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Motor imagery is a common control strategy in EEG-based brain-computer interfaces (BCIs). However, voluntary control of
sensorimotor (SMR) rhythms by imagining a movement can be skilful and unintuitive and usually requires a varying amount
of user training. To boost the training process, a whole class of BCI systems have been proposed, providing feedback as early as
possible while continuously adapting the underlying classifier model. The present work describes a cue-paced, EEG-based BCI
system using motor imagery that falls within the category of the previously mentioned ones. Specifically, our adaptive strategy
includes a simple scheme based on a common spatial pattern (CSP) method and support vector machine (SVM) classification.The
system’s efficacy was proved by online testing on 10 healthy participants. In addition, we suggest some features we implemented
to improve a system’s “flexibility” and “customizability,” namely, (i) a flexible training session, (ii) an unbalancing in the training
conditions, and (iii) the use of adaptive thresholds when giving feedback.

1. Introduction

A brain-computer interface (BCI) is a system creating a
direct communication channel between the brain and the
outside, bypassing the ordinary outputs of the central nervous
system like peripheral nerves and muscles [1]. Noninvasive
BCIs based on electroencephalography (EEG) are the most
widespread systems [2], and motor imagery (MI) is one of
the most commonly used control strategies. Since the imag-
ination of a voluntary movement induces specific patterns
of ERD (event-related desynchronization) and ERS (event-
related synchronization) in the EEG mu (8–13Hz) and beta
(13–30Hz) rhythms over the sensorimotor cortex, different
MIs generate different EEG spatial patterns [3], which can be
classified and used for communication or control purposes.

However, voluntary control of sensorimotor rhythms
(SMR) by imagining a movement is a skilful unintuitive task
[2], so a varying amount of user training is usually required
[4]. The typical BCI training approach includes the steps:
(1) preliminary data acquisition in a cue-guided paradigm
without feedback, (2) setup of a subject-specific classifier
based on the acquired data, and (3) online BCI operation
with feedback based on the previously trained classifier.

Since feedback plays a key role in making the user learn
how to produce the correct EEG modulations, the system
should start giving feedback as soon as possible to boost the
training process [5]. However, given the nonstationary nature
of EEG and, specifically, the effect of feedback training which
modifies the user’s EEG patterns with respect to nonfeedback
data used for calibration [6], an adaptation of the system
parameters might be useful to improve the feedback quality
and speed up the training process. Over the past decade,
several adaptive systems have been proposed to explore
both these aspects (providing feedback as early as possible
while continuously adapting the underlying classifier model,
promoting a coadaptation of both user andmachine), namely,
[5, 7–16].

Vidaurre et al. and Faller et al. [5, 7–11] described several
online adaptive systems employing adaptive autoregressive
(AAR) parameters and/or logarithmic band power features,
combinedwith quadratic discriminant analysis (QDA) or lin-
ear discriminant analysis (LDA) classifiers. Despite method-
ological differences, all the systems were fully automated,
gave feedback from the very first moment [7–9] or at least
after a few minutes of calibration [5, 10, 11], and updated
the classifier’s parameters trialwise, using the most separable
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Figure 1: The 11 recorded channels.

time-segment of the previous trial for adaptation. All the
systems were tested online on healthy [5, 7–9] or physically
impaired [10, 11] users, showing peak online accuracies that
tended to increase in just two to three days. In the works
[12, 13] Xia et al. and Qin et al. presented two different
adaptive methods, involving both common spatial pattern
(CSP) [17] filtering and linear support vector machine (SVM)
classifier [18, 19]. Both methods aimed at improving the
user’s training process, showing their efficacy either in online
experiments [12] or in simulations of available datasets [13].
In [14, 15] Vidaurre et al. introduced a higher coverage
setup (48 electrodes) and more elaborate adaptive pattern,
targeting people who could not previously achieve BCI
control (the BCI “illiterates” [20]). Finally, [16] also inserted
an unsupervised adaptation scheme.

Even though the results of these studies are already valu-
able, we suggest that other aspects could also be taken into
account to improve the training process further. Beyond the
developed adaptive algorithm, the way the system interacts
with the user is also important. Since BCI performance
greatly varies across users [20], we suggest that “short calibra-
tion,” “automaticity,” and “adaptivity” should be flanked by
“flexibility,” another key feature to improve the BCI training
process. Specifically we propose to

(i) adapt the training session depending on the user’s
ability (i.e., the session should not be needlessly long
if the user reaches enough control, whereas training
could be restarted from the beginning if the system
keeps performing at chance level for too long, giving
the user the possibility to try a different imagination
strategy);

(ii) try to keep challenging the user independently from
his/her performance (e.g., giving feedback only in
case the distance from the decision boundary exceeds
an adaptive threshold);

(iii) present the training conditions (e.g., left/right hand
motor imagery) not in equal numbers, but to bias in

favour of the condition which is currently the hardest
to predict.

We therefore introduce here a system designed to incorporate
all these aspects thanks to its modular structure. The system
is a cue-paced BCI using MI of left versus right hand to
control the flexion-extension of a 1 DOF-modelled arm
on a screen, including a simple adaptive scheme based on
CSP filtering and SVM classification [12]. The implemented
adaptive scheme is similar to some previously proposed
algorithms [21–24], generally defined as ACSP (adaptive
common spatial pattern): we did not include these works
among the previously cited ones [5, 7–16] because they have
a different aim, that is, generically dealing with EEG inter-
and intrasubject nonstationarities, rather than improving the
user training process. However, beyond the implemented
adaptive strategy, the system we describe was conceived as
a whole, from training phase to utilization, and therefore
includes a short calibration module without feedback (less
than 3minutes), followed by several repetitions of an adaptive
module with feedback. Finally, as the user proves skilled
enough to control the flexion-extension of the simulated arm,
adaptation ends and the system switches to a module where
the simulated arm is used to reach targets on the screen. The
system was tested online on 10 healthy participants for three
days each.

2. Materials and Methods

2.1. Signal Acquisition and Preprocessing. The EEG signals
were acquired using a Brainbox EEG-1166 amplifier with
128Hz sample frequency. Eleven passive wet Ag/AgCl elec-
trodes were used over the sensorimotor areas (Figure 1),
together with a reference electrode on the right ear lobe and
ground electrode on the forehead.

As suggested in [25], all signals were rereferenced with
common average reference (CAR). Since the right ear poten-
tial was included in the averaging operation, the 11 brain
signals were kept linearly independent. After rereferencing,
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Table 1: Overview of the module characteristics.

𝑇 𝑈 𝐶

(i) One 𝑇 repetition (i) Several U repetitions (i) Several 𝐶 repetitions
(ii) MI instruction via arrow presentation (ii) MI instruction via arrow presentation (ii) MI instruction via target position

(iii) No feedback (iii) Feedback (above threshold) (iii) Feedback (above threshold)
(iv) Adaptively updated thresholds (iv) Thresholds no longer updated

(iv) First estimation of W and SVM classifier (v) Use of W and SVM and its updating (v) Use of W and SVM
(v) Balanced arrows (vi) Imbalanced arrows

(vii) Accuracy evaluation (vi) Accuracy evaluation

signals were filtered in the 8–30Hz band, as suggested in
[26].

For feature extraction, the common spatial pattern (CSP)
algorithm [17] was used. As is known, this algorithm finds
the matrix W that maps the EEG multichannel data in a
space where the difference in variance between the 2 classes
is maximized [27]. Given X the Nxt matrix of recorded
and preprocessed signals (𝑁 channels acquired; 𝑡 number of
samples), thematrix of new time-series inZ (Nxt) is therefore
obtained as Z = W ⋅ X. To compute the W matrix, the
CSP method considers the simultaneous diagonalization of
the averaged normalized covariance matrices of the 2 classes
(right/left handMI). Further details on theCSP algorithmcan
be found in [28].

To compose the feature vector f, we considered the log-
transformed normalized variances of the time-series in the
first and last 2 rows of Z, as suggested in [26]. The feature
vectors f were later used to train a support vector machine
(SVM) classifier [18, 19], with a linear kernel and a softmargin
equal to 1.

2.2. The Online BCI System: The Three Modules. This section
outlines the 3 modules in our system: Training (T), Training
& Updating (U), and Classification (C). The 3 modules
have different functions and were designed to be assembled
together to set up a typical training session.The entire system
was developed using LabVIEW. An overview of the main
features and the differences between the modules is given in
Table 1.

2.2.1. Training (T). T module makes a first estimation of the
Wmatrix and the SVM parameters, without any feedback for
the user.

MI Instructions and Feedback. When 𝑇 starts, an upward/
downward pointing arrow appears on the screen over the
modelled arm (Figure 2(a)). Depending on the direction of
the arrow (upward or downward), the user is requested to
imagine the movement of his right or left hand, respectively.
No feedback is given to the user.

Arrow Balancing. The arrow is presented in all 14 times (7
upwards and 7 downwards); each time it is visible for 10 s,
with 2.5 s of rest. The training process without feedback
therefore lasts less than 3 minutes. The arrow presentation
order is randomized.

W and SVM First Computation. When the arrow is visible,
2 s-long portions of EEG signal are extracted every 0.5 s (only
the first portion is extracted after 2 s) so that 17 portions are
extracted from every arrow repetition for a total of 238 (17 ×
14) signal portions.The 238 portions are labelled according to
the corresponding arrow’s direction and used to (i) estimate
W, (ii) extract the feature vector f, and (iii) train the SVM
classifier (Figure 3(a)). At the end of 𝑇 module, the software
automatically switches to 𝑈.

2.2.2. Training & Updating (U). 𝑈 module is designed to be
reiterated several times (𝑈 repetition). The main purpose of
𝑈 is to guide the user training by providing feedback while
adapting the system’s parameters. Both W matrix and the
SVM classifier are adapted at the end of each 𝑈 repetition,
after making a selection over the recorded signals. This
module also introduces the concepts of adaptive thresholds
and unbalancing in the training conditions.

MI Instructions and Feedback. Similarly to 𝑇 module, MI
instructions are given by presenting an upward/downward
pointing arrow over the modelled arm; each arrow is visible
for 10 s with 2.5 s rest, and 2 s-long EEG signal portions are
extracted every 0.5 s. Nevertheless, in 𝑈 module a time-
discrete feedback, encoded in a 5∘ increase/decrease of the
model’s shoulder angle, is added according to the classifier’s
output (Figure 2(b)). Specifically, after filtering each new
portion with W, the feature vector f is extracted and the
output of the SVM classifier is used to give feedback to the
user.

AdaptiveThresholds.To keep challenging the user, we decided
to provide feedback only if the analysed EEG signal portions
were “distant enough” from the classifier’s separation hyper-
plane. Since the user’s ability to produce different MI could
be imbalanced, we considered 2 independent thresholds for
right and left handMI. Both start from0 and are continuously
adapted as 60% of the average of the right/left hand imagery
feature’s distances obtained from the start of the session.
For threshold computation, only the “correct” features (i.e.,
when the classifier’s output agrees with the arrow direction)
are taken into account. The choice of 60% was based on
preliminary experiments (we tried to choose a value able to
challenge the participants without discouraging them).

W and SVM Use and Updating. In each 𝑈 repetition, the
arrow is shown in all 10 times, and each time it is visible for
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Figure 2: Upward pointing arrow in the 𝑇module (a) and in the 𝑈module (b). On (c), a target reached in 𝐶module is shown.

10 s. Thus, at the end of 𝑈, 170 new signal portions (17 signal
portions from each arrow × 10 arrow repetitions) have been
processed and are theoretically available to updateW and the
classifier. Out of the total 170 portions, we decided to keep
in the memory only the ones correctly classified and above
the threshold. The resulting list is called the best portions
list (B list). Later, the B list is further reduced, equalizing the
number of right hand and left hand features. In this balancing
operation, the B elements with the shortest distance from the
hyperplane are removed first. After this operation, we obtain
a list of the best balanced portions (BB list).

The BB list is first used to updateW (Wnew) by extracting
the covariance matrices from the BB signals. Specifically,
Wnew is computed averaging the new BB covariance matrices
together with all the matrices selected from the start of the
session (i.e., those from𝑇module and all those obtained from
BB lists in each 𝑈 repetition completed up to that moment).
In this way, we aimed to gradually stabilize the W matrix,
since it is the result of the averaging of an increasing number
of covariance matrices.

OnceWnew is computed, the BB list is also used to update
the classifier’s training set. First of all, the old training set
must be remapped according toWnew. Once the training set
has been remapped, the BBs are also transformed withWnew,
and the new features obtained are used to replace the older
ones in the training set. We opted for replacement instead
of simply adding the new features to the training to avoid
an increment of computational weight. Once the training set
has been updated, the new SVM classifier (SVMnew) can be
retrained.

To further clarify the updating procedure, the steps made
at the end of each 𝑈 repetition to update the system’s
parameters are shown in Figure 3(b) and summarized here.

(1) At the end of 𝑈, only the B are kept in the memory.
The list is further reduced balancing the samples of
the 2 classes (right hand and left hand imagery), thus
obtaining the BB list.

(2) New normalized covariance matrices are extracted
from the BB signals. For each class, the new matrices
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Figure 3: A conceptual schema describing the evaluation/use ofWmatrix and SVM classifier in the three modules. (a) The first setup ofW
and SVM, starting from the time-domain EEG signal (𝑋

0

), in 𝑇module. (b) A diagram describes howW and SVM are updated in𝑈module,
starting from the stored signal portions, the current BB list, and the previous training set. (c) The schema shows how the definitive W and
SVM are used in 𝐶module to classify the incoming signals and provide the feedback.

are averaged along with the previous ones. Wnew is
therefore computed.

(3) The old classifier’s training set is remapped with
Wnew.

(4) New features are extracted from BB according to
Wnew.These new features are used to replace the older
ones in the classifier’s training set. SVMnew can be set
up.

(5) Repeat 𝑈 or switch to 𝐶module.

Arrow Imbalancing. The last characteristic of𝑈module is the
imbalance in the presentation of the arrows. In particular,
to maximize the probability of updating the classifier (given
the balancing operation from B to BB) and to customize
the user’s training with a stronger stimulation of the most
critical MI condition, the pointing arrow corresponding to
the most misclassified task is presented more frequently.
To clarify, at the end of each 𝑈 repetition, the number of
misclassifications for each class is counted, and the ratio
between these two numbers is computed. Depending on this
ratio, the arrow directions in the following 𝑈 repetition can
be imbalanced up to 7 : 3 (or 3 : 7), in favour of the previously
most misclassified class. As the user improves his/her skills

in bothMI conditions, the ratio between the arrow directions
will tend to return to a balanced 5 : 5.

Accuracy. At the end of each 𝑈 repetition, the classification
accuracy of the current step is evaluated as the ratio between
the correctly classified features and the total number of
processed features. Because of the imbalance in favour of the
most misclassified class, the classification accuracy obtained
is underestimated. As soon as the classification accuracies
are stable and good enough (see Section 2.3.2), the system
automatically switches to 𝐶module.

2.2.3. Classification (C). 𝐶 module is designed to test the
user’s ability to control the flexion-extension of the modelled
arm to reach targets on the screen. In 𝐶module the adaptive
thresholds,W, and the SVM classifier are no longer updated.

MI Instructions and Feedback. In 𝐶 module, the MI instruc-
tion is no longer by presentation of the pointing arrow, but
through the appearance of a ball-shaped target (Figure 3(c)).
The user has to reach the target with the arm’s end-point as
soon as possible, with a timeout of 120 s. As for 𝑇 and 𝑈, 2 s-
long EEG signal portions are extracted and classified every
0.5 s. Every 𝐶 repetition consists of 5 targets presented in
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succession on the screen, with a 5 s pause when the target is
reached. As the user reaches the target, a smiling face appears
on the screen (Figure 2(c)). Otherwise, a sad face is shown if
the timeout expires.

Adaptive Thresholds. As in 𝑈 module, in 𝐶 the feedback (the
modelled arm’s movement) is given only if the extracted
features are above threshold. However, in 𝐶 phase the 2
thresholds are no longer updated, so the thresholds computed
in the last repetition of 𝑈 are used.

W and SVM Use. W and the SVM classifier are no longer
updated. Thus, W and SVM computed in the last repetition
of 𝑈 are used.

Accuracy. At the end of 𝐶 the classification accuracy can be
estimated as the ratio between the correctly classified features
and the total number processed. Since the participant is asked
to reach the target as quickly as possible, the “correct” label
can be derived depending on the target’s position. Specifically,
the classification accuracy is computed considering (i) the
targets reached; (ii) the first 30 s of “timeout” cases. This
assumption was made because after a while participants
tended to give up trying to reach the target and simply waited
for the timeout, thereby invalidating the deduction of the
“correct” label.

2.3. Experimental Setup

2.3.1. Participants and Setup. Thedescribed systemwas tested
on 10 healthy volunteers (P01–P10). Eight of them had no
previous MI experience, while P01 and P04 had totalled
up 461 and 437 minutes of MI experience, respectively,
in the same year as the experiment. The participants, 7
females and 3 males, were all right-handed (according to
Edinburgh inventory [29]) and were aged 26.5 ± 2 years
(mean ± standard deviation). All volunteers were thoroughly
informed beforehand of the nature and specifics of the
experiments, and all of them gave written, informed con-
sent.

During the experiment, the participants sat in front of
the PC screen with their arms relaxed and in a comfortable
position. To avoid EEG artefacts, the participants were asked
not to contract facial muscles and to keep their gaze fixed
during the trials. The system did not include any online
artefact rejection algorithm.However, to check the absence of
systematically occurring artefacts, an experienced inspector
examined the acquired signals after each training session. In
case a systematic artifactual activation was found, the entire
session was excluded from results.

2.3.2. Experimental Paradigm:The “Flexible” Training Session.
Each participant took part in 6 training sessions (2 sessions
per day). However, to fully customize the training process,
we adapted the type and length of each training session
depending on the participant’s performances.

First of all, each training session was composed of 1
initial 𝑇 and a maximum of 16 𝑈 repetitions. However, if
the average classification accuracy in the last 3 repetitions
of 𝑈 was below 40%, 𝑇 module was automatically repeated
to reset the system’s parameters (and to give the participant
an opportunity to try a different imagination strategy). After
the reset, the participant could complete the remaining
repetitions of 𝑈module.

On the other hand, if participants proved skilled enough,
they had the possibility to finish the session ahead of time. In
particular, as soon as the average classification accuracy in the
last 6 repetitions of𝑈was above the criterion level of 70%, the
participant’s performances were considered good and stable
enough and the system automatically switched to 𝐶module.
Every time 𝐶 phase was reached, the participant performed 3
repetitions of𝐶 and the session ended. Otherwise, the session
simply concluded after the 16 repetitions of 𝑈module.

To clarify, 3 examples of possible compositions of a ses-
sion, according to the experimental paradigm, are given in
Figure 4.

2.4. System Evaluation

2.4.1. Accuracy. As previously emphasized by Billinger et
al. in [30], a consequence of the increasing interest in BCI
research is that papers tend to routinely highlight results
and methods that improve accuracy or reduce illiteracy with
respect to earlier work. The problem is that different (and
barely comparable) methods of evaluation are often used,
the procedures are not described in sufficient detail, and the
value of chance level (i.e., the expected best performance
obtainable by chance alone [30]) is not reported for compari-
son. However, showing classification results alone is often not
enough, and even accuracies as high as 90% can be mean-
ingless if classes are imbalanced or there are too few trials
[30].

The present work reports the average classification accu-
racy together with its chance level 𝑝

0
. Since the arrow presen-

tation was generally imbalanced, 𝑝
0
was evaluated without

loss of generality from confusion matrices, as described in
[30]. We also evaluated the significance (𝛼 = 0.05) of the
difference between mean accuracy and chance level using
confidence intervals [30].

We briefly report here the computation of 𝑝
0
, as in [30].

Considering the confusion matrices,

Predicted labels

True labels

Class 1 (right) Class 2 (lef t)
Class 1 (right) TP FN TP + FN
Class 2 (lef t) FP TN FP + TN

TP + FP FN + TN N = (TP + FN + FP + TN) ,

(1)
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Figure 4: In this work, each participant took part in a total of 6 sessions (a). (b) shows 3 possible compositions of the session. In the top
example, 𝑇 module is repeated because the average accuracy in the previous 3 𝑈 repetitions was lower than 40%. At the end of the session,
𝐶 phase is not even reached because the average accuracy in the last 6 repetitions was <70%.The middle example is similar to the top one (𝑇
module is indeed repeated), but this time 𝐶 phase is reached at the end of the session. Finally, the bottom example shows the case of a shorter
session.

where TP is the number of “true positive” classified signal
portions, FN is the “false negative” ones, FP is the “false
positive” ones, TN is the “true negative” ones, and N = (TP +
FN+FP+TN) is the total number of classified signal portions
of the session. Given the definition of 𝑝

0
from [30]

𝑝
0
=
∑𝐶
𝑖,:𝐶:,𝑖

𝑁2
, (2)

𝑝
0
is computed as

𝑝
0
=
(TP + FN) (TP + FP) + (FP + TN) (FN + TN)

(TP + FN + FP + TN)2
. (3)

As regards the significance of the difference between average
accuracy and chance level 𝑝

0
using confidence intervals, we

computed the lower bound of the confidence interval as in
[30]

𝑝
𝑙
= 𝑝̂ − 𝑧

1−𝛼/2

√
𝑝̂ (1 − 𝑝̂)

𝑁 + 4
, (4)

where 𝑧
1−𝛼/2

is the 1 − 𝛼/2 quantile of the standard normal
distribution and

𝑝̂ =
(TP + TN) + 2
𝑁 + 4

(5)

is the adjusted average classification accuracy. If 𝑝
0
> 𝑝
𝑙
,

the average classification accuracy cannot be considered
significantly better than chance [30].

In our opinion, the average accuracy is a representative
estimation of the user’s real ability to control the system.
However, since some of the previous works [5, 7, 8] exten-
sively report only peak accuracies (in [5] the average accuracy
curves are also displayed, but they regard only the last training
session), we also add the information on peak accuracies
to allow for comparability. Peak accuracy is obtained by

computing the average classification accuracy of every time-
point of the trial and reporting the peak value [5, 7, 8]. Finally,
to be complete, we also report the values of information
transfer rate (ITR) [31].

As explained in Section 2.3.2, 𝑇 module can be repeated
in a session if performances are too low. This option was
introduced to give users the possibility to try different strate-
gies and avoid annoying them with discouraging feedback.
If 𝑇 module was repeated, we considered for evaluation of
accuracies chance level only the repetitions of 𝑈 following
the last 𝑇. The average accuracy and its chance level are also
reported for 𝐶 if it was reached.

All the accuracies shown in this paper reflect the obtained
online accuracies, without rejection of artefactual trials. To
be complete, in a posterior analysis an experienced inspector
visually checked the EEG time-courses to reject artifactual
data and recompute the accuracies. During this analysis, the
inspector was blinded to the contents of the trials. Since the
average rejection rates were overall reasonably low (8.4 ±
4.5% of artifactual trials, mean ± standard deviation) and the
recomputed accuracies were not significantly different from
the ones without artefact rejection, we decided to only report
the values of real obtained online accuracies, without artefact
rejection.

To evaluate the improvements in participants’ perfor-
mances, we tested the significance of the difference in both
peak and average accuracy between the first and the last
session.

2.4.2. Time Effect. The system described here is a cue-paced
BCI. However, going in the direction of asynchronous BCIs,
we think that it is important for a system to classify each time-
point equally well, since the BCI should recognize the mental
state whenever it occurs. To test this ability of the system, we
computed the average accuracy curves of each time-point of
the trial in the last session, as in [5].
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2.4.3. Efficacy of the Adaptive Thresholds. As previously
introduced, to keep challenging the users encouraging them
to produce increasingly clear mental states, we decided to
give feedback only if the produced EEG pattern exceeded an
adaptive threshold from the decision boundary. However, to
test if the “above threshold” signals were actually the most
representative of the 2 classes and to verify that the patterns
produced actually resembled the physiological ERD/ERS MI
patterns, we decided to compute 𝑟2 maps for each participant
and session to compare the signals in the conditions: (i)
correct classification and above threshold and (ii) only correct
classification irrespective of the threshold.

The coefficient of determination 𝑟2 is a commonly used
(e.g., [15, 25, 31–33]) index in the BCI context, quantifying
how strongly the signals measured under two different task
conditions differ in relation to variance (i.e., 𝑟2 represents the
fraction of the total signal variance which can be explained by
the task condition [33]). From a computational point of view,
𝑟
2 simply is the square value of the correlation coefficient
between the powers extracted from the EEG signal in the
2 imagery tasks and a fictitious independent variable which
assumes 1 of 2 possible different values (e.g., “+1” and “−1”),
depending on the imagery task [33].

First of all, for every participant and session we extracted
the power spectral densities of signal portions using themod-
ified periodogram (Blackman-Harris window). Secondly, we
evaluated all signal powers in the range 8–30Hz, using
2Hz-large frequency bins. Finally, 𝑟2 value was determined
for each power bin. For each participant and session, we
therefore obtained several 𝑟2 values which can be grouped
according to 3 factors:

(1) “threshold,” which has 2 levels corresponding to the
conditions “correctly classified and above threshold”
and “correctly classified irrespective of threshold,”

(2) “channel,” which has 11 levels corresponding to the 11
acquired channels,

(3) “frequency,” which has 11 levels corresponding to the
11 2Hz-large frequency bins in the range 8–30Hz.

Using a multifactorial statistical test (three-way ANOVA)
and multiple comparison tests, we compared the distribution
of 𝑟2 of the “correctly classified and above threshold” and
“correctly classified but independent from threshold” signal
portions. Secondarily, we also evaluated the effects of the
factors “channel” and “frequency.” The obtained 𝑟2 values
were also compiled for each frequency bin in topographical
maps of the scalp. Some examples of these maps are shown in
Section 3.

3. Results

3.1. Accuracy. The detailed results of peak accuracy, average
accuracy, and chance level of each participant and session
are provided in Table 2 (see Appendix), while Figure 5 shows
an overview of the trends of these parameters over the 6
sessions. Additionally, Table S1 in the Supplementary Mate-
rial available online at http://dx.doi.org/10.1155/2016/4562601
reports the detailed compositions of each training session.
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Figure 5: This picture shows the trends over the 6 sessions for peak
accuracy (red), average accuracy (blue), and chance level 𝑝

0

(black)
for each participant. As described in Section 2.4, all the accuracies
were computed considering the 𝑈 repetitions following the last 𝑇of
the session. Since each average accuracy should be compared to the
corresponding 𝑝

0

, the blue line of the average and the black line of
chance level are aligned. A black horizontal dashed lined indicating
the criterion level of 70% is also added.

The results of the sixth session of P02 are not reported because
of artefacts in the respective EEG recordings.

Figure 5 shows that 7 out of 10 participants reached the
criterion level of 70% not only with peak but also with
average accuracy. In fact, all these participants accessed 𝐶
phase at least once, confirming the average accuracy shown
in 𝑈 (Table 2). Moreover, participants P01–P03 reached peak
accuracies over 90% in their last session. On the other hand,
participants P08–P10 did not reach the criterion level of
70% throughout the 6 sessions, but at least in P08 and P09
the average classification accuracy was significantly different
from chance most of the time.

Despite the results of P08–P10, all the participants
increased their performance (considering both peak and
average accuracy) between the first and last sessions, and
the increase was statistically significant over the whole group
(𝑝 < 0.01).

3.2. Time Effect. Figure 6 displays the trial average accuracy
curves of all participants in their last session. The figure
shows that the classifier is not optimized for any specific
time-segment; indeed all time-points are generally classified
equally well.

3.3. Efficacy of the Adaptive Thresholds. The three-way
ANOVA revealed that 𝑟2 values are significantly (𝑝 < 0.01)
higher considering the “correctly classified and above thresh-
old” signals, when compared to generically “correctly clas-
sified” signals. Figure 7 shows several examples of 𝑟2 topo-
graphicalmaps in the 2 conditions, for 3 different participants
and subject-specific bands.

The three-way ANOVA also revealed significant (𝑝 <
0.01) effects for the factors “frequency” and “channel.”



Computational Intelligence and Neuroscience 9

Table 2: Detailed results for each participant and session.The first 2 columns list the name of the participant and the number of sessions.The
third, fourth, and fifth columns show, respectively, the peak accuracy (%), average accuracy (%), and chance level (%) obtained considering
the𝑈 repetitions following the last 𝑇 of each session.The sixth column shows the result of the comparison via confidence intervals (𝛼 = 0.05)
between the average accuracy and 𝑝

0

(yes = the average accuracy is significantly different from chance; no = otherwise). The seventh column
finally refers to the ITR (bits/min) of the corresponding session. In case𝐶 phase was reached, the last 4 columns show, respectively, the average
accuracy (%), the chance level 𝑝

0

(%), the result of comparison between the two (𝛼 = 0.05), and the ITR (bits/min) considering the three
repetitions of 𝐶.

Participant 𝑆 𝑈

(peak) %
𝑈

(mean) %
𝑝
0

(chance)
% 𝛼 (0.05) ITR (bits/min) 𝐶

(mean) % 𝑝0 (chance) % 𝛼 (0.05) ITR (bits/min)

P01

1 67.50 58.89 50.14 Yes 2.76 — — — —
2 88.33 80.88 49.34 Yes 35.53 89.10 51.72 Yes 60.37
3 93.33 86.57 50.00 Yes 51.70 90.74 61.65 Yes 66.59
4 95.00 88.92 50.00 Yes 59.72 84.95 58.91 Yes 46.67
5 96.67 87.65 50.08 Yes 55.27 96.53 51.99 Yes 93.91
6 95.00 88.82 50.10 Yes 59.37 91.08 49.73 Yes 67.95

P02

1 64.71 60.83 49.56 Yes 4.09 — — — —
2 63.13 57.21 49.95 Yes 1.80 — — — —
3 64.00 56.88 49.08 Yes 1.64 — — — —
4 73.75 66.62 46.56 Yes 9.75 66.46 57.35 Yes 9.56
5 96.67 88.24 49.78 Yes 57.29 92.22 54.78 Yes 72.67

P03

1 78.13 73.31 49.94 Yes 19.56 83.46 54.71 Yes 42.35
2 80.00 71.67 49.53 Yes 16.81 58.78 48.91 Yes 2.68
3 70.91 64.49 45.49 Yes 7.38 87.18 58.77 Yes 53.70
4 90.00 79.90 49.57 Yes 33.13 81.91 54.70 Yes 38.16
5 88.33 84.61 49.98 Yes 45.65 77.09 54.26 Yes 26.83
6 93.33 87.45 50.16 Yes 54.61 82.53 51.51 Yes 39.80

P04

1 59.23 54.98 49.66 Yes 0.86 — — — —
2 86.67 74.12 49.82 Yes 21.0 74.82 54.54 Yes 22.31
3 72.22 65.49 48.52 Yes 8.45 60.20 48.75 Yes 3.63
4 68.75 62.98 49.66 Yes 5.90 — — — —
5 64.38 60.99 47.80 Yes 4.22 — — — —
6 71.88 63.46 50.01 Yes 6.35 — — — —

P05

1 80.63 70.29 50.00 Yes 14.68 68.01 49.83 Yes 11.49
2 85.00 74.61 50.04 Yes 21.91 73.34 55.29 Yes 19.62
3 70.00 65.49 48.89 Yes 8.45 50.45 45.24 Yes 0.01
4 70.63 60.62 49.76 Yes 3.94 — — — —
5 79.23 70.41 49.54 Yes 14.85 66.13 48.81 Yes 9.17
6 83.33 74.02 50.01 Yes 20.83 74.22 49.05 Yes 21.19

P06

1 60.00 56.32 49.95 Yes 1.39 — — — —
2 66.25 61.21 49.98 Yes 4.39 — — — —
3 70.00 65.74 49.66 Yes 8.72 47.09 39.73 Yes 0.29
4 85.00 76.76 50.21 Yes 26.15 80.00 51.04 Yes 33.37
5 65.63 61.25 50.00 Yes 4.42 — — — —
6 65.00 60.62 50.07 Yes 3.94 — — — —

P07

1 67.50 60.99 50.00 Yes 4.22 — — — —
2 61.33 54.75 46.26 Yes 0.78 — — — —
3 76.67 66.96 49.16 Yes 10.16 50.94 42.90 Yes 0.03
4 81.67 76.57 50.16 Yes 25.75 73.44 51.23 Yes 19.79
5 78.57 68.99 49.96 Yes 12.81 58.49 46.54 Yes 2.51
6 83.33 76.96 49.95 Yes 26.56 61.15 47.57 Yes 4.34
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Table 2: Continued.

Participant 𝑆 𝑈

(peak) %
𝑈

(mean) %
𝑝
0

(chance)
% 𝛼 (0.05) ITR (bits/min) 𝐶

(mean) % 𝑝0 (chance) % 𝛼 (0.05) ITR (bits/min)

P08

1 54.00 47.53 43.53 Yes 0.21 — — — —
2 58.00 51.65 49.07 No 0.09 — — — —
3 54.29 48.40 45.33 Yes 0.09 — — — —
4 68.82 57.37 49.96 Yes 1.89 — — — —
5 60.00 55.48 48.23 Yes 1.04 — — — —
6 57.50 52.11 49.93 Yes 0.15 — — — —

P09

1 55.45 46.63 44.30 Yes 0.39 — — — —
2 56.88 53.71 49.58 Yes 0.48 — — — —
3 55.88 49.48 49.84 No 0.01 — — — —
4 60.62 55.59 49.94 Yes 1.08 — — — —
5 67.14 56.72 46.21 Yes 1.57 — — — —
6 58.18 49.41 49.66 No 0.01 — — — —

P10

1 55.00 46.54 48.85 No 0.41 — — — —
2 61.00 52.88 49.79 Yes 0.29 — — — —
3 53.13 48.46 49.80 No 0.08 — — — —
4 55.83 45.93 49.92 No 0.57 — — — —
5 47.50 42.87 42.37 No 1.77 — — — —
6 55.63 52.32 49.98 Yes 0.19 — — — —

Specifically, it emerged that the bins 8–10Hz, 10–12Hz, and
12–14Hz had significantly higher 𝑟2 values for the factor
“frequency.”

4. Discussion

4.1. Accuracy. The results showed a significant (𝑝 < 0.01)
increase in performance (in both peak and average accuracy)
between the first and the last sessions over the whole set
of participants. Seven out of 10 participants reached the
criterion level of 70% with both peak and average accuracy,
and 3 of them (P01–P03) even obtained >90% peak accuracy
in their last session. Three out of 10 users did not manage to
reach the criterion level throughout the 6 sessions. However,
this result is in line with the well-known phenomenon of
BCI illiteracy; that is, BCI control does not work for a
nonnegligible portion of users (estimated in 15% to 30%)
[20].

The problem of reducing BCI illiteracy was previously
investigated by Vidaurre et al. [14, 15], who proposed a
multistep adaptive calibration procedurewith a high coverage
setup (48 electrodes). Because of the large difference in
the number of electrodes used, our system is not directly
comparablewith theirs.However, it could represent a possible
portable alternative once the “illiterate” user has gained
enough control with a higher coverage approach. Potentially,
instead of using a fixed set of 11 electrodes to discriminate the
2 mental states, the number of electrodes could be reduced
starting from a high coverage setup using the CSP-based
method proposed by Wang et al. [27] or using a procedure
based on statistical comparison of the electrode-band power
in the two tasks, as described in thework ofMangia et al. [34].
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Figure 6: Overview of the trial average accuracy curves for the
last session in all participants. Each grey line represents the average
accuracy curve of a participant, while the black bold line is computed
as the grand mean of the accuracy curves of all participants.

Once the most discriminant subject-specific bands/locations
are identified, the number of electrodes could be reduced and
a system similar to ours could be used.

As regards the other mentioned studies by Vidaurre et al.
and Faller et al. [5, 7, 8] and the study from Xia et al. [12], we
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Figure 7:Three examples of 𝑟2 maps in subject-specific frequency bins. We chose to display 3 participants who exhibited very different levels
of BCI control: P03, P06, and P10. The figure shows how 𝑟2 maps resulting from “correctly classified + above threshold” signals (a) for each
participant present approximately the same shape but higher values than the case of “correctly classified” signals without threshold (b). To
allow for comparability, the corresponding maps in (a)/(b) share the same colourmap bounds.

can say that the obtained online accuracies are in line with the
previously reported measurements.

4.2. Time Effect. The results shown in Figure 6 demonstrate
the ability of the system to classify the EEG data in each time-
point equally well and not only in a short and limited time
window. The result is enhanced by the longer duration of
our trial with respect to other studies [5, 7–9]. This property
makes the system suitable for continuous work as in a real
condition of use.

4.3. Efficacy of the Adaptive Thresholds. The computed 𝑟2
values proved to be significantly (𝑝 < 10−10) higher in the
case of “correctly classified and above threshold” signals with
respect to the simply “correctly classified” signals, and the
result is enhanced by the fact that the “correctly classified”
signals include the “correctly classified and above threshold”
signals. This outcome suggests that the adaptive thresholds
we included in the system were actually useful to give
feedback only on the most reliable and clear mental states
the participant could produce. Moreover, this feature seems
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to be independent from the participant’s level of control.
Indeed, looking at Figure 7 showing 3 examples of 𝑟2 maps
choosing 3 participants with widely varying levels of control,
we can see how in all cases 𝑟2 maps resulting from “correctly
classified + above threshold” signals present approximately
the same shape as the “correctly classified” signals without
threshold, but with higher values. We think that this result
is particularly interesting considering P10: even if it emerged
that this participant could not control the system, the adaptive
thresholds still allowed P10 to select the “best” signals
possible to give feedback on. Also, considering the shape
and frequency bin of 𝑟2 map, we think it is reasonable to
say that it still resembles the physiological ERD/ERS MI
patterns, but withweaker 𝑟2 values than, for example, P03 and
P06 (Figure 7). Considering the way we computed the maps,
these 𝑟2 topographies highlight the most different frequency
bins/channels between the conditions of right versus left hand
MI.

4.4. Possible Improvements. Specifically regarding our adap-
tive algorithm, stability against artefacts is a point that should
be improved. In particular, due to the sample covariance
(nonrobust covariance matrix estimator),Wmatrix is rather
susceptible to artefacts [35]. Our study tried to enhance the
system’s stability against artefacts in 2 ways: (i) applying a
CAR spatial filter in the preprocessing step and (ii) updating
W using only some selected signals (the “clearest” ones,
according to the classifier). Furthermore, sinceW is evaluated
by averaging an increasing number of covariance matrices,
the influence of a possible unremoved artefact should be
gradually reduced. Even so, our system does not assure com-
plete protection against artefacts, and a particularly unlucky
𝑈 session could temporarily lead to confusing feedback.

A real-time artefact recognition algorithm (e.g., the ones
proposed in [10, 36, 37]) could be used to further exclude
artefacts. This would improve the stability of the W matrix
and the quality of the training set, avoiding misleading
feedbacks and improving the system’s accuracy to recognize
the classes.

Another simple improvement that should be attempted
regards the type of feedback. Since some nonstationarities
in EEG come up as reactions to negative feedbacks [38],
only correct feedback could be displayed to motivate the
participants as much as possible [39].

4.5. Overall Comments. Taking the above results and discus-
sions together, we can say that the presented adaptive strategy
yields results in line with previously reported findings [5, 7–
9]. However, beyond the proposed adaptive strategy, themain
novelties presented in this paper regard the way the machine
interacts with the user during training.

As regards giving feedback only in case the pattern
exceeded an adaptive threshold, the computed 𝑟2 maps and
the 3 examples displayed suggest not only that the threshold
effectively selected the best possible patterns to give feedback
on but also that these adaptive thresholds work well in users
with varying levels of control (notably, this is important
with the most critical participants, e.g., P10). Therefore, the

inclusion of adaptive thresholds even in systems different
from the one introduced here could help to keep challenging
the users, irrespective of their ability.

The second idea presented here regards the unbalanc-
ing in the presentation of training conditions, in favour
of the currently hardest to predict. We suggest that it is
reasonable that this feature could improve user training.
Indeed, especially when there are two opposing conditions
(e.g., “right hand” versus “left hand” or “hand” versus “feet,”
whereas this is not the case of, e.g., “hand” versus “rest”),
the user may feel more comfortable in one of the conditions,
and inherently the system better recognizes it. Insisting
on the most misclassified task should theoretically improve
the training process, irrespective of the underlying adaptive
algorithm.

Finally, we suggest that the last novelty of the described
system relies on the concept of “flexible training session.”
Indeed, especially with novice users, training may require
some trial-and-error before coming up with a good imagi-
nation strategy (e.g., tapping a finger, playing an instrument,
and brushing teeth). In these cases, if the classifier keeps
performing at chance level for too long, it may be pertinent
to discard all the acquired data and restart training from
the beginning, thereby preventing user discouragement and
giving them the chance to try a different imagination strategy.
On the other hand, as users reach a satisfactory level of
control, the training phase should not be needlessly long
to avoid annoying them. In addition, it is desirable that
these “decisions” are taken automatically by the system.
Considering all these elements, we think it is the modular
structure that makes the system so flexible. To give a further
example, specifically in the case of our system, if 𝐶 phase is
accessed too early, nothing stops 𝑈 repetition being inserted
to tune the system’s parameters quickly and catch up with the
user’s evolution. We suggest that a modular structure, similar
to the one introduced here, could help build maximally
flexible and customizable BCI systems.

5. Conclusion

The present study developed a fully automate plug-and-play
BCI system to control the flexion-extension of a 1 DOF-
modelled arm using MI strategy. The system was tested
online on 10 participants, of whom 7 reached the criterion
level of 70% with both peak and average accuracy in just
3 days. Despite these results, the system still presents the
major limitation of not being completely robust against EEG
artefacts. In particular, in the considered frequency band (8–
30Hz), muscular artefacts are themost critical.The inclusion
of an artefact recognition algorithm should theoretically
further improve the system’s stability and the quality of the
feedback. Another simple improvement to the system could
stem from the decision to display only correct feedback
to prevent nonstationarities which come up as reactions to
frustrating feedback and motivate the participants as much
as possible.

The presented system falls within the category of
adaptive systems that aim to improve the user training
procedure, dealing with the nonstationarities elicited by
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feedback training. Beyond the proposed adaptive strategy,
we suggest that the main ideas/novelties introduced in the
system are to (i) keep challenging the user through the use of
adaptive thresholds in the feedback phase, (ii) present imbal-
anced training conditions, insisting on the most difficult one
for the user, and (iii) adapt the type and length of the training
session, depending on user performances.

Appendix

See Table 2.
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