
19 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Published Version:

Behavioral Types in Programming Languages

Published:
DOI: http://doi.org/10.1561/2500000031

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/600745 since: 2018-07-04

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1561/2500000031
https://hdl.handle.net/11585/600745

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna,
Pierre-Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu,
Einar Broch Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi,
Rumyana Neykova, Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos and Nobuko
Yoshida (2016), "Behavioral Types in Programming Languages", Foundations and
Trends® in Programming Languages: Vol. 3: No. 2-3, pp 95-230.

The final published version is available online at :
http://dx.doi.org/10.1561/2500000031

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
http://dx.doi.org/10.1561/2500000031

Behavioral Types in Programming Languages

Davide Ancona
DIBRIS, Università di Genova, Italy

davide.ancona@unige.it

Viviana Bono
Dipartimento di Informatica, Università di Torino, Italy

bono@di.unito.it

Mario Bravetti
Università di Bologna, Italy / INRIA, France

mario.bravetti@unibo.it

Joana Campos
LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

jcampos@lasige.di.fc.ul.pt

Giuseppe Castagna
CNRS, IRIF, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France

Giuseppe.Castagna@cnrs.fr

Pierre-Malo Deniélou
Royal Holloway, University of London, UK

pierre-malo.denielou@rhul.ac.uk

Simon J. Gay
School of Computing Science, University of Glasgow, UK

Simon.Gay@glasgow.ac.uk

Nils Gesbert
Université Grenoble Alpes, France

nils.gesbert@grenoble-inp.fr

Elena Giachino
Università di Bologna, Italy / INRIA, France

elena.giachino@unibo.it

Raymond Hu
Department of Computing, Imperial College London, UK

raymond.hu05@imperial.ac.uk

Einar Broch Johnsen
Institutt for informatikk, Universitetet i Oslo, Norway

einarj@ifi.uio.no

Francisco Martins
LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

fmartins@di.fc.ul.pt

Viviana Mascardi
DIBRIS, Università di Genova, Italy

viviana.mascardi@unige.it

Fabrizio Montesi
University of Southern Denmark

fmontesi@imada.sdu.dk

Rumyana Neykova
Department of Computing, Imperial College London, UK

rumyana.neykova10@imperial.ac.uk

Nicholas Ng
Department of Computing, Imperial College London, UK

nickng@imperial.ac.uk

Luca Padovani
Dipartimento di Informatica, Università di Torino, Italy

luca.padovani@di.unito.it

Vasco T. Vasconcelos
LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

vv@di.fc.ul.pt

Nobuko Yoshida
Department of Computing, Imperial College London, UK

n.yoshida@imperial.ac.uk

Contents

Contents iv

1 Introduction 2

2 Object-Oriented Languages 11
2.1 Session Types in Core Object-Oriented Languages . . . 12
2.2 Behavioral Types in Java-like Languages 27
2.3 Typestate . 41
2.4 Related Work . 45

3 Functional Languages 47
3.1 Effects for Session Type Checking 48
3.2 Sessions and Explicit Continuations 50
3.3 Monadic Approaches to Session Type Checking 51
3.4 Related Work . 55

4 High-Performance Message-Passing Systems 56
4.1 Session C . 61
4.2 Deductive Verification of C+MPI Code 63
4.3 MPI Code Generation 67
4.4 Related Work . 67

iv

Contents v

5 Multiagent Systems 69
5.1 Global Types for MAS Monitoring 70
5.2 Advanced Constructs for Protocol Specification 75
5.3 Related Work . 79

6 Singularity OS 81
6.1 Channel Contracts in Sing# 81
6.2 Behavioral Types for Memory Leak Prevention 86
6.3 Related Work . 88

7 Web Services 90
7.1 Behavioral Interfaces for Web Services 90
7.2 Languages for Service Composition 92
7.3 Abstract Service Descriptions and Behavioral Contracts 95
7.4 Related Work . 99

8 Choreographies 101
8.1 Choreography Programming Languages 102
8.2 Scribble . 108
8.3 Related Work . 118

References 123

Abstract

A recent trend in programming language research is to use behav-
ioral type theory to ensure various correctness properties of large-
scale, communication-intensive systems. Behavioral types encompass
concepts such as interfaces, communication protocols, contracts, and
choreography. The successful application of behavioral types requires
a solid understanding of several practical aspects, from their represen-
tation in a concrete programming language, to their integration with
other programming constructs such as methods and functions, to de-
sign and monitoring methodologies that take behaviors into account.
This survey provides an overview of the state of the art of these aspects,
which we summarize as the pragmatics of behavioral types.

Introduction

Modern society is increasingly dependent on large-scale software sys-
tems that are distributed, collaborative and communication-centered.
Correctness and reliability of such systems depend on compatibility
between components and services that are newly developed or may al-
ready exist. The consequences of failure are severe, including security
breaches and unavailability of essential services. Current software de-
velopment technology is not well suited to producing these large-scale
systems, because of the lack of high-level structuring abstractions for
complex communication behavior.

A recent trend in current research is to use behavioral type the-
ory as the basis for new foundations, programming languages, and
software development methods for communication-intensive distributed
systems. Behavioral type theory encompasses concepts such as inter-
faces, communication protocols, contracts, and choreography. Roughly
speaking, a behavioral type describes a software entity, such as an ob-
ject, a communication channel, or a Web Service, in terms of the se-
quences of operations that allow for a correct interaction among the
involved entities. The precise notions of “operations” and of “correct
interaction” are very much context-dependent. Typical examples of op-

2

3

Customer Agency
s

String

Double

re
pe

at

ACCEPT

Address

Date

REJECT

ch
oi

ce

s

Figure 1.1: Graphical representation of the Customer-Agency protocol.

erations are invoking a method on an object, connecting a client with
a Web Service in a distributed system, sending a message between
cores in a parallel program. The notion of correct interaction may en-
compass both safety properties (such as the communication of valid
method arguments, the absence of communication errors, the absence
of deadlocks) as well as liveness properties (such as the eventual receipt
of a message or the eventual termination of an interaction).

To illustrate some paradigmatic aspects of behavioral type theory
more concretely, consider the diagram in Figure 1.1 depicting the in-
teraction between two entities, named Customer and Agency. In this
diagram, the horizontal lines represent interaction events between the
two entities and the vertical lines represent their temporal ordering.
The s-labeled line at the top of the diagram denotes the establishment
of a connection between the two entities and the definition of an inter-
action scope that is often called session. The identifier s distinguishes
this particular session from others (not depicted) in which Customer
and Agency may be involved. We can think of s as the name of a com-
munication channel that is known only to Customer and Agency. The
proper interaction consists of two phases: the first one, marked as “re-
peat” in the figure, is made of an unbound number of queries issued by
a Customer who is planning a trip through a travel Agency. Each query

4

includes the journey details, abstracted as a message of type String, to
which the Agency answers with the price of the journey, represented
as a message of type Double. In the second phase, marked as “choice”,
Customer decides whether to book one of the journeys, which it signals
by sending either an ACCEPT message followed by the Address to which
the physical documents related to the journey should be delivered at
some Date estimated by Agency, or a REJECT message that simply ter-
minates the interaction. Arrows in the diagram denote the direction of
messages. The discontinuity in the vertical development of the protocol
suggests that the sub-protocols beginning with the ACCEPT and REJECT
messages are mutually exclusive, the decision being taken by Customer.
Eventually, the interaction between Customer and Agency terminates
and the session that connects them is closed. This is denoted by the
s-labeled line at the bottom of the diagram. In summary, the diagram
describes a communication protocol between Customer and Agency as
a set of valid sequences of interactions. Making sure that some piece
of code modeling either Customer or Agency adheres to this protocol
is among the purposes of behavioral type systems, and the technical
instrument through which this is accomplished is behavioral types.

In the setting of typed programming languages, the challenge posed
by describing a channel like s with a type is that the same entity s is
used for exchanging messages of different types (labels such as ACCEPT
and REJECT, integers, strings, floating-point numbers, dates, etc.) at dif-
ferent times and traveling in different directions (both Customer and
Agency send and receive messages on s). Therefore, it is not obvious
which unique type should be given to a channel like s or, equivalently,
to the functions/methods for using it. The solution adopted in conven-
tional (i.e., non-behavioral) type systems, and that is found in virtually
all mainstream programming languages used today, is to declare that
communication channels like s can be used for exchanging “raw” mes-
sages in the form of byte arrays or strings. It is up to the programmer
to appropriately marshal data into such raw messages before trans-
mission and correspondingly unmarshal raw messages into data when
they reach their destination. In Java, for instance, the InputStream
and OutputStream interfaces and related ones provide read and write

5

methods that respectively read data from a stream to a byte array
and write data from a byte array to a stream. The main shortcoming
of this approach is that it jeopardizes all the benefits and guarantees
provided by the type system: such lax typing of channels and of the op-
erations for using them provides no guarantee that the (un)marshalled
data has the expected type, nor does it guarantee that messages flow
along a channel in the direction intended by the protocol. Essentially,
the approach corresponds to using untyped channels and establishes a
border beyond which the type system of the programming language is
no longer in effect. The resulting code is declared well typed by the
compiler, but it may suffer from type-related errors (or other issues,
such as deadlocks) at runtime.

The key idea of a behavioral type theory is to enrich the expres-
siveness of types so that it becomes possible to formally describe the
sequences of messages (informally depicted in Figure 1.1) that are
expected to be exchanged along the communication channel s that
connects Customer and Agency. This type can then be used by a
type checker to verify that the programs implementing Customer and
Agency interact in accordance with the intended communication proto-
col. In fact, we can imagine two different types associated with channel
s, depending on viewpoint we take, that of the Customer or that of the
Agency. If we take the first viewpoint, we can describe s with a type T
defined as

T =
⊕

QUERY : !String.?Double.T
ACCEPT : !String.?Date.end
REJECT : end

where:

• The symbol
⊕

denotes a choice of possible behaviors that Cus-
tomer can attain to, each choice being represented by a symbolic
label. In this case, the possible behaviors for Customer are query-
ing the Agency (label QUERY), accepting an offer from the Agency
(label ACCEPT), or quitting the interaction (label REJECT).

• The punctuation marks ! and ? respectively prefix the type of
messages sent (String) and received (Double and Date) by Cus-

6

tomer. With these annotations, we can specify the intended di-
rection of messages.

• The punctuation marks : and . represent the sequentiality of ac-
tions described by the type. In this case, a Customer that queries
an Agency must first send a message of type String and then wait
for a message of type Double. With these annotations, we can
specify how the capabilities of the channel change as the channel
is used for input/output operations.

• The occurrence of T on the right hand side of the equation in-
dicates that T is a recursive type, therefore allowing for an un-
bounded number of queries from Customer to Agency. This makes
it possible to specify recursive protocols.

• end marks the points in which the interaction between Customer
and Agency terminates and no more messages are supposed to
be exchanged.

If we take the Agency viewpoint, it is reasonable to expect that the
type of s should express complementary behaviors: the Agency offers
choices when Customer selects one, the Agency receives a message when
the Customer sends one, and vice versa. Customer and Agency should
also agree on the moments in which the interaction terminates. This
relation between the behaviors of Customer and Agency can be formal-
ized as a notion of duality between the two types of s. In particular,
the dual of T is the type S defined as

S =
∑

QUERY : ?String.!Double.S
ACCEPT : ?String.!Date.end
REJECT : end

obtained from T by swapping choices

⊕
with offers

∑
, inputs ? with

outputs !, and leaving end unchanged. Now, checking that Customer
and Agency use the respective ends of s according to T and S makes
sure that choices and offers match and messages of the right type are
exchanged at the right time. In summary, that Customer and Agency
interact correctly.

7

The successful application of behavioral types to the development
of reliable, large-scale software requires both the study of formal type
theories but also understanding and addressing more practical aspects,
including the representation of behavioral types such as T and S in
a concrete programming language, the integration of behavioral type
checking with other programming constructs like methods and func-
tions, and also design methodologies that take behaviors into account.
The aim of this survey is to provide a first comprehensive overview
of the state of the art of these aspects, which we may summarize as
the pragmatics of behavioral types. The survey is structured as a se-
ries of chapters, each covering a particular programming paradigm or
methodology. Below is an account of the content of each chapter:
• Chapter 2 is devoted to the integration of behavioral types into
Object-Oriented languages. Object-oriented languages are rele-
vant for their widespread adoption in the current development of
software, for the wealth and popularity of tools that are avail-
able, and because objects nicely fit a distribution model to which
behavioral types can be applied naturally. The integration can
be achieved in different ways: either by enriching the languages
with constructs (in particular, sessions) that call for a correspond-
ing extension at the type level, or by amalgamating sessions and
objects to the point that the objects themselves become the enti-
ties for which a behavioral description is required, for example to
specify the order in which methods must/can be invoked. We also
survey a parallel, but related line of research concerning typestate.
This concept, originally introduced for discriminating the state
of imperative variables (uninitialized, initialized, finalized), finds
a natural application to describing object protocols and has been
recently converging to behavioral typing.

• Chapter 3 explores the integration of behavioral types within
functional languages. Functional languages are relevant for their
qualities of being easily endowed with high-level type-theoretic
and concurrent extensions, for their natural support to paral-
lelism, and since they permit rapid prototyping. We survey three
different approaches, one akin to an effect system, one based on

8

explicit continuation passing, and one based on monads. Besides
providing an out-of-the-box application of behavioral types to
a concrete programming language, the continuation-based and
monadic approaches can take advantage of the type inference en-
gine of the language so that the programmer is not required to
explicitly write (or annotate programs with) behavioral types,
which can be automatically reconstructed from the source code
of the program.

• High-performance computing often relies on parallel processes
that synchronize by means of message passing. Chapter 4 de-
scribes the use of behavioral types in conjunction with Message
Passing Interface (MPI) which is the de facto standard API for
high-performance computing. Also in this case, behavioral types
provide an effective means for making sure that communications
occur without errors. We survey three alternative approaches
making use of behavioral types in this context: one based on
higher-level structuring abstractions, one based on source code
verification, and one based on source code generation.

• Chapter 5 describes an application of behavioral types to multi-
agent systems. The latter have been proved to be an industrial-
strength technology for integrating and coordinating autonomous
and heterogeneous entities in open systems. In this setting, the
possibility of formally describing interaction protocols in the form
of behavioral types enables forms of runtime monitoring for multi-
agent systems.

• Chapter 6 provides an overview of the use of behavioral types in
Singularity OS, a prototype Operating System developed by Mi-
crosoft that adopts communication as the fundamental and only
synchronization mechanism between processes. Sing#, the pro-
gramming language used for the implementation of Singularity
OS, is an extension of C# that comprises both object-oriented
and functional constructs and provides a native notion of chan-
nel contract, a form of behavioral type. The formal investigation
of behavioral types in this setting has led to the discovery of un-

9

forseen system configurations that yield memory leaks and to the
development of refined behavioral type theories preventing them.

• The WSDL and UDDI standards are technologies currently en-
abling the description of Web Service interfaces and the creation
of Web Service repositories. Chapter 7 explores the potential of
behavioral types, intended as abstract descriptions of Web Ser-
vice behaviors, as natural generalizations of WSDL interfaces to
realize sophisticated forms discovering, composition, and orches-
tration of Web Services.

• Chapter 8 illustrates the design-by-contract methodology for the
development of possibly distributed, communicating systems. Ac-
cording to this methodology, behavioral types are used for de-
scribing, from a vantage point of view, the topology of the com-
munication network, the communications that are supposed to
occur, and in which order. Such global specifications serve multi-
ple purposes: they are a valuable form of abstract specification of
the overall behavior of a distributed system; they can be projected
for describing the local behavior of the network participants to
allow the modular type checking of complex systems; they enable
the generation of monitors to verify, at runtime, that the partici-
pants of a heterogeneous distributed system behave as expected,
even if only some or none of them have been type checked against
their supposed or claimed behavior.

Overall, the survey provides substantial evidence that behavioral
types have sprinkled a remarkable interest in the research community
concerned with programming languages. The adoption of behavioral
types beside the academic context proceeds more slowly, but nonethe-
less there are encouraging signals. As a matter of fact, it is known
that programming languages tend to evolve slowly, especially when it
comes to the integration of sophisticated typing disciplines. In this re-
spect, approaches that rely on the encoding of behavioral types using
conventional type constructors (§3.3), that allow for the verification of
existing code (§4.2), or the type-driven generation of runtime monitors
(Chapters 5 and 8), enable developers to fill the gap between theory

10

and practice of behavioral typing with little or no changes to their
programming environment and development workflow. The survey also
contains pointers to industrial projects in which behavioral types al-
ready play a key role: the Ocean Observatories Initiative, which aims
at the realization of a planetary-scale network for the trasmission of
environmental data (§8.2), and the programming language Sing#, de-
veloped by Microsoft, which offers behavioral types as a native and key
feature (Chapter 6). These early examples of industrial applications of
behavioral types indirectly hint at their effectiveness in supporting the
development of complex, large-scale systems for which correctness and
reliability guarantees are of paramount importance.

Object-Oriented Languages

Research on behavioral types for object-oriented languages has devel-
oped along two parallel lines. The first line originated from the ses-
sion types community, with the aim of transferring types of the form
described in §1 from process calculi to mainstream programming lan-
guages. The second line is the evolution of the concept of typestate,
which uses type-theoretic ideas to specify and check the order in which
operations are applied to objects. Session types can be seen as a special
case of typestate, in which the ordered operations are the sends and
receives on communication channels.

This chapter is organized into three parts. §2.1 describes theoreti-
cal work that adds communication channels and session types to core
object-oriented calculi. §2.2 describes work that, as well as establish-
ing theory, implements session types in extensions of Java. Some of this
work, for example the Mungo and Mool languages, establishes a general
typestate setting in which communication operations are treated in the
same way as other methods. The distinctive aspect of these languages,
in relation to other work on typestate, is that the constraints on the
order of method calls on an object are expressed by an automaton-like
session instead of by separate pre- and post-conditions for the methods.

11

12

§2.3 describes the evolution of typestate in its general sense, indepen-
dently of communication.

2.1 Session Types in Core Object-Oriented Languages

The wide adoption of object-oriented paradigm for writing modern ap-
plications is the reason that motivates the research efforts towards in-
tegrating session types and session-oriented programming with object-
oriented programming.

Object-oriented programs based on communication are imple-
mented using sockets or remote method invocation primitives (as Java
RMI or C] remoting). The former approach uses an abstraction of an
untyped communication channel, therefore a great amount of dynamic
checks of types is needed to ensure type safety of the exchanged data.
The latter approach has the advantages of a standard method invoca-
tion in a distributed environment, which requires a method to be used
according to its signature, but it suffers lack of flexibility to describe
patterns of interaction that provide bidirectional message exchanges
from both communication parties, interleaved by local computations.

Sessions and session types are then a good answer to the limitations
of the previous approaches, taking into account the aim of writing con-
current and distributed applications with a better and, consequently,
more solid structure.

The integration of session types into the object-oriented paradigms
can be pursued:

• by extending standard object-oriented languages with ad-
hoc primitives for session-based communication, as in lan-
guages Moose [Dezani-Ciancaglini et al., 2005, 2006, 2009],
Moose<: [Dezani-Ciancaglini et al., 2007], and AMoose [Coppo
et al., 2007].

• by amalgamating standard object-oriented methods and ses-
sions in a unique, more expressive, construct, as in languages
Stoop [Drossopoulou et al., 2007], SAMg [Capecchi et al., 2009],
and SAM∨ [Bettini et al., 2008a, 2013].

2.1. Session Types in Core Object-Oriented Languages 13

class Customer {
Address addr;
double price;
bool loop := true;
void buy(String journeyPref, double maxPrice) {

connect c1 placeOrder {
c1.sendWhile (loop) {

c1.send(journeyPref);
price := c1.receive;
loop := evalOffer(journeyPref,price);
/* implementation of evalOffer omitted */

}
c1.sendIf(price <= maxPrice) {

c1.send(addr);
Date date := c1.receive;

}{
null; /* customer rejects price, end of protocol */

}
} /* End connect */

} /* End method buy */

Figure 2.1: The class Customer.

2.1.1 Moose dialects

Moose (Multi-threaded Object-Oriented calculus with Sessions) is the
result of the embedding session types into object-oriented languages.
Moose is a multi-threaded language with session types, thread spawn-
ing, iterative and higher-order sessions. Its design aims at consistently
integrating the object-oriented programming style and sessions, and to
treat various case studies from the literature.

Simple Communications: Value Sending/Receiving. Two parties
may start communicating, provided the types attached to that com-
munication —i.e., the corresponding session types— are dual of each
other. Then, the type system is able to ensure soundness, in the sense
that two communicating partners are guaranteed to receive/send se-
quences of values following the order specified by their session types.

14

Let us consider the example of a travel purchase, taken from Hu
et al. [2008], involving a customer, an agency, and a travel service. The
code of the customer is as in Figure 2.1. The class Customer contains
a method buy for the purchase of a travel ticket according to the pa-
rameters journeyPreferences and maxPrice. The body of the method
contains a connect request, which specifies a channel c1, a session type
placeOrder and a block of instructions to be executed whenever the
connection will be established. The session type of the connection is

session placeOrder = begin.!<!String.?double>*.
!<!Address.?Date.end,end>

The code of a compatible agency is as in Figure 2.2. The class Agency
contains a method requestEq(Int m1, Int m2). When the method is
called, the connect on the channel c1 with session type acceptOrder is
executed and if another object is trying to connect on the same channel
c1 with a dual session type, then the connection will be established.
The session type of the connection is

session acceptOrder = begin.?<?String.!double>*.
?<?Address.!Date.end,end>

Let us now consider the following program fragment, which illus-
trates a communication between a customer and an agency:

spawn(new Customer.buy("London to Paris",300));
new Agency.sell()

The spawn expression triggers the execution of its body into a new
parallel thread, so that the program evolves to

new Agency.sell() ‖ new Customer.buy("London to Paris",300)

that is the parallel composition of two threads, respectively modeling
the agency and the customer.

At this point two new objects are created, which are instances of
classes Agency and Customer, respectively, and the two methods can
be invoked on the corresponding receiver object. Notice that the for-
mal parameter journeyPref is now replaced with the actual parameter
"London to Paris":

2.1. Session Types in Core Object-Oriented Languages 15

class Agency {
String journeyPref;
void sell() {

connect c1 acceptOrder {
c1.receiveWhile {

journeyPref := c1.receive;
double price := getPrice(journeyPref);
/* implementation of getPrice omitted */
c1.send(price);

}
c1.receiveIf { // buyer accepts price

JourneyDetails journeyDetails := new JourneyDetails();
spawn {

connect c2 delegateOrderSession {
c2.send(journeyDetails);
c2.sendS(c1);

}
}

}{ null; /* receiveIf : buyer rejects */ }
} /* End connect */

} /* End method sell */
}

Figure 2.2: The class Agency.

class Service {
void delivery() {

connect c2 receiveOrderSession {
JourneyDetails journeyDetails := c2.receive;
c2.receiveS(x) {

Address custAddress := x.receive;
Date date := new Date();
x.send(date);

}
} /* End connect */

} /* End method delivery */
}

Figure 2.3: The class Service.

16

connect c1 placeOrder {
· · ·
c1.send("London to Paris");
price := c1.receive; · · ·}

connect c1 acceptOrder {
· · ·
journeyPref := c1.receive;
c1.send(price); · · ·}

Now we have two parallel threads, both trying to connect on the
same channel c1. Since they expose dual session types, namely they in
complementary ways, the connection is allowed. For guaranteeing the
privacy of the communication, after the connection is established, a
new private channel is created and used for the actual communications,
instead of the connection channel c1.

At this point the exchange of data can begin.

Choices. Choices in Moose are modeled with the following con-
structs

• c.sendIf(e){e1}{e2}: where first the boolean expression e is eval-
uated, then its result is sent through channel c. If the value of e
is true, it continues with e1, otherwise with e2;

• c.receiveIf{e1}{e2}: receives a boolean value via channel c, and
if it is true then it continues with e1, otherwise with e2;

Similar constructs are used to model iterations: c.sendWhile(e){e1}
and c.receiveWhile{e1}, where the evaluation of e1 is repeated as long
as the value of e is true.

In Figures 2.1 and 2.2 we can see both these constructs in use. No-
tice that in the original protocol (cf Figure 1.1) the choice is modeled
with a label-based construct, so that the two branches are labeled with
specific ACCEPT and REJECT labels, and the Customer chooses one
branch or the other by sending the corresponding label to the Agency,
while in Figure 2.1 the Customer sends just a Boolean value. Further
details on choices are provided in the Peculiarities paragraph below.

Delegation. Delegation, namely the act of communicating a channel
as a message, works as in standard session types and it is modeled
through the constructs:

2.1. Session Types in Core Object-Oriented Languages 17

• c.sendS(c1): the channel c1 is sent over c;

• c.receiveS(x){e}: a channel is received from c and bound to x
within the expression e.

In Figure 2.2 the Agency connects to the Service through channel
c2, exposing a session type:

session delegateOrderSession =
begin.!String.!(?Address.!Date.end).end

The delegation of a portion of communication to be held on channel
c1 is performed by means of the command c2.sendS(c1). The Service
by exposing a dual session type:

session acceptOrderSession =
begin.?String.?(?Address.!Date.end).end

is a suitable candidate for accepting the delegated session.
The semantics of delegation is as expected, except that, when the

channel is exchanged, the receiver spawns a new thread to handle the
consumption of the delegated session. This strategy is necessary in
order to avoid deadlocks in the presence of circular paths of session
delegation (see Dezani-Ciancaglini et al. [2009]).

Peculiarities. In Moose, sessions have been added to an object-
oriented language in a way to be as close as possible to the original
π-calculus based sessions. Therefore most of the features are mere adap-
tations of the corresponding ones in session-based process calculi. A few
differences, however, can be noticed. First of all, choices are based on
boolean values instead on labels, in order to be closer to the standard
programming constructs and habits. This feature does not affect ex-
pressivity in any way, since it corresponds to a binary labeled choice:
choices with several branches can be easily encoded as nested binary
choices, at the cost of sending multiple boolean values instead of just
one label.

Other differences are more technical and concern the use of channels
for the connection and communication. In the original calculus of ses-
sions [Yoshida and Vasconcelos, 2007], two parties connect over a public

18

channel, thus the connection construct mentions the public name and
a variable binding the new private name in the scope of the session. In
here there is no such variable. Instead, the new private name replaces
the public name (e.g. c1 in Figure 2.1) in the body of the connection.

Moreover, in Moose there is only one connect primitive, as opposed
to the dual accept/request primitives of the original π-calculus with
sessions [Yoshida and Vasconcelos, 2007]. In Moose the discrimina-
tion of the two endpoints is realized by exploiting the duality of the
associated session types.

Delegation, i.e., the communication of channel names, does not get
along easily with the structural essence of session types. If wrong con-
figurations are allowed, then type preservation under reduction (a prop-
erty also called “subject reduction”) may fail [Yoshida and Vasconcelos,
2007]. Two main solutions have been adopted: one is based on the use
of two different private names, identifying the two endpoints of the
communication; another one is based on the use of just one private
name with the restriction that α-conversion is implicitly performed
ahead of communication. This language does not fall in any of the
two cases, because only one name is actually created at runtime and
it does substitute the public name provided in the program. The type
system ensures type safety by preventing interleaved connections, so
that dangerous configurations cannot occur.

A further aspect, peculiar to the Moose approach, is that a session
must begin and end (or be delegated) within a method, in contrast with
what happens in other approaches. (See, for instance, the “modular
session types” approach of Gay et al. [2015], Kouzapas et al. [2015]
described in §2.2.)

Bounded polymorphism. Pursuing the intent of studying the inte-
gration of session types into a mainstream object-oriented program-
ming language, one cannot ignore the feature of genericity. The nat-
ural course was to study bounded polymorphism for object-oriented
sessions, by following the steps of Gay [2008], where bounded polymor-
phism is included into π-calculus sessions.

Thus, in Dezani-Ciancaglini et al. [2007] the language Moose<: is

2.1. Session Types in Core Object-Oriented Languages 19

presented, which extends Moose with an adapted notion of bounded
polymorphism for session types, inspired by Gay [2008], as a means
of describing the behavior of processes that operate uniformly over all
subtypes of a given type.

For instance, it is possible to express the behavior of a process that
receives an object of a subclass of a given class and then sends back a
value of the same subclass. For example, the following session type

?(X <: Image).!X

specifies the behavior of a process that receives an image in some format
and sends back an image in the same format as the one received. This
behavior matches the one of a process that sends a JPG photo and
expects a JPG photo, or the one of the process that sends a GIF image
and expects back a GIF image.

Therefore a refined notion of duality is needed to correctly deal with
bounded polymorphism, that associates to each session type more than
one dual type.

Progress. Progress is the property that every terminating computa-
tion stops by returning a value (i.e., a result), that is, no computation
may end stuck or deadlocked before it is completed. The paper by
Coppo et al. [2007] gives a type system assuring progress for AMoose,
an asynchronous variant of Moose.

2.1.2 Stoop dialects

In both Moose and its variants, sessions were added to the object-
oriented language as an orthogonal feature. However sessions and meth-
ods show related, though different, features and this observation sug-
gests that both could be derived from a more general notion of session
associated to an object. Drossopoulou et al. [2007] propose a language
that amalgamates the notion of session-based communication with the
one of object-oriented programming. The approach is called Stoop
(Session Types and Object-Oriented Programming). Stoop is only a
core programming language in the sense that it is only concerned with
the amalgamation of the object-oriented and the session paradigms,

20

“traditional” “traditional” “amalgamated”
session method session/method

request on a thread an object an object
execution threads reach immediately immediately
starts when certain point
executed the rest of determined by determined by
body is the thread the class of the class of

the receiver the receiver
execution concurrent same thread concurrent

communication any direction n-inputs then any direction
interleaved with computation interleaved with
computations then one output computations

Table 2.1: “Traditional” sessions, “traditional” methods, and “amalgamated” ses-
sions/methods.

but is agnostic about issues that concern synchronization, distribution,
copying of values across local heaps etc..

Stoop drives the amalgamation quite far, by unifying sessions and
methods, and by basing the choices of alternative paths in communi-
cations on the object being sent or received [Dezani-Ciancaglini et al.,
2007] rather than on labels, as in traditional session types. Stoop in-
cludes a rather general form of delegation, even if sessions are not higher
order, that is, sessions cannot communicate sessions, a common feature
in many session calculi.

The rationale of the method-session amalgamation The fundamen-
tal idea at the basis of the Stoop language is to amalgamate sessions
and methods in one construct and it arises mostly from two observa-
tions:

1. sessions and methods share similar features; and

2. the integration of sessions and methods reflects well the intuition
of a service.

This amalgamation comes out to be a very natural approach in
an object-oriented setting: the abstractions provided by the object-

2.1. Session Types in Core Object-Oriented Languages 21

oriented paradigm are much more intuitive than the ones of other
paradigms, supporting a more direct translation of the real problems
that have to be resolved into the correspondent models. The running
programs are objects, that come to life in a virtual world where they
actively participate to a common goal, where each party carries out its
own tasks, cooperating with the others through a reciprocal message
exchange, that is exactly the essence of the object-oriented computa-
tion.

The notion of communication is already implied in the object-
oriented paradigm and, from this point of view, sessions do not in-
troduce any innovation: the immediate encoding of methods through
sessions, that could be seen simply as a generalization of methods, will
be a confirmation of this.

In Table 2.1, we compare “traditional” sessions and “traditional”
methods from object-oriented languages with the “amalgamated” ses-
sion/methods of Stoop.

Sessions are invoked on threads in a manner similar to Ada’s rendez-
vous, and execution starts when two threads reach a certain point in
their execution, where they can “serve” the session. The computation
proceeds by executing in parallel the code of both threads. Sessions
allow communication of any number of objects in any direction.

On the other hand, methods are invoked on an object, the body to
run is defined in the class of the receiving object, execution is immedi-
ate and sequential, and it supports any number of inputs, followed by
computation, followed by one output.

Stoop proposes “amalgamated” sessions/methods, which, for
brevity, we shall call sessions from now on. Invocation takes place on
an object, for instance a customer asks to withdraw money from a
particular ATM machine, and execution of the corresponding session
takes place immediately and concurrently with the requesting thread.
The body is defined in the class of the receiving object, for instance
the body of the withdraw session is defined in the ATM class, and any
number of communications interleaved with computation is possible.
Moreover no explicit mention of communication channels is required at
source code level.

22

class Customer {
Address addr;
double price, maxPrice;
bool loop := true;
String journeyPref;
new Agency.sell {

sendWhile (loop) {
send(journeyPref);
price := receive;
loop := evalOffer(journeyPref,price);
// implementation of evalOffer omitted

};
sendCase(evalPrice(price,maxPrice)) {

ACCEPT . send(addr); Date date := receive;
REJECT . null; /* customer rejects price,

end of protocol */ }
} /* End method invocation */

Figure 2.4: The class Customer.

Simple Communications: Value Sending/Receiving Let us see how
the ticket purchase example can be written in Stoop. The code of the
Customer is listed in Figure 2.4. Notice that the code does not specify
any channel. In Stoop all the channels are private and created at
runtime.

In Stoop session invocations have a body that will be executed in
parallel with the body of the session requested. The two bodies must
have dual session types. This is checked at compile time, not at runtime
as in Moose.

To understand how communication works in Stoop, let us consider
the following invocation:

new Agency.sell {
...
send("London to Paris");
price := receive;
...

};

A new object of class Agency is created and a new thread is spawned

2.1. Session Types in Core Object-Oriented Languages 23

class Agency {
String journeyPref;
void acceptOrder sell {

receiveWhile {
journeyPref := receive;
double price := getPrice(journeyPref);
// implementation of getPrice omitted
send(price);

}
receiveCase (x) { // buyer accepts price

ACCEPT . new Service • orderDelivery { } ,
REJECT . null;/* receiveCase : buyer rejects */ }

} /* End method sell */
}

Figure 2.5: The class Agency.

class Service {
void receiveOrderSession orderDelivery() {

Address custAddress := receive;
Date date := new Date();
send(date);

}
}

Figure 2.6: The class Service.

24

in order to execute the body of the session. A pair of new private chan-
nels k and k̃ is created, which correspond to the two end points of
the same private channel: they have dual session types. Every com-
munication expression (send and receive) is now prefixed with a new
channel, so that the program reduces to a configuration consisting of
the following two threads running in parallel:

· · ·
k.send("London to Paris");
price := k.receive;
· · ·

· · ·
journeyPref := k̃.receive;
· · ·
k̃.send(price);
· · ·

At the same time, two initially empty queues are created in the
heap and associated with the two channels. The queues store messages
that have been communicated but not yet read by the receiving party.

The communication begins with k.send("London to Paris") and
the value is put in the queue associated to the channel k̃, dual of the
channel the value was sent over.

The communication is asynchronous, so the value may not be read
right away by the partner. The residual program configuration becomes:

price := k.receive;
· · ·

· · ·
journeyPref := k̃.receive;
· · ·
k̃.send(price);
· · ·

Now the result can be read from the queue and stored into the
field journeyPref. The queues associated to the channels ensure that
messages are read in the same order they were sent.

Choices Choices are dealt with constructs similar to the one in
Moose, except that the choice is based on the class of the exchanged
object:

• sendCase(e){Ci Bei}i∈I first evaluates expression e to an object
and, depending the class Ci of such object, proceeds as ei;

2.1. Session Types in Core Object-Oriented Languages 25

• receiveCase(x){Ci Bei}i∈I receives an object and continues with
ei if the class of the object is Ci.

The type system guarantees that the class of the exchanged object is
one of the Ci.

Similar constructs of the form sendWhile(e){Ci Bei}i∈I and
receiveWhile(x){Ci Bei}i∈I are used to model iterations. In these con-
structs, a special variable cont occurring in some of the ei causes the
iteration to start anew.

Delegation. The delegation in Stoop works in a quite different way
than in traditional languages with sessions. It is not modeled by the
exchange of a private channel, instead it uses a new construct:

e•s{ },

that means that the delegating object requests the session s in the class
of the expression e to take temporarily the control of the communica-
tion with its partner.

We can see an instance of delegation in Figure 2.5, where the session
is being delegated to a new Service: in the class in Figure 2.5 we see a
delegation request to the session offerDelivery of Service.

That code is executed if the Customer accepts the purchase (sending
to the Agency an object of class ACCEPT). Then the corresponding branch
is selected and the runtime configuration is as follows (on the right we
have the code of the Customer and on left the one of the Agency):

k.send(addr);
Date date := k.receive;

new Service•orderDelivery { }

The Customer sends its address on channel k but the Agency is not
set up to receive it. Instead, it delegates that part of the communication
to a delivery Service. A new object is created, and the code of the
session orderDelivery is retrieved and all the send/receive instructions
are decorated with the private channel of the delegator object, namely
channel k̃.

26

Date date := k.receive;
Address custAddress := k̃.receive;
Date date := new Date();
k̃.send(date);

After the delegated code is executed, the control returns back to the
delegator object, and the communication goes on as expected between
the two original partners. In this case no further communication is
expected and the session ends.

Union types. Choices based on the exchanged object, which are pe-
culiar to the Stoop approach, have the advantage to be more object
oriented, thus the choice may be better integrated within the program.
However, in many cases the particular object needed for the selection
has to be expressly created for the purpose of the choice, thus treating
objects as mere labels. With union types it is possible to express com-
munications between parties which manipulate heterogeneous objects
just by sending and receiving objects which belong to subclasses of one
of the classes in the union. In this way the flexibility of object-oriented
depth-subtyping is enhanced, by strongly improving the expressiveness
of choices based on the classes of sent/received objects. In Bettini et al.
[2008a, 2013] the use of union types for session-centered communica-
tions is formalized for SAM∨, a core object-oriented language based on
the Stoop approach.

Union types represent the least common supertype of all the types
Ti forming the union

∨
i∈I T. In object-oriented programming this is a

useful way to enhance subtyping beyond the inheritance relation: two
classes used in similar contexts, but placed apart in the class hierarchy,
can have a common meaningful supertype. For example, let us consider
the session type

!(NoMoney ∨ OK)

that describes the behavior of a process representing a bank that an-
swers yes or no to a seller that wants to check the money availability
of a client—where yes and no are objects of classes OK and NoMoney,
respectively. Without union types, a superclass of both OK and NoMoney
would be required: this superclass would allow the sending of objects

2.2. Behavioral Types in Java-like Languages 27

of unrelated classes w.r.t OK and NoMoney.

Generic types. Analogously to the work done for Moose, also in
Stoop the integration of polymorphism and session types has been
studied. In Capecchi et al. [2009] the adoption of generic types for
session-centered communications is formalized for SAMg, a core object-
oriented language based on the Stoop approach.

The use of generic types allows the code to be typed “generically”,
using variables instead of actual types, guaranteeing uniform behavior
on a range of types. In an object-oriented language this corresponds to
having parameterized classes and methods.

For instance, let reconsider the bounded polymorphism example
shown before. We had a service with a behavior ?(X <: Image).!X that
could interact with a client behaving as prescribed by !JPG.?JPG or with
a client following the protocol represented by the type !GIF.?GIF. At
the language level this means having two different classes of clients
JPGcustomer and GIFcustomer. In the language with generic types
we can implement this two clients with a single parameterized class
Customer〈X extends Image〉, and then instantiate two objects of class
Customer〈JPG〉 and class Customer〈GIF〉.

2.2 Behavioral Types in Java-like Languages

In this section we review attempts to integrate a form of behavioral
types to Java or a Java-like language, usually using a couple of syn-
tax extensions (typically to declare protocols) and some specific typ-
ing rules which are used to check behavior conformance. The features
shared by all of them are: only objects of some specific classes are con-
trolled by the behavioral type system; aliasing is disallowed for these
objects; behavioral type-checking can in principle be implemented as a
first pass before the file is passed to a regular Java compiler; syntactic
extensions are either translated or erased after this pass.

In terms of actual implementation, most of the works presented
here have only had a one-shot proof-of-concept implementation. Ses-
sionJ [SJ] is the largest software project and was developed over several

28

years.
These works draw from two different pre-existing lines of research:

session types for channel-based communication, and type systems for
non-uniform objects.

SessionJ [Hu et al., 2008, 2010, Ng et al., 2011, Alves et al., 2010]
is based on the Moose calculus described in §2.1, with adaptations to
Java and additional features; in this language, session-typed communi-
cation channels are objects of one specific class. Usage of these objects
is strictly controlled whereas objects of other classes are treated as in
plain Java.

On the other side, Yak [Militão, 2008, Militão and Caires, 2009] al-
lows adding a usage protocol to any class, but has no specific construct
for channels or concurrency.

Mungo [Gay et al., 2015, Kouzapas et al., 2015] seeks to integrate
both approaches: all classes can have specified usage protocols, and
communication channels are objects of one specific class. The usage
protocol for the channel class is not fixed: instances of that class are
created by initializing a communication session, and their initial usage
protocol is determined from the associated session type.

Mool [Campos and Vasconcelos, 2010, Mool] has usage protocols
and concurrency, but no explicit channels: message-passing between
threads is done through regular method calls.

We now review SessionJ, Mungo and Mool in more detail. Yak’s
type system is very similar to Mungo’s although the syntax is differ-
ent; the main additional feature it has is handling of exceptions in the
protocols. Mool uses essentially the same types for objects as Mungo,
with the addition of qualifiers to control aliasing. SessionJ and Mungo
are implemented as extensions of the Java language that essentially
add protocol (in the form of session types) declarations. The new dec-
larations have a profound impact on the Java type checking system,
making it difficult to use the standard Java annotations.

2.2.1 Session Java

Session Java (SJ) is a Java extension to support session-typed channels,
developed at Imperial College mainly by Raymond Hu. Several versions

2.2. Behavioral Types in Java-like Languages 29

have been released with increasingly many features, described in several
papers by Hu et al. [2008], Hu et al. [2010], Ng et al. [2011], Alves et al.
[2010].

SJ is an implementation of the core programming language Moose
described in §2.1.1, adapted to be an extension of Java. The syntax of
SJ is very slightly different from that of Moose; the main difference is
that SJ allows labeled branching and not just boolean branching. Thus,
instead of Moose’s sendIf/receiveIf, there is a construct of the form
outbranch(LABEL) {body} to select a particular label and then execute
the body part on the selecting side, and a inbranch/case construct
on the receiving side. The outbranch construct is typically combined
with a regular Java if, a switch/case, or a combination of the two, and
there is no requirement that all choices allowed by the session type are
effectively present. The important part for the type system is that in
every c.outbranch(LABEL) {body} call which appears, body uses channel
c in conformance with the session type associated with label LABEL.

In SJ, a communication channel endpoint is an object of class
SJSocket, which is implemented on top of a TCP socket. Thus, on
the client side, this object is created by connecting to a specific host
and port; on the server side, it is created by listening to a specific port.
If we consider the class Customer of Figure 2.1, its method buy will
start this way in SJ instead of the line connect c1 placeOrder { :

SJServerAddress agency =
SJServerAddress.create(placeOrder, host, port);

SJSocket c1 = SJSocketImpl.create(agency);
c1.request();

(where placeOrder is the session type). Here c1 is seen as a session-
typed channel by the SJ system, which will statically check its correct
usage throughout the method body before compilation; it is seen as an
object of class SJSocket by the Java compiler and runtime. Note that
c1 must be a local variable of the buy method: in Moose and SJ, a
session-typed channel cannot escape the method in which it is created
except by being delegated. Delegation is implemented transparently in
SJ: the SJSocket object embodying the session-typed channel is passed
as argument to the send method of another one. There is no need to

30

distinguish send and sendS thanks to overloading.
As an example of all this, in SJ the sell() method of class Agency

(Figure 2.2) looks like this:
void sell() {

SJServerSocket ss =
SJServerSocketImpl.create(acceptOrder, port);

SJSocket c1 = ss.accept();
c1.inwhile() {

String journeyDetails = s.receive();
// calculate the price
s.send(price);

}
c1.inbranch() {

case ACCEPT: {
SJServerAddress service =

SJServerAddress.create(delegateOrderSession, host, port);
SJSocket c2 = SJSocketImpl.create(service);
c2.request();
c2.send(c1);

}
case REJECT: {}

}

Note that it is also possible for a session channel to be passed as
an argument to a regular method call, so that the remainder of the
session is delegated to another local object rather than to another site.
A method expecting a channel endpoint as argument declares the ex-
pected session type as its argument type (rather than SJSocket).

Additional features. In addition to implementing Moose, SJ imple-
ments several protocols for session delegation, each of which has ad-
vantages and drawbacks depending on the network configuration, and
allows choosing which one to use.

Furthermore, the latest version of the language, called ESJ, com-
bines all the features discussed above with event-driven programming.

2.2.2 Modular session types for objects / Mungo

Gay et al. [2015] present a clean incorporation of session types in a
Java-like language, where sessions control the order in which methods

2.2. Behavioral Types in Java-like Languages 31

are called, but also the choices imposed on clients by virtue of values
returned by methods. Type checking is strictly static and sessions do
not exist in the semantics, thus in practice this can be implemented by a
verification pass on annotated Java source code just before compilation.
Kouzapas et al. [2015] implement these ideas in a language/tool called
Mungo and an associated tool called StMungo which translates channel
session types, expressed in the Scribble language [Honda et al., 2011],
into Mungo object sessions. Mungo is closely based on [Gay et al.,
2015], using a nominal type system.

The aim of this approach to object-oriented session types is modu-
larity. This means that the implementation of a session on a commu-
nication channel can be separated into several methods, each of which
expects the channel to be in a certain state (corresponding to a ses-
sion type) and leaves the channel in another state (corresponding to a
later point in the session type). It follows that such methods cannot be
called in arbitrary orders, and this leads to the concept of a session or
protocol for an object. This generalises the approach of SJ, in which a
session on a channel must be completely implemented within a single
object. In Mungo, channels and their session types are not native. In-
stead, a channel session type is translated into an object protocol that
specifies the allowed sequence of calls of send/receive methods on an
object that encapsulates a channel endpoint. This translation is done
by a separate tool, StMungo.

The combination of Mungo and StMungo can be seen as a unifica-
tion of channel session types with the more general concept of typestate
(§2.3), in which method availability depends on the state of an object.
The distinctive feature of Mungo’s approach to typestate is the use of
session-type-like syntax for constraints on sequences of method calls,
instead of explicit pre- and post-conditions on methods.

In the following, we first show a straightforward adaptation of the
running example, keeping the same structure as for SJ/Moose. We
then show how a class can divide the implementation of the protocol
between several methods.

The translation of channel session types into object session types is
only defined, in the paper, for a language of session types which does

32

not include the while construct (![]* and ?{}*) of SJ and Moose. It is
however possible to encode this while construct into session types with
branching and recursion:
acceptOrder =

&{QUERY: ?[String].![Double].acceptOrder;
ACCEPT: ?[Address].![Date].end;
REJECT: end}

In the Mungo/StMungo methodology, the starting point is a Scrib-
ble global protocol describing the sequences of allowed interactions be-
tween the involved roles (in the example, Agency and Customer):
global protocol Travel(role Agency, role Customer) {

rec Loop {
choice at Customer {

QUERY() from Customer to Agency;
journey(String) from Customer to Agency;
price(Double) from Agency to Customer;
continue Loop;

} or {
ACCEPT() from Customer to Agency;
address(Address) from Customer to Agency;
date(Date) from Agency to Customer;

} or {
REJECT() from Customer to Agency;

}
}

}

The global protocol is projected to give a local protocol for each
role. First is the local protocol for Customer, which corresponds to the
session type acceptOrder.
local protocol Travel(self Agency, role Customer) {

rec Loop {
choice at Customer {

QUERY() from Customer;
journey(String) from Customer;
price(Double) to Customer;
continue Loop;

} or {
ACCEPT() from Customer;
address(Address) from Customer;

2.2. Behavioral Types in Java-like Languages 33

date(Date) to Customer;
} or {

REJECT() from Customer;
}

}
}

StMungo generates an enumerated type definition to represent the
choice labels:

enum ChoiceLabel { QUERY, ACCEPT, REJECT }

and translates the local protocol into the following object session type,
which will be the type of the channel endpoint object once the con-
nection is established. The method names have been simplified here; in
practice they also contain the name of the role that sends the message.
Also, Scribble allows data to be associated with a choice label, mean-
ing that the payload of the next message can be incorporated into the
choice message; for simplicity we do not take advantage of this feature
here.

AcceptOrderSession = {
ChoiceLabel receiveChoice() :

<
QUERY: {String receiveString() :

{void sendDouble(Double) : AcceptOrderEndpoint}};
ACCEPT: {Address receiveAddress() :

{void sendDate(Date) : {}}};
REJECT: {}

>
}

Mungo extends the syntax of Java to allow a class to be linked to
a session:

class AcceptOrderEndpoint typestate AcceptOrderSession { ... }

and the file AcceptOrderSession.mungo contains the definition of
AcceptOrderSession above.

The curly braces in AcceptOrderSession indicate the set of methods
which can be called at a given point when using the object. The angle
brackets indicate a choice point where the client must examine the value

34

returned by the last method call in order to know how to continue using
the object.

AcceptOrderSession is the type the channel object will have when
first created, and states that the only method initially available (there
is only one thing in the outermost curly braces) is receiveChoice().
This method has no arguments and its return type is ChoiceLabel (in
the theoretical calculus [Gay et al., 2015], the type is linkthis) which
means the return value will be a label indicating how to continue us-
ing the object. After the colon, we have, between angle brackets, the
possible return values, each of them associated with a session type.
If the returned value is QUERY then the only method call available
is receiveString(), which will return a String, after which a call to
sendDouble will be possible, with an argument of type Double; this
call will return nothing and the object will get back to session type
AcceptOrderEndpoint.

If the returned value is ACCEPT, then method receiveAddress()
is available. If the return value is REJECT, no method can be called
anymore.

The dual channel session type, on the customer side, is:

placeOrder =
+{QUERY: ![String].?[Double].placeOrder;

ACCEPT: ![Address].?[Date];
REJECT: end}

and this is expressed in Scribble as a local protocol, also obtained from
the global protocol by projection.

local protocol Travel(role Agency, self Customer) {
rec Loop {

choice at Customer {
QUERY() to Agency;
journey(String) to Agency;
price(Double) from Agency;
continue Loop;

} or {
ACCEPT() to Agency;
address(Address) to Agency;
date(Date) from Agency;

} or {

2.2. Behavioral Types in Java-like Languages 35

REJECT() to Agency;
}

}
}

This is translated into an object session type as follows (note that
the duality between the two endpoint types is not obviously visible
anymore), and linked to a class PlaceOrderEndpoint as before.

PlaceOrderSession = {
void sendQUERY():

{void sendString(String):
{Double receiveDouble(): PlaceOrderEndpoint}};

void sendACCEPT():
{void sendAddress(Address): {Date receiveDate(): {}}};

void sendREJECT(): {}
}

The code of the client, without taking advantage of modularity,
could look like:

PlaceOrderEndpoint c = agencyAccesspoint.request();
boolean decided = false;
while(!decided) {

c.sendQUERY();
c.sendString(journeyDetails);
Double cost = c.receiveDouble();
//set decided to true or change details and retry

}
if (want to place an order) {

c.sendACCEPT();
c.sendAddress(address);
Date dispatchDate = c.receiveDate();

} else {
c.sendREJECT();

}

where agencyAccesspoint is a wrapper around a socket connection.
The other endpoint would be obtained by calling accept() on the

same access point, and would have the translation of the channel session
type itself (not its dual), that is, AcceptOrderSession.

36

Delegation. The language described in the paper allows delegation,
like Moose and SJ. However, delegation is not implemented in Mungo;
this would require integrating the SJ runtime system for mobile socket
connections. We show how the code would be written nevertheless, us-
ing the structural type system defined by Gay et al. [2015]. For brevity
we work with channel session types instead of Scribble protocol defini-
tions, and simplify the method names further to send and receive.

Let us suppose a global access point serviceAccessPoint has been
declared with channel session type ?[?[Address].![Date]]. This chan-
nel session type gives the translation:
ReceiveOrderSession = {

{Address receive(): {Null send(Date): {} } } receive(): {}
}

for the accept side: only a call to receive() is pos-
sible and it will return an object with session type
{Address receive(): {Null send(Date): {} } }.

For the request side, the translation of the dual is:
DelegateOrderSession = {

Null send({Address receive(): {Null send(Date): {} } }): {}
}

The code of the agency could look like:
AcceptOrderEndpoint s_ac = agencyAccesspoint.accept();
switch(s_ac.receive()) {

QUERY:
String journeyDetails = s_ac.receive();
// calculate the price
s_ac.send(price);

ACCEPT:
DelegateOrderSession s_as = serviceAccessPoint.request();

s_as.send(s_ac);
REJECT: null;

}

and the code of the service:
ReceiveOrderSession s_sc = serviceAccessPoint.accept();
Address custAddr = s_sc.receive();
s_sc.send(dispatchDate);

2.2. Behavioral Types in Java-like Languages 37

Modularity. Up to now, the code written is very close to the SJ and
Moose examples, despite the type system being different. We now out-
line the definition of a class CustomerWrapper which provides a different
interface to the operations of PlaceOrderEndpoint. This demonstrates
the modularity supported by Mungo.

class CustomerWrapper {
// Session declaration

session
Init = {

void connect(AgencyAccessPoint):
{Double getPrice(String): S}

}
S = {

Double getPrice(String): S;
Date placeOrder(Address): Init;
void cancel(): Init;

}

PlaceOrderEndpoint c;

// Method definitions
void connect(AgencyAccessPoint agency) {

c = agency.request();
}
Double getPrice(String journeyDetails) {

c.sendQUERY();
c.send(journeyDetails);
return(c.receive());

}
Date placeOrder(Address address) {

c.sendACCEPT();
c.send(address);
return(c.receive());

}
void cancel() {

c.sendREJECT();
}

}

The system works by taking the session type of the whole class and
inferring from the method bodies the types the fields will have after

38

each method call. Here the only field initially has a null type because it
is not initialized. Then the first method called must be connect with an
argument type of AgencyAccessPoint. The body of connect is typable
in this context and changes the type of the field to the initial state of
PlaceOrderSession.

Then the session type of CustomerWrapper says that the next method
to be called will always be getPrice with an argument of type String.
The body of getPrice is typechecked knowing that the s_ca field has
type PlaceOrderEndpoint before the call and the type it gets to after-
wards is inferred. This form of checking continues until the session type
of CustomerWrapper terminates or loops.

2.2.3 Mool

With the definition of Mool, Campos and Vasconcelos [2010] extend
modular session types for objects in two ways. (1) Mungo treats com-
munication channels shared by different threads as objects, by hiding
channel primitive operations in an API from where clients can call
methods. Mool eliminates channels in a programming language that
relies on a simpler communication model—message passing in the form
of method calls, both in sequential and concurrent settings. (2) Mungo
deals with linear annotated classes only. Mool deals with linear types
as well as shared ones, treating them in a unified framework.

Classes written in Mool are annotated with a usage descriptor that
structures method invocation, enhanced by lin/un qualifiers for aliasing
control. Mool defines a single category for objects that may evolve from
a linear status into an unrestricted (or shared) one.

Example Taking advantage of objects, the Customer-Agency protocol
can be split over several classes and methods. The interaction takes
place through an object of type Order that the Agency sets up and
returns to the Customer:

class Order {
usage lin init; Sale
where Sale = lin getPrice; lin{accept; end + reject; end};
// the class fields

2.2. Behavioral Types in Java-like Languages 39

Service service; String journeyDetails; double price;
unit init(Service service, String journeyDetails,

double price) {
... // sets field values

}
double getPrice() {

price;
}
Date accept(Address address) {

service.dispatch(journeyDetails, price, address);
}
unit reject() {

// clean up and end the protocol
unit;

}
}

The usage type of class Order defines a sequential composition
of available methods, starting with the linear “constructor” method
init(), and including a choice (given by +) for the caller (a Customer
instance) to accept or reject a journey based on its price. In either case,
the protocol is finished, end being an abbreviation for an unrestricted
empty set of methods. The type system provides crucial information
to object deallocation, enforcing that the type of an Order object is
consumed to the end.

Class Customer receives an object of type Order[Sale] when query-
ing the agency for the journey in method acceptOrder(). The type
says that the object has advanced to a state where getPrice is the
next available method, that is, Order[Sale] abbreviates lin getPrice;
lin{accept; end + reject; end}.

class Customer {
usage lin init; Order
where Order = lin acceptOrder; <getDate; end + Order>;
// the class fields
Agency[Order] agency; Date date;
unit init(Agency[Order] agency) {

this.agency = agency;
}
boolean acceptOrder(String journeyDetails, double maxPrice) {

Order[Sale] order = agency.placeOrder(journeyDetails);

40

if(order.getPrice() <= maxPrice) {
date = order.accept();
true; // return true

} else {
order.reject();
false; // return false

}
}
Date getDate() {

date; // return date
}

}

The usage type defined in class Customer allows an unlimited num-
ber of attempts to book journeys. <getDate; end + Order> denotes
a variant type, indexed by the boolean values returned by method
acceptOrder(). A caller of this method should test the result of the
call: if true is returned the journey was booked, and the next avail-
able method is getDate(), otherwise the interaction can be repeated.
The type for the class guarantees that getDate() always returns an
initialized value (set by method acceptOrder()).

Finally, the Agency usage type makes available the linear “construc-
tor" method init() that sets up the service, after which the usage de-
fines a new state Agency[Order] that abbreviates the recursive branch
type given by *placeOrder. In turn, *placeOrder abbreviates type T
such that T = un placeOrder; T. In state Agency[Order], an Agency in-
stance can be shared by an unrestricted number of customers. Order
objects are then returned to Customer objects to establish the interac-
tion.

class Agency {
usage lin init; Order
where Order = *placeOrder;
// the only field
Service service;
init(Service service) {

this.service = service;
}
Order[Sale] placeOrder(String journeyDetails) {

Order order = new Order();

2.3. Typestate 41

order.init(service, journeyDetails,
getPrice(journeyDetails));

order; // return order
}
double getPrice(String journeyDetails) {

... // implementation omitted
}

}

2.3 Typestate

Whereas the type of an object specifies all operations that can be per-
formed on the object, typestates identify subsets of these operations
that can be performed on the object in particular abstract states. When
an operation is applied to the object, the typestate of the object may
change, thereby dynamically changing the object’s set of permitted op-
erations. A typestate pre-condition must hold for an operation to be
applicable, and a typestate post-condition reflects the possible types-
tates after the operation has been applied. Typestates were introduced
by Strom and Yemini [1986], who applied typestates as abstractions
over the states of data structures to control the initialization of vari-
ables (with the two typestates “uninitialized” and “initialized”) and
defined a static checker for typestates in this context. Another simple
example is that of an object representing a file. The file must be opened
before the “read” operation can be applied. The “close” operation can
be used at any time after opening, but when the file has been closed,
the only available operation is to open it again.

Strom and Yemini observe that although unrestricted aliasing and
concurrency make the static checking of typestates impossible, it is
still possible to apply static checking for controlled concurrency and
dynamic process creation. Much work in the area of typestate concerns
the development of static type systems for alias control.

Fähndrich and DeLine [2002] developed Vault, a typestate-checking
system for an extension of C. Their alias control system is based on an
association between “keys” and “tracked resources”. A resource with
a typestate specification must be tracked, which means that the type

42

system attaches (via an existential type) a unique key to it. Aliases for
the resource can be created freely, but applying a typestate-changing
operation to a resource also requires the correct key; thus the problem
of alias control is transferred to the keys. A system called “adoption
and focus” allows temporary aliases to be created within a local scope
and checks that they are destroyed by the end of the scope. Keys exist
only in the static type system, and are not required at runtime.

Later work by DeLine and Fähndrich [2004] developed Fugue, a
modular verification system for specifying and statically checking type-
state properties for .NET programs. Its innovation was to adapt Strom
and Yemini’s typestates to object-oriented programs. In Fugue, a type-
state is an abstraction over the concrete state of an object; it is speci-
fied by a predicate defined over the fields of the object. This approach
has two main challenges: (1) the actual definition of a typestate de-
pends on the subclass relation, and (2) the typestates must be uni-
form. These challenges are solved in Fugue by frame typestates, which
define the property corresponding to a typestate for each subclass,
and by sliding methods, which ensure that subclasses override meth-
ods of superclasses which change the typestate, such that the change
also applies in the subclass. To address aliasing, Fugue uses the adop-
tion and focus model and distinguish two modes for object references:
NotAliased and MayBeAliased. References which are NotAliased may
become MayBeAliased and the typestate of MayBeAliased objects can-
not change.

The next stage of development of typestate systems was Plural
[Bierhoff and Aldrich, 2007, Beckman et al., 2008]. It is an extension
of Java, implemented as an Eclipse plug-in. For alias control it uses a
system of fractional permissions [Boyland, 2003, 2013] which allows a
single reference to an object, with a certain access permission, to be
split into fractions which are later recombined to restore the full per-
mission. Plural also supports concurrency by means of synchronization
and atomic blocks, and allows typestate specifications to be defined
over collections of interacting objects.

Moving on from Plural, Aldrich et al. [2009] proposed typestate-
oriented programming, with the goal of integrating typestates directly

2.3. Typestate 43

into a new language design instead of adding typestates to the fea-
tures of existing languages. They argue that this approach leads to
a cleaner language design and ultimately to better code. Plaid is an
object-oriented language following this approach, developed by Sun-
shine et al. [2011a,b]. In contrast to Fugue and Plural, the typestates
in Plaid are not predicates over concrete states. Typestates are de-
clared in a way which is very similar to classes. Different typestates
in Plaid may have the same values for the fields of the concrete state,
but the fields of different typestates need not be the same. An object
can change its typestate by means of an assignment, written this <-
NewTypestate(...). This can be seen as a dynamic constructor which
replaces the current object by an instance of NewTypestate (the ar-
guments to the constructor are used to initialize the declared fields
of NewTypestate). To implement the Customer/Agency example, a
Customer could have three different substates, reflecting if it is in the
process of Ordering from an Agency a, if it is Accepting an offer from
the Agency or if it is Rejecting all offers. A Plaid implementation of
such a Customer is given below, using the syntax of Aldrich et al. [2009]
(in more recent papers, the syntax is slightly different):

state Customer {
Agency a;

}

state Ordering extends Customer {

void init () [Ordering >> (Accepting || Rejecting)] {
Double d = getPrice("string"); ... ;
if (good_offer("string",d)){

this<-Accepting(a,"string"); a.accept("string")
} else { this<-Rejecting; a.reject(); }

}
}

state Accepting extends Customer {
String s;
...

}

44

state Rejecting extends Customer {...}

If the client is in typestate Ordering, it can start the session by call-
ing the init method. Note that the internal choice is modeled by a
conditional and that the successful "string" argument is passed to
the Accepting state, to initialize the field s which makes sense in this
state only. The annotation Ordering >> (Accepting || Rejecting)
next to the init method records the fact that the method can be in-
voked only when Customer is in typestate Ordering and that after
the invocation the typestate may have changed to either Accepting or
Rejecting, depending on the internal choice of Customer. This infor-
mation is used by the type checker to verify that methods are invoked
accordingly to the protocol of the receiver object.

Analogously, the Agency could consist of the typestates
OrderSession, Accept, and Reject.

state Agency {
Service service;

}

state OrderSession extends Agency {
Double getPrice(String s){...} // calculate the price

Date accept(Address a) [OrderSession >> Accept] {
this<-Accept;
Session s = service.createSession();
return s.deliveryAddress(a);

}

Void reject() [OrderSession >> Reject] {
this<-Reject;

}
}

state Accept extends Agency {
Double getPrice(String s) [Accept >> OrderSession] {

this<-OrderSession; ... // calculate the price
}

}

state Reject extends Agency {

2.4. Related Work 45

Double getPrice(String s) [Reject >> OrderSession] {
this<-OrderSession; ... // calculate the price

}
}

Here, we see how external choice is captured by different methods. Since
the object can accept any number of getPrice calls when it is in the
typestate OrderSession, this method does not change the typestate.
By introducing the typestates Accept and Reject, calls to the methods
accept and reject must be interleaved with calls to getPrice. To
create a new Session, the Service creates an instance of typestate
Session which accepts calls to the method deliveryAddress. Thus
the accept method of typestate OrderSession can delegate to the
Session object in a standard way.
state Service {

Session createSession(){return new Session();}
}

state Session {
Date deliveryAddress(String s){...}

}

It is also possible to specify that a method changes the typestate of
one of its parameters, by means of annotations similar to those associ-
ated with Customer and Agency classes described above. For example,
below method m calls the reject method on its parameter, resulting
in a typestate change.
void m(OrderSession >> Reject agency) {

agency.reject();
}

2.4 Related Work

The most recent work on typestate-oriented programming [Garcia
et al., 2014] describes the system of access permissions to control alias-
ing. References with full permission have exclusive write access, ref-
erences with shared permission have write access, and references with
pure permission have read-only access. This version of the theory also

46

integrates gradual typing by Siek and Taha [2007], which was first
added to typestate by Wolff et al. [2011]. Gradual typing allows type-
state declarations to be added progressively to a program. Whatever
typestate information is present is used for static checking, and dynamic
checks are inserted by the compiler to verify correct state transitions
and access controls in untyped parts of the program. This approach
supports a progression from a prototype program with many dynamic
checks to a robust version in which almost all typestate properties are
verified statically.

Crafa and Padovani [2015] have discovered intriguing analogies be-
tween typestate-oriented programming and the idiomatic modeling of
objects in the Join Calculus. Following such analogies, they have put
forward the Join Calculus as a formal model for typestate-oriented pro-
gramming in a concurrent setting, whereby objects can be concurrently
accessed and modified by several processes. A behavioral type system
makes sure that objects are used according to their protocol.

Functional Languages

The integration of sessions and of session types in functional languages
poses two main challenges. The first one is independent of the specific
evaluation strategy (either call-by-value or call-by-name) and concerns
the fact that, by their own definition, session types describe entities
(channel endpoints) whose type may change after each usage. This fea-
ture is at odds with the conventional notion of type used in functional
languages, which is meant to statically describe the nature of values.
In particular, an arrow type t→ s describes functions in terms of what
they accept as argument (values of type t) and of what they produce as
result (values of type s), but says nothing on how the function acts on
channels possibly used when the function is applied to an argument.
The second challenge concerns the fact that the call-by-name evalu-
ation strategy adopted in lazy functional languages such as Haskell
makes it difficult to predict the order in which expressions are evalu-
ated. This contrasts with the need to perform input/output operations
over channel endpoints in an order which is precisely determined by
a session type. More generally, this is yet another instance of the re-
curring tension between the need of purity implied by laziness and the
need to perform side-effects in order for a program to be useful.

47

48 Functional Languages

The first challenge has been addressed in three different ways, ei-
ther by drawing direct inspiration from effect systems (§3.1), or by
using explicit continuation for channels (§3.2), or by defining a suit-
able monad for session communications (§3.3). Monads are also useful
for addressing the second challenge, pretty much in the same way the
IO monad in Haskell allows the structuring of programs doing generic
input/output.

3.1 Effects for Session Type Checking

Vasconcelos et al. [2006] have investigated the integration of sessions
into an ML-like language by devising a session type system that keeps
track of the effect of a function on the channel it uses. Like traditional
effect systems, the session type system of [Vasconcelos et al., 2006]
decorates arrow types with information on the “effect” of a function.
Unlike traditional effect systems, in this case the decorations are solely
meant to capture the change in the type of channels passed to the
function, when the function is applied.

As an illustration, we show the modeling of Agency below:
1 agency :: 〈Agency〉a → Unit
2 agency agencyAccess = sell (accept agencyAccess)
3

4 sell :: s : Agency; Chan s → Unit; s : End
5 sell s =
6 case s {
7 QUERY ⇒ let journeyDetails = receive s in
8 send (cost journeyDetails) on s
9 sell s

10 ACCEPT ⇒ let address = receive s in
11 send (date journeyDetails) on s
12 REJECT ⇒ ()
13 }

The type 〈Agency〉a on line 1 indicates that the agency function
takes as argument a shared channel agencyAccess on which it accepts
connections from customers through the accept primitive. The sell
function implements the Agency protocol of the agency by reading and
writing messages on the private session channel s by means of the

3.1. Effects for Session Type Checking 49

send and receive primitives. The case s construct is also related
to communication: it waits for a label from channel s (one of QUERY,
ACCEPT, or REJECT in the example) and evaluates the corresponding
code.

The type of sell on line 4 consists of three parts: an arrow type
Chan s → Unit with two decorations s : Agency and s : End. The
arrow type indicates that sell accepts a channel as argument and re-
turns the unit value, but it also gives a name s to the channel. This
way, the decoration s : Agency before the domain type gives the ex-
pected session type (Agency) of the channel s when the function is
applied, while the decoration s : End after the codomain type gives
the session type (End) of the channel s after the function has returned.
In the example, Agency is a name for the (recursive) session type:

Agency = &〈QUERY: ?String.!Double.Agency,
ACCEPT: ?String.!Date.End,
REJECT: End〉

With this information, the type checker can verify that the body
of sell uses s according to the protocol described by Agency. In par-
ticular, the type checker updates the type of s in accordance with the
operations performed on s. The occurrence of s on line 6 has type
Agency and is used to receiving a label that indicates the operation
chosen by the customer: if the label is QUERY, the channel s is used for
receving a String with the details of the journey (line 7), then to send
back the estimated cost of the journey (line 8), and then recursively
according to the Agency protocol again (line 9); if the label is ACCEPT,
the channel s is used for receiving a String with the customer’s ad-
dress (line 10) and then for sending back the estimated delivery date
(line 11); finally, if the label is REJECT, the interaction with the cus-
tomer terminates (line 12). Observe that the sequences of input/output
operations in sell match those described by Agency and that Agency
indicates that, whenever the function terminates, the session channel
has type End and is not supposed to be used for further operations.

50

3.2 Sessions and Explicit Continuations

Inspired by the observation that channels are linear resources that must
be used exactly once, Gay and Vasconcelos [2010] take a rather different
approach that fits better the conventional type systems, where the type
of an entity does not change. The idea is that a function that takes a
channel as argument consumes the channel and produces a continuation
of the same channel with a possibly different type. Following this style,
the sell function in §3.1 is rewritten thus:

sell :: Agency → End
sell s =

case s {
QUERY ⇒ λs.let (journeyDetails, s) = receive s in

let s = send (cost journeyDetails) s in
sell s

ACCEPT ⇒ λs.let (address, s) = receive s in
let s = send (date journeyDetails) s in
s

REJECT ⇒ λs.s
}

Compared to the previous implementation of sell, we observe two
main differences. At the type level, we note that sell has an ordinary-
looking arrow type with domain Agency and codomain End. In partic-
ular, sell consumes a channel of type Agency and produces a contin-
uation channel of type End. The second main difference concerns the
body of sell, where we observe a series of subsequent rebindings of the
channel s. Indeed, the communication primitives send and receive
consume the channel on which they operate and produce its continua-
tion. Note also that the case construct now expects functions on the
right hand side of⇒’s, which are applied to the continuation of s (next
to the case keyword) after the label has been received.

It should be noted that, despite the multiple rebindings, at runtime
there is just one session channel which is re-used over and over again
after each operation. The rebindings are thus meaningful only at the
type level, allowing each occurrence of s to be associated with a possibly
different type. This is evident looking at the type schemes of send and
receive primitives, shown below:

3.3. Monadic Approaches to Session Type Checking 51

receive :: ?T .S → (T , S)
send :: T → !T .S → S

The type of receive denotes the fact that receive consumes a channel
of type ?T .S and produces a pair made of the message (of type T)
received from the channel and a continuation channel (of type S) on
which the communication may continue. The function send, on the
other hand, takes a message of type T , consumes a channel of type !T .S
by sending the message on it, and produces a continuation channel of
type S.

The mechanisms we have described can be used to keep track of
the type of a channel that is the argument of a function, but not of
the type of free channels that occur within its closure. This problem
emerges with partial application, an idiomatic feature of (most) func-
tional languages. For example, assuming that s’ is a channel of type
T (which is a session type), the partial application

send s’ :: !T .S → S

denotes a function that, when applied to another channel s of type
!T .S, delegates s’ over s and then returns the continuation of s, hav-
ing type S. The problem is that a conventional type system does not
recognize a value of type !T .S → S as a linear value that must be used
exactly once. Therefore, the closure resulting from the partial applica-
tion send s’ might be discarded or used multiple times, compromising
any communication that is supposed to occur on s or, possibly worse,
violating the protocol specified by the session type of s’. To solve this
problem, Gay and Vasconcelos [2010] introduce a linear arrow type (
that denotes functions that must be used exactly once. In particular,
the partial application above is typed thus:

send s’ :: !T .S (S

thereby preventing (the value of) this expression from being discarded
or duplicated.

3.3 Monadic Approaches to Session Type Checking

Support for sessions and session types in Haskell has been investigated
by Neubauer and Thiemann [2004], Pucella and Tov [2008], Imai et al.

52

[2010]. Incorporating primitives for session interaction, which rely on
input/output operations, into a lazy functional language requires spe-
cial care, so that their execution order becomes predictable. Therefore,
all of the mentioned approaches define an appropriate monad (related
to the IO monad) representing computations that may perform ac-
tions in a session. The use of a monad dedicated to session interactions
also addresses the aliasing problem. If session channels were treated as
ordinary Haskell values, and output on the channel were implemented
through a send function with one of the types discussed above, nothing
would prevent the same channel to be used multiple times, violating the
protocol specified in its session type. For example, it could be possible
to evaluate

send 74 c

twice, even if the type of c is !Int.End which allows only one integer
to be sent over c. The monad for session interaction hides the actual
channel from the programmer, and prevents the creation of aliases that
could grant non-linear access to the channel. This makes it possible
to statically enforce affine usage of session channels solely using the
features of Haskell’s type system, which makes no provision for linear
values and, particularly, linear arrow types, which are necessary for
the soundness of the approach described in §3.2. In the specific case of
[Pucella and Tov, 2008], the abstract type

Session st st’ a

denotes an action of the Session monad that transforms a session
channel from type st to type st’, at the same time producing a value
of type a. For instance, receive and send have the polymorphic types

receive :: Session (Cap e (a :?: r)) (Cap e r) a
send :: a → Session (Cap e (a :!: r)) (Cap e r) Unit

which are analogous to the ones we have discussed earlier, except that
there is no explicit argument denoting the channel on which these op-
erations act. The actual channel is encapsulated within the Session
monad, whose definition is private to the library and not accessible to
the programmer. Here, Cap is a phantom type constructor that stores a
type environment e (used for handling recursive protocols) and a proper

3.3. Monadic Approaches to Session Type Checking 53

session type obtained through other type constructors :?: and :!: (for
input and output), :&: and :+: (for binary branches and selections),
and Eps (which plays the same role as End). For instance, a :?: r
and a :!: r are respectively the encodings of the session types ?a.r
and !a.r. The agency server above is coded in Haskell like this (for
the sake of simplicity, we implement a session that accepts exactly one
query from the customer):

agency :: Rendezvous
(String :?: Double :!:

(Eps :&: (String :?: Date :!: Eps))) → IO Unit
agency agencyAccess = accept agencyAccess agencyOnce

agencyOnce :: Session
(Cap e (String :?: Double :!:

(Eps :&: (String :?: Date :!: Eps))))
agencyOnce = do journeyDetails <- receive

send (cost journeyDetails)
offer close

(do address <- receive
send (date journeyDetails)
close)

Note that agencyOnce makes no explicit reference to the session
channel being used, which is instead supplied by accept. In the code,
the basic actions offer and close respectively implement basic con-
structs for session branching and closing.

An analogous technique for avoiding aliasing is used in [Neubauer
and Thiemann, 2004]. Pucella and Tov [2008] describe other extensions,
including the encoding of recursive session types and the interleaving of
multiple channels, and they claim that their encoding of session types
scales without major obstacles to other polymorphic, typed languages
such as ML and Java.

In general, the encodings proposed in [Neubauer and Thiemann,
2004, Pucella and Tov, 2008] produce cumbersome types. Fortunately,
it is possible to take advantage of Haskell’s type inference for inferring
them in most cases. A more advanced session type inference technique
is described by Imai et al. [2010].

A monadic approach is also taken for an integration of multiparty

54

session types into OCaml/F#. This technique has been used for the se-
cure implementation of sessions [Corin et al., 2008, Corin and Deniélou,
2007, Bhargavan et al., 2009] as well as for the study of dynamic mul-
tirole sessions [Deniélou and Yoshida, 2011]. It consists of using a com-
piler that reads a session specification in order to automatically gen-
erate the appropriate monadic session API. As an example, the travel
agency example could be specified as the following protocol between
two roles c (for customer) and a (for agency):
session Travel =

roles c, a
global main =

loop:
choice from c to a {

Journey(string).(Quote (int) from a to c; loop)
| Accept.(Details(string) from c to a;

Address(string) from c to a;
Date(string) from a to c)

| Reject.(RejectS from a to c)
}

Starting from this specification, the compiler can generate a module
with a CPS-API that prevents, by typing, any API user to derail from
the specified behavior. The generated API contains one function per-
role, whose argument must be a well-typed continuation structure. For
example, the API for the agency is:
type result_a = unit
type a_start = a_2
and a_2 = { hJourney : string → a_4 ;

hAccept : unit → a_6 ;
hReject : unit → a_13 }

and a_4 = Quote of int * a_2
and a_6 = Details of string * result_a
and a_13 = RejectS of unit * result_a
val a : id → a_start → result_a

Each internal choice is represented as a sum-type where the constructor
is the message label and each external choice a product-type (as a
record). The generated function a is then in charge of reading the user’s
choice of message to send, and calling the appropriate continuation
when a message is received.

3.4. Related Work 55

The use of this technique is especially justified by security imple-
mentation reasons: there are no generic send and receive primitives
since security verifications depend on the session specification.

3.4 Related Work

Bono et al. [2013] have extended the type system in [Gay and Vascon-
celos, 2010] with support for polymorphism à la ML. In particular, in
[Bono et al., 2013] it is possible to associate the receive and send
functions with the types

receive :: ∀a. ∀A. ?a.A → (a, A)
send :: ∀a. ∀A. a → !a.A → A

where a and A respectively stand for type and session type variables. In
this way, the constants that implement communication primitives need
not be treated with ad hoc type checking rules. Further decorations
are allowed on quantifiers and arrow types for detecting potentially
harmful state configurations that lead to memory leaks (more details
on this issue are provided in Chapter 6).

The subsequent re-bindings of session channels that characterize
the approach by Gay and Vasconcelos [2010] are reminiscent of the
compilation scheme of sessions into pure π-calculus channels [Dardha
et al., 2012]. Padovani [2015] has shown how to exploit this compilation
scheme to encode a session type system in any ML-like functional lan-
guage, supporting complete session type inference and using runtime
checks for verifying that session channels are used at most once.

Continuations are also related to the monadic handling of state,
whereby the “state” s is threaded in a strictly sequential way and the
rebinding boilerplate code is implicit and hidden within the monad
definition. The monadic integration of functions and sessions is not a
prerogative of lazy languages, but makes sense also for strict languages
to separate pure computations from side effects (communications). This
approach has been formally studied by Toninho et al. [2013] and fosters
the adoption of session-based communication in mainstream program-
ming languages, since it does not require the host language to support
linear types.

High-Performance Message-Passing Systems

The Message Passing Interface library specification Forum [2012] is the
de facto standard for programming high-performance parallel applica-
tions. The standard’s first version was published in 1994 and included
bindings for the Fortran and C programming languages. Since then,
several implementations of the standard have been developed for dif-
ferent platforms that support hundred of thousands of processing units.

MPI programs adhere to the Single Program, Multiple Data
paradigm (SPMD), in which a single program specifies the behavior
of the various processes, each working on different data and running on
a different processor/core. MPI offers different forms of communication,
including point-to-point, collective, and one-sided communication. The
communication can be characterized along two orthogonal directions:
(1) synchronous and asynchronous and (2) blocking and non-blocking
(also referred as immediate). The standard includes primitives for all
four possible combinations that arise from the fact that MPI commu-
nications account for the duration of the transmission. For example, in
MPI it is possible to communicate synchronously in a blocking man-
ner, as well as synchronously following a non-blocking approach. Non-
blocking communication allows for the overlapping of computation and

56

57

communication.
Point-to-point communication specifies the interaction between two

different processes, one sender and one receiver. Collective operations
are executed synchronously by all (or a group of) processes. These op-
erations include, for instance, the ability to broadcast a buffer to all (or
a group of) processes, the ability to scatter or gather a buffer among
processes, and reducing operations on values from all (or a group of)
processes. Collective operations facilitate the writing of complex behav-
iors and allow the MPI implementation to optimize the performance of
communication. Although a broadcast and n-send/-receive operations
from one process to the others may be seen as having the same be-
havior, MPI implementations exploit the knowledge that a collective
operation is taking place in order to optimize the way communication
is handled, taking into account the network topology. One-sided com-
munication allows a process to remotely access the memory of another
process (RMA) for storing and retrieving values directly on the other’s
process memory. It differs from the previous modes of communication
because the process issuing the request may do so without the collabo-
ration of the other process involved, unlike point-to-point and collective
communications.

High-performance computing applications can exhibit complex mes-
sage passing behaviors and are often deployed in computing infrastruc-
tures that include thousands of processors/cores, costing serious money
on computing power. The MPI standard, for instance, describes hun-
dreds of primitives that can be used along the computation and that
express far from trivial behaviors. It is, in fact, very easy to write an
MPI application that deadlocks or that exhibits race conditions just by
following a wrong communication protocol. In this context, behavioral
types can be of great help to developers of MPI applications since they
allow dedicated tools to check that programs comply to given commu-
nication protocols.

Example Below is an implementation of the travel agency example
in C using MPI primitives (C+MPI). The programmer must craft the
communication between Customer and Agency (in this simple case, by

58

sending and receiving messages) in order to realize the desired behavior.

define CUSTOMER 0
define AGENCY 1
define MSG_SIZE 100
define ADDRESS_SIZE 100
include <mpi.h>
int main(int argc ,char ** argv){

int rank; /* process rank */
MPI_Status status ;

MPI_Init (& argc , &argv);
MPI_Comm_rank (MPI_COMM_WORLD , &rank);

do {
char journeyDetails [MSG_SIZE];
float price ;
if (rank == CUSTOMER) {

journeyDetails = generateMessageToSend ();
MPI_Send (journeyDetails ,MSG_SIZE ,MPI_CHAR ,AGENCY ,0,

MPI_COMM_WORLD);
MPI_Recv (& price ,1, MPI_FLOAT ,AGENCY ,0, MPI_COMM_WORLD ,

& status);
processPrice (price);

} else if (rank == AGENCY) {
MPI_Recv (journeyDetails ,MSG_SIZE ,MPI_CHAR ,CUSTOMER ,0,

MPI_COMM_WORLD ,& status);
price = computePrice (journeyDetails);
MPI_Send (& price ,1, MPI_FLOAT ,CUSTOMER ,0, MPI_COMM_WORLD);

}
} while (moreQuestionsToAsk ());

int decision ;
char deliveryAddress [ADDRESS_SIZE];
int date [3]; /* format : year , month , day */
if (rank == CUSTOMER) {

decision = decidesToAccept ();
MPI_Send (& decision ,1, MPI_INT ,AGENCY ,0, MPI_COMM_WORLD);
if (decision) {

deliveryAddress = getDeliveryAddress ();
MPI_Send (deliveryAddress , ADDRESS_SIZE ,MPI_CHAR ,AGENCY ,0,

MPI_COMM_WORLD);
MPI_Recv (date ,3, MPI_INT ,AGENCY ,0, MPI_COMM_WORLD ,& status);

59

}
} else if (rank == AGENCY) {

MPI_Recv (& decision ,1, MPI_INT ,CUSTOMER ,0,
MPI_COMM_WORLD ,& status);

if (decision) {
MPI_Recv (& deliveryAddress , ADDRESS_SIZE ,MPI_CHAR ,

CUSTOMER ,0, MPI_COMM_WORLD ,& status);
date = computeDate (deliveryAddress);
MPI_Send (date ,3, MPI_INT ,CUSTOMER ,0, MPI_COMM_WORLD);

}
}

MPI_Finalize ();
return 0;

} /* main */

The program defines the behavior of both participants at the same
time, according to the SPMD paradigm. It starts by initializing the
MPI library and by retrieving the process rank, an integer that uniquely
identifies each process involved in a parallel computation. In the present
case, the process ranked 0 is the customer, whereas the process ranked 1
is the travel agency. The behavior of each participant is distinguished by
testing the process rank and by choosing different control flows for each
participant. Then, the program enters a loop where an unbound num-
ber of queries are posted to the travel agency. The sender of a message
has to specify the buffer holding the data, its size and type, the rank
to whom it is addressed to, a tag that may be used to distinguish mes-
sages (in the example we always use zero), and the communicator that
specifies the group and topology of processes involved in the commu-
nication (in the example we always use the predefined MPI_COMM_WORLD
that includes all processes). The receiver has to specify the buffer where
the message is going to be stored, the size and type of the incoming
message, its sender’s rank, the tag, the communicator, and the status
structure that contains information about the message being received.
MPI is shutdown with a call to the MPI_Finalize function.

Several approaches based on behavioural types have been studied
and implemented to verify and/or guarantee the correctness of MPI ap-
plications; in the rest of this chapter, we illustrate three of them: one

60

that makes use of high-level, session-based communication primitives
(§4.1), one based on verification of C+MPI code with the help of user-
provided annotations (§4.2), and another one based on code generation
(§4.3). All these approaches rely on so-called global types, a particular
kind of behavioral types, that allow for the specification of communi-
cation protocols from a neutral viewpoint. A detailed presentation of
global types is deferred to Chapters 5 and 8. For the time being, we
anticipate that a global type can be projected to an endpoint protocol
describing the behavior of a single participant in an interaction. The
theory of session types guarantees, to this point, that the protocol is
deadlock free and communication safe by construction. The final step
is to guarantee that each process behaves according to each endpoint
protocol.

The global type corresponding to the Customer-Agency example is
shown below, using the syntax of Scribble (see §8.2):

protocol PurchaseATrip (role Customer , role TravelAgency)
{

rec tripProcurement {
JourneyDetails from Customer to TravelAgency ;
Price from TravelAgency to Customer ;
tripProcurement ;

}
choice at Customer {

AcceptTrip from Customer to TravelAgency ;
DeliveryAddress from Customer to TravelAgency ;
date from TravelAgency to Customer ;

} or {
RejectTrip from Customer to TravelAgency ;

}
}

Notice that the endpoint projections of this global type correspond
to those presented in §2.2.1 and to the behavior of the C+MPI code
shown earlier.

4.1. Session C 61

4.1 Session C

Session C [Ng et al., 2012a] is a multiparty session-based program-
ming environment for C that enforces deadlock-freedom, communica-
tion safety, and global progress through static type checking. This ap-
proach starts with the specification of a global protocol, using a proto-
col description language such as Scribble, that captures the communi-
cation pattern of the parallel algorithm to be implemented. From this
protocol, the projection algorithm generates endpoint protocols that
guide the design and implementation of each endpoint C program. The
endpoint protocol can be further optimized through subtyping for asyn-
chronous communication, preserving the original safety properties. The
underlying theory can ensure that the complexity of the toolchain stays
in polynomial time on the size of programs.

Session C represents an enhancement from SJ (§2.2.1) in the sense
that it can handle multiparty communications directly, whereas SJ
treats only binary sessions, and it offers primitives for chaining the
binary constructs on different multiple sessions together. As for session
delegation, Session C does not handle it since there is less motivation to
use session delegation in the multiparty setting; on the other hand, SJ
supports delegation. At runtime, Session C offers a significant speed-up
(60%) when compared to SJ and to MPI for Java.

The programming environment is made up of two main compo-
nents: a session type checker and a runtime library. The session type
checker takes an endpoint protocol and a source code program as in-
put and validates the source code against its endpoint protocol. The
library offers a simple but expressive enough interface for session-based
communications programming.

The Customer-Agency example written in Session C Our running
example can be sketched in Session C as follows. Below is the customer
code.

include <libsess .h>
...
int main(int argc , char ** argv) {

session *s;

62

join_session (& argc , &argv , &s, " Customer .spr");
const role * agency = s-> get_role (s, " TravelAgency ");
do {

send_string (agency , generateMessageToSend ());
processPrice (recv_float (agency));

} while(outwhile (moreQuestionsToAsk ()));
if (outbranch (decidesToAccept ())) {

send_string (agency , getDeliveryAddress ());
int date [3] = recv_int_array (agency , 3);

}
end_session (s);

}

The code for the travel agency is shown below:

include <libsess .h>
...
int main(int argc , char ** argv) {

session *s;
join_session (& argc , &argv , &s, " Travel_Agency .spr");
const role * customer = s-> get_role (s, " Customer ");
do {

send_float (customer ,
computePrice (recv_string (customer)));

} while(inwhile (customer));
switch (inbranch (customer , &rcvd)) {

case Accept :
send_int_array (customer ,

computeDate (recv_string (customer)));
break;

case Reject : break;
}
end_session (s);

}

A Session C program is a C program that calls the session runtime
library. The code above implements the behavior of both the customer
and the travel agency. We focus on the customer code. In the main
function, join_session indicates the start of a session, whose argu-
ments (argc and argv from the command line) are a session handle
of type session * and the location of the endpoint Scribble file. The
join_session establishes connections to other participating processes in

4.2. Deductive Verification of C+MPI Code 63

Figure 4.1: Approach for verifying C+MPI programs

the session, according to a connection configuration information such
as the host/port for each participant, automatically generated from
the global protocol. Next, the lookup function get_role returns the
participant identifier of type role *. Then, we have a series of session
operations such as send_type or recv_type. Iteration and branching in
Session C are declared explicitly with the use of inwhile, outwhile and
inbranch, outbranch, respectively, similarly to what has been described
for Session Java.

4.2 Deductive Verification of C+MPI Code

This approach directly verifies C+MPI programs against session
types [Honda et al., 2012, Marques et al., 2013b, López et al., 2015], in
contrast with Session C where programmers use a particular library of
communication primitives.

To verify the conformance of C+MPI programs against protocol
specifications the programmer starts by capturing the application’s
communication global protocol description. Afterwards, the protocol
is translated into a term written in the language of VCC [Cohen et al.,
2009], a software verifier tool for the C programming language (refer
to the example below). The translation is done automatically using a
tool that verifies that the protocol is well formed, guaranteeing global
deadlock freedom. The C+MPI code imports the protocol definition (in
VCC form) and a VCC-annotated MPI library with session type con-

64

tracts for the various MPI primitives. Depending on the specifics of the
C code, further manual annotations may be required. In this setting,
VCC is invoked to check whether the C code follows the communication
type. The overall workflow process is depicted in Figure 4.1.

The verification deals with point-to-point and collective operations.
For that, the protocol specification departs from Multiparty Session
Types and Scribble by introducing collective decision primitives, al-
lowing for behaviors where all participants decide to enter or to leave
a loop, or to choose one of two branches of a choice input. These two
patterns are impossible to describe in Scribble, but are a standard prac-
tice in C+MPI programs. The communication types language includes
specific MPI collective operations, as well as a dependent functional
type constructor.

The verification process checks the program from MPI initialization
(call to MPI_Init) to shutdown (MPI_Finalize). There is the need to add
state and behavior to perform the verification. This is known as ghost
data and code, and is only available for the verification process. A ghost
type_func function, representing the protocol, parametric on the rank,
returns the endpoint projection of the global type for a given rank.
This endpoint type is assigned to a ghost variable and the verification
proceeds by progressively reducing the protocol, i.e., by changing the
ghost variable through the contracts of MPI primitives or as a result
of the annotations that handle program control flow. The goal is that
the ghost variable reaches a state congruent to end() at the shutdown
point (the call to MPI_Finalize).

As for control flow, collective choices, and loops in particular, direct
annotations are necessary in the program body. These are partially
generated by a tool. Here, we focus now on its meaning, using the
collective loop of our running example.

_(ghost SessionType body = loopBody (type);)
_(ghost SessionType continuation = head(type);)
do {

_(ghost type = body ;)
...
_(assert congruent (type , end ())

} while (moreQuestionsToAsk ());

4.2. Deductive Verification of C+MPI Code 65

_(ghost type = continuation);

The fragment illustrates the extraction of the protocols corresponding
to the loop body and its continuation from the endpoint type stored in
ghost variable type. The protocol for the body must be a loop type. The
verification procedure asserts that the loop protocol body is reduced
to a term congruent to end(). After the loop, verification proceeds by
using the loop continuation as the type.

The VCC theory put forward by Marques et al. [2013a] is divided
in two parts: the first is a contract-annotated version of the MPI func-
tion signatures that ensures the conformance of the program opera-
tions against a protocol; the second encodes the type reduction relation
(omitted here for brevity). We illustrate contract annotation using the
MPI_Send function.

A significant part of the required program annotations are intro-
duced automatically by a tool that uses the Clang/LLVM framework
to traverse the syntactic tree of a C program and generate a new, an-
notated, version.

Verifying the Customer-Agency C+MPI program using VCC

Our running example protocol can be sketched using a VCC datatype
value as follows. The function contains the global type ready to be
projected, depending on the rank parameter.
_(ghost _(pure) \Type type_func (int rank)

_(requires 0 <= rank && rank < 2)
_(ensures \ result ==

loop (
rank == 0 ?

(comm(send (1, MPI_CHAR ,100) , ...);
comm(recv (1, MPI_FLOAT ,1), ...)) :

rank == 1 ?
(comm(recv (0, MPI_CHAR ,100) , ...);
comm(send (0, MPI_FLOAT ,1), ...)) :
end ()

);
rank == 0 ?

comm(send (1, MPI_INT ,1), ...) :
rank == 1 ?

66

comm(recv (0, MPI_INT ,1), ...) :
end ();

choice (
(rank == 0 ?

(comm(send (1, MPI_CHAR ,100) , ...);
comm(recv (1, MPI_INT ,3), ...)) :

rank == 1 ?
(comm(recv (0, MPI_CHAR ,100) , ...);
comm(send (0, MPI_INT ,3), ...)) :
end ())

end (),
end ())))))

In what follows we present an excerpt of the annotations required
to the C+MPI program presented in the beginning of this section.

...
MPI_Comm_rank (MPI_COMM_WORLD , &rank);
_(ghost type = type_func (rank))

_(ghost \Type loop_body = loopBody (type);)
_(ghost \Type loop_continuation = reduce (type);)
do {

_(ghost type = loop_body ;)
...
_(assert congruent (type , end ())

} while (moreQuestionsToAsk ());
_(ghost type = loop_continuation ;)
...
_(ghost \Type choice_true = choiceTrue (type);)
_(ghost \Type choice_false = choiceFalse (type);)
_(ghost \Type choice_continuation = reduce (type);)
if (decision) {

_(ghost type = choice_true ;)
...

_(assert congruent (type , end ())
}
_(ghost type = choice_continuation ;)
...
MPI_Finalize ();

The ghost annotations inserted into the C+MPI code introduce the
ghost variable type, projecting it for a particular rank. The verification

4.3. MPI Code Generation 67

proceeds, either directed by the MPI function contract annotations or
by the manual annotations inserted before the loops and before the
collective choices. More sophisticated constructs, here omitted since
they are not used in our running example, include collective operations
and foreach loops.

4.3 MPI Code Generation

A protocol-driven MPI code generation framework [Pabble-MPI] was
presented by Ng et al. [2015] for type-safe and deadlock-free MPI pro-
grams based on Parameterised Multiparty Session Types [Deniélou
et al., 2012] using the Pabble protocol description language [Ng and
Yoshida, 2015], which itself is based on Scribble. The code generation
process starts with the definition of the global topology using a pro-
tocol specification language based on parameterised multiparty session
types (MPST). From this, an MPI parallel program backbone is au-
tomatically generated. The backbone code can then be merged with
the sequential code describing the application behaviour, resulting in
a complete MPI program. This merging process is fully automated
through the use of an aspect-oriented compilation approach. In this
way, programmers only need to supply the intended communication
protocol and provide sequential code to automatically obtain paral-
lelised programs that are guaranteed to be free from communication
mismatch, type errors, and deadlocks. The code generation framework
also integrates an optimisation method that overlaps communication
and computation, and can derive not only representative parallel pro-
grams with common parallel patterns (such as ring and stencil), but
also distributed applications from any MPST protocols.

The framework represents a top-down, correct-by-construction ap-
proach to applying behavioural types to MPI programming, an alter-
native to the bottom-up deductive verification in the previous section.

4.4 Related Work

Session C needs to be extended to support more conventional paral-
lel programming runtime library. Message Passing Interface (MPI) has

68

been identified as the ideal API to target because of its comprehen-
siveness, because it is standardized, and, to a lesser extent, because
of its popularity in the HPC community. Also, the approach of Ses-
sion C is only as useful as the expressiveness of the protocol language
(Scribble) being type-checked against. In order to support MPI as the
programming API for Session C, Scribble is currently being extended
to a dependent language, with the primary aim of supporting a scalable
way of addressing participants using numeric indexes. The challenges of
this is to keep type checking decidable, while increasing the complexity
of the parallel programming/MPI primitives that Session C supports.
One idea being developed is to use code generation in place of static
type checking, which sees communication safe code generated from a
well-formed Scribble protocol.

The HPC community makes extensive use of non-blocking and one-
sided communications. Non-blocking operations allows for the overlap-
ping of computation and communication, while one-side communica-
tions allows for a participant to remotely access the memory of another
participant. The remote access happens without a corresponding oper-
ation from the remote participant, as it is the case with point-to-point
and collective operations. Governing these kind of interactions deserves
further investigation.

New programming languages have been introduced in the recent
past aimed at HPC, notably X10 [Charles et al., 2005], Chapel [Cham-
berlain et al., 2007], and Fortress [Steele, 2006], that propose new in-
teraction models, in particular the asynchronous partitioned global ad-
dress space [Saraswat et al., 2010], that introduces challenging open
issues.

Multiagent Systems

Multi-agent systems (MASs [Jennings et al., 1998]) have been proved
to be an industrial-strength technology for integrating and coordinat-
ing autonomous and heterogeneous systems. MASs are open, highly
dynamic, and unpredictable; for these reasons, ensuring conformance
of the agents’ actual behavior to a given interaction protocol is of
paramount importance to guarantee the participants’ interoperability
and security.

In this chapter we focus on the problem of verifying protocol con-
formance for Jason [Bordini et al., 2007], one of the most widespread
implementations of the logic-based agent oriented programming lan-
guage AgentSpeak [Rao, 1996]. Static verification for logic-based agent
oriented programming languages is very challenging because of the in-
trinsically dynamic nature of such languages: no type discipline is stat-
ically enforced, heterogeneous data can be freely mixed together, and
there is no clear separation between data (terms) and code (atoms). For
this reason, runtime verification is preferred over static type analysis
to check protocol conformance of MASs. As happens in choreographies
(Chapter 8), interaction protocols between agents are specified glob-
ally with behavioral types called global types. Unlike choreographies,

69

70

however, the correct implementation of interaction protocols is always
checked at runtime. This makes it possible to adopt more expressive
global type languages since the undecidability issues typical of static
analysis are not a concern.1

From global types, monitor agents are automatically generated to
dynamically check that the conventional agents of the system imple-
ment the intended interaction protocols correctly. The behavior of mon-
itor agents directly depends on the global type that specifies the inter-
action protocol to be checked, and on the semantics of global types,
which is expressed by a labeled transition system, implemented by all
monitor agents.

The main challenges of this proposed approach concern efficiency
of dynamic checking and the expressiveness and conciseness of global
types. For the approach to be effective, dynamic checks need to be
performed efficiently, because a system has to be monitored for a con-
siderable (ideally, for an indefinite) amount of time. For this reason, the
time complexity of dynamic checking protocol conformance should be
linear in the length of the sequence of exchanged messages. Expressive
sets of type operators allow one to describe complex protocols more
concisely, with beneficial effects on the readability of the protocol spec-
ification and on the scalability in terms of the dimension of the required
global types.

In this chapter we work with the notion of global type introduced
by Ancona et al. [2012, 2013a,c] and Mascardi and Ancona [2013].

5.1 Global Types for MAS Monitoring

Global types can be easily represented as cyclic Prolog terms, and a
mechanism for verifying that a sequence of messages complies with a
global type has been designed and implemented in Prolog. By exploiting
these features, a monitor has been developed on top of Jason; such a
monitor is able to verify at run-time that the actual conversation among
agents in the MAS complies to the interaction protocol specified by a

1Most decision problems are already undecidable for context-free languages,
whereas the global types we have devised for defining interaction protocols are
strictly more expressive than context-free grammars.

5.1. Global Types for MAS Monitoring 71

global type in the formalism described in this section.
Interactions. An interaction occurring between two agents is repre-

sented as a 4-tuple consisting of two agent identifiers (the sender and
the receiver of the message), the performative (explained below) ex-
pressed in some agent communication language the agents agree upon,
such as FIPA-ACL [Foundation for Intelligent Physical Agents, 2002]
or KQML [Mayfield et al., 1995] (in the Jason implementation the lat-
ter is used), and the actual content of the message expressed in some
content language shared among the agents (in the Jason implementa-
tion Prolog terms are used). For instance in the interaction specified
by ca(seller, buyer, tell, price(pasta,10)), seller and buyer
denote the sender and the receiver, respectively, of the message, tell
is its performative, and the term price(pasta,10) is its content which
expresses the fact that buyer intends to sell pasta at the price of 10
euros. Performatives are defined in the “speech acts theory” [Austin,
1962], which is part of the philosophy of language, as sentences which
are not only passively describing a given reality, but are changing the
social reality they are describing. In the Agent Communication Lan-
guages (ACL) research field, the performative denotes the type of the
communicative act of the ACL message, such as telling, asking, recom-
mending, etc. Each ACL, such as FIPA-ACL and KQML, defines its
own set of performatives. For instance, a message with performative
tell changes the knowledge base of the receiver, whereas a message
with performative ask corresponds to a query on the knowledge base
of the receiver.

The set of interactions is denoted by A throughout this chapter.
Interaction types. In the specification of a global type we use inter-

actions types to model which kind of message pattern is expected at a
certain point of the conversation. This gives us the freedom to specify
the expected content type, such as an integer, a string, or a complex
term, the sender and receiver type, and the performative type, possibly
using free variables and additional conditions for modeling protocols in
which, for example, we do not care which are the agents that interact
as long as the interaction has a certain performative and the sender
and the receiver are two different agents. An interaction type α is a

72

predicate on interactions, hence its interpretation is the set of interac-
tions that verify α; we write a ∈ α to mean that α is true on a, and we
also say that a has type α.

Global types. A global type τ represents a set of possibly infinite
sequences of interactions, and is defined on top of the following type
constructors:

• λ (empty sequence), representing the singleton set {ε} containing
the empty sequence ε.

• α:τ (seq), representing the set of all sequences whose first element
is an interaction a matching type α (a ∈ α), and the remaining
part is a sequence in the set represented by τ .

• τ1 +τ2 (choice), representing the union of the sequences of τ1 and
τ2.

• τ1|τ2 (fork), representing the set obtained by shuffling the se-
quences in τ1 with the sequences in τ2 .

• τ1 · τ2 (concat), representing the set of sequences obtained by
concatenating the sequences of τ1 with those of τ2.

The semantics of global types is defined by a labeled transition
system, where states are global types and labels are interactions.

At runtime, a monitor agent M stores in its knowledge base the
global type τ that corresponds to the current state of the interaction
protocol P checked by M ; whenever M intercepts an interaction a

between two agents that is pertinent to the checked protocol P , it
verifies whether there exists a transition from τ to τ ′ labeled with a;
if so, it updates in its knowledge base the current state of the protocol
with the new global type τ ′, otherwise, it detects a runtime error and
handles it properly.

5.1. Global Types for MAS Monitoring 73

Example

The Customer-Agency protocol described in §1 can be modeled by the
following global type:

CustomerAgency = Sell ·AcceptOrReject

Sell = query : propose : (Sell + λ)

AcceptOrReject = (Accept + Reject)

Accept = confirm : sendAddress : forwardAddress :
sendDate : forwardDate : λ

Reject = reject : λ

Interactions types. In global types, only interaction types appear. Ac-
tual interactions taking place in the environment are expected to have
one of the foreseen interaction types, but the link between actual com-
munication actions and their types is kept separate from the global type
definition. Decoupling interaction types from actual communication ac-
tions allows the global type designer to concentrate on the description
of the communication protocol among the involved parties, abstracting
from the actual agent communication language used by them.

The coupling must be defined if the global type is to be used
in practice, for monitoring a real multiagent system. For example,
in the Customer-Agency protocol we might state that an actual in-
teraction ca(Customer ,Agency, cfp, journey(Dest)) has type query iff
it models a call for proposal for an offer concerning a journey and
Customer is the identifier of the customer, Agency is the identi-
fier of the agency, and Dest is a string. Another actual interaction
ca(Agency,Customer , propose, journey(Price)) could have type propose
iff, besides constraints similar to those in the previous example, Price
is a double.

As interactions in MASs are usually very complex and are not in
the scope of this document, we do not enter into the details of actual
communications and we limit ourselves to model their types.

74

Customer-Agency Global Type. The global type CustomerAgency
is defined by means of the equation CustomerAgency = Sell ·
AcceptOrReject, meaning that it is a composite type consisting of the
global type Sell followed by the global type AcceptOrReject (· is the
global type concatenation operator).

Sell is in turn defined as

Sell = query : propose : (Sell + λ)

meaning that it consists of the query about some destination Dest from
Customer to Agency, followed by the price proposal (propose) from
Agency to Customer (: is the sequence operator whose first operand is
an interaction, and the second is a global type), further followed by a
choice between repeating Sell (+ is the choice operator) or stopping
(λ is the empty global type). Iteration is implemented by allowing a
variable to appear in the equation defining the variable itself.

AcceptOrReject is defined as a choice between two global types
(Accept + Reject), where Accept consists of a message from Customer
to Agency to accept the proposal, followed by a message to inform
Agency of the delivering address of the tickets, followed by a message
from Agency to Service requesting to purchase the tickets to Customer ,
followed by the message from Service to Agency to inform it about the
ticket purchase date which is forwarded by Agency to Customer . The
final λ means that this branch of the global type ends here.

Reject just consists of a message from Customer to Agency, reject-
ing all the proposals made so far.

In the MAS frameworks where we exploited/plan to exploit the
monitor, which include Jason but also JADE [Bellifemine et al., 2007]
and possibly others, agents are usually aware of the receiver of the
messages they send, and of the sender of the messages they receive.
Hence, delegation as described in page 3, step 4, of [Hu et al., 2008],

Customer then sends a delivery address (unaware that
he/she is now talking to Service)

is not supported by the formalism.

5.2. Advanced Constructs for Protocol Specification 75

5.2 Advanced Constructs for Protocol Specification

One of the distinguishing features of the global types presented here
is their coinductive interpretation. This means that it is possible to
specify and verify protocols that are not allowed to terminate. In par-
ticular, the monitor agent checks also agents responsiveness by means
of time-outs; three different scenarios may occur:

1. if the current state of the monitor corresponds to the empty pro-
tocol (that is, the protocol must terminate), then the monitor
reports an error as soon as an interaction is detected (indepen-
dently of the time-out);

2. if the current state is final, but does not correspond to the empty
protocol (that is, the protocol may terminate, but it can also con-
tinue), then the monitor reports a warning if a valid interaction
is detected after the time-out has expired (if an invalid interac-
tion is detected, then an error is reported independently of the
time-out);

3. if the current state is not final (that is, the protocol is not allowed
to terminate), then the monitor reports a warning as soon as the
time-out expires, if no interaction is detected (an error is reported
in case an invalid interaction is detected before the time-out).

If, on the one hand, static verification is able to ensure strongest
guarantees on the correct behavior of a MAS, on the other hand, dy-
namic verification allows the adoption of more expressive languages. For
instance, since global types are recursive and support concatenation,
context-free languages can be specified.2 Furthermore, since context-
free languages are not closed under shuffle, global types are strictly
more expressive. The expressive power of the formalism is further in-
creased by the ability of constraining the shuffle operator, by specifying
that two or more interaction types must correspond to the same event;
in this way, languages that cannot be expressed with Petri nets can be

2Given the coinductive nature of global types, this claim holds if only finite
sequences are considered.

76

specified with global types. For instance, the typical example of non
context-free language3 {anbncn | n ∈ N} can be easily specified (see the
next section).

Specific examples. We consider the ABP, in the version defined
by Deniélou and Yoshida [2012]. Four different interactions may occur:
Alice sends msg1 to Bob (interaction type msg1), Alice sends msg2 to
Bob (interaction type msg2), Bob sends ack1 to Alice (interaction type
ack1), Bob sends ack2 to Alice (interaction type ack2). Also in this
case the protocol is an infinite iteration, but the following constraints
have to be satisfied for all occurrences of the interactions:

• The n-th occurrence of msg1 must precede the n-th occurrence
of msg2 .

• The n-th occurrence of msg1 must precede the n-th occurrence
of ack1 , which, in turn, must precede the (n + 1)-th occurrence
of msg1 .

• The n-th occurrence of msg2 must precede the n-th occurrence
of ack2 , which, in turn, must precede the (n + 1)-th occurrence
of msg2 .

The type defined below by the variable AltBit1 is a correct specifi-
cation of the ABP:

AltBit1 = msg1 :M2
AltBit2 = msg2 : M1
M1 = (msg1 : A2) + (ack2 : AltBit1)
A1 = (ack1 : M1) + (ack2 : ack1 : AltBit1)
M2 = (msg2 : A1) + (ack1 : AltBit2)
A2 = (ack2 : M2) + (ack1 : ack2 : AltBit2)

The type is reasonably compact, but it is harldy readable, and it
takes time to understand what protocol is specified; also, it is not trivial
to prove that ABP is correctly specified by the type.

3Again, given the coinductive interpretation, the languages must contain also the
infinite sequence a∞.

5.2. Advanced Constructs for Protocol Specification 77

Another problem is that the size of the type grows exponentially
with the number of interaction types; for instance, if we extend the ABP
to three messages and three acknowledges, then we get the following
type defined by the variable AltBit3 :

AltBit3 = msg1 : S1
S1 = (msg2 : S2) + (ack1 : msg2 : S6)
S2 = (ack1 : S6) + ((ack2 : S4) + (msg3 : S3))
S3 = (ack1 : S7) + ((ack2 : S8) + (ack3 : S5))
S4 = (ack1 : msg3 : ack3 : AltBit3) + (msg3 : S8)
S5 = (ack1 : ack2 : AltBit3) + (ack2 : ack1 : AltBit3)
S6 = (msg3 : S7) + (ack2 : msg3 : ack3 : AltBit3)
S7 = (ack3 : ack2 : AltBit3) + (ack2 : ack3 : AltBit3)
S8 = (ack1 : ack3 : AltBit3) + (ack3 : ack1 : AltBit3)

To see how constrained shuffle enhances the expressive power of the
language, let us start with the following basic global type representing
a naive and incorrect solution to the specification of the ABP:

WAB = MA1|MA2
MA1 = msg1 :ack1 :MA1
MA2 = msg2 :ack2 :MA2

The interpretation of WAB is a proper superset of the ABP; for
instance, it contains sequences starting with msg2 msg1 ack2 ack1 . . .

which do not meet the protocol, because the first occurrence of msg2
must follow the first occurrence of msg1 .

This is due to the fact that the shuffle operator performs an uncon-
strained shuffle of the set of sequences (belonging to the interpretation)
of the two operand types, while all correct sequences of the ABP must
verify the additional constraint that the i-th occurrence of msg2 must
follow the i-th occurrence of msg1 and precede the i+ 1-th occurrence
of msg1 , for all natural numbers i. In other words, a correct sequence
of the ABP must yield the infinite sequence msg1 msg2 msg1 msg2 . . .,
specified by the global type MM = msg1 :msg2 :MM , when restricted
to the interactions msg1 and msg2 .

However, the type MA1|MA2|MM is not a correct fix to WAB, since
the interactions generated from MM are considered different from those

78

generated from MA1 and MA2. To avoid this problem, we introduce two
different kinds of interaction types, called producers and consumers, re-
spectively. In global types extended with constrained shuffle (extended
global types, for short) producer interaction types play the same role
as interaction types in basic global types: each occurrence of a pro-
ducer interaction type must correspond to the occurrence of a new
event; in contrast, consumer interaction types correspond to the same
event specified by a certain producer interaction type. The purpose
of consumer interaction types is to impose constraints on interaction
sequences, without introducing new events.

Differentiating producer and consumer interaction types allows us
to express in a quite intuitive and simple way the ABP:

ABP = MA′1|MA′2|MM
MA′1 = msg1

1 :ack0
1 :MA′1

MA′2 = msg1
2 :ack0

2 :MA′2
MM = msg1 :msg2 :MM

Global types MA′1 and MA′2 contain just producer interaction types,
whereas MM contains only consumer interaction types. A consumer
is an interaction type, whereas a producer is an interaction type α
equipped with a natural superscript n specifying the number n of cor-
responding consumers that coincide with the same event; hence, n is
the least required number of times a ∈ α has to be “consumed” to allow
a transition labeled by a.

Hence msg1
1 and msg1 in MA′1 and MM respectively, always corre-

spond to the same event (and analogously for msg1
2 and msg2 in MA′2

and MM). Since no constraint relates ack1 and ack2 , the corresponding
producers in MA′1 and MA′2 are super-scripted by 0.

As a final example, let us consider the protocol where Alice first
sends n (with n arbitrary, and possibly infinite) messages to Bob (in-
teraction type msg1), then Bob send n messages to Carol (interaction
type msg2), and, finally, Carol sends n messages back to Alice (inter-
action type msg3). This can be expressed by the global type T defined

5.3. Related Work 79

as follows:
T = M1,2|M2,3
M1,2 = λ+ ((msg0

1 :M1,2) · (msg1
2 :λ))

M2,3 = λ+ ((msg2 :M2,3) · (msg0
3 :λ))

Since the two interaction types msg1
2 and msg2 in M1,2 and M2,3, re-

spectively, must coincide with the same event, the number of messages
exchanged between the three partners must always be the same.

5.3 Related Work

The notion of global type presented here is similar to that defined by
Castagna et al. [2012]. There, global types model protocols in terms of
atomic actions (interactions) and composite actions, essentially denot-
ing a “language of legal interactions that can occur in a multi-party
session”. A protocol can consist of the empty sequence, a single inter-
action between a sender and a receiver, the concatenation, the shuffle,
or the union of two global types. Interactions of arbitrary but finite
length are defined with the Kleene star operator.

Whereas that paper focuses on “local” session types, which repre-
sent the projections of the global type on single entities (actors, agents),
here only the global perspective is relevant. Also, the interpretation of
global types is inductive: only interactions where the number of mes-
sages exchanged is arbitrary but always finite can be modeled. This is
a radical difference with the formalism presented here, where infinite
interactions can be modeled as well. Finally, constrained shuffle is not
supported, and types cannot be recursive, hence the language is less
expressive.

An approach similar to [Castagna et al., 2012] is described by
Deniélou and Yoshida [2012] where the authors explore the connec-
tion between session types (which again are intended as projections of
a global type to single participants) and communicating automata or
Communicating Finite State Machines (CFSMs, [Brand and Zafirop-
ulo, 1983]), and give a new syntax for global types.

Using the global types in [Deniélou and Yoshida, 2012] the ABP
can be specified in a reasonably compact way, and the size of the type
grows linearly if the protocol is extended. However their solution is less

80

simple than the specification presented in the previous section. Fur-
thermore, the notion of global type as described here is more amenable
to be directly translated in Prolog as a finite collection of unification
equations having regular terms as solutions.

An interesting proposal for overcoming the limitations of dynamic
protocol verification based on a centralized monitor is proposed by
Chen et al. [2011a]. There, a formal model of run-time safety enforce-
ment for large-scale, cross-language distributed applications with possi-
bly untrusted endpoints is proposed, whose underlying theory is based
on multiparty session types with logical assertions (MPSA). MPSA is
an expressive protocol specification language that supports run-time
validation through monitoring. Given the global specifications based
on MPSAs which the participants should obey, distributed monitors
use local specifications, projected from global specifications, to detect
whether the interactions are well-behaved and take appropriate actions,
such as suppressing illegal messages. The main difference between that
work and ours lies in this projection stage that, having a centralized
monitor, we do not need to perform.

The Jason monitor is discussed by Ancona et al. [2012], whereas
Mascardi and Ancona [2013] discuss the adoption of global types ex-
tended with attributes in the more general context of logic-based MASs.
The theoretical underpinning of global types have been investigated by
Ancona et al. [2013b], a working prototype and implemented examples
are also available [GTV].

Singularity OS

Singularity OS [Hunt et al., 2005, Fähndrich et al., 2006, Singular-
ity OS] is the prototype of a reliable operating system where software-
isolated processes (SIPs) share the same address space, called exchange
heap. Process interaction occurs solely through message exchange over
asynchronous, FIFO channels and the communication overhead is re-
duced thanks to copyless message passing: only pointers to messages
are physically exchanged between processes. Static analysis enforces
process isolation, that is, every process can only access the memory it
owns in an exclusive manner. Programs running in Singularity OS are
written in Sing#, a programming language derived from C# specifically
designed for developing Singularity applications. In this chapter we re-
view the support for behavioural typing provided by Sing# (§6.1) and
a refinement of its behavioural typing discipline aimed at preventing
memory leaks (§6.2).

6.1 Channel Contracts in Sing#

In Singularity OS, channels are formed as pairs of related endpoints,
called the channel peers. A message sent over a peer is received from

81

82

1 void Agency([Claims] imp<C:START> in ExHeap c,
2 [Claims] exp<D:START> in ExHeap d) {
3 switch receive {
4 case c.Query(String de):
5 /* compute a price pr for de */
6 c.Price(pr);
7 Agency(c, d);
8 case c.Reject():
9 c.Close();

10 d.Close();
11 case c.Accept():
12 d.Delegate(c);
13 d.Close();
14 }
15 }

Figure 6.1: Agency.

the other peer. Each peer is equipped with a FIFO buffer storing the
messages sent to that peer that have not been read yet. This means that
communication is asynchronous (send operations are non-blocking) and
process synchronization is realized via handshaking protocols. Chan-
nel communication is, indeed, ruled by channel contracts, verified at
compile-time, that describe messages, message argument types, and
valid message interaction sequences as finite state machines. In essence,
channel contracts are a syntactic variation of session types. We now take
a closer look at Sing# by means of the Customer-Agency example.

The pseudocode snippet in Figure 6.1 defines a function Agency that
encodes the behavior of the process Agency. The function accepts two
arguments: a c endpoint serving as one of the peers of the session chan-
nel used to interact with the Customer (which the other peer endpoint
belongs to); a d endpoint representing one peer of the channel exploited
to delegate c to the Service at the appropriate moment. Indeed, Sing#

supports delegation, as it permits sending endpoints as messages (i.e.,
endpoints are first-class values). The switch receive construct (lines 3–
14) is used to receive messages from an endpoint, and to dispatch the
control flow to various cases depending on the kind of message that is

6.1. Channel Contracts in Sing# 83

1 void Customer([Claims] exp<C:START> in ExHeap c,
2 String destination, String address) {
3 c.Query(destination);
4 switch receive {
5 case c.Price(double p):
6 if (/* p not ok and negotiate */)
7 Customer(c, destination, address);
8 else if (/* p not ok and reject */){
9 c.Reject();

10 c.Close();
11 } else {
12 c.Accept();
13 c.Address(address);
14 switch receive {
15 case c.Date(String d):
16 c.Close();
17 }
18 }
19 }
20 }

Figure 6.2: Customer.

1 void Service([Claims] imp<D:START> in ExHeap d) {
2 switch receive {
3 case d.Delegate(<C:ADDRESS> in ExHeap x):
4 switch receive {
5 case x.Address(String a):
6 /* produce a date da for a */
7 x.Date(da);
8 x.Close();
9 }

10 d.Close();
11 }
12 }

Figure 6.3: Service.

84

received. Each case block specifies the endpoint from which a message
is expected and the tag of the message. If a request of details is re-
ceived (message Query on line 4), a proposal is sent (line 6), and the
function Agency is invoked recursively (line 7), so that the negotiation
can continue. In the case a Reject message is received (line 8), both
endpoints are closed, as the negotiation failed. If an Accept message is
received, the endpoint c is delegated to Service by sending it over the
endpoint d (whose peer belongs to Service), then d is closed. From this
point on, the communication will be between Customer and Service,
the former unaware of the change of interlocutor. The operational se-
mantics of the processes Customer and Service, encoded as functions
Customer and Service and shown in Figure 6.2 and Figure 6.3, should
be self-explanatory.

We now describe the meaning of the type annotations and their
relevance with respect to static analysis. Static analysis of Sing# pro-
grams aims at providing strong guarantees on the absence of errors
deriving from communications and the usage of heap-allocated objects.
The in ExHeap annotation states that a name denotes a pointer to an
object allocated on the exchange heap. Regarding communications, the
correctness of this code fragment relies on the assumption that the pro-
cess(es) using the peer endpoints of c and d are able to deal with the
message types as they are received/sent from within Agency. To this
end, Sing# provides channel contracts describing the communication
patterns that are permitted on a given endpoint. Consider, for exam-
ple, the contracts for the Costumer-Agency example:

contract C {
message Query(String);
message Price(double);
message Reject();
message Accept();
message Address(String);
message Date(String);
state START { Query! → REC_PRICE;

Accept! → ADDRESS;
Reject! → END; }

state REC_PRICE { Price? → START; }
state ADDRESS { Address! → DATE; }

6.1. Channel Contracts in Sing# 85

state DATE { Date? → END; }
state END { }

}

contract D {
message Delegate(<C:ADDRESS> in ExHeap);
state START { Delegate! → END; }
state END { }

}

A contract is made of a finite set of message specifications and
a finite set of states linked by transitions. Each message specification
starts with the keyword message, followed by the tag of the message and
the type of its arguments. The state of an endpoint is determined by the
state of the contract associated to it. This defines which messages can
be sent and received. Communication errors are ruled out by associating
the two peers of a channel with complementary types, that is, describing
complementary actions. This is modeled in Sing# with the exp<C:s> and
imp<C:s> type constructors that, given a contract C and a state s of C,
stand respectively for the exporting and importing views of C when it
is in state s. Think of the exporting view as of the type of the provider
of the actions specified in the contract, and of the importing view as
of the type of the consumer of the actions described in the contract.

Going back to the Costumer-Agency example, note that Service
waits for an endpoint value in x (Figure 6.3, line 3) that must be in the
state ADDRESS of the contract C, in order to conclude the transaction
with Customer correctly.

From the previous discussion, it is sensible to formalize Sing# ex-
ploiting a process calculus equipped with an apt session type system for
session types. There are, indeed, analogies between contracts and end-
point types: the contract defines an interaction between two processes
in terms of states and transitions, from the viewpoint of one of the two
processes; the session type defines the actions of a single process taking
part to the interaction; the exporting and importing views of a con-
tract correspond to the notion of duality in session types. Bono et al.
[2011] have formalized a session-oriented process calculus in which it is
straightforward to encode the Costumer-Agency example.

86

6.2 Behavioral Types for Memory Leak Prevention

The distinctive feature of the copyless paradigm is that objects are
not copied from the sender to the receiver, but, instead, pointers to
allocated objects are sent around. Unfortunately, this feature may in-
validate the invariant requiring that at any time each object is owned
by one and only one process. Therefore, the candidate type system
should pay attention to the ownership of the allocated objects and
the fact that, whenever the pointer to an object is sent as a message,
its ownership is actually moved from the sender to the receiver, too.
There are two cases for ownership of parameters: either the ownership
is transferred back to the caller (no annotation), or it is kept by the
callee (annotation [Claims]), after the execution. In the example of
Figure 6.1, the function Agency owns its two parameters and retains
their ownership. In fact, either it closes both endpoints in the case of
rejection of the negotiation (lines 9 and 10), or it sends endpoint c
away (transferring the ownership to the receiver) and closes endpoint
d in the case of acceptance (lines 12 and 13).

It might seem feasible to enforce the ownership invariants of heap-
allocated objects by means of a linear typing discipline. However, lin-
earity alone is too weak to guarantee the absence of memory leaks,
occurring when every reference to a heap-allocated object is lost. This
is illustrated in the function below:

void leak([Claims] imp<C:START> in ExHeap e,
[Claims] exp<C:START> in ExHeap f)

{ e.Arg(f); e.Close(); }

which accepts two endpoints e and f allocated in the heap, sends end-
point f as an Arg-tagged message on e, and closes e. One of the two
arguments is sent away in a message, while the other is properly deal-
located within the function, hence the [Claims] annotations in the
function header. The key observation is that this function may intro-
duce a leak if e and f are the peer endpoints of the same channel. In
this case, only the e endpoint is deallocated, while every pointer to f
is lost and it will never be deallocated. The leak function behavior is
in accordance with the Sing# contract

6.2. Behavioral Types for Memory Leak Prevention 87

contract C {
message Arg(exp<C:START> in ExHeap);
state START { Arg? → END; }
state END { }

}

This contract shows an (apparent) anomaly, which is the implicit re-
cursion in the type of the argument of the Arg message, referring to the
contract C being defined.

An encoding of this example in the calculus by Bono et al. [2011]
is straightforward:

LEAK = open(e : T, f : S).e!Arg(f).close(e)

where:
T = !Arg(S).end
S = rec α.?Arg(α).end

The types T and S are dual of each other and, in particular, S corre-
sponds to the contract C shown above.

In order to avoid memory leaks, it might be tempting to rule out
types with a recursive form such as the one of S. However, this is too
restrictive, as the implicit recursion in the type of the argument of the
Arg message is harmless. The actual problem is the fact that LEAK
creates a cycle in the exchange heap: the endpoint f is stored in its
own FIFO queue, as it is the argument of a message that will be never
read. In order to avoid cycles of this nature, the intuition is that such a
message queue containing a loop has an infinite “size”. In this context,
the “size” of a queue is not the number of messages in it, but rather the
measure of the longest chain of pointers originating from the messages
in the queue. To avoid confusion, this measure is called weight by Bono
et al. [2011]. The type system requires endpoint types so that they only
denote endpoints whose queue has finite weight.

Notably, the leak function is ill typed also in Sing# [Fähndrich
et al., 2006], even though there the motivations for rejecting leak arise
from the implementation details of the ownership transfer rather than
from the possible presence of memory leaks. Having pinpointed the
actual reason why the function leak is faulty is the main contribution
of the formalization of Sing# [Bono et al., 2011].

88

6.3 Related Work

Fähndrich et al. [2006] address how the language, verification, and run-
time system features of copyless message passing make it suited for
actual use as the only mechanism of communication between processes
in Singularity. The authors demonstrate, by means of an advanced
programming language and appropriate verification techniques, that it
is possible to yield strong system-wide invariants that endow efficient
communication and low-overhead, software-based process isolation. An
(informal) overview of Singularity OS specifications is given by Hunt
et al. [2005].

Bono et al. [2011] present a calculus that models a form of process
interaction based on copyless message passing, in the style of Singu-
larity OS. The calculus is equipped with a type system ensuring that
well-typed processes are free from memory faults, memory leaks, and
communication errors. The type system is essentially linear, but lin-
earity alone is shown not be adequate, because it does not prevent
scenarios where well-typed processes leak memory. Linearity is then
supported with the notion of weight discussed above, as a mean to rule
out such processes.

Bono and Padovani [2012] extend [Bono et al., 2011] by adding
bounded polymorphism to endpoint types, along the lines of [Gay, 2008],
while preserving all the properties of the monomorphic version. Inter-
estingly, with polymorphic endpoint types it is possible to type a simple
(polymorphic) variant of the process LEAK without exploiting recur-
sive types. The notion of weight extends nicely to type variables: when
α occurs in a constraint α 6 t, the weight of α is approximated to the
weight of t.

Stengel and Bultan [2009] show that contracts are implementable
without deadlocks if they are deterministic and autonomous. The first
condition states that there cannot be two transitions different only in
the target state. The autonomous condition requires that every two
transitions starting from the same state are either two sends or two
receives. These conditions make it possible to separate contracts into
pairs of dual session types.

Villard et al. [2009, 2010] study an extension of separation logic

6.3. Related Work 89

for verifying correct communications and absence of memory leaks in
programs using copyless message passing in the style of Singularity OS.

Jakšić and Padovani [2012, 2014] study an extension of [Bono et al.,
2011, Bono and Padovani, 2012] with exceptions. The semantics of
processes is inspired to software transactional memories: a transaction
is a process that must accomplish a message exchange and that should
either be executed completely, or should have no observable effect if
killed by an exception.

Bono et al. [2013] extend the technique presented in [Bono et al.,
2011, Bono and Padovani, 2012] for detecting memory leaks into a lan-
guage with first-class functions. These results are part of the stream of
work on functional languages (see §3). The technique based on weights
mentioned above does not work directly in a language with first-class
functions. The problem is that function types only describe the func-
tion input and output, but not which other (heap-allocated) objects the
function may use: this information is fundamental for defining a sound
notion of weight for (linear) arrow types. The solution is to equip linear
arrow types with an explicit annotation providing an upper bound to
the weight of the types of all endpoints present in the function body.
Once again, the weight approximates the length of chains of pointers
in the heap: it is safe to send a function value over an endpoint only if
its weight is bounded.

Web Services

7.1 Behavioral Interfaces for Web Services

Service Oriented Computing (SOC) is based on services, intended as
autonomous and heterogeneous components that can be published and
discovered via standard interface languages and publish/discovery pro-
tocols. Web Services is the most prominent service-oriented technology:
Web Services publish their interface expressed in the Web Service De-
scription Language (WSDL), they are discovered through the UDDI
protocol, and they are invoked using SOAP.

Services are often developed as combination of other existing
services, by using so-called orchestration languages, such as WS-
BPEL [OASIS, 2007]: executable languages which perform activities
by means of local computations combined with invocations to other
services. In this context, behavioral abstractions, which can be seen
as an analogous of behavioral types extracted from a program written
in an orchestration language [Boreale and Bravetti, 2011], have been
studied in order to reason about correctness of service composition.
Examples of these languages are Abstract WS-BPEL and behavioral
contracts [Fournet et al., 2004, Bravetti and Zavattaro, 2007, 2008a,b].
Such abstract languages make it possible to check whether the retrieved

90

7.1. Behavioral Interfaces for Web Services 91

services and the client invocation protocol are actually compliant/com-
plementary. For instance, they make it possible to check whether the
overall composition of the client protocol with the invoked services is
stuck-free [Fournet et al., 2004], deadlock-free [Castagna et al., 2009]
or successfully terminates [Bravetti and Zavattaro, 2007, 2008a,b].

Session type theories make it possible to extract such behavioral
descriptions (in the form of types) from the actual service code (type
inference) or to check that service code conforms to a given behavioral
description (type checking). In turn, type checking crucially relies on
the notion of duality (correspondence of invokes and receives), guaran-
teeing service compliance in an interaction involving multiple services,
and on a sub-typing relation between session types (see compliance test-
ing preorder [Bravetti and Zavattaro, 2007, 2008b]). The sub-typing
relation is defined to be the coarsest one that preserves the desired
termination properties, so to be as permissive as possible when typing
code (we will discuss these aspects with examples in §7.3). This form of
sub-typing, called semantic sub-typing, is more permissive compared to
the syntactic ones commonly adopted in session types, and plays a key
role in addressing the problem of service discovery. Since it is unrealistic
in general to be able to find a service that matches exactly a given be-
havioral description, sub-typing enables more relaxed forms of queries
whereby any service with a description that is related by subtyping
(but not necessarily equal) to the requested one can be returned as
result. Despite the increased expressiveness granted by such more per-
missive forms of sub-typing, type checking of programming languages
remains feasible. Bravetti and Zavattaro [2007, 2008b] describe a de-
cidable sound characterization of compliance testing preorder.

In order to be able to perform this kind of checks, it is necessary
for services to expose in their interface also the description of their be-
havior (obtained, as we mentioned, by applying the type system on the
service code). In general, a service interface description language used
in directory services like UDDI can expose both static and dynamic
information about Web Services. The former deals with the signature
(name and type of the parameters) of the invocable operations; the
latter deals with the correct order of invocation of the provided opera-

92

tions in order to correctly complete a session of interaction. The WSDL,
which is the standard Web Services interface description language, is
essentially concerned just with static information. Behavioral contracts
provide a formal basis for generalizing these descriptions to also include
the protocol to be used to successfully interact with the service. Thanks
to flexibility of semantic sub-typing, we can use behavioral contracts
as search keys for discovering web services possessing some desired be-
havior at a directory (UDDI) service (which matches services whose
published behavioral contract is a sub-type of the desired one).

In the following we will deal with languages for representing con-
crete and abstract service orchestrations. Concrete orchestrations are
presented to show how services can be programmed in terms of invoca-
tions of other services and as a starting point to then extract abstract
orchestrations, used to express and reason about interaction with other
services. Such abstract representations can then be used to enrich the
information provided in WSDL.

7.2 Languages for Service Composition

We already mentioned WS-BPEL as an executable standard language
for programming service orchestrations. Jolie (Java Orchestration Lan-
guage Interpreter Engine) is a general-purpose programming language
based on the Service-Oriented Computing paradigm [Montesi et al.,
2014, development team]. It was originally presented by Montesi et al.
[2007] as an orchestration language for Web Services alternative to the
standard language WS-BPEL, with the advantage of being based on
formal models from the start and consequently enabling abstract rea-
soning on the behavior of Jolie programs; this is in contrast with WS-
BPEL, whose reference implementations are based on informal specifi-
cations. Other advantages of Jolie are that it is equipped with a friendly
syntax similar to C/Java and that it integrates behavioral primitives
for orchestration with architectural primitives for programming the or-
ganization of a network; the result of this integration is that these
architectural primitives can be used to set up, e.g., load balancers,
proxies, or monitors that can be reused independently of the orches-

7.2. Languages for Service Composition 93

tration behavior of the services that they compose, or even in settings
where different communication technologies or protocols are used (e.g.,
HTTP instead of SOAP). Jolie is also equipped with a rather sophis-
ticated fault handling mechanism [Guidi et al., 2009]: compensation
handlers can be dynamically updated taking under consideration infor-
mation available only at runtime. Moreover, if a fault occurs during a
bidirectional request-response interaction, the correct interruption and
compensation of both communicating processes is guaranteed. Despite
Jolie was initially designed as a language for Web Services orchestra-
tion, during its development the language has evolved to a general-
purpose tool that can be applied to different scenarios, from multi-core
computing to web applications [Montesi, 2013a, Montesi et al., 2014].

We exemplify service composition using orchestration by imple-
menting the Customer-Agency use case in Jolie. Our implementation
includes two programs, one for the customer and one for the agency.
We first discuss the program for the customer, reported below:

1 main
2 {
3 start @ Agency ()(m.sid);
4 satisfied = false;
5 for(i = 0, ! satisfied && i < 5, i++) {
6 showInputDialog @ SwingUI (" Product Name")(m. product);
7 askPrice @ Agency (m)(price);
8 showYesNoQuestionDialog @ SwingUI (string (price))(answer);
9 satisfied = !bool(answer)

10 };
11 showYesNoQuestionDialog @ SwingUI
12 ("Buy " + m. product + " for " + price + "?")(answer);
13 satisfied = !bool(answer);
14 if (satisfied) {
15 accept @ Agency (m);
16 order @ Agency (m)(date)
17 } else {
18 reject @ Agency (m)
19 }
20 }

The customer program starts by sending a message for operation start
to Agency, an external reference implementing the agency. Operation

94

start will start a fresh session in the agency service, identified by a
new session identifier that we expect to receive as a reply. Such session
identifier is stored in the variable m.sid, and the data structure m in the
rest of the code refers to the correct session inside the agency. Lines
5–10 implement the loop of the use case; here, the customer requests
the price for a product at most 5 times or until she is satisfied. In line
6, an external service SwingUI, provided by the Jolie standard library,
is used for asking the user the product she desires to purchase. In line
7, a request is sent to the agency for the price of the product the user
wishes to buy; then, the user can select whether the price is acceptable
or not. After the loop ends, in lines 11–12, the user is asked whether
she wishes to proceed with the purchase of the last selected product. In
this case, in lines 15–16 a message for the accept operation offered by
the agency is sent and the order is placed using another message; when
placing the order, the expected delivery date for the product is sent as
reply. Otherwise, if the user does not wish to proceed, the operation
reject is invoked on the agency and the session terminates (line 18).

Below is the code for the agency:

1 main
2 {
3 start ()(csets.sid) { csets.sid = new };
4 continue = true;
5 while(continue) {
6 [askPrice (m)(double (price)) {
7 showInputDialog @ SwingUI (m. product)(price)
8 }] { nullProcess }
9 [accept (m)] {

10 order (m)(date) {
11 date = string (int(m. product))
12 };
13 continue = false
14 }
15 [reject (m)] {
16 continue = false
17 }
18 }
19 }

The agency is willing to start a new session when invoked on operation

7.3. Abstract Service Descriptions and Behavioral Contracts 95

start; when such operation is invoked, in line 3, the agency creates
a new session identifier csets.sid and sends it back to the invoker.
Thereafter, the agency enters a loop in which it offers three possibilities
(expressed by the input choice construct [] { } ... [] { }). If the
customer invokes the operation askPrice, then the agency calculates
the price for the received product, sends it back to the invoker, and
continues in its loop. The loop terminates only when either operation
accept or operation reject is invoked; in the first case, the agency
also waits for an order request and sends back the expected delivery
date (here calculated with a toy example); otherwise, the loop simply
terminates.

7.3 Abstract Service Descriptions and Behavioral Contracts

The orchestration language WS-BPEL can be used to describe so-called
abstract processes, that is behavioral descriptions that include unspec-
ified parts, hence may represent just the externally visible communi-
cating behavior of a service. Such Abstract WS-BPEL representations
are not meant to be executable: they can be exposed to the service
users in order to determine how to successfully interact with it.

As we already mentioned, using a process algebraic approach, it is
possible to define how to extract the externally observable behavior
(behavioral contract/session type) from the actual executable behavior
of a service [Boreale and Bravetti, 2011].

The achieved abstraction, expressed in a process algebraic language
similar to Abstract WS-BPEL, is then enough informative to enable
analysis of certain properties of the actual service (when interacting
with other services), including stuck freedom [Fournet et al., 2004],
deadlock freedom [Castagna et al., 2009], termination (under fairness
assumptions) [Bravetti and Zavattaro, 2007, 2008a,b]. In particular,
such analysis is often carried out by resorting to more low-level se-
mantic descriptions of service behaviors (essentially labeled transition
systems) called behavioral contracts. One of the most important as-
pects of the service contract technology is considered to be correctness
of composition or, more simply, compliance: given any set of services, it

96

should be possible to prove that their composition is correct (accord-
ing to the above mentioned termination properties) knowing only their
contracts, i.e. in the absence of complete knowledge about the internal
details of the services behavior.

We exemplify abstract process representation by providing the de-
scription of the Customer-Agency use case with abstract WS-BPEL.
In order to avoid writing obscure and verbose XML code we adopt the
more intuitive notation of BPELscript. The representation of the Cus-
tomer is the following (A denotes the agency service, C the customer
service).
while (! satisfied (price)) {

price = askPrice (A);
};
if (confirm (price)) {

accept (A); date= order (A);
} else

reject (A);

Notice that functions satisfied and confirm are underspecified and,
thus, assumed to non-deterministically yield a boolean return value.
The representation of the Agency is the following.
continue = true;
while (continue) {

pick {
onMessage (C, askPrice) { reply (C,askPrice , price); }
onMessage (C, accept) {

receive (C, order);
reply (C,order ,date);
continue = false; }

onMessage (C, reject) { continue = false ; }
}

}

Again, the generation of price and date values is underspecified.
This can be seen as the behavioral abstraction of the Jolie code

given in the previous section, where, also, the i < 5 constraint in the
for loop is disregarded.

Notice that, in order to reason about such service abstraction, we
can resort to a behavioral contract, i.e., a more semantic notation which

7.3. Abstract Service Descriptions and Behavioral Contracts 97

expresses the service behavior, in an even more abstract way, merely in
the form of (finite-state) transition systems, where labels are of the kind
{al, a, τ} representing invocations of operation a on service l, reception
of a message on operation a (inputs do not have a service subscript),
and internal computations τ .

For example, using the familiar notation of regular expressions, we
can specify the Customer service contract as

(askPriceA; price)∗; (acceptA; orderA; date) + rejectA ,

and the Agent service contract as

(askPrice; priceC)∗; (accept; order ; dateC) + reject .

Such contracts can be also derived by projection from the choreo-
graphic description given in §8.1.

An important topic in this regard is service substitutability. It is
a fundamental notion in behavioral contract theory and corresponds
to, so-called, contract refinement (subcontract relation). Such a notion
permits to determine when, given the contract describing an expected
service behavior, a given service can be used to play that role, based
on its contract. Intuitively, a contract C ′ refines a contract C if any
C ′ is compliant (successfully interacts) with any environment (set of
contracts of other services) which is compliant with C. As we already
mentioned, in the context of session types, where behavioral descrip-
tions are used as types for actual service code, compliance is guaranteed
by duality of types and contract refinement corresponds to the defini-
tion of sub-typing. It is thus quite immediate to observe that one of the
main challenges is to define contract refinement so that it is the coarsest
possible pre-order that preserves the desired termination properties, so
to be as permissive as possible when typing checking code against a
given type.

In the following we show, with a couple of examples, how underlying
contracts can be used to reason about service compositions.

It is not difficult to see that the parallel composition of the behav-
ioral contracts above for the Customer and the Agency is a correct
service composition: it is both stuck-free in the sense of [Fournet et al.,

98

2004] and always leads to termination of all interacting contracts (as-
suming fairness) [Bravetti and Zavattaro, 2007, 2008a,b].

It is also interesting to observe that in the Customer service we can
establish a maximum number of invocations to the askPrice service
without breaking the correctness of the system:
i=0;
while (! satisfied (price) && i <5) {

price = askPrice (A);
i++;

};
if (confirm (price)) {

accept (A);
date= order (A);

} else
reject (A);

This can be seen as the behavioral abstraction of the Jolie code for
the Customer given in the previous section.

The corresponding behavioral contract turns out to be the labeled
transition system denoted, e.g., by the regular expression E1, where

Ei = (askPriceA; price);E + Ei+1 for 1 ≤ i ≤ 4
E5 = (askPriceA; price);E

and, finally, E is the following

E = (acceptA; orderA; date) + rejectA

According to the the theory in [Bravetti and Zavattaro, 2007,
2008a,b], the contract for this service is a refinement of the contract
for the previous unbounded Customer service (because it is compliant
with any environment which is compliant with the unbounded Cus-
tomer service).

On the contrary, the contract for the unbounded Customer service
is not a refinement of the contract for this service because there exists a
context for which it is not a correctness preserving substitute. Consider,
for instance, an Agency service that can only perform the pick activity
for 5 cycles: it would cause the Customer service to get stuck (and not
to reach termination).

7.4. Related Work 99

Finally we show a substitute service of the original agency service.
For instance, the following alternative agency service gives rise to a
refinement of the contract of the one above.

continue = true;
while (continue) {

pick {
onMessage (C, askPrice) { reply(C,askPrice ,price); }
onMessage (C, accept) {

receive (C,order);
reply(C,order ,date);
continue = false; }

onMessage (C,loan) { continue = false; }
onMessage (C, reject) { continue = false; }

}
}

The corresponding behavioral contract is the labeled transition sys-
tem denoted by the regular expression:

(askPrice; priceC)∗; (accept; order ; dateC) + loan + reject

The reason for originating a refined contract is that it simply differs
for an additional input on the loan channel, modeling the possibility
for the Agency to receive a loan request.

7.4 Related Work

Concerning inclusion of abstract service descriptions in WSDL, for in-
stance SAWSDL [Kopecky et al., 2007] provides a mechanism for adding
semantic annotations in WSDL.

Other kind of checks can be obtained by enriching information
included in WSDL descriptions. For instance, Allison et al. [2012]
deal with negotiation between a web service requester and a web ser-
vice provider. The negotiation is performed for privacy reasons (i.e.,
the requester specifies privacy preferences that should be met by the
provider). Specifically, the policy languages employed in such negoti-
ations are relevant to WG3 (e.g., eXtensible Access Control Markup
Language - XACML).

100

We have already remarked that the availability of repositories of
Web service descriptions enables forms of dynamic Web service discov-
ery using contracts as search keys. Sometimes, the services available in
a repository expose a contract that is quite similar to the searched one,
but is not a refinement according to the behavioral preorders/equiva-
lences that have been mentioned throughout this chapter. For example,
it may expose unnecessary operations or it may perform the required
operations in an order that differs from the required one. In these cases,
it is sometimes possible to devise a mediator process – a simple form of
orchestrator – that adapts the behavior of the actual service to the one
required in a particular context. Castagna et al. [2009] and Padovani
[2009, 2010] investigate these aspects defining the semantics of such
mediators in terms of weaker behavioral equivalences. In this way, the
orchestrator that realizes the adaptation plays the role of an explicit
coercion that can be automatically synthesized.

Unlike traditional testing preorders [De Nicola and Hennessy, 1984],
the definition of compliance testing (that is semantic sub-typing) re-
quires both the test and the system under test to succeed [Bravetti
and Zavattaro, 2007, 2008b]. The complete characterization of compli-
ance testing remains an open problem. Recent work in this direction has
been done by Bernardi and Hennessy [2013], where however compliance
testing is characterized only for controllable processes (i.e. processes for
which there exists a compliant test) and, differently from [Bravetti and
Zavattaro, 2007, 2008b], fairness assumption is not considered. This is
practically convenient in order not to discard looping interactions, but
technically more complex to deal with [Rensink and Vogler, 2007].

Choreographies

Choreographies are syntactic descriptions of the overall coordination of
a system, in terms of interactions between autonomous principals. A
choreography captures how two or more endpoints (or nodes) exchange
messages during execution from a global viewpoint, instead of a collec-
tion of programs that define individually the behavior of each endpoint.
As an example of a choreography, consider the following pseudo-code
(whose syntax is a variant of the “Alice and Bob” security protocol
notation from Needham and Schroeder [1978]):

1. Customer -> Agency : product;
2. Agency -> Customer : price

The choreography above describes the behavior of two endpoints,
Customer and Agency: Customer sends to Agency a product name
(line 1); then, Agency replies to Customer with the price of the product
she requested (line 2).

The following discusses two approaches to developing
communication-based software using choreographies. In §8.1, chore-
ographic programming is a paradigm where programmers write a
choreography to generate system that is “safe by design”, since it
describes directly the intended communications in the system: a

101

102

choreography can be seen as the formalization of the communication
flow intended by the programmer. Moreover, each communication is
treated as atomic: the sending and receiving actions of the respective
sender and receiver endpoints cannot be seen separately, preventing
typical concurrency bugs such as deadlocks. In §8.2, a choreography
is treated as a global specification of an asynchronous communication
protocol that is used to verify, either statically through type check-
ing or dynamically through decentralized run-time monitoring, the
conformance of each endpoint process to the intended protocol.

8.1 Choreography Programming Languages

A recent line of research advocates the development of safe distributed
systems with Choreographic Programming, a programming paradigm
in which developers write system implementations using choreogra-
phies. The executable code for each endpoint (which we call endpoint
code) is then automatically projected from a choreography, using a
procedure known as Endpoint Projection (EPP). The key idea is to
formally prove that the definition of EPP is correct, i.e., it preserves
the intended behavior of a projected choreography in the produced
endpoint code; in other words, executing the endpoint code produced
by EPP leads exactly to the communications defined in the originat-
ing choreography. This property enables a development methodology
in which developers write a choreography and then distributed soft-
ware implementing the choreography is automatically generated. We
can depict such methodology thus:

Choreography
choreography projection (EPP)
−−−−−−−−−−−−−−−−−−−−−−−−−−→ Endpoint Code

The main aspect of the methodology above is that the produced end-
point code is safe by construction: since the EPP procedure is correct,
it follows that the communications defined by the programmer are im-
plemented faithfully and without errors. Such methodology has been
investigated in many theoretical works, e.g., by Carbone et al. [2006],
Qiu et al. [2007], Bravetti and Zavattaro [2007], Lanese et al. [2008].

8.1. Choreography Programming Languages 103

Mendling and Hafner [2005] informally discuss how to project chore-
ographies to endpoint code using the real-world choreography language
WS-CDL [CDL] and the endpoint process language WS-BPEL [OA-
SIS, 2007]. A formalization of WS-CDL is provided by Carbone et al.
[2012]. Montesi and Yoshida [2013] show how choreography models can
be extended to support the integration of (i) choreographies developed
separately and (ii) choreographies with externally provided services
that have been developed using the typical programming of endpoint
programs. Carbone et al. [2014] investigate the logical foundations of
choreographies by using linear logic [Girard, 1987], from which they
derive a procedure for inferring the choreography implemented by an
arbitrary system of endpoint programs as long as these programs can
be typed using linear logic as in [Caires and Pfenning, 2010].

Currently, the most renown implemented choreography languages
are WS-CDL [CDL] and BPMN [BPMN], which do not come with a be-
havioral typing discipline. More recently, Carbone and Montesi [2013]
have proposed a choreographic programming model for the develop-
ment of distributed systems based on multiparty sessions and asyn-
chronous messaging that can be checked for respecting protocols spec-
ified as multiparty session types [Honda et al., 2008]. We depict such
methodology below:

Protocols

global
validation
−−−−−−−−−−→ Choreography

choreography
projection

−−−−−−−−−−−−→ Endpoint
Code

Building on the model proposed by Carbone and Montesi [2013],
the Chor language offers an Integrated Development Environment
(IDE) based on Eclipse for developing systems with the methodology
above [Chor].

Example. Below, we report an implementation of the Customer-
Agency example in the Chor language.

1 program customer_agency ;
2

3 protocol PurchaseProtocol {

104

4 Customer -> Agency : askPrice (string);
5 CheckPrice
6 }
7

8 protocol CheckPrice {
9 Agency -> Customer : price (int);

10 Customer -> Agency : {
11 askPrice (string);
12 CheckPrice ,
13 accept (void);
14 Customer -> Agency : order (string);
15 Agency -> Customer : date(string),
16 reject (void)
17 }
18 }
19

20 public agency_url : PurchaseProtocol
21

22 define checkPrice (c,a)(s[CheckPrice :c[Customer],a[Agency]])
23 {
24 ask@a(prod , price);
25 a.price -> c.price: price (s);
26 ask@c(price , satisfied);
27 if(satisfied == "Yes")@c {
28 ask@c(" Confirm ?",confirm);
29 if (confirm == "Yes")@c {
30 c -> a: accept (s);
31 c.prod -> a.prod: order (s);
32 ask@a(prod ,date);
33 a.date -> c.date: date(s)
34 } else {
35 c -> a: reject (s)
36 }
37 } else {
38 ask@c(" Product Name",prod);
39 c.prod -> a.prod: askPrice (s);
40 checkPrice (c,a)(s)
41 }
42 }
43

44 main
45 {

8.1. Choreography Programming Languages 105

46 c[Customer] start a[Agency]: agency_url (s);
47 ask@c(" Product Name",prod);
48 c.prod -> a.prod: askPrice (s);
49 checkPrice (c,a)(s)
50 }

The program starts by defining PurchaseProtocol. In Chor, protocols
are behavioral types describing the structure of the communication
flow between some roles, Customer and Agency in this case. In protocol
PurchaseProtocol, role Customer sends a message to role Agency on
operation askPrice, asking the price for a product; then, the protocol
proceeds as protocol CheckPrice. In protocol CheckPrice, the agency
sends the price for the product to the customer. The customer then
selects one of three available choices on the agency: (i) ask again for
the price of another product, in which case the protocol recurs; (ii)
accept the price and order the product, in which case the agency replies
with a delivery date; (iii) reject the price, in which case the protocol
terminates.

After the protocol definitions is the choreography adhering to them.
Procedure main is the choreography entry-point of execution. A session
s between a customer process c and an agency process a is started
(line 46). The two processes synchronize on the public URL agency_url.
The customer internally computes (by asking its user through a user
interface) the product prod to buy (line 47); then, it asks the agency
for the price of the product (line 48) and the whole system proceeds as
defined by procedure checkPrice.

Procedure checkPrice implements protocol CheckPrice. The pro-
cedure is declared together with the processes and sessions it uses,
respectively c,a and s (line 22). All parameters are behaviorally typed,
indicating which protocol each session should implement and which role
each process plays in the sessions. In this case, the declaration states
that session s implements protocol CheckPrice using process c as the
customer and process a as the agency. The body of checkPrice follows
the structure of the protocol CheckPrice (lines 24–41). Note the usage
of concrete data values and the conditional construct if since this is
actual code, not merely a protocol description.

Using Chor, the choreography above can be automatically trans-

106

lated into an executable implementation in the Jolie language [devel-
opment team] equivalent to that presented in §7. Observe that Chor
uses multiparty session types [Honda et al., 2008] as protocol specifi-
cations and repetition is thus expressed through recursion, while the
notation used in §7, inspired from [Lanese et al., 2008, Bravetti and
Zavattaro, 2012], used the Kleene star.

Implementation challenges. We use Chor and our example to de-
scribe three challenges that are encountered in the development of lan-
guages for choreographic programming. We refer the reader to [Montesi,
2013b] and [Carbone and Montesi, 2013] for more detailed descriptions
(especially regarding session mobility, which is not discussed here).

The first challenge is supporting session communications. In gen-
eral, a session may have many participating processes, which need to
be able to communicate with each other at runtime. In Chor, a ses-
sion among some processes is created using primitive start. In line 46
of our example, the processes c and a are involved in the creation
of a new session s through the public channel agency_url. This is a
high-level abstraction that may be implemented differently, depend-
ing on the target technology. Since Chor uses a service-oriented lan-
guage such as Jolie, the public channel is actually implemented as an
always-available service that can be used by processes in the network
to create new sessions [Montesi, 2013b] (each public channel has its
own service implementation). Such start service implements a variant
of the two-phase commit protocol for synchronising all the processes
involved in the session, and communicate to all of them the necessary
binding information (e.g., IP addresses) for reaching each other. This
binding information also contains correlation data, a generalisation of
session tokens inspired by WS-BPEL [OASIS, 2007].For each role that
a process implements in a choreography, the Chor compiler generates
a separate correlation set for the code of the process. Each correlation
set identifies a separate message queue managed by the process; at run-
time, messages for different sessions that the process is involved in will
be stored in separate queues, allowing the process to distinguish where
messages come from and consume them as specified by the original

8.1. Choreography Programming Languages 107

choreography.
The second challenge is the integration with existing paradigms.

Language models for choreographies typically focus on minimality and
give only a high-level description of how the code compiled from a
choreography should behave. Typically, these models are inspired to
the π-calculus [Sangiorgi and Walker, 2001] in order to facilitate their
formal investigation. In practice, these high-level descriptions must be
suitably mapped to concrete executable code found in the target im-
plementation language. For instance, session communications in Chor
always include the name of the operation invoked by the sender (e.g.,
price, in line 25). This is not the case in the theoretical model that
Chor follows. However, all communications in service-oriented comput-
ing happen over operations and thus this change is a necessary addition
when compiled code is to be executed in a service-oriented architecture.
Different modifications would be needed for other paradigms; in gen-
eral, they should be made with particular care, since any changes to the
original theoretical models of choreographic programming risk breaking
their safety properties (e.g., deadlock-freedom).

Lastly, the third challenge is about reliability. To the best of our
knowledge, all implemented choreography languages work on the as-
sumption that communications will succeed (the network is “perfect”)
and execution units never fail. Therefore, the safety properties of chore-
ographies are guaranteed only if these assumptions are not broken at
runtime. We envision that much future work in the area will go towards
creating choreography models where nodes and communications may
fail during execution. Such models may include primitives that allow
programmers to specify what should happen in case of failure, possibly
including the notion of time. Another strategy could be to develop a
dedicated middleware that monitors the execution of a choreography
in an unreliable environment and makes it reliable by automatically
managing and restarting the resources that it needs.

108

8.2 Scribble

The Scribble project [Honda et al., 2014, 2011] is a collaboration be-
tween session types researchers and architects and engineers from in-
dustry towards the application of session types principles and tech-
niques to current engineering practices. Building on the theory of mul-
tiparty session types (MPST) [Honda et al., 2008, Bettini et al., 2008b],
this ongoing work tackles the challenges of adapting and implement-
ing session types to meet real-world usage requirements. This section
gives an overview of the current version of the Scribble framework for
the MPST-based development of distributed software. In the context
of Scribble, we use the terms session and conversation interchangeably.

The main elements of the Scribble framework are as follows.

The Scribble language is a platform-independent description language
for the specification of asynchronous, multiparty message passing
protocols [Honda et al., 2014, 2011]. Scribble may be used to
specify protocols from both the global (neutral) perspective and
the local perspective of a particular participant (abstracted as a
role); at heart, the Scribble language is an engineering incarnation
of the notation for global and local types in formal MPST systems
and their correctness conditions.

The Scribble Conversation API provides the local communication op-
erations for implementing the endpoint programs for each role
natively in various mainstream languages. The current version of
Scribble supports Java and Python Conversation APIs with both
standard socket-like and event-driven interfaces for initiating and
conducting conversations.

The Scribble Runtime is a local platform library for executing Scrib-
ble endpoint programs written using the Conversation API. The
Runtime includes a conversation monitoring service for dynami-
cally verifying [Hu et al., 2013, Bocchi et al., 2013, Neykova et al.,
2013, Demangeon et al., 2015] the interactions performed by the
endpoint against the local protocol for its role in the conversa-
tion. In addition to internal monitors at the endpoints, Scribble

8.2. Scribble 109

Global Protocol

Local
Protocol

Local
Protocol

Endpoint
Code

Endpoint
Code

Conversation
Runtime

Conversation
Runtime

Monitor Monitor

Safe Network

Projection

. . .

Implementation (Python, Java, . . .)

. . .Dynamic
Verification

Specification
(Scribble)

Figure 8.1: The Scribble framework for distributed software development.

also supports the deployment of external conversation monitors
within the network [Chen et al., 2011b].

In addition to the generic Java/Python Conversation APIs, it is also
possible to generate protocol-specific endpoint APIs for the target lan-
guage from a source protocol [Hu and Yoshida, 2016].

The Scribble framework combines these elements to promote the
MPST-based methodology for distributed software development de-
picted in Figure 8.1. Below, we first illustrate an example protocol
specification in the Scribble language, and then describe the stages of
the Scribble framework, explaining the design challenges of applying
session types to practice and recent research threads motivated by this
work [Scribble].

Online Travel Agency example To demonstrate Scribble as a multi-
party session types language, Figure 8.2 lists the Scribble specification
of the global protocol for an extended version of the running Online
Travel Agency example. If Customer decides to accept a travel quote

110

1 module TravelAgency;
2

3 type <java> "java.lang.Double" from "rt.jar" as Double;
4 type <java> "java.lang.String" from "rt.jar" as String;
5 type <java> "java.util.Date" from "rt.jar" as Date;
6

7 // C = Customer, A = Agent, S = Service
8 global protocol BookJourney(role C, role A, role S) {
9 rec LOOP {

10 choice at C {
11 query(journey:String) from C to A;
12 price(Double) from A to C;
13 info(String) from A to S;
14 continue LOOP;
15 } or {
16 choice at C {
17 ACCEPT() from C to A;
18 ACCEPT() from A to S;
19 Address(String) from C to S;
20 (Date) from S to C;
21 } or {
22 REJECT() from C to A;
23 REJECT() from A to S;
24 } } } }

Figure 8.2: Scribble specification of a global protocol for the Online Travel Agency
use case.

8.2. Scribble 111

from Agency, the exchange of address details and the ticket dispatch
date is now conducted between Customer and Service, representing
the transport service being brokered by Agency. The Scribble is read
as follows:

• The first line declares the Scribble module name. Although this
example is self-contained within a single module, Scribble code
may be organized into a conventional hierarchy of packages and
modules. Importing payload type and protocol declarations be-
tween modules is useful for factoring out libraries of common
payload types and subprotocols.

• The design of the Scribble language focuses on the specification
of protocol structures. With regards to the payload data that
may be carried in the exchanged messages, Scribble is designed
to work orthogonally with external message format specifications
and data types from other languages. The type declaration on
Line 3 declares a payload type based on Java object serialization
format, specifically java.lang.Double objects, whose definition
(i.e. class) is to be imported from the file rt.jar, and is aliased
as Double within this Scribble module. Data type formats from
other languages, as well as XML or various IDL based message
formats, may be used similarly. A single protocol definition may
feature a mixture of message types defined by different formats.

• Line 8 declares the signature of a global protocol called
BookJourney. This protocol involves three roles: Customer (C),
Agency (A), and Service (S).

• Lines 9–24 define the interaction structure of the protocol. Line 11
specifies a basic message passing action. query(journey:String)
is a message signature for a message with header (label) journey,
carrying one payload element within the parentheses. A payload
element is an (optional) annotation followed by a colon and the
payload type, e.g. journey details are recorded in a String. This
message is to be dispatched by C to be received by A.

112

• The outermost construct of the protocol body is the rec block
with label Loop. Similarly to labeled blocks in e.g. Java, the oc-
currence of a continue for the same label within the block causes
the flow of the protocol to return to the start of the block. The
first choice within the rec, decided by C, is to obtain another
quote (lines 11–14: send A the query details, receive a price, and
continue back to the start), or to accept/reject a quote. The lat-
ter is given by the inner choice, with C sending ACCEPT to A in
the first case and REJECT in the second. In the case of ACCEPT
(lines 17–20), A forwards the confirmation to S before C and S
exchange Address and Date messages; otherwise, A forwards the
REJECT to S instead.

The Scribble framework. The Scribble development workflow starts
from the explicit specification of the required global protocols (such
as BookJourney above), similarly to the existing, informally applied
approaches based on prose documentation, such as Internet protocol
RFCs, and common graphical notations, such as UML and sequence
diagrams. Designing an engineering language from the formal basis of
MPST faces the following challenges.

• To developers, Scribble is a new language to be learned and un-
derstood, particularly since most developers are not accustomed
to formal protocol specification in this manner. For this reason,
we have worked closely with our collaborators towards making
Scribble protocols easy to read, write and maintain. Aside from
the core interaction constructs that are grounded in the original
theory, Scribble features extensions for the practical engineer-
ing and maintenance of protocol specifications, such as subproto-
col abstraction and parameterized protocols [Honda et al., 2014]
(demonstrated in the examples below).

• As a development step (as opposed to a higher-level documen-
tation step), developers face similar coding challenges in writing
formal protocol descriptions as in the subsequent implementation
steps. IDE support for Scribble and integration with other devel-

8.2. Scribble 113

1 module TravelAgency_BookJourney_C;
2

3 type <java> "java.lang.Double" from "rt.jar" as Double;
4 type <java> "java.lang.String" from "rt.jar" as String;
5 type <java> "java.util.Date" from "rt.jar" as Date;
6

7 local protocol BookJourney_C(self C, role A, role S) {
8 rec LOOP {
9 choice at C {

10 query(journey:String) to A;
11 price(Double) from A;
12 continue LOOP;
13 } or {
14 choice at C {
15 ACCEPT() to A;
16 Address(String) to S;
17 (Date) from S;
18 } or {
19 REJECT() to A;
20 } } } }

Figure 8.3: Scribble local protocol for Customer projected from the BookJourney
global protocol.

opment tools, such as the Java-based tooling in Red Hat JBoss,
are thus important for developer uptake.

• Although session types have proven to be sufficiently expressive
for the specification of protocols in a variety of domains, includ-
ing standard Internet applications [Hu et al., 2010], parallel algo-
rithms [Ng et al., 2012b], actor distributed applications [Neykova
and Yoshida, 2014] and Web Services [CDL], the evaluation of
Scribble through our collaboration use cases has motivated the
development of new multiparty session type constructs, such as
asynchronous conversation interrupts [Hu et al., 2013] (demon-
strated below) and subsession nesting [Demangeon and Honda,
2012], which were not supported by the pre-existing theory.

After the specification of the global protocols, the next step of the

114

A!REJECT()

A!ACCEPT()

S!Address(String)

S?(Date)

A!query(String)

A?price(Double)

Figure 8.4: FSA generated from the local protocol by the Scribble conversation
monitor.

Scribble framework (Figure 8.1) is the projection of local protocols
from the global protocol for each role. In comparison to languages im-
plemented from binary session types, such as SJ and Mungo (§2.2) or
Sing# (Chapter 6), this additional step is required to derive local spec-
ifications for the endpoint implementation of each role process from
the central global protocol specification. Scribble projection follows the
standard MPST algorithmic projections, with extensions for the addi-
tional features of Scribble, such as the subprotocols and conversation
interrupts mentioned above.

Figure 8.3 lists the local protocol generated by the Scribble tools
as the projection of the BookJourney for the Customer role, identified in
the local protocol signature as the self role. Projection preserves the
dependencies of the global protocol, such as the payload types used, and
the core interaction structures in which the target role is involved, e.g.
the rec and choice blocks, as well as payload annotations and similar
protocol details. The well-formedness conditions on global protocols
allow the projection to safely discard all message actions not involving
C (i.e. messages between A and S).

As for the binary session languages cited above, it is possible to stat-
ically type check role implementations written in endpoint languages
with appropriate MPST programming primitives against the local pro-

8.2. Scribble 115

tocols following the standard MPST theory: if the endpoint program
for every role is correct, then the correctness of the whole multiparty
system is guaranteed. The endpoint languages used in the Scribble in-
dustry projects, however, are mainstream engineering languages like
Java and Python that lack the features, such as first-class communi-
cation channels with linear resource typing or object alias restriction,
required to make static session typing feasible. In Scribble practice, the
Conversation API is used to perform the relevant conversation opera-
tions natively in these languages, making static MPST type checking
intractable. In general, distributed systems are often implemented in
a mixture of languages, including dynamically typed languages (e.g.
Python), and techniques such as event-driven programming, for which
the static verification of strong safety properties is acknowledged to be
difficult.

For these reasons, the Scribble framework, differently from the
above session languages, is designed to focus on dynamic verification
of endpoint behavior [Hu et al., 2013]. Endpoint monitoring by the lo-
cal Conversation Runtime is performed by converting local protocols
to communicating finite state automata, for which the accepted lan-
guages correspond to the I/O action traces permitted by the protocol.
The conversion from syntactic Scribble local protocols to FSA extends
the algorithm in [Deniélou and Yoshida, 2012] to support subprotocols
and interrupts, and to use nested FSM for parallel conversation threads
to avoid the potential state explosion from constructing their product.
Figure 8.4 depicts the FSA generated by the monitor from the Customer
local protocol. The FSA encodes the control flow of the protocol, with
transitions corresponding to the valid I/O actions that C may perform
at each state of the protocol.

Analogously to the static typing scenario, if every endpoint is mon-
itored to be correct, the same communication-safety property is guar-
anteed [Bocchi et al., 2013]. In addition, since the monitor verifies both
messages dispatched by the endpoint into the network and the messages
inbound to the endpoint from the network, each conversation monitor
is able to protect the local endpoint within an untrusted network and
vice versa. The internal monitors embedded into each Conversation

116

1 global protocol CustomerOptions(role C, role A, role S) {
2 choice at C {
3 do GetQuote(C, A, S);
4 } or {
5 do Forward<ACCEPT()>(C, A, S);
6 do ServiceCall<Address(String), (Date)>(C, S);
7 } or {
8 do Forward<REJECT()>(C, A, S);
9 } }

10

11 global protocol GetQuote(role C, role A, role S) {
12 do ServiceCall<query(String), price(Int)>(C, A);
13 info(String) from A to S;
14 do CustomerOptions(C, A, S);
15 }
16

17 global protocol ServiceCall<sig Arg, sig Res>(role C, role S) {
18 Arg from C to S;
19 Res from S to C;
20 }
21

22 global protocol Forward<sig M>(role X, role Y, role Z) {
23 M from X to Y;
24 M from Y to Z;
25 }

Figure 8.5: Decomposition of the BookJourney global protocol using parame-
terised subprotocols

runtime function perform synchronous monitoring (the actions of the
endpoint are verified synchronously as they are performed); Scribble
supports mixed configurations between internal endpoint monitors and
asynchronous, external monitors deployed within the network (as well
as statically verified endpoints, where possible) [Chen et al., 2011b].

Further examples The following gives two further examples to
demonstrate additional features of Scribble motivated by application
in practice.

The first example demonstrates the abstraction of protocol declara-

8.2. Scribble 117

1 global protocol InterruptibleServiceCall(role C, role S) {
2 Arg from C to S;
3 interruptible {
4 Res from S to C;
5 } with {
6 cancel() by C;
7 } }

Figure 8.6: Revision of the ServiceCall global protocol with a request cancel
interrupt

tions as subprotocols, and the related feature of parameterised protocol
declarations. Figure 8.5 gives an alternative specification for the Travel
Agency example that is decomposed into four smaller global protocols.

ServiceCall specifies a generic call-return pattern between a Client
and a Server. The message signatures of the two communications
are abstracted by the Arg and Res parameters, declared by the
sig keyword inside the angle brackets of the protocol signature.

Forward specifies a generic forwarding pattern between three roles,
from X to Y and then Y to Z. The intent is for Y to forward a
copy of the same message, so the signatures of the two commu-
nications are abstracted by the same M parameter.

CustomerOptions is the main protocol in this version of the Travel
Agency specification, with the same signature as BookJourney in
Figure 8.2. It starts with the choice of C to get another quote,
accept a quote, or reject. The main interactions are now built
by composing instances of the Forward and ServiceCall subpro-
tocols. For example, do Forward<ACCEPT()>(C, A, S) on line 5
states that the Forward protocol should be performed with the
target roles X, Y and Z played by C, A and S, respectively, and
ACCEPT() as the concrete message signature in place of the M pa-
rameter; C sends ACCEPT to A, who forwards it to S. After this,
C and S engage in a ServiceCall subprotocol to exchange the
Address and Date messages.

118

GetQuote performs the quote query case of the choice between C and
A, and loops back to the overall start of the protocol. The quote
exchange is specified by instantiating the ServiceCall with the
appropriate role and message signature parameters. To return
to the start of the protocol, we recursively do the main proto-
col CustomerOptions. The loop is thus specified by the mutual
recursion between these two protocol declarations.

The final example demonstrates the Scribble feature for asyn-
chronously interruptible conversations. Unlike the previous features,
which involve the integration of session types with useful, general pro-
gramming language features (code abstraction and parameterization),
conversation interrupts require extensions to the core design of ses-
sion types [Hu et al., 2013]. The motivation for interrupts comes from
our collaboration use cases, featuring patterns such as asynchronously
interruptible streams and interaction timeouts,which could not be di-
rectly expressed in the standard MPST formulations.

Figure 8.6 gives a very simple revision of the ServiceCall protocol
that allows the Client to cancel the call by interrupting the Server’s
reply. A key design point is that interruptible conversation segments
do not incur any additional synchronization overhead from the explicit
messaging actions (i.e. interrupts are themselves communicated as reg-
ular messages). Due to asynchrony between C and S, the interrupt can
cause various communication race conditions to arise, e.g. C sending
cancel before S processes the initial Arg or after S has already dis-
patched the Res. The Scribble Runtime is designed to handle these
issues by tracking the progress of the local endpoint through the pro-
tocol (as part of the monitoring service). This allows the Runtime to
resolve the communication races by discarding messages that are no
longer relevant due to the local role raising an interrupt or receiving
an interrupt message from another role.

8.3 Related Work

The development of the Scribble framework and its application in real-
world use cases is ongoing work. The two main use case projects men-

8.3. Related Work 119

tioned in the above are:

Savara is a JBoss project developed by Red Hat and employed in a
commercial setting by a Cognizant business unit [business unit].
Savara relies on Scribble as an intermediate language for repre-
senting protocols, to which high-level notations, such as BPMN2,
are translated to perform endpoint projections and various refac-
toring tasks. Savara provides a suite of tools for testing of service
specifications against the initial project requirements. The test-
ing is based on simulations between the former, represented in
Scribble, and the latter, expressed as sequence diagram traces.

The Ocean Observatories Initiative is an NSF-funded project to
develop the infrastructure for the remote, real-time acquisition
and delivery of data from a large sensor network deployed in
ocean environments to users at research institutions. The Scrib-
ble framework, including Conversation Runtime monitoring, has
been integrated into the Python-based OOI platform. So far, the
OOI cyberinfrastructure is mainly running on an RPC-based ar-
chitecture. The current Scribble integration is accordingly pri-
marily used for the specification of RPC service and applica-
tion protocols, and the dynamic verification of the Python clien-
t/server endpoints.

Below, we summarize some of the active threads in regards to these
projects.

• The Savara project is examining formal encodings between the
specification languages commonly used in practice and Scribble
(the current translation by Savara is not yet formalized), which
is motivating further extensions to Scribble, such as dynamic in-
troduction of roles during a conversation and fork-join conversa-
tion patterns. In general, adapting MPST and Scribble to graph-
ical representations will increase the expressiveness of the proto-
col specification language. Using the native semantics of formal
graphical formats for concurrency, such as communication au-
tomata [Deniélou and Yoshida, 2012] and Petri nets [Fossati et al.,

120

2014], to provide global execution models of conversations is an
interesting direction for integrating Scribble protocol specifica-
tions with specifications of other system aspects, such as internal
endpoint workflows.

• The current phase of the OOI project includes the development of
a framework for actor-based interactions over the existing service
infrastructure. To support the specification and verification of
higher-level application properties above the core message pass-
ing protocol, Scribble is being extended with a framework for
annotating protocols with assertions and policies in third-party
languages. Annotations may be associated to individual messages,
interaction steps, control flow structures, roles or protocols as a
whole; examples range from basic constraints on specific message
values and control flow (e.g. recursion bounds) to more compli-
cated logics for security or contractural obligations of roles. The
Scribble framework will accept plugins for parsing and project-
ing the annotation language, and evaluating the annotations at
run-time. This allows the Scribble tools and monitors to be ex-
tended modularly with application- and domain-specific annota-
tions, and the dynamic verification approach enables the enforce-
ment of properties that would be difficult or impossible to verify
statically without conservative restrictions.

• The Savara and OOI use cases implement the Scribble language,
meaning the syntax, well-formedness (valid protocol) conditions
and projections, as defined by the central language reference.
Both implementations also necessarily conform to baseline com-
munication model of Scribble, namely asynchronous but reliable
and role-to-role ordered messaging. The Scribble project is cur-
rently working on defining an accompanying Conversation Run-
time specification. This will provide the reference for Scribble
runtime libraries and platforms, including the specification of the
key system protocols for conversation initiation, message formats
(conversation and monitoring message meta data) and more ad-
vanced features such as conversation delegations [Hu et al., 2008].

8.3. Related Work 121

This work is towards full interoperability of Scribble endpoints
running on different platforms, such as the Java and Python plat-
forms of the above use cases, supported by platform-independent
monitoring. This interoperability will also extend to safely com-
bining dynamically and statically verified endpoints within con-
versations.

As a converse of choreographic programming, the construction of
graphical choreographies, or global graphs, is also a research topic of
interest. Global graphs are general multiparty session specifications fea-
turing expressive constructs such as forking, merging, and joining for
representing application-level protocols. Global graphs can be directly
translated into modelling notations such as BPMN and UML. The ap-
proach has been investigated by Deniélou and Yoshida [2013], Lange
et al. [2015] who present algorithms to construct a global graph from
the asynchronous interactions represented by communicating finite-
state machines (CFSMs). An implementation of these algorithms is
also available [GMC]. These works have been extended by Bocchi et al.
[2014, 2015] to the timed settings as Communicating Timed Automata
(CTAs) to build timed global specifications from systems of CTAs.

Acknowledgments

This work has been supported by COST Action IC1201 Behavioural
Types for Reliable Large-Scale Software Systems (BETTY). The au-
thors are grateful to all members of the BETTY Working Group on
Programming Languages (WG3) for interesting related discussions and
to the anonymous reviewer who provided precious comments and sug-
gestions for improving an early version of this survey.

Mario Bravetti, Elena Giachino and Einar Broch Johnsen have been
supported by the EU project FP7-610582 Envisage: Engineering Vir-
tualized Services (http://www.envisage-project.eu).

We warmly acknowledge the enormous influence of Kohei Honda
(1959-2012) on the research area covered by this survey, on the process
of establishing COST Action IC1201, and on our own careers.

122

http://www.envisage-project.eu

References

Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary Sparks.
Typestate-oriented programming. In Proceedings of the 24th ACM SIG-
PLAN conference companion on Object oriented programming systems lan-
guages and applications, OOPSLA’09, pages 1015–1022, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-768-4.

David S Allison, Miriam AM Capretz, Hany F EL Yamany, and Shuying
Wang. Privacy protection framework with defined policies for service-
oriented architecture. Journal of Software Engineering and Applications, 5
(3):200–215, 2012.

Nuno Alves, Raymond Hu, Nobuko Yoshida, and Pierre-Malo Deniélou.
Secure execution of distributed session programs. In Proceedings of
PLACES’10, volume 69 of EPTCS, pages 1–11, 2010.

D. Ancona, S. Drossopoulou, and V. Mascardi. Automatic Generation of Self-
Monitoring MASs fromMultiparty Global Session Types in Jason. In DALT
X. Revised, Selected and Invited Papers, volume 7784 of LNAI. Springer,
2012.

D. Ancona, M. Barbieri, and V. Mascardi. Constrained global types for dy-
namic checking of protocol conformance in multi-agent systems. In SAC
2013. ACM, 2013a.

D. Ancona, V. Mascardi, and M. Barbieri. Global types for dynamic checking
of protocol conformance in multi-agent systems. Technical report, DIBRIS,
2013b. Submitted for journal publication.

123

124

D. Ancona, V. Mascardi, and M. Barbieri. Global types for dynamic checking
of protocol conformance of multi-agent systems. Technical report, Uni-
versity of Genova, DIBRIS, 2013c. Extended version of D. Ancona, M.
Barbieri, and V. Mascardi. Global Types for Dynamic Checking of Protocol
Conformance of Multi-Agent Systems (Extended Abstract). In P. Massazza,
editor, 13th Italian Conference on Theoretical Computer Science (ICTCS
2012), pages 39-43, 2012.

John Langshaw Austin. How to Do Things with Words. Oxford: Clarendon
Press, 1962.

Nels E. Beckman, Kevin Bierhoff, and Jonathan Aldrich. Verifying correct
usage of atomic blocks and typestate. In Gail E. Harris, editor, OOPSLA,
pages 227–244. ACM, 2008. ISBN 978-1-60558-215-3.

F. L. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent Sys-
tems with JADE. John Wiley & Sons, 2007.

Giovanni Bernardi and Matthew Hennessy. Mutually testing processes - (ex-
tended abstract). In Pedro R. D’Argenio and Hernán C. Melgratti, editors,
CONCUR 2013 - Concurrency Theory - 24th International Conference,
CONCUR 2013, Buenos Aires, Argentina, August 27-30, 2013. Proceedings,
volume 8052 of Lecture Notes in Computer Science, pages 61–75. Springer,
2013. ISBN 978-3-642-40183-1. .

Lorenzo Bettini, Sara Capecchi, Mariangiola Dezani-Ciancaglini, Elena Gi-
achino, and Betti Venneri. Session and Union Types for Object Oriented
Programming. In Rocco De Nicola, Pierpaolo Degano, and José Meseguer,
editors, Concurrency, Graphs and Models, volume 5065 of LNCS, pages
659–680. Springer-Verlag, 2008a.

Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola
Dezani-Ciancaglini, and Nobuko Yoshida. Global progress in dynamically
interleaved multiparty sessions. In CONCUR ’08, volume 5201 of LNCS,
pages 418–433. Springer, 2008b.

Lorenzo Bettini, Sara Capecchi, Mariangiola Dezani-Ciancaglini, Elena Gi-
achino, and Betti Venneri. Deriving session and union types for objects.
Mathematical Structures in Computer Science, FirstView:1–57, 4 2013.
ISSN 1469-8072.

Karthikeyan Bhargavan, Ricardo Corin, Pierre-Malo Deniélou, Cédric Four-
net, and James J. Leifer. Cryptographic protocol synthesis and verification
for multiparty sessions. In CSF, pages 124–140, 2009.

References 125

Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased
objects. In Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes,
and Guy L. Steele Jr., editors, OOPSLA, pages 301–320. ACM, 2007. ISBN
978-1-59593-786-5.

Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and
Nobuko Yoshida. Monitoring networks through multiparty session types.
In FMOODS, volume 7892 of LNCS, pages 50–65. Springer, 2013.

Laura Bocchi, Weizhen Yang, and Nobuko Yoshida. Timed multiparty session
types. In CONCUR 2014, volume 8704 of LNCS, pages 419–434. Springer,
2014.

Laura Bocchi, Julien Lange, and Nobuko Yoshida. Meeting deadlines together.
In CONCUR 2015, volume 42 of LIPIcs, pages 283–296. Schloss Dagstuhl,
2015.

Viviana Bono and Luca Padovani. Typing Copyless Message Passing. Logical
Methods in Computer Science, 8:1–50, 2012. ISSN 1860-5974.

Viviana Bono, Chiara Messa, and Luca Padovani. Typing Copyless Message
Passing. In Proceedings of the 20th European Symposium on Programming
(ESOP’11), volume LNCS 6602, pages 57–76. Springer, 2011.

Viviana Bono, Luca Padovani, and Andrea Tosatto. Polymorphic Types for
Leak Detection in a Session-Oriented Functional Language. In Proceedings
of 2013 IFIP Joint International Conference on Formal Techniques for
Distributed Systems, volume LNCS 7892, pages 83–98. Springer, 2013.

R. H. Bordini, J. F. Hübner, and M. Wooldridge. Programming Multi-Agent
Systems in AgentSpeak Using Jason. John Wiley & Sons, 2007.

Michele Boreale and Mario Bravetti. Advanced mechanisms for service com-
position, query and discovery. In Martin Wirsing and Matthias M. Hölzl,
editors, Results of the SENSORIA Project, volume 6582 of Lecture Notes in
Computer Science, pages 282–301. Springer, 2011. ISBN 978-3-642-20400-5.

John Boyland. Checking interference with fractional permissions. In Radhia
Cousot, editor, SAS, volume 2694 of Lecture Notes in Computer Science,
pages 55–72. Springer, 2003. ISBN 3-540-40325-6.

John Boyland. Fractional permissions. In Dave Clarke, James Noble, and
Tobias Wrigstad, editors, Aliasing in Object-Oriented Programming, volume
7850 of Lecture Notes in Computer Science, pages 270–288. Springer, 2013.
ISBN 978-3-642-36945-2.

BPMN. Business Process Model and Notation. http://www.omg.org/spec/
BPMN/2.0/, 2011.

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/

126

D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal
of ACM, 30:323–342, 1983.

Mario Bravetti and Gianluigi Zavattaro. Towards a unifying theory for chore-
ography conformance and contract compliance. In Markus Lumpe and Wim
Vanderperren, editors, Software Composition, volume 4829 of Lecture Notes
in Computer Science, pages 34–50. Springer, 2007. ISBN 978-3-540-77350-
4.

Mario Bravetti and Gianluigi Zavattaro. Contract compliance and choreogra-
phy conformance in the presence of message queues. In Roberto Bruni and
Karsten Wolf, editors, WS-FM, volume 5387 of Lecture Notes in Computer
Science, pages 37–54. Springer, 2008a. ISBN 978-3-642-01363-8.

Mario Bravetti and Gianluigi Zavattaro. A foundational theory of contracts for
multi-party service composition. Fundam. Inform., 89(4):451–478, 2008b.

Mario Bravetti and Gianluigi Zavattaro. Service discovery and composition
based on contracts and choreographic descriptions. In Guadalupe Ortiz
and Javier Cubo, editors, Adaptive Web Services for Modular and Reusable
Software Development: Tactics and Solutions, pages 60–88. IGI-GLOBAL,
2012.

Qualit-e Cognizant business unit. Zero Deviation Life Cycle. http://
0deviation.com/.

Luís Caires and Frank Pfenning. Session types as intuitionistic linear propo-
sitions. In CONCUR 2010 - Concurrency Theory, 21th International Con-
ference, CONCUR 2010, Paris, France, August 31-September 3, 2010. Pro-
ceedings, volume 6269 of Lecture Notes in Computer Science, pages 222–236,
2010.

Joana Campos and Vasco T. Vasconcelos. Channels as objects in concurrent
object-oriented programming. In Honda and Mycroft [2010], pages 12–28.

Sara Capecchi, Mario Coppo, Mariangiola Dezani-Ciancaglini, Sophia
Drossopoulou, and Elena Giachino. Amalgamating Sessions and Meth-
ods in Object Oriented Languages with Generics. Theoretical Computer
Science, 410:142–167, 2009.

Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: multi-
party asynchronous global programming. In Roberto Giacobazzi and Rad-
hia Cousot, editors, POPL, pages 263–274. ACM, 2013. ISBN 978-1-4503-
1832-7.

Marco Carbone, Kohei Honda, Nobuko Yoshida, Robin Milner, Gary Brown,
and Steve Ross-Talbot. A theoretical basis of communication-centred con-
current programming. Published in CDL, 2006.

http://0deviation.com/
http://0deviation.com/

References 127

Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured
communication-centered programming for web services. ACM Trans. Pro-
gram. Lang. Syst., 34(2):8, 2012.

Marco Carbone, Fabrizio Montesi, and Carsten Schürmann. Choreographies,
logically. In CONCUR, volume 8704 of Lecture Notes in Computer Science,
pages 47–62. Springer, 2014.

G. Castagna, M. Dezani-Ciancaglini, and L. Padovani. On global types and
multi-party session. Logical Methods in Computer Science, 8(1), 2012.

Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A Theory of Con-
tracts for Web Services. ACM Transactions on Programming Languages
and Systems, 31(5), 2009. ISSN 0164-0925.

CDL. W3C Web Services Choreography Description Language. http://www.
w3.org/2002/ws/chor/, 2002.

B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel programmability and
the chapel language. Int. J. High Perform. Comput. Appl., 21(3):291–312,
August 2007. ISSN 1094-3420.

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa,
Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar.
X10: an object-oriented approach to non-uniform cluster computing. In
Proceedings of OOPSLA’05, pages 519–538. ACM, 2005. ISBN 1-59593-
031-0.

Tzu-Chun Chen, Laura Bocchi, Pierre-Malo Deniélou, Kohei Honda, and
Nobuko Yoshida. Asynchronous distributed monitoring for multiparty ses-
sion enforcement. In TGC, volume 7173 of Lecture Notes in Computer
Science, pages 25–45. Springer, 2011a. .

Tzu-Chun Chen, Laura Bocchi, Pierre-Malo Deniélou, Kohei Honda, and
Nobuko Yoshida. Asynchronous distributed monitoring for multiparty ses-
sion enforcement. In TGC, pages 25–45, 2011b.

Chor. Programming Language. Available at http://www.chor-lang.org/.
E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,

W. Schulte, and S. Tobies. VCC: A practical system for verifying concurrent
C. In TPHOLs, volume 5674 of LNCS, pages 23–42. Springer, 2009.

Mario Coppo, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. Asyn-
chronous Session Types and Progress for Object-Oriented Languages. In
Marcello Bonsangue and Einar Broch Johnsen, editors, FMOODS’07, vol-
ume 4468 of LNCS, pages 1–31. Springer, 2007.

Ricardo Corin and Pierre-Malo Deniélou. A protocol compiler for secure
sessions in ML. In TGC, pages 276–293, 2007.

http://www.w3.org/2002/ws/chor/
http://www.w3.org/2002/ws/chor/
http://www.chor-lang.org/

128

Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournet, Karthikeyan Bharga-
van, and James J. Leifer. A secure compiler for session abstractions. Journal
of Computer Security, 16(5):573–636, 2008.

Silvia Crafa and Luca Padovani. The Chemical Approach to Typestate-
Oriented Programming. In Proceedings of the ACM International Con-
ference on Object Oriented Programming Systems Languages & Applica-
tions (OOPSLA’15), pages 917–934. ACM, 2015. . URL https://hal.
archives-ouvertes.fr/hal-01155682/document.

Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited.
In Proceedings of PPDP’12, pages 139–150. ACM, 2012.

Rocco De Nicola and Matthew Hennessy. Testing equivalences for processes.
Theor. Comput. Sci., 34:83–133, 1984. .

Robert DeLine and Manuel Fähndrich. Typestates for objects. In Martin
Odersky, editor, ECOOP 2004 - Object-Oriented Programming, 18th Eu-
ropean Conference, Oslo, Norway, June 14-18, 2004, Proceedings, volume
3086 of Lecture Notes in Computer Science, pages 465–490. Springer, 2004.

Romain Demangeon and Kohei Honda. Nested protocols in session types.
In CONCUR, volume 7454 of Lecture Notes in Computer Science, pages
272–286. Springer, 2012. ISBN 978-3-642-32939-5.

Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and
Nobuko Yoshida. Practical interruptible conversations: Distributed dy-
namic veriïňĄcation with multiparty session types and python. FMSD,
pages 1–29, 2015.

Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole session types.
In Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’11, pages 435–446, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0490-0. . URL http:
//doi.acm.org/10.1145/1926385.1926435.

Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet
communicating automata. In ESOP, LNCS. Springer, 2012.

Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in
communicating automata: Characterisation and synthesis of global session
types. In ICALP 2013, volume 7966 of LNCS, pages 174–186. Springer,
2013.

Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. Pa-
rameterised multiparty session types. LMCS, 8, 2012.

Jolie development team. Jolie Programming Language. Available at http:
//www.jolie-lang.org/.

https://hal.archives-ouvertes.fr/hal-01155682/document
https://hal.archives-ouvertes.fr/hal-01155682/document
http://doi.acm.org/10.1145/1926385.1926435
http://doi.acm.org/10.1145/1926385.1926435
http://www.jolie-lang.org/
http://www.jolie-lang.org/

References 129

Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, Alexander Ahern, and
Sophia Drossopoulou. ldoos: a Distributed Object-Oriented language with
Session types. In Rocco De Nicola and Davide Sangiorgi, editors, TGC
2005, volume 3705 of LNCS, pages 299–318. Springer-Verlag, 2005. ISBN
3-540-30007-4.

Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and
Sophia Drossopoulou. Session Types for Object-Oriented Languages. In
Dave Thomas, editor, ECOOP’06, volume 4067 of LNCS, pages 328–352.
Springer-Verlag, 2006.

Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, Elena Giachino, and
Nobuko Yoshida. Bounded Session Types for Object-Oriented Languages.
In Frank de Boer, Marcello Bonsangue, Susanne Graf, and Willem-Paul
de Roever, editors, FMCO’06, volume 4709 of LNCS, pages 207–245.
Springer-Verlag, 2007.

Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, Dimitris Mostrous,
and Nobuko Yoshida. Objects and Session Types. Information and Com-
putation, 207(5):595–641, 2009.

Sophia Drossopoulou, Mariangiola Dezani-Ciancaglini, and Mario Coppo.
Amalgamating the Session Types and the Object Oriented Programming
Paradigms. In MPOOL’07, 2007.

Manuel Fähndrich and Robert DeLine. Adoption and focus: Practical linear
types for imperative programming. In Jens Knoop and Laurie J. Hen-
dren, editors, Proceedings of the 2002 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), Berlin, Germany,
June 17-19, 2002, pages 13–24. ACM, 2002.

Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen Hunt,
James R. Larus, and Steven Levi. Language Support for Fast and Reliable
Message-based Communication in Singularity OS. In Proceedings of Eu-
roSys’06, pages 177–190. ACM, 2006.

MPI Forum. MPI: A Message-Passing Interface Standard—Version 3.0. High-
Performance Computing Center Stuttgart, 2012.

Luca Fossati, Raymond Hu, and Nobuko Yoshida. Multiparty session nets.
In TGC 2014, volume 8902 of LNCS, pages 112–127. Springer, 2014.

Foundation for Intelligent Physical Agents. FIPA ACL message structure
specification. Approved for standard, 2002.

130

Cédric Fournet, C. A. R. Hoare, Sriram K. Rajamani, and Jakob Rehof. Stuck-
free conformance. In Rajeev Alur and Doron Peled, editors, CAV, volume
3114 of Lecture Notes in Computer Science, pages 242–254. Springer, 2004.
ISBN 3-540-22342-8.

Ronald Garcia, Eric Tanter, Roger Wolff, and Jonathan Aldrich. Foundations
of typestate-oriented programming. ACM Transactions on Programming
Languages and Systems, 2014.

Simon Gay. Bounded polymorphism in session types. Mathematical Structures
in Computer Science, 18(5):895–930, 2008.

Simon Gay and Vasco T. Vasconcelos. Linear type theory for asynchronous
session types. Journal of Functional Programming, 20(1):19–50, 2010.

Simon J. Gay, Nils Gesbert, António Ravara, and Vasco Thudichum Vascon-
celos. Modular session types for objects. Logical Methods in Computer
Science, 11(4), 2015.

Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.
GMC. Available at https://bitbucket.org/julien-lange/

gmc-synthesis.
GTV. Global Types Verification. Available at http://www.disi.unige.it/

person/MascardiV/Software/globalTypes.html.
Claudio Guidi, Ivan Lanese, Fabrizio Montesi, and Gianluigi Zavattaro. Dy-

namic error handling in service oriented applications. Fundam. Inform., 95
(1):73–102, 2009.

Kohei Honda and Alan Mycroft, editors. Proceedings Third Workshop on
Programming Language Approaches to Concurrency and communication-
cEntric Software, volume 69 of EPTCS, 2010.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asyn-
chronous Session Types. In POPL ’08, pages 273–284. ACM, 2008.

Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen, and
Nobuko Yoshida. Scribbling interactions with a formal foundation. In
Raja Natarajan and Adegboyega K. Ojo, editors, ICDCIT, volume 6536
of Lecture Notes in Computer Science, pages 55–75. Springer, 2011. ISBN
978-3-642-19055-1.

Kohei Honda, Eduardo R. B. Marques, Francisco Martins, Nicholas Ng,
Vasco Thudichum Vasconcelos, and Nobuko Yoshida. Verification of mpi
programs using session types. In Jesper Larsson Träff, Siegfried Benkner,
and Jack J. Dongarra, editors, EuroMPI, volume 7490 of Lecture Notes in
Computer Science, pages 291–293. Springer, 2012. ISBN 978-3-642-33517-4.

https://bitbucket.org/julien-lange/gmc-synthesis
https://bitbucket.org/julien-lange/gmc-synthesis
http://www.disi.unige.it/person/MascardiV/Software/globalTypes.html
http://www.disi.unige.it/person/MascardiV/Software/globalTypes.html

References 131

Kohei Honda, Raymond Hu, Rumyana Neykova, Tzu-Chun Chen, Romain
Demangeon, Pierre-Malo Deniélou, and Nobuko Yoshida. Structuring com-
munication with session types. In Gul A. Agha, Atsushi Igarashi, Naoki
Kobayashi, Hidehiko Masuhara, Satoshi Matsuoka, Etsuya Shibayama, and
Kenjiro Taura, editors, Concurrent Objects and Beyond - Papers dedicated
to Akinori Yonezawa on the Occasion of His 65th Birthday, volume 8665
of Lecture Notes in Computer Science, pages 105–127. Springer, 2014.

Raymond Hu and Nobuko Yoshida. Hybrid session verification through api
generation. In FASE (to appear), 2016.

Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based distributed
programming in java. In Proceedings of ECOOP’08, volume LNCS 5142,
pages 516–541, 2008.

Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Ko-
hei Honda. Type-safe eventful sessions in java. In Theo D’Hondt, editor,
ECOOP, volume 6183 of Lecture Notes in Computer Science, pages 329–
353. Springer, 2010. ISBN 978-3-642-14106-5.

Raymond Hu, Rumyana Neykova, Nobuko Yoshida, and Romain Deman-
geon. Practical Interruptible Conversations: Distributed Dynamic Verifi-
cation with Session Types and Python. In RV’13, volume 8174 of LNCS,
pages 130–148. Springer, 2013.

Galen Hunt, James Larus, Martín Abadi, Mark Aiken, Paul Barham, Manuel
Fähndrich, Chris Hawblitzel, Orion Hodson, Steven Levi, Nick Murphy,
Bjarne Steensgaard, David Tarditi, Ted Wobber, and Brian Zill. An
Overview of the Singularity Project. Technical Report MSR-TR-2005-135,
Microsoft Research, 2005.

Keigo Imai, Shoji Yuen, and Kiyoshi Agusa. Session type inference in haskell.
In Honda and Mycroft [2010], pages 74–91.

Svetlana Jakšić and Luca Padovani. Exception Handling for Copyless Messag-
ing. In Proceedings of the 14th International ACM SIGPLAN Symposium
on Principles and Practice of Declarative Programming (PPDP’12), pages
151–162. ACM, 2012.

Svetlana Jakšić and Luca Padovani. Exception Handling for Copyless Messag-
ing. Science of Computer Programming, 84:22–51, 2014. ISSN 0167-6423.

Nicholas R. Jennings, Katia P. Sycara, and Michael Wooldridge. A roadmap
of agent research and development. Autonomous Agents and Multi-Agent
Systems, 1(1):7–38, 1998.

132

J. Kopecky, T. Vitvar, C. Bournez, and J. Farrell. Sawsdl: Semantic annota-
tions for wsdl and xml schema. Internet Computing, IEEE, 11(6):60–67,
2007. ISSN 1089-7801.

Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. Mungo.
http://www.dcs.gla.ac.uk/research/mungo, 2015.

I. Lanese, C. Guidi, F. Montesi, and G. Zavattaro. Bridging the gap between
interaction- and process-oriented choreographies. In SEFM, pages 323–332.
IEEE, 2008.

Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicating
machines to graphical choreographies. In POPL 2015, pages 221–232. ACM,
2015.

Hugo A. López, Eduardo R. B. Marques, Francisco Martins, Nicholas
Ng, César Santos, Vasco Thudichum Vasconcelos, and Nobuko Yoshida.
Protocol-based verification of message-passing parallel programs. In
Jonathan Aldrich and Patrick Eugster, editors, Proceedings of the 2015
ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2015, part of
SLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, pages 280–298.
ACM, 2015. ISBN 978-1-4503-3689-5. . URL http://doi.acm.org/10.
1145/2814270.2814302.

Eduardo R. B. Marques, Francisco Martins, Nicholas Ng, César Santos,
Vasco T. Vasconcelos, , and Nobuko Yoshida. Specification and verification
of protocols for mpi programs. http://www.di.fc.ul.pt/~vv/papers/
marques.martins_specification-verification-mpi.pdf, 2013a.

Eduardo R. B. Marques, Francisco Martins, Vasco T. Vasconcelos, Nicholas
Ng, and Nuno Martins. Towards deductive verification of mpi programs
against session types. PLACES 2013—6th International Workshop on
Programming Language Approaches to Concurrency and Communication-
cEntric Software, 2013b.

Viviana Mascardi and Davide Ancona. Attribute global types for dynamic
checking of protocols in logic-based multiagent systems. TPLP, 13(4-5-
Online-Supplement), 2013.

J. Mayfield, Y. Labrou, and T. Finin. Evaluation of KQML as an agent
communication language. In ATAL, pages 347–360. Springer Verlag, 1995.

Jan Mendling and Michael Hafner. From inter-organizational workflows to
process execution: Generating bpel from ws-cdl. In OTM Workshops, vol-
ume 3762 of Lecture Notes in Computer Science, pages 506–515. Springer,
2005.

http://www.dcs.gla.ac.uk/research/mungo
http://doi.acm.org/10.1145/2814270.2814302
http://doi.acm.org/10.1145/2814270.2814302
http://www.di.fc.ul.pt/~vv/papers/marques.martins_specification-verification-mpi.pdf
http://www.di.fc.ul.pt/~vv/papers/marques.martins_specification-verification-mpi.pdf

References 133

Filipe Militão. Design and implementation of a behaviorally typed program-
ming system for web services. Master’s thesis, Universidade Nova de Lis-
boa, Faculdade de Ciências e Tecnologia, 2008. URL http://run.unl.pt/
handle/10362/1792.

Filipe Militão and Luís Caires. An exception aware behavioral type system for
object-oriented programs. In Proceedings of INFORUM 2009, 2009. URL
http://www.cs.cmu.edu/~foliveir/papers/corta2009.pdf.

Fabrizio Montesi. Process-aware web programming with jolie. In Sung Y. Shin
and José Carlos Maldonado, editors, SAC, pages 761–763. ACM, 2013a.
ISBN 978-1-4503-1656-9.

Fabrizio Montesi. Choreographic Programming. Ph.D. thesis, IT Univer-
sity of Copenhagen, 2013b. http://www.fabriziomontesi.com/files/
choreographic_programming.pdf.

Fabrizio Montesi and Nobuko Yoshida. Compositional choreographies. In
CONCUR, volume 8052 of Lecture Notes in Computer Science, pages 425–
439. Springer, 2013.

Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. Composing services
with jolie. In ECOWS, pages 13–22. IEEE Computer Society, 2007.

Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. Service-oriented
programming with jolie. In Athman Bouguettaya, Quan Z. Sheng, and
Florian Daniel, editors, Web Services Foundations, pages 81–107. Springer,
2014. ISBN 978-1-4614-7517-0, 978-1-4614-7518-7.

Mool. Available at http://gloss.di.fc.ul.pt/mool/.
Roger M. Needham and Michael D. Schroeder. Using encryption for authen-

tication in large networks of computers. Commun. ACM, 21(12):993–999,
December 1978. ISSN 0001-0782.

Matthias Neubauer and Peter Thiemann. An implementation of session types.
In Proceedings of PADL’04, volume LNCS 3057, pages 56–70. Springer,
2004.

Rumyana Neykova and Nobuko Yoshida. Multiparty session actors. In CO-
ORDINATION 2014, volume 8459 of LNCS, pages 131–146. Springer, 2014.

Rumyana Neykova, Nobuko Yoshida, and Raymond Hu. SPY: Local Verifica-
tion of Global Protocols. In RV’13, volume 8174 of LNCS, pages 358–363.
Springer, 2013.

Nicholas Ng and Nobuko Yoshida. Pabble: parameterised scribble. SOCA, 9:
269–284, 2015.

http://run.unl.pt/handle/10362/1792
http://run.unl.pt/handle/10362/1792
http://www.cs.cmu.edu/~foliveir/papers/corta2009.pdf
http://www.fabriziomontesi.com/files/choreographic_programming.pdf
http://www.fabriziomontesi.com/files/choreographic_programming.pdf
http://gloss.di.fc.ul.pt/mool/

134

Nicholas Ng, Nobuko Yoshida, Olivier Pernet, Raymond Hu, and Yiannos
Kryftis. Safe parallel programming with session java. In Wolfgang De
Meuter and Gruia-Catalin Roman, editors, COORDINATION, volume
6721 of Lecture Notes in Computer Science, pages 110–126. Springer, 2011.
ISBN 978-3-642-21463-9.

Nicholas Ng, Nobuko Yoshida, and Kohei Honda. Multiparty session c: Safe
parallel programming with message optimisation. In Carlo A. Furia and
Sebastian Nanz, editors, TOOLS (50), volume 7304 of Lecture Notes in
Computer Science, pages 202–218. Springer, 2012a. ISBN 978-3-642-30560-
3.

Nicholas Ng, Nobuko Yoshida, and Kohei Honda. Multiparty Session C: Safe
Parallel Programming with Message Optimisation. In TOOLS, volume 7304
of LNCS, pages 202–218. Springer, 2012b.

Nicholas Ng, Jose G.F. Coutinho, and Nobuko Yoshida. Protocols by default:
Safe mpi code generation based on session types. In CC 2015, volume 9031
of LNCS, pages 212–232. Springer, 2015.

OASIS. Web Services Business Process Execution Language. http://docs.
oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html, 2007.

Pabble-MPI. MPI Generation Framework. Available at https://github.
com/sessionc/pabble-mpi.

Luca Padovani. Contract-based Discovery and Adaptation of Web Services,
volume 5569 of LNCS, pages 213–260. Springer, 2009.

Luca Padovani. Contract-Based Discovery of Web Services Modulo Simple
Orchestrators. Theoretical Computer Science, 411:3328–3347, 2010. ISSN
0304-3975.

Luca Padovani. A Simple Library Implementation of Binary Sessions. Tech-
nical Report hal-01216310, Dipartimento di Informatica, Università di
Torino, Italy, 2015. Available at https://hal.archives-ouvertes.fr/
hal-01216310.

Riccardo Pucella and Jesse A. Tov. Haskell session types with (almost) no
class. In Proceedings of the first ACM SIGPLAN symposium on Haskell,
Haskell ’08, pages 25–36, New York, NY, USA, 2008. ACM. ISBN 978-1-
60558-064-7.

Zongyan Qiu, Xiangpeng Zhao, Chao Cai, and Hongli Yang. Towards the
theoretical foundation of choreography. In Proceedings of the 16th inter-
national conference on World Wide Web, WWW ’07, pages 973–982, New
York, NY, USA, 2007. ACM. ISBN 978-1-59593-654-7.

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
https://github.com/sessionc/pabble-mpi
https://github.com/sessionc/pabble-mpi
https://hal.archives-ouvertes.fr/hal-01216310
https://hal.archives-ouvertes.fr/hal-01216310

References 135

A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable
language. In MAAMAW’96, volume 1038 of LNCS, pages 42–55. Springer,
1996.

Arend Rensink and Walter Vogler. Fair testing. Inf. Comput., 205(2):125–198,
2007. .

Davide Sangiorgi and David Walker. The Pi-Calculus - a theory of mobile
processes. Cambridge University Press, 2001. ISBN 978-0-521-78177-0.

Vijay Saraswat, George Almasi, Ganesh Bikshandi, Calin Cascaval, David
Cunningham, David Grove, Sreedhar Kodali, Igor Peshansky, and Olivier
Tardieu. The asynchronous partitioned global address space model. In
Proceedings of The First Workshop on Advances in Message Passing, 2010.

Scribble. Available at http://www.scribble.org and http://www.jboss.
org/scribble.

Jeremy G. Siek and Walid Taha. Gradual typing for objects. In Erik Ernst,
editor, ECOOP, volume 4609 of Lecture Notes in Computer Science, pages
2–27. Springer, 2007. ISBN 978-3-540-73588-5.

Singularity OS. Available at http://singularity.codeplex.com/.
SJ. Session J. Available at http://code.google.com/p/sessionj/.
Guy L. Steele. Parallel programming and parallel abstractions in fortress.

In Proceedings of the 8th international conference on Functional and Logic
Programming, FLOPS’06, pages 1–1, Berlin, Heidelberg, 2006. Springer-
Verlag. ISBN 3-540-33438-6, 978-3-540-33438-5.

Zachary Stengel and Tevfik Bultan. Analyzing Singularity Channel Contracts.
In Proceedings of ISSTA’09, pages 13–24. ACM, 2009. ISBN 978-1-60558-
338-9.

Robert E. Strom and Shaula Yemini. Typestate: A programming language
concept for enhancing software reliability. IEEE Trans. Software Eng., 12
(1):157–171, 1986.

Joshua Sunshine, Karl Naden, Sven Stork, Jonathan Aldrich, and Éric Tanter.
First-class state change in Plaid. In Cristina Videira Lopes and Kathleen
Fisher, editors, OOPSLA, pages 713–732. ACM, 2011a. ISBN 978-1-4503-
0940-0.

Joshua Sunshine, Sven Stork, Karl Naden, and Jonathan Aldrich. Changing
state in the Plaid language. In Cristina Videira Lopes and Kathleen Fisher,
editors,OOPSLA Companion, pages 37–38. ACM, 2011b. ISBN 978-1-4503-
0942-4.

http://www.scribble.org
http://www.jboss.org/scribble
http://www.jboss.org/scribble
http://singularity.codeplex.com/
http://code.google.com/p/sessionj/

136

Bernardo Toninho, Luís Caires, and Frank Pfenning. Higher-order processes,
functions, and sessions: A monadic integration. In Matthias Felleisen and
Philippa Gardner, editors, Programming Languages and Systems - 22nd
European Symposium on Programming, ESOP 2013, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2013, Rome, Italy, March 16-24, 2013. Proceedings, volume 7792 of Lecture
Notes in Computer Science, pages 350–369. Springer, 2013. . URL http:
//dx.doi.org/10.1007/978-3-642-37036-6_20.

Vasco T. Vasconcelos, Simon Gay, and António Ravara. Typechecking a mul-
tithreaded functional language with session types. Theoretical Computer
Science, 368(1–2):64–87, 2006.

Jules Villard, Étienne Lozes, and Cristiano Calcagno. Proving Copyless Mes-
sage Passing. In Proceedings of APLAS’09, LNCS 5904, pages 194–209.
Springer, 2009.

Jules Villard, Étienne Lozes, and Cristiano Calcagno. Tracking Heaps That
Hop with Heap-Hop. In Proceedings of TACAS’10, LNCS 6015, pages 275–
279. Springer, 2010.

Roger Wolff, Ronald Garcia, Éric Tanter, and Jonathan Aldrich. Gradual
typestate. In Mira Mezini, editor, ECOOP, volume 6813 of Lecture Notes in
Computer Science, pages 459–483. Springer, 2011. ISBN 978-3-642-22654-0.

Nobuko Yoshida and Vasco Thudichum Vasconcelos. Language primitives and
type discipline for structured communication-based programming revisited:
Two systems for higher-order session communication. Electr. Notes Theor.
Comput. Sci., 171(4):73–93, 2007.

http://dx.doi.org/10.1007/978-3-642-37036-6_20
http://dx.doi.org/10.1007/978-3-642-37036-6_20

	Copertina_postprint_IRIS_UNIBO
	BETTY_WG3_SOAR
	Contents
	Introduction
	Object-Oriented Languages
	Session Types in Core Object-Oriented Languages
	Behavioral Types in Java-like Languages
	Typestate
	Related Work

	Functional Languages
	Effects for Session Type Checking
	Sessions and Explicit Continuations
	Monadic Approaches to Session Type Checking
	Related Work

	High-Performance Message-Passing Systems
	Session C
	Deductive Verification of C+MPI Code
	MPI Code Generation
	Related Work

	Multiagent Systems
	Global Types for MAS Monitoring
	Advanced Constructs for Protocol Specification
	Related Work

	Singularity OS
	Channel Contracts in Sing#
	Behavioral Types for Memory Leak Prevention
	Related Work

	Web Services
	Behavioral Interfaces for Web Services
	Languages for Service Composition
	Abstract Service Descriptions and Behavioral Contracts
	Related Work

	Choreographies
	Choreography Programming Languages
	Scribble
	Related Work

	References

