova, Italy) for supporting the research activities of Msc Giuseppe Carco, during his stage at the University of Zaragoza.

O102

Growth traits, carcass and meat quality of heavy pigs receiving different enrichment tools

Eleonora Nannoni, Luca Sardi, Marika Vitali, Giovanna Martelli

Dipartimento di Scienze Mediche Veterinarie, Alma Mater Studiorum University of Bologna, Italy
Contact: eleonora.nannoni2@unibo.it

Two separate and independent trials were carried out to investigate the effect of innovative enrichment devices on Italian heavy pigs’ growth parameters, carcass traits, meat and ham quality. In Trial 1, 20 pigs received a hanging metal chain (C1) as environmental enrichment, and 20 received wood (poplar) logs (WL) placed inside a metal rack installed on one side of the pen. In trial 2, 20 pigs received a metal chain (C2), whereas 20 animals received a specifically formulated edible block (EB) placed inside the same metal rack described above. Enrichments were always available to pigs. Animal were kept on slatted floors and liquid-fed twice a day. Trials started when animals were approximately 80 days old (average Body Weight – BW = 28 kg) and ended at slaughtering (average BW = 158 kg, age: 285 days in Trial 1 and 280 days in Trial 2). Growth parameters, carcass traits and meat quality data were collected, (including hams weight during dry-curing) and submitted to analysis of variance. The pen (5 pigs) was taken as the experimental unit for growth parameters, the individual was used as the experimental unit for carcass and meat traits. In both trials, no significant differences were observed as concerns growth parameters (final BW, average daily gain, feed consumption, feed conversion ratio). Only minor differences were detected in carcass traits, with WL carcasses having higher lean meat percentage (51.06 vs 49.86%, \(p < .05 \)), lower backfat thickness (22.55 vs 25.15 mm, \(p < .05 \)) but higher drip losses (1.23 vs 1.00%, \(p < .05 \)) if compared to C1. EB carcasses had lower loin thickness if compared to C2 (59.20 vs 64.50 mm, \(p < .05 \)). In both trials, these slight differences did not affect the overall yield in lean cuts, the overall meat water holding capacity or any other quality trait of meat (pH, colour, Warner-Batzler shearing force). Ham weight losses during dry-curing were not affected by the experimental treatment (\(p > .05 \)).

Our results show that providing heavy pigs with either poplar logs or an edible block did not affect their growth parameters, overall carcass traits, meat or ham quality; this observation supports the conclusion that such innovative and destructible/ ingestible enrichment tools could be used in substitution of the metal chain. Further useful information will be available once the observation of the behavioural video-recordings will be completed, to get more insights on the type of interactions carried out by pigs on each enrichment device.

Acknowledgements

The research was funded by Progetto AGER, grant n° 2011-0280.

O103

Seed-based vaccine immunogens administered in feed for the control of verocytotoxic Escherichia coli infection in pig livestock

Luciana Rossi1, Serena Reggi2, Giovanni L. Alborali3, Paolo Treviasi1, Diana Luise1, Angela Lombardi1, Eugenio Demartini1, Antonella Baldi1

1 Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, University of Milano, Italy
2 Plantechno s.r.l, Vicomoscano, Italy

Contact: eleonora.nannoni2@unibo.it

Two separate and independent trials were carried out to investigate the effect of innovative enrichment devices on Italian heavy pigs’ growth parameters, carcass traits, meat and ham quality. In Trial 1, 20 pigs received a hanging metal chain (C1) as environmental enrichment, and 20 received wood (poplar) logs (WL) placed inside a metal rack installed on one side of the pen. In trial 2, 20 pigs received a metal chain (C2), whereas 20 animals received a specifically formulated edible block (EB) placed inside the same metal rack described above. Enrichments were always available to pigs. Animal were kept on slatted floors and liquid-fed twice a day. Trials started when animals were approximately 80 days old (average Body Weight – BW = 28 kg) and ended at slaughtering (average BW = 158 kg, age: 285 days in Trial 1 and 280 days in Trial 2). Growth parameters, carcass traits and meat quality data were collected, (including hams weight during dry-curing) and submitted to analysis of variance. The pen (5 pigs) was taken as the experimental unit for growth parameters, the individual was used as the experimental unit for carcass and meat traits. In both trials, no significant differences were observed as concerns growth parameters (final BW, average daily gain, feed consumption, feed conversion ratio). Only minor differences were detected in carcass traits, with WL carcasses having higher lean meat percentage (51.06 vs 49.86%, \(p < .05 \)), lower backfat thickness (22.55 vs 25.15 mm, \(p < .05 \)) but higher drip losses (1.23 vs 1.00%, \(p < .05 \)) if compared to C1. EB carcasses had lower loin thickness if compared to C2 (59.20 vs 64.50 mm, \(p < .05 \)). In both trials, these slight differences did not affect the overall yield in lean cuts, the overall meat water holding capacity or any other quality trait of meat (pH, colour, Warner-Batzler shearing force). Ham weight losses during dry-curing were not affected by the experimental treatment (\(p > .05 \)).

Our results show that providing heavy pigs with either poplar logs or an edible block did not affect their growth parameters, overall carcass traits, meat or ham quality; this observation supports the conclusion that such innovative and destructible/ ingestible enrichment tools could be used in substitution of the metal chain. Further useful information will be available once the observation of the behavioural video-recordings will be completed, to get more insights on the type of interactions carried out by pigs on each enrichment device.

Acknowledgements

The research was funded by Progetto AGER, grant n° 2011-0280.