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Abstract

This paper studies whether the observed time variation in the forecast accuracy of

macro-econometric models can be reconciled with the monetary policy stance that induces

(in)determinacy in stylized DSGE models. Using a small-scale New Keynesian monetary

framework as laboratory and structural parameters calibrated to the estimates obtained

on U.S. data from di¤erent macroeconomics regimes, we exploit reduced-form econometric

models� such as Vector Autoregressions� to assess their regime-speci�c forecastability. We

show that conducting (pseudo) out-of-sample forecast comparisons in the presence of inde-

terminacy is a non-trivial exercise, even when sunspot shocks play no role in generating the

data. Overall, our simulation experiment suggests that equilibrium indeterminacy need not

lead to superior (absolute or relative) forecast accuracy. This �nding challenges the view

that the deteriorating performance of forecast models over the Great Moderation relative to

the Great In�ation was entirely due to changes in the U.S. monetary policy.
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1 Introduction

A recent debate in the (in�ation) forecasting literature revolves around the inability of elaborate

macro-econometric models to improve on simple univariate predictors, since the onset of the so-

called Great Moderation. Contributions in the �eld include, but are not limited to, Atkeson and

Ohanian (2001), Orphanides and van Norden (2005), Faust and Wright (2009), Rossi and Sekh-

posyan (2010), Christo¤el et al. (2010), Edge and Gurkaynak (2010). While shown to be robust

across a large variety of models, e.g. activity-based Phillips curves (Stock and Watson, 2007)

and factor-augmented autoregressions (D�Agostino et al., 2007), this �nding has been largely

associated with the emergence of weakly persistent in�ation dynamics, as mostly dominated by

transitory rather than permanent components (e.g. Stock and Watson, 2007).1

The present paper re-examines and quali�es the �indeterminacy-persistence-forecastability�

nexus which has been advocated by some scholars as a possible explanation of the superior

forecast accuracy of macro-econometric models prior to the Great Moderation (e.g. Benati

and Surico, 2008; Fujiwara and Hirose, 2014). Speci�cally, we investigate whether the ob-

served time variation in the forecast accuracy of macro-econometric models can be reconciled

with the monetary policy stance that induces (in)determinacy in stylized dynamic stochastic

general equilibrium (DSGE) models. It is well known that such models may admit locally

non-unique (indeterminate) stable equilibria under reasonable parameterizations (e.g. Lubik

and Schorfheide, 2004). Equilibrium indeterminacy is generically associated with a richer auto-

correlation structure, i.e. a stronger degree of endogenous persistence of resulting equilibrium

representations, see e.g. Broze and Szafarz (1991), Lubik and Schorfheide (2003), Fanelli (2012);

it also allows nonfundamental shocks (sunspot noise) to a¤ect the model�s reduced form dynam-

ics. In principle, these peculiar time-series properties may result in superior predictive power

of the indeterminate version of a given model, provided the degree of sunspot uncertainty is

not too large. This observation naturally raises two distinct though intimately related research

questions: �rst, is indeterminacy per se bound to favor data predictability in absolute terms?

Second, can the declining relative predictive accuracy of macro-econometric models across two

historical periods of U.S. business cycle be unambiguously framed in the context of equilibrium

indeterminacy?

We conduct a simulation experiment to address both these questions. Using the small-

scale New Keynesian model investigated in Benati and Surico (2008, 2009) as laboratory, we

generate arti�cial datasets under determinacy and indeterminacy and exploit Vector Autore-

gressions (VARs) and other conventional time series models to assess both absolute and relative

1See also D�Agostino and Surico (2012) for a thorough analysis of in�ation predictability in the U.S. across

monetary regimes of the XXth century.
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forecasting performances in either equilibrium regime. Structural parameters are calibrated to

the estimates obtained by Benati and Surico (2009) on U.S. data on di¤erent macroeconomic

regimes. When we generate data under determinacy, structural parameters are �xed to the

estimates obtained by Benati and Surico (2009) on the Great Moderation period and re�ect a

setup characterized by an �active�monetary policy able to prevent self-fulling in�ation expecta-

tions. On the other hand, when we generate data under indeterminacy, structural parameters

are �xed to the estimates obtained by Benati and Surico (2009) on the Great In�ation period

and re�ect a setup characterized by a �passive�monetary policy that does not react aggressively

enough to in�ation shocks inducing multiple (stable) equilibria (e.g., Clarida et al., 2000; Lubik

and Schorfheide, 2004; Boivin and Giannoni, 2006; Castelnuovo and Fanelli, 2015a). Simula-

tions show that, irrespective of whether the model�s solution features sunspot noise or slightly

deviates from the Minimum State Variable (MSV) solution, for certain values of the arbitrary

parameters that govern solution multiplicity the (pseudo) out-of-sample forecasts of in�ation

obtained with VARs exhibit smaller average root-mean-square errors (RMSEs) than forecasts

generated by univariate autoregressive (AR) or random walk (RW) predictors. For other values

of these parameters, by contrast, the opposite occurs. Hence, a stronger (absolute and relative)

predictive ability of VARs depends quite heavily on the selected equilibrium in the indeterminate

set which is assumed to generate the data.

The �rst lesson we learn from our experiment is that establishing forecast accuracy on the

basis of quadratic loss functions proves highly challenging in the presence of indeterminacy,

notwithstanding the richer correlation structure and stronger degree of endogenous persistence

featured by indeterminate equilibria. Speci�cally, it is argued that appropriate forecasting under

indeterminacy based on reduced form time series models requires analyzing the relevant features

of the underlying data generating process (DGP), and how they might contribute to forecast

error. At least two peculiar features of equilibrium indeterminacy in DSGE models should be

accounted for. One is the occurrence of arbitrary parameters that index solution multiplicity

under indeterminacy, which a¤ect the number of predictors and the parametric restrictions in

the prediction framework. Remarkably, forecast errors might re�ect the possible time-varying

nature of these parameters. The other is the impact of sunspot (e.g. nonstructural) shocks that

may drive the dynamics of the variables in addition to structural ones under indeterminacy, and

hence may add to the intrinsic risk of prediction. We show that, regardless of whether sunspot

noise occurs or not, the (pseudo) out-of-sample performance of a reduced form forecast model,

in comparison to rival predictors, critically depends on how the arbitrary parameters interact

with the structural ones in the moving average part of the solutions. We make this point clear

at the very outset of our investigation through an example based on a simple linear rational
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expectations model.

The second lesson is that �more stable�environments (determinacy) may enhance forecasta-

bility, while the situation is mixed under indeterminacy due to highly involved dynamics of the

variables to forecast. Maintaining that the New Keynesian monetary framework represents a

reasonable prima facie approximation of the post-WWII U.S. business cycle, and that a change

in the stance of monetary policy contributed to the reduction of in�ation persistence, the supe-

rior forecast performance of econometric models documented prior to the Great Moderation can

be interpreted as a contingency characterizing the indeterminate equilibrium featured by U.S.

business cycle during the Great In�ation period.

Our analysis enriches the literature on the decline in in�ation predictability during the Great

Moderation based on small-scale DSGE models with new insights. Benati and Surico (2008) ex-

ploit a small-scale monetary New Keynesian model to explore the extent to which the persistence

and predictability of in�ation vary with the parameters of the monetary rule, and conclude that

a more aggressive policy stance towards in�ation caused the decline in in�ation predictability.

These authors refer to a DSGE-based measure of in�ation predictability, whereas we appeal to

reduced form forecasting models and employ a standard measure of forecast uncertainty (the

RMSEs). Remarkably, Benati and Surico�s (2008) conclusions are based on the idea that more

(DSGE-based) persistence leads to superior (DSGE-based) predictability. Our results provide

a quali�cation to this argument, as they help clarify the subtle link between indeterminacy

(determinacy) of DSGE equilibria and their dynamic (regime-speci�c) properties on the one

hand, and the predictive ability of reduced form VARs, on the other hand. In the same vein,

Fujiwara and Hirose (2014) suggest that forecast di¢ culties in the Great Moderation period

can be potentially associated with the occurrence of equilibrium determinacy. More speci�cally,

they argue that the documented active monetary policy behavior during the Great Moderation

episode insulated the economy from nonfundamental shocks and hence prevented excessive busi-

ness cycle �uctuations. The resulting reduction of the persistence and volatility of in�ation and

output turned out to penalize the forecastability of macro-econometric models. Conversely, the

superior forecastability documented on the time span preceding the Great Moderation, conven-

tionally denoted �Great In�ation�period (1954-1984) would be, according to this argument, a

by-product of equilibrium indeterminacy induced by the �passive�monetary policy conduct of

the Fed. From a technical point of view, our paper extends the analysis in Fujiwara and Hirose

(2014) to a multivariate framework and helps to qualify some of their arguments. From a macro-

econometric point of view, we follow Fujiwara and Hirose (2014) in not restricting attention to

unique equilibrium models, but our analysis is broad in scope as we are interested in exploring

the role of indeterminacy in favoring VARs relative to univariate predictors of macroeconomic
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time series.

The remainder of this paper is organized as follows. Section 2 provides the main idea of

the paper by discussing connections between equilibrium (in)determinacy and forecastability in

the context of a simple linear rational expectations model. Section 3 introduces the reference

small-scale New Keynesian structural model and reports its state-space representation under

either equilibrium regime. Section 4 presents and interprets the results of our Monte Carlo

experiments in light of the empirical stylized facts that characterize the forecasting literature

on U.S. macroeconomic variables. Section 5 o¤ers a few concluding remarks. Appendix A com-

plements the analytical results obtained with the univariate linear rational expectations model

with a detailed Monte Carlo experiment, while Appendix B provides details on the derivation

of the equilibria associated with the New Keynesian structural framework.

2 Background

To set ideas, we consider a simple univariate illustrative example, already analyzed in Lubik

and Schorfheide (2004), among others, and used in Fujiwara and Hirose (2014) to introduce

forecastability under indeterminacy.

Let Xt be a (scalar) random variable de�ned on a properly �ltered probability space, whose

dynamics are governed by the following expectational di¤erence equation:

Xt =
1

�
EtXt+1 + !t; !t �WN(0; �2!) (1)

where EtXt+1 := E(Xt+1 j Ft), Ft := �(Xt; :::; X1) represents the conditioning information set
at time t, !t is a structural shock, and � 2 < is a structural parameter. X0 and !0 are considered
�xed at time t = 1. As is known, any solution to (1) satis�es the recursive equation:

Xt = �Xt�1 � �!t�1 + �t (2)

where �t:=Xt � Et�1Xt is the endogenous expectation error. When � > 1 (determinacy), the

(locally) unique non-explosive solution is given by

Xt = !t (3)

implying that Xt follows white noise dynamics. When � < 1 (indeterminacy), by contrast, the

endogenous expectation error is not constrained by stability requirements, hence any covariance-

stationary martingale di¤erence sequence (MDS) �t will deliver a rational expectations stationary

equilibrium of the form in Eq. (2).2

2Without loss of generality, we abstract from the random walk case, � = 1, for our focus is on stable (asymp-

totically stationary) solutions.
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The expectation error �t can be expressed as a linear combination of the model�s struc-

tural disturbance and a conditionally mean-zero sunspot shock, i.e. �t = ~m!t + st (Lubik and

Schorfheide, 2003), where ~m is an arbitrary parameter unrelated to � and �2!, and st is an Ft-
measurable MDS (Etst+1 = 0) with (assumed) constant variance �2s. For simplicity, we assume

~m to be non-stochastic and time-invariant. The full set of solutions under indeterminacy is

described by the ARMA(1,1)-type process

Xt = �Xt�1 + ~m!t � �!t�1 + st: (4)

Simple inspection of Eqs. (3) and (4) reveals that, at the most basic level, the content of

indeterminacy for the forecaster is essentially twofold. First, dynamic properties of the model�s

equilibrium are richer under indeterminacy than the determinate (pure noise) case. For ~m 6= 1
and non-zero �2s, Eq. (4) gives rise to a large variety of equilibria, while for ~m = 1 and �2s = 0,

and despite � < 1, Eq. (4) collapses to a MSV solution which is observationally equivalent

to the determinate equilibrium in Eq. (3). While inducing a larger lag structure and hence

persistence in Xt, indeterminacy also implies serial correlation in the composite error term

vt:= ~m!t � �!t�1 + st forcing Eq. (4). As a result, the presence of pure sunspot noise as well as
of an arbitrary response of the endogenous variable to the structural shock have the potential

to induce higher volatility in the data generated under Eq. (4) relative to the data generated

under Eq. (3).3 Second, indeterminacy induces richly parameterized time series representations

of equilibria, in which the occurrence of indeterminate dynamics induced by both the structural

shock !t (via the impact coe¢ cient ~m) and the sunspot shock st crucially a¤ects any employed

measure of forecast accuracy based on quadratic loss functions.

Overall, the relevant question is how signi�cant the contribution of the above mentioned

features to the forecast error associated to a given model is when the data are generated according

to Eq. (4). In this respect, the common intuition, also reported in Fujiwara and Hirose (2014), is

that since Xt in Eq. (4) exhibits richer dynamics relative to Eq. (3), the endogenous persistence

implied by Eq. (4) can help forecasters predict the future path of Xt using a wide range of

time series models. We explore this conjecture by considering a forecaster endowed with data

X1; X2; :::; XT who wishes to predict the future path of Xt using a simple AR(1) model. To

simplify the analysis, we focus on a sunspot-free environment, meaning that sunspot shocks are

absent from the set of indeterminate equilibria, i.e. �2s = 0 (implying st = 0 a.s. for each t) in

Eq. (4), so that multiplicity of solutions is solely governed by the indeterminacy parameter ~m.

3 In principle, volatility in xt may be further ampli�ed by endogenous expectations revisions which are ar-

bitrarily related to fundamentals, whereas the converse might occur for a suitable choice of the parameter ~m.

Moreover, di¤erent dynamic structures of the underlying model, e.g. those featuring lagged expectations, may

allow for serially correlate sunspots to arise in equilibrium (e.g. Sorge, 2012).
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Furthermore, we focus on one-step ahead forecasts Xf
T+1jT :=E(XT+1 j FT ) only, for any given

period T .

As mentioned, the forecaster predicts the future path of Xt by using the AR(1) model:

Xt = �Xt�1 + ut , ut �WN(0; �2u) , j�j < 1 , t = 1; :::; T: (5)

That is, the forecaster is not aware of the regime-dependent nature of the underlying DGP. If

Eq. (3) is the true DGP, this amounts to over-specifying the response dynamics including an

irrelevant predictor, whereas an omitted-variable bias arises when Eq. (4) generates the data.

Hence, our naive forecaster is either failing to impose relevant restrictions on the lag structure

of the underlying (forecasting) model, or rather forcing the moving average part of the model�s

solution into the error process. In either case, Xf
T+1jT := �XT and the one-step ahead forecast

error is given by

eT+1 =

(
!T+1 � �!T
(� � �)XT + ~m!T+1 � �!T

under determinacy

under indeterminacy ( ~m 6= 1)

so that, after some manipulations we obtain the mean squared forecast error:

E(e2T+1) =

(
(1 + �2)�2!

g(�; �; ~m)�2!

under determinacy

under indeterminacy ( ~m 6= 1)
(6)

where g(�; �; ~m) is a nonlinear function in the arguments �; � and ~m, de�ned by the expression

g(�; �; ~m) =
(� � �)2

1� �2
�
~m2 + �2 � 2�2 ~m

�
� 2(� � �)� ~m+ ~m2 + �2: (7)

Note that for ~m = 1 (MSV solution), g(�; �; 1) = (1 + �2): Eqs. (6)-(7) suggest that despite

the AR(1) model omits an important predictor under indeterminacy, its forecast performance

under indeterminacy may be superior (inferior) than the one under determinacy depending on

whether it holds the condition g(�; �; ~m) < (1 + �2) (g(�; �; ~m) > (1 + �2)). Let �̂T be the OLS

estimator of � obtained from Eq. (5) with observations X1; X2; :::; XT . In principle, for �xed

values of the structural parameters � and �2!, and given �̂T , it is possible to �nd values of ~m such

that g(�̂T ; �; ~m) < (1 + �̂
2

T ) or g(�̂T ; �; ~m) > (1 + �̂
2

T ). To see this, observe that the estimator

�̂T is consistent under determinacy and is asymptotically biased under indeterminacy, namely:

�̂T
p�!

8<: � = 0

� = � � � (1��2)
( ~m2+�2�2�2 ~m)

under determinacy

under indeterminacy ( ~m 6= 1)
(8)

where �
p�!�means convergence in probability for T �! 1. Assume that T is large. Replacing

� with �̂T in Eq. (6) and using the convergences in Eq (8), the function g(�̂T ; �; ~m) in Eq.

7



(7) depends on � and ~m alone. For instance, for �:=0:95 - which is the calibrated value of

� used in the Monte Carlo experiment of Appendix A under indeterminacy - we have that

e.g. the value of the indeterminacy parameter ~m:=0.85 leads to g(�̂T ; �; ~m) < (1 + �̂
2

T ) � 1,

which implies that forecast accuracy is superior under indeterminacy; conversely, e.g. the values

~m:=0.80 and ~m:=1.01 lead to g(�̂T ; �; ~m) > (1 + �̂
2

T ) � 1, which implies that forecast accuracy
is superior under determinacy. In Appendix A we con�rm and supplement this analysis with

a detailed Monte Carlo investigation which explores relative forecast performance at di¤erent

forecast horizons.

This highly stylized example appears to suggest that any forecasting exercise based on RM-

SEs as measure of forecast accuracy is destined to become more challenging and undecipherable

a-priori under indeterminacy relative to the case of determinacy. This is a natural consequence

of the arbitrariness which characterized the moving average part of the model�s solution under

indeterminacy. Overall, results obtained from the simple linear rational expectations model in

Eq. (1) show that (i) it is not necessarily true that using typical forecast models forecastability

improves if the DGP belongs to the set of indeterminate equilibria; (ii) the endogenous persis-

tence implied by the indeterminate equilibria in Eq. (4) needs not necessarily help forecasters

predict the future path of Xt, regardless of whether the forecast exercise is conducted with time

series models that omit relevant propagation mechanisms or not; (iii) a very high degree of

uncertainty stemming from nonfundamental (sunspot) shocks can weaken the predictive abil-

ity of macro-econometric models, yet their forecast accuracy under indeterminacy relative to

determinacy can prove to be inferior even in sunspot-free economies.

There is no reason to think that this simple example is special. In the following sections, we

show that the argument can be generalized to more realistic model-based forecasting environ-

ments.

3 Structural model and equilibria

Our simulation experiment is based upon Benati and Surico�s (2009) New Keynesian monetary

business cycle model, given by the three equations:

~xt = 
Et~xt+1 + (1� 
)~xt�1 � �(Rt � Et�t+1) + !~x;t (9)

�t =
�

1 + ��
Et�t+1 +

�

1 + ��
�t�1 + �~xt + !�;t (10)

Rt = �Rt�1 + (1� �)('��t + '~x~xt) + !R;t (11)

where

!i;t = �i!i;t�1 + "i;t; �1 < �i < 1; "i;t �WN(0; �2i ) , i = ~x; �;R (12)
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and expectations are conditional on the information set Ft, i.e. Et�:=E(� j Ft): The variables
~xt, �t, and Rt stand for the output gap, in�ation, and the nominal interest rate, respectively;


 is the weight of the forward-looking component in the dynamic IS curve; � is price setters�

extent of indexation to past in�ation; � is households�intertemporal elasticity of substitution;

� is the slope of the Phillips curve; �, '�, and '~x are the interest rate smoothing coe¢ cient,

the long-run coe¢ cient on in�ation, and that on the output gap in the monetary policy rule,

respectively; �nally, !~x;t, !�;t and !R;t in eq. (12) are the mutually independent, autoregressive

of order one disturbances and "~x;t, "�;t and "R;t are the structural (fundamental) shocks.

This or similar small-scale models have successfully been employed to conduct empirical

analysis concerning the U.S. economy. Clarida et al. (2000), Lubik and Schorfheide (2004)

and Castelnuovo and Fanelli (2015a) have investigated the in�uence of systematic monetary

policy over the U.S. macroeconomic dynamics; Boivin and Giannoni (2006) and Benati and

Surico (2009) have replicated the U.S. Great Moderation, Benati (2008) and Benati and Surico

(2009) have investigated the drivers of the U.S. in�ation persistence; Castelnuovo and Surico

(2010) have replicated the VAR dynamics conditional on a monetary policy shock in di¤erent

sub-samples.

The output gap in Eq. (9) is de�ned by ~xt:=xt�xnt , where xt is output and xnt is the natural
rate of output. We complete the structural model speci�cation by postulating that xnt is driven

by a technology shock and follows the Random Walk process

xnt = x
n
t�1 + "xn;t , "xn;t �WN(0; �2xn). (13)

Eq. (13) will be used to de�ne the measurement equation associated with the state-space

equilibrium representation of our DSGE model, see Appendix B.

It is worth emphasizing that our choice of the small-scale system (9)-(13) as laboratory need

not be associated with a comparatively inferior forecast performance vis-à-vis larger scale models

like e.g. the Smets andWouters�s (2007) framework. As argued in Herbst and Schorfheide (2012),

the additional features incorporated into larger models do not involve a uniform improvement in

the quality of density forecasts and prediction of co-movements of output, in�ation, and interest

rates, relative to three-equations systems.

We compact the structural system composed by Eqs. (9)-(12) in the general representation

�0Xt = �fEtXt+1 + �bXt�1 + !t (14)

!t = �!t�1 + "t , "t �WN(0;�") (15)

�:=dg(�~x; ��; �R) , �":=dg(�
2
~x
; �2�; �

2
R)
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where Xt:=(~xt; �t; Rt)0, !t:=(!~x;t; !�;t; !R;t)
0, "t:=("~x;t; "�;t; "R;t)

0 and

�0:=

0BB@
1 0 �

�� 1 0

�(1� �)'~y �(1� �)'� 1

1CCA , �f :=
0BB@

 � 0

0 �
1+�� 0

0 0 0

1CCA , �b:=
0BB@
1� 
 0 0

0 �
1+�� 0

0 0 �

1CCA :
Let �:=(
; �; �; �; �; �; '

~x
; '�; �~x ; ��; �R; �

2
~x
; �2�; �

2
R)
0 be the vector of structural parameters. The

elements of the matrices �0, �f , �b and � depend nonlinearly on � and, without loss of gener-

ality, the matrix ��0 :=(�0 + ��f ) is assumed to be non-singular. The space of all theoretically

admissible values of � is denoted by P and X0 and X�1 are �xed initial conditions.
A solution to system (14)-(15) is any stochastic process fX�

t g
1
t=0 such that, for � 2 P,

EtX
�
t+1 = E(X

�
t+1 j Ft) exists and it solves the system (14)-(15) at any t, for �xed initial condi-

tions. A reduced form solution is a member of the solution set whose time series representation is

such that Xt can be expressed as a function of "t, lags of Xt and "t and, possibly, other arbitrary

MDSs with respect to Ft, possibly independent of "t, called �sunspot shocks�(e.g. Broze and
Szafarz, 1991).

As is known, determinacy/indeterminacy is a system property that depends on a subset

of elements in �, see Lubik and Schorfheide (2004) and Fanelli (2012). More speci�cally, the

solution uniqueness properties of the system of Euler equations (14)-(15) depend on whether �

lies in the determinacy or indeterminacy region of the parameter space. Thus, the theoretically

admissible parameter space P� is decomposed into two disjoint subspaces, the determinacy
region, PD� , and its complement PI� :=P�nPD� . We assume that for each � 2 P�, an asymptotically
stationary (stable) reduced form solution to system (14)-(15) exists, hence the case of non-

stationary possibly �explosive� (unstable) indeterminacy is automatically ruled out. Since we

consider only stationary solutions, the set PI� contains only values of � for which multiple stable
solutions arise.

A technical discussion of the equilibria associated with the DSGE system (14)-(15) is reported

in Appendix B, where the interested reader is referred to. Next we summarize the state-space

representation of the DSGE model in the two scenarios, which are the tools through which the

data are generated in our experiments.

Under determinacy, the so-called ABCD form (Fernández-Villaverde et al. 2007) of the

determinate equilibrium is represented by the system

zdt
2n�1

= Ad(�)
2n�2n

zdt�1
2n�1

+ B(�)
2n�(n+b)

udt
(n+b)�1

yt
p�1

= C(�)
p�2n

zdt�1
2n�1

+ D(�)
p�(n+b)

udt
(n+b)�1

(16)

where zdt :=(X
0
t; X

0
t�1)

0 is the state vector, n is the dimension of the state vector Xt in Eq.

(14) (n = 3 in our speci�c case), yt is the vector of observable variables, which in our speci�c
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case is given by yt:=(�xt; �t; Rt)0, �xt being output growth; Ad(�), B(�), C(�) and D(�) are

conformable matrices whose elements depend nonlinearly on �, and udt :=("
0
t; v

0
t)
0 is the vector

containing all system innovations, i.e. the fundamental shocks "t and the innovations associated

with the measurement system, vt, if any. The superscript �d�stands for �determinacy�.

Under indeterminacy, instead, the ABCD form associated with equilibria is given by

zint
3n�1

= Ain(�)
3n�3n

zint�1
3n�1

+ B(�; ~m)
3n�(4n+b)

uint
(4n+b)�1

yt
p�1

= C(�)
p�3n

zint�1
3n�1

+ D(�; ~m)
p�(4n+b)

uint
(4n+b)�1

(17)

where the superscript �in�stands for �indeterminacy�. Here, the state vector zint :=(X
0
t; X

0
t�1; X

0
t�2)

0

involves an additional lag compared to the case of determinacy, while yt:=(�xt; �t; Rt)0 is the

same as before. Notably, the �B�and �D�matrices in Eq. (17) depend not only on the structural

parameters �, but also on a vector of auxiliary parameters, unrelated to �, that we collect in the

vector ~m. uint :=(e
0
t; v

0
t)
0 is the vector containing all system innovations, i.e. the shocks et and

the innovations associated with the measurement system, vt, if any. Notably, et in uint contains

not only the fundamental shocks "t, but also additional stochastic terms, collected in the vector

�t, et:=("
0
t; �

0
t)
0, where �t is a vector that has the same dimesion as "t and features a number

n2 �dim("t) of possibly non-zero stochastic terms independent on "t; the remaining dim("t)-n2
elements of �t are equal to zero, see Appendix B.

Thus, while the determinate equilibrium in system (16) depends only on the state variables

and the structural parameters �, the class of indeterminate equilibria summarized by system

(17) features (i) higher lag order, (ii) a set of auxiliary parameters ( ~m) in addition to the

structural parameters, and (iii) possible additional shocks unrelated to the fundamental shocks

(the non-zero elements of �t). As shown in Appendix B, the �parametric indeterminacy�that

springs from ~m characterizes the moving average part of the VARMA-type reduced form solution

for Xt. Such parameters index solution multiplicity and may arbitrarily amplify or dampen the

�uctuations of the variables in yt other those implied by the fundamental shocks. The �stochastic

indeterminacy�stems from the non-zero sunspot shocks which enter the vector �t. These shocks

may arbitrarily alter the dynamics and volatility of the system, see Lubik and Schorfheide (2003,

2004) for discussions. A special case of interest is obtained when ~m=vec(In2) and no sunspot

shocks drive the reduced form; in this case, despite � lies in the indeterminacy region of the

parameter space, the equilibrium collapses to a MSV solution with the same lag order as the

determinate solution.4

4Notice however that the autoregressive parts Ain(�) and Ad(�) will generically be di¤erent, since � lies in

di¤erent subsets of the parameter space given the equilibrium regime in place.
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The representation in Eq. (17) can be fruitfully used to simulate indeterminate (linearized)

DSGE models. One obstacle so far to the full investigation of indeterminate equilibria in the

multivariate context has been the di¢ culty in generating the data under the multiple solution

hypothesis, without constraining too heavily the representation of solutions. Our analysis helps

to �ll this gap. Notably, we are not restricted to the selection of a particular solution� the

orthogonal one (Lubik and Schorfheide, 2003)� from the indeterminate set.5 In the next section

we use the representation of the DSGE model in Eq. (16) to generate data from the DSGE model

under determinacy, and the representation in Eq. (17) to generate data under indeterminacy.

4 Simulation experiment

In this section we explore VAR forecast performance on data simulated from the New Keynesian

monetary business cycle model under di¤erent scenarios. To do so, system (14)-(15) is used to

generate arti�cial data using the representation in Eq. (16) under determinacy, and the repre-

sentation in Eq. (17) under indeterminacy. Structural parameters are calibrated to the estimates

obtained by Benati and Surico (2009) on the Great In�ation period and Great Moderation pe-

riod, respectively. For either of the two equilibrium regimes, we generate N=1000 synthetic

datasets under determinacy and indeterminacy, assuming Gaussian fundamental shocks, and

exploit the following forecast models:

(a) A VAR system for yt:=(�xt; �t; Rt)0;

(b) univariate AR(1) models for �t and �xtt;

(c) univariate RW models for �t and �xtt:

where �xt is the growth rate of output. While the VAR in (a) is our reference forecast model,

the models in (b) and (c) serve as conventional benchmarks (e.g., Atkeson and Ohanian, 2001).

Owing to their �exibility, reduced form VARs have naturally lent themselves for forecasting

since their inception. Moreover, VARs are the more parsimonious models that capture inter-

dependences across the endogenous variables whose co-movements the New Keynesian model

attempts to predict. Notice that for our purposes it does not matter whether the employed

VAR is misspeci�ed or not relative to the actual (regime speci�c) DGP; it indeed serves as a

reference models to assess absolute and relative predictive accuracy.6

Consistent with Benati and Surico (2008, 2009)�s empirical analysis, we consider periods of

5Recently, Farmer et al. (2015) have provided a method to solve and estimate indeterminate linear rational

expectations models using standard software packages, which might be also used as an alternative.
6We are aware that also (structural) VAR(MA) models have been extensively used to identify, estimate and

forecast the driving force(s) behind business cycles, see e.g. Stock and Watson (2002), Benati and Surico (2009),

Kascha and Mertens (2009). However, VARs allow us to keep our arguments as simple as possible.
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unequal lengths in the two cases: T=94 observations under determinacy and T=119 observations

under the various indeterminacy scenarios we consider. Speci�cally, data under determinacy are

generated from system (16), where the structural parameters � are calibrated to the medians of

the posterior distributions reported in Table 1 of Benati and Surico (2009), column �After the

Volcker Stabilization�. Hence, we mimic the scenario documented by Benati and Surico (2009) for

the Great Moderation period, namely a structural system characterized by an �active�monetary

policy able to prevent self-fulling in�ation expectations. We label such a scenario the �Great

Moderation-type�DGP. For ease of exposition, the calibrated � used in the simulation experiment

under determinacy is reported in the right column of Table 1. Data under indeterminacy are

generated from system (17) with the structural parameters � calibrated to the medians of the

posterior distributions reported in Table 1 of Benati and Surico (2001), column �Before October

1979�. In this case, we mimic the scenario documented by Benati and Surico (2009) for the

Great In�ation period, namely a structural system characterized by a �passive�monetary policy

that does not react aggressively enough to in�ation shocks, inducing multiple (stable) equilibria.

In this framework, the degree of indeterminacy of the system is one (i.e. n2=1 in terms of the

notation used in Section 3), hence we also need to calibrate the indeterminacy (scalar) parameter

~m and the variance of the (univariate) sunspot shock �t = st (which is also assumed Gaussian).

We label such a scenario the �Great In�ation-type�DGP. The calibrated parameters used in

the simulation experiment under indeterminacy is again reported in the left column of Table 1,

along with the indeterminacy parameters, summarized at the bottom. The di¤erences in the

values assumed by the structural parameters � in the two scenarios are highlighted in bold in

Table 1. It can be noticed that the main divergence across the two DGPs essentially lies in the

conduct of monetary policy, namely in the long run response of the policy rate to output gap

and in�ation shocks.

On each dataset simulated as detailed above, we apply the models (a), (b) and (c). The

�rst T � P observations are used to estimate the models in (a) and (b) by OLS, and the last

P observations are used to compute forecasts for �t and �xt and the associated RMSEs. The

VAR lag order is selected using Schwarz�s criterion, considering 1 up to 3 lags. The absolute

VAR forecast performance is measured by the average (across simulations) RMSEs, while the

relative VAR forecast performance with respect to the benchmarks in (b)-(c) is computed by the

ratio of the corresponding average (across simulations) RMSEs. As a measure of persistence,

we employ the (absolute value of the) estimated largest root of the VAR companion matrix for

the model in (a), and the estimated autoregressive coe¢ cients for the univariate model in (b).

Alternative measures of persistence in the multivariate framework have been recently proposed

by Cogley and Sargent (2005) and Cogley et al. (2010). While Cogley and Sargent�s (2005)
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measure, based on the normalized spectrum at frequency zero, frames naturally in the frequency-

domain approach, Cogley�s et al. (2010) R2-like measure of persistence seems particularly suited

for the case of VAR systems with drifting-parameters. Given our time-domain approach and

the idea of using �xed-parameters VARs on the two subsamples, the largest root of the VAR

companion matrix appears a tenable summary measure of the overall persistence of the variables

in yt:=(wt; �t; Rt)0.7

Results from the simulation experiment are summarized in Table 2 for the evaluation windows

P=8 (eight quarters). First, in absolute terms, in�ation forecast uncertainty of VAR-based

forecasts is generally lower under determinacy compared to the case of indeterminacy.8 This

�nding lines up with our a-priori conjecture: the forecastability of time series models is superior

in relatively more stable environments in which only fundamental shocks drive �uctuations, and

deteriorates in environments in which additional (intrinsic and extrinsic) not accounted sources

of business cycle �uctuations other than fundamental shocks are at work.

Second, persistence tends to increase as the approximating VAR is �far�from the MSV so-

lution. However, for particular values of the indeterminacy parameters, the largest root of the

approximating VAR can be smaller under indeterminacy relative to the case of determinacy.

Hence, the richer correlation structure and stronger degree of endogenous persistence featured

by indeterminate equilibria need not be associated with superior forecast performance relative

to the case of determinacy. In fact, the failure of the forecast model to capture the essential fea-

tures of the true DGP �which typically involves quite complex cross-equation restrictions under

indeterminacy �may adversely a¤ect the associated forecast error, which is a conditional prop-

erty, even when the variables of interest feature higher persistence. The forecast performance

of VARs under the Great In�ation-type scenario tends to deteriorate, for �xed indeterminacy

parameter, as the uncertainty resulting from sunspot shocks (�2s) increases.
9

7See also Koop et al. (1996) and Fanelli and Paruolo (2010) for a comprehensive treatment of measures of shock

persistence in multivariate models like VARs. Instead, a detailed analysis of the persistence of U.S. in�ation may

be found in e.g. Pivetta and Reis (2007), where alternative measures of persistence are discussed for univariate

models. Fuhrer (2010) also explores the notion of in�ation persistence in macroeconomic theory.
8As expected, the (average) RMSEs associated with the VAR-based forecasts obtained under a MSV indeter-

minate equilibrium is very close to the (average) RMSE obtained under Great Moderation-type scenario. It is

worth remarking that di¤erently from the simple univariate case discussed in Section 2, the MSV solution in this

case has the same time-series representation as the determinate solution but is characterized by di¤erent values

for the structural parameters �, in the sense that � lies in di¤erent regions of the parameter space in the two cases.

Hence, the average RMSEs associated with the VAR model under the MSV DGP, need not coincide numerically

with the average RMSEs associated with the VAR under the determinate DGP.
9Along the same lines, Canova and Gambetti (2010) emphasize that, conditional on lags of the endogenous

variables, past expectations Granger-cause current values of the latter under indeterminacy but not under deter-

minacy, and hence �irrespective of higher persistence �the omission of (proxies for) such expectations from the
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Third, when considering relative forecast accuracy, we observe that the VAR-based forecasts

are substantially similar to that of the AR(1)-based forecasts under determinacy, but may be

inferior or superior to the AR(1)-based forecasts under indeterminacy, depending on the values

taken by the indeterminacy parameters ~m and �2s. For some values of ~m and �2s, the VAR

forecasts are inferior to that of AR(1) models. For other values, the converse occurs. A similar

property characterizes the VAR-based forecasts relative to the RWs. In general, it is not possible

to claim that the relative performance of the VAR model is systematically superior or inferior

to that of our univariate benchmarks under indeterminacy.

Third, when considering relative forecast accuracy, we observe that the VAR-based forecasts

are substantially similar to that of the AR(1)-based forecasts under determinacy, but may be

inferior or superior to the AR(1)-based forecasts under indeterminacy, depending on the values

taken by the indeterminacy parameters ~m and �2s. For some values of ~m and �2s, the VAR

forecasts are inferior to that of AR(1) models. For other values, the converse occurs. A similar

property characterizes the VAR-based forecasts relative to the RWs. In general, it is not possible

to claim that the relative performance of the VAR model is systematically superior or inferior

to that of our univariate benchmarks under indeterminacy. Remarkably, when sunspots shocks

have no impact and the indeterminacy parameter lies around the point that generates a MSV

solution, superior predictive accuracy under indeterminacy is a plausible outcome in the class of

calibrated New Keynesian models we have considered. This scenario helps to explain why more

accurate in�ation forecasts have been typically produced by time series models on the Great

In�ation period (indeterminate regime) relative to the Great Moderation period (determinate

regime). However, according to our analysis this phenomenon is likely coincidental and can not

be used to routinely claim that indeterminacy leads to superior forecastability.

As mentioned, Benati and Surico (2008) observe that the evolution of the U.S. monetary

policy stance might have caused a change in both the persistence of in�ation and its predictabil-

ity. While we share with Benati and Surico (2008) the view that the evolution of the U.S.

monetary policy stance might have caused a reduction in in�ation persistence, our study calls

into question the �indeterminacy-persistence-forecastability�nexus, at least when reduced form

time series models are used. More speci�cally, our results point out that as long as we forecast

with VARs, the richer and more persistent in�ation dynamics generated by stylized monetary

DSGE models under indeterminacy need not be associated with superior predictive accuracy.

forecast model may result in larger prediction errors in the former regime.
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5 Concluding remarks

This paper has investigated the consequences of indeterminacy for quantitative forecasting

through popular macro-econometric models. Our simulation-based analysis suggests that es-

tablishing superior forecast accuracy based on macro-econometric reduced form models and

quadratic loss functions becomes challenging in the presence of equilibrium indeterminacy, even

when extrinsic uncertainty (i.e. sunspot noise) plays no role in generating the data. Although

indeterminacy need not imply superior forecastability - however measured - it may well be the

case that a particular multivariate model estimated on data generated under indeterminate equi-

libria produces better forecasts than univariate predictors, regardless of the level of persistence

and volatility that characterizes the observed time series.

An increasing literature has explored the forecast performance of monetary DSGE models

(possibly featuring �nancial frictions) vis-à-vis conventional forecasting tools such as univariate

and multivariate time series models or naive forecasts, see e.g. Gürkaynak et al. (2013) or

Giacomini (2015) for a critical review. According to our analysis, the richer time series repre-

sentation of the variables which emerges under indeterminacy should be properly identi�ed and

incorporated in the econometric model to enhance predictive accuracy. However, as shown in

Lubik and Schorfheide (2003, 2004), Fanelli (2012) and Castelnuovo and Fanelli (2015a), mak-

ing inference on the regime-speci�c features of indeterminate equilibrium models is a complicate

task even when the analyst speci�es the correct statistical model for the data.
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Appendix A: Monte Carlo results from a simple linear rational

expectations model

In this Appendix we consider a Monte Carlo experiment based on the simple linear rational

expectations model discussed in Section 2, Eq. (1). We investigate the relative empirical per-

formance of the AR(1) model in Eq. (5) under determinacy and indeterminacy, respectively.

N =1000 arti�cial samples of length T = 500 are generated from Eq. (1) under the two scenar-

ios. Under determinacy, for each of the 1000 simulations we generate 600 synthetic observations

from Eq. (3), setting the variance of the structural shock to �2!:=0.5; the �rst 100 observa-

tions are then discarded. Under indeterminacy, for each of the 1000 simulations we generate

600 synthetic observations from the ARMA(1,1)-type process in Eq. (4 ) by calibrating the

structural parameters to �:=0.95 and �2!:=0.5, and selecting the indeterminacy parameter ~m

from the setM:=f1, 1.01, 0.98, 0.85, 0.80, 0.015g; with no loss of generality with respect to our
argument, the sunspot shock is set to zero (�2s:=0). Also in this case, the �rst 100 observations

are discarded.

The choice of using a relatively large sample of T=500 observations is essentially motivated

by the �large T� argument used in Section 2, with the possibility of comparing part of the

results. Furthermore, since the indeterminate equilibrium involves more (or an equal number

of) parameters than its determinate counterpart, downplaying the role of parameter estimation

error should be relatively more relevant for the former relative to the latter. The values X0 and

!0 are �xed to zero at time t = 1. The setM contains the point ~m = 1 which generates a MSV

solution (indistinguishable from the determinate solution) and other points which are relatively

�close�to the MSV solution. Recall that we have discussed analytically in Section 2, for large T ,

the impact of the choices ~m=0.85, ~m=0.80 and ~m=1.01 on one step-ahead forecast accuracy of

the AR(1) model.

On each simulated dataset, we use the �rst T � P observations to estimate the parameters

� and �2u of the AR(1) model through OLS, and the last P observations to evaluate its forecast

accuracy. Absolute forecastability is measured by the average (across simulations) RMSEs.

The forecast performance of the AR(1) model under indeterminacy relative to determinacy is

assessed by the ratio of the average (across simulations) RMSEs obtained in the two cases.

But as is known, absolute measures of predictive accuracy is not likely to be informative, and

the problem of assessing the forecastability of a given model is best answered by using relative

evaluation methods that use a benchmark. We therefore consider a �theory-based� optimal

benchmark, represented by a forecaster who perfectly knows the DGP, i.e. whether she is

forecasting future paths for Xt under determinacy or indeterminacy, as well as the true values

17



of the parameters, namely �2! if the data are generated under determinacy, and �, �
2
! and ~m

if the data are generated under indeterminacy.10 In our simple example, the indeterminate

(stable) solution has purely backward dynamics, and the variance of (rational) forecast errors

grows with the forecasting horizon at any given date t in which predictions are made. Hence,

this benchmark provides a theoretical lower-bound on the forecasting performance of less-than-

rational forecasting models, e.g. those that are not in the form of the model�s indeterminate

solution. The forecast performance of the AR(1) model relative to this �theory-based�benchmark

is assessed by the ratio of the average (across simulations) RMSEs obtained in the two regimes.

The results of our numerical experiment are reported in Table A1. The �rst column of

Table A1 collects the absolute (average) RMSEs obtained with the AR(1) model under deter-

minacy and in the �ve indeterminacy cases. The second column reports the ratio between the

average (across simulations) RMSEs obtained under the indeterminacy scenarios on the average

(across simulations) RMSEs obtained under determinacy. The third column reports the forecast

performance of the AR(1) model relative to the �theory-based�optimal benchmark.

First, we observe that for any considered forecast evaluation window, indeterminacy does not

necessarily imply superior forecastability. The average RMSEs obtained under indeterminacy

may be lower or higher than the average RMSEs obtained under determinacy, depending on the

values of ~m. As expected, the forecast performance under the MSV equilibrium is the same as

under the determinate solution. But for ~m=1.01 and ~m=0.98, the performance of the AR(1)

model may change (albeit slightly) across the two regimes. It is worth remarking that for P = 1

(which corresponds to the case of one step-ahead forecasts), results in Table A1 are consistent

with the considerations developed in Section 2.

Secondly, the third column of Table A1 shows that, under determinacy, the misspeci�cation

of the AR(1) model bears no consequences on the property of the OLS estimators of � and �2u,

and therefore does not a¤ect its forecast performance relative to the benchmark. Indeed, the

chosen univariate predictor has the same average (across simulation) RMSEs as the �theory-

based�benchmark predictor. The same happens under the MSV indeterminate solution. The

picture changes, by contrast, for the other type of indeterminate equilibria, for which we observe

a faltering forecast performance for the AR(1) predictor.

It may be argued that these �ndings mainly stem from our choice of a �rst-order autoregres-

sive predictor as benchmark. To understand whether our argument is weakened in the presence

of higher-order autoregressive forecasting models, we replace the AR(1) benchmark with an

10This benchmark forecasting model coincides with the actual law of motion of the economy, and empirical

forecasts of future endogenous variables will necessarily coincide with model-consistent ones. In fact, the h-step

ahead �theory-based� optimal forecasts will be ET�PXT�P+h = 0 under determinacy, and ET�PXT�P+h =

�(XT�P+h�1 � !T�P+h�1) for h = 1 and ET�PXT�P+h = �ET�PXT�P+h�1 for h � 2 under indeterminacy.
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AR(4) predictor, and explore whether this richer process may deliver better forecasts under

indeterminacy relative to determinacy exploiting the higher persistence associated with the for-

mer regime. From a pure time-series perspective, when the DGP belongs to the class of ARMA

processes for which a stable AR(1) representation for Xt exists, the AR(4) model indeed pro-
vides a better (truncated) approximation to the stable AR(1) process than the AR(1). In our
simulation exercise, the ARMA processes for which the moving average part is invertible and

thus Xt has a stable AR(1) representation are those for which the indeterminacy parameter ~m
belongs to the subsetMf :=f0.85, 0.80, 0.015g � M:11 The ratio of the (average) RMSEs com-

puted with the AR(1) and AR(4) predictors (across simulations) is reported in the last column

of Table A1. Two main �ndings stand out: �rst, under indeterminacy and for large values of P ,

the AR(4) tends to outperform (albeit not markedly) the AR(1) benchmark provided ~m 2Mf ;

second, there seems to be no clear indication of a higher AR(4)-based forecast accuracy (relative

to a �rst-order autoregression) under indeterminacy vis-à-vis determinacy across all evaluation

windows and indeterminate equilibria.

Appendix B: DSGE equilibria and their representation

In this Appendix, we discuss the solutions associated with the DSGE model compacted in Eqs.

(14)-(15). To keep exposition as general as possible, throughout this Appendix we denote with

n the dimension of the state vector Xt in Eq. (14) (notice that n = 3 in our speci�c case).

Moreover, we use the notations �A(�)�and �A:=A(�)�to indicate that the elements of the matrix

A depend nonlinearly on the structural parameters �, hence in our setup �0:=�0(�), �f :=�f (�),

�b:=�b(�), �:=�(�) and ��0 :=�
�
0 (�):We call �stable�a matrix that has all eigenvalues inside the

unit disk and �unstable�a matrix that has at least one eigenvalue outside the unit disk. Thus,

denoted with �max(�) the absolute value of the largest eigenvalue of the matrix in the argument,
we have �max(A(�)) < 1 for stable matrices and �max(A(�)) > 1 for unstable ones. We also

consider the partition �:=(�0s, �
0
")
0, where �" contains the non-zero elements of vech(�") and �s

all remaining elements. The �true�value of �, �0:=(�00;s, �
0
0;")

0, is assumed to be an interior point

of P: The corresponding partition of the parameter space is P:=P�s � P�" . This partition is
11While determinacy in the context of Eq. (1) involves a one-to-one mapping between the endogenous variable

xt and the structural shock !t, indeterminacy may generate non-invertibility, i.e. the reduced form (4) might not

be inverted to a (possibly in�nite-order) autoregressive representation with one-sided lag polynomial (invertibility

in the past). More generally, both determinacy and indeterminacy may be associated with non-invertibility even

when equilibrium reduced forms are only driven by structural (fundamental) shocks. While non-invertibility may

hinder the possibility of fully recovering the shock !t from an estimated causal AR model for the process Xt, this

issue is immaterial for forecasting purposes, as the MA representation in (4) is naturally chosen to be invertible.

This argument fully generalizes to VAR-based forecasting (e.g. Alessi et al., 2011).
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introduced because the determinacy/indeterminacy of the system depends only on the values

taken by �s.

A detailed derivation of the time series representation of the reduced form solutions associated

with the New-Keynesian DSGE system (14)-(15) is reported in Castelnuovo and Fanelli (2015b).

Using the Binder and Pesaran�s (1995) solution method, they show that uniqueness/multiplicity

of solutions is governed by the stability/instability of the matrix G(�s):=(��0 � �f�1)�1�f ,
where �1 stems from the solution of a quadratic matrix equation.

Determinacy

For �s 2 PD�s , the matrix G(�s):=(�
�
0 ��f�1) is stable, i.e. �max(G(�s))<1, and the reduced

form solution to system (14)-(15) can be represented in the form

(In � �1(�s)L� �2(�s)L2)Xt = ut , ut:=�(�s)�1"t (18)

where L is the lag operator (LjXt = Xt�j), �1(�s), �2(�s) and �(�s) are 3� 3 matrices whose
elements depend nonlinearly on �s and embody the cross-equation restrictions implied by the

small New-Keynesian model. The matrices �1(�s) and �2(�s) in Eq. (18) are obtained as the

unique solution to the second-order quadratic matrix equation

��=(��0 ���f��)�1��b (19)

where ��f , ��0, ��b and the stable matrix �� are respectively given by

��0:=

 
��0 0n�n

0n�n In

!
, ��f :=

 
�f 0n�n

0n�n 0n�n

!
, ��b:=

 
��b;1 ��b;2

In 0n�n

!
, ��:=

 
�1 �2

I3 03�3

!
;

and ��b;1:=(�b+��0), �
�
b;2:=���b and �(�s):=(�0(�s)��f (�s)�1(�s)). The matrix �1:=�1(�s)

is the one that enters the de�nition of G(�s).

A convenient representation of the equilibrium in Eq. (18) is given by 
Xt

Xt�1

!
zdt

=

 
��1 ��2

In 0n�n

!
Ad(�s)

 
Xt�1

Xt�2

!
zdt�1

+

 
���1

0n�n

!
Gd(�s)

"t (20)

where ��1 = �1(�s), ��2 = �2(�s), �� = �(�s), the matrices Ad(�s) and Gd(�s) are 2n � 2n and
2n� n, respectively, and the superscript �d�stands for �determinacy�.

Let yt:=(y1;t; y2;t; � � � ; yp;t)0 be the p�1 vector of observable variables. When all variables in
Xt are observed, yt = Xt, the state system (20) along with the measurement system: yt = Hzdt ,

H:=(In : 0n�n), give rise to a VAR representation for yt (Xt) with coe¢ cients that depend on
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� through the CER in Eq. (19). In general, however, not all variables in Xt belong to the

forecaster�s (observable) information set. The measurement system will take the form

yt = Hz
d
t +Qvt (21)

where H is a p � 2n matrix, vt a b � 1 vector (b � p) of measurement errors with covariance

matrix �v, and Q is a p � b selection matrix. For the speci�c structural model we consider in
the paper, the counterpart of the measurement system (21) is given by

0BB@
�xt

�t

Rt

1CCA
yt

=

0BB@
1 0 0 �1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1CCA
H

0BBBBBBBBBB@

~xt

�t

Rt

~xt�1

�t�1

Rt�1

1CCCCCCCCCCA
zdt

+

0BB@
1

0

0

1CCA
Q

"on;t

vt

and is obtained by exploiting the RW assumption in Eq. (13). Let ut:=("0t; v
0
t)
0 be the (n+ b)-

dimensional vector containing all system innovations. By substituting Eq. (20) into Eq. (21)

and using some algebra, one obtains the ABCD form (Fernández-Villaverde et al. 2007):

zdt
2n�1

= Ad(�s)
2n�2n

zdt�1
2n�1

+ B(�s)
2n�(n+b)

ut
(n+b)�1

yt
p�1

= C(�s)
p�2n

zdt�1
2n�1

+ D(�s)
p�(n+b)

ut
(n+b)�1

(22)

where B(�s):=(Gd(�s) : 02n�b), C(�s):=HAd(�s) and D(�s):=(HGd(�s) : Q).

System (22) must be in �minimal form� and must be identi�ed (locally) as discussed in

Komunjer and Ng (2011). In general, it is possible to manipulate the state space representation

such that an identi�ed system in minimal form is obtained eventually. If the system passes these

checks, Eq. (22) can be used as the DGP implied by our New-Keynesian DSGE model under

determinacy. Replacing �s with � gives system (16) in Section 3 of the paper.

Indeterminacy

For �s 2 PI�s , the matrix G(�s):=(�
�
0 ��f�1)�1�f is unstable, i.e. �max(G(�s))>1, and the

class of reduced form solutions associated with the New-Keynesian system (14)-(15) becomes

more involved from a dynamic standpoint. When �max(G(�s))>1, the matrix G(�s) can be

decomposed in the form

G(�s)=P (�s)

 
�1 0n1�n2

0n2�n1 �2

!
P�1(�s)
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where P (�s) is a n � n non-singular matrix, �1 is the n1 � n1 (n1 < n) Jordan normal block

that collects the eigenvalues of G(�s) that lie inside the unit disk, and �2 is the n2�n2 (n2 � n)
Jordan normal block that collects the eigenvalues of G(�s) that lie outside the unit disk. Observe

that n1 + n2=n, and n2 determines the �degree of multiplicity�of solutions, which in our setup

coincides with the number of unstable roots of G(�s).

The reduced form solutions can be given the VARMA-type representation for Xt:

(In ��(�s)L)(In � �1(�s)L� �2(�s)L2)Xt = (	(�s; ~m)��(�s)L)V (�s; ~m)�1"t + � t (23)

� t:=(	(�s; ~m)��(�s)L)V (�s; ~m)�1P (�s)�t + P (�s)�t (24)

where the matrices �1(�s) and �2(�s) are de�ned as in the case of determinacy, see Eq. (19),

while the matrices �(�s), 	(�s; ~m) and V (�s; ~m) are respectively given by

�(�s):=P (�s)

 
0n1�n1 0n1�n2

0n2�n1 ��12

!
P�1(�s) , 	(�s; ~m) :=P (�s)

 
In1 0n1�n2

0n2�n1 ~M

!
P�1(�s)

V (�s; ~m):=(�0(�s)� �f (�s)�1(�s))� �(�s)�f (�s)(In �	(�s; ~m)):

(See Castelnuovo and Fanelli (2015b) for a detailed derivation of the representation in Eqs. (23)-

(24)). The n2 � n2 sub-matrix ~M in 	(�s; ~m) contains a set of arbitrary auxiliary parameters

that do not depend on �s; for ease of reference, throughout we collect these parameters in

the vector ~m:=vec( ~M). The unstable eigenvalue of G(�s) are ��ipped� in this representation

and enter the �(�s) matrix (which is stable) in the autoregressive part of sytem (23). The

�additional�vector moving average term � t in sytem (23) depends on an extra source of random

�uctuations potentially independent on the fundamental disturbances "t, i.e. on the n�1 vector
�t:=(0

0
n1�1; s

0
t)
0, where st is a n2 � 1 MDS which collects the �sunspot shocks�featured by the

system. We assume, without any loss of generality, that st has a time-invariant covariance matrix

�s. The sunspot shocks might be also absent form the reduced form solution, i.e. �s = 0n2�n2
implying �t=0n�1 a.s. (and � t=0n�1 a.s.). This situation is typically denoted �indeterminacy

without sunspots�. It can be noticed that in the special case in which jointly ~M = In2 and

�t=0n�1 a.s., 	(�s; vec(In2)) = In, V (�s; vec(In2)) = �(�s):=(�0(�s) � �f (�s)�1(�s)) so that
system (23) collapses to a MSV solution andXt has the same representation as in the determinate

case, see Eq. (18).

A convenient summary of the class of indeterminate equilibria described by Eqs. (23)-(24)
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is given by the system0BB@
Xt

Xt�1

Xt�2

1CCA
zint

=

0BB@
�(��1 + ��) (��1 ��� ��2) ��2 ��

In 0n�n 0n�n

0n�n In 0n�n

1CCA
Ain(�s)

0BB@
Xt�1

Xt�2

Xt�3

1CCA
zint�1

+

0BB@
�K1 �K2

0n�2n 0n�2n

0n�2n 0n�2n

1CCA
Gin(�s; ~m)

 
et

et�1

!
"0t

(25)

where ��1 = �1(�s), ��2 = �2(�s), �� = �(�s); �	 = 	(�s; ~m); �V = V (�s; ~m), �K1:=[ �	�V �1 :

( �	�V �1 + In) �P ], K2:=[ ���V �1 : ���V �1 �P ] are n� 2n matrices, et:=("0t; � 0t)0 is a 2n� 1 vector that
collects the fundamental and sunspot shocks of the system, the matrices Ain(�s) and Gin(�s; ~m)

are 3n� 3n and 3n� 4n, respectively, and the superscript �in�stands for �indeterminacy�.
Given the p� 1 vector of observables yt, the associated measurement system is given by

yt = Hz
in
t +Qvt (26)

and, a part from their dimensions, the matrices H, Q and the vector vt have the same role as

in Eq. (21). For the speci�c structural model we consider in the paper, the counterpart of the

measurement system (26) is given by

0BB@
�xt

�t

Rt

1CCA
yt

=

0BB@
1 0 0 �1 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

1CCA
H

0BBBBBBBBBBBBBBBBBB@

~xt

�t

Rt

~xt�1

�t�1

Rt�1

~xt�2

�t�2

Rt�2

1CCCCCCCCCCCCCCCCCCA
zint

+

0BB@
1

0

0

1CCA
Q

"on;t

vt

:

Upon de�ning the (4n+ b)-dimensional vector ut:=(et; v0t)
0 which contains the complete set

of innovations, the ABCD form of the indeterminate equilibria reads

zint
3n�1

= Ain(�s)
3n�3n

zint�1
3n�1

+ B(�s; ~m)
3n�(4n+b)

ut
(4n+b)�1

yt
p�1

= C(�s)
p�3n

zint�1
3n�1

+ D(�s; ~m)
p�(4n+b)

ut
(4n+b)�1

(27)

where B(�s; ~m):=(Gin(�s; ~m) : 02n�b), C(�s):=HAin(�s) and D(�s; ~m):=(HGin(�s; ~m) : Q).

Also in this case, provided system (27) is in �minimal form�and is identi�ed (locally), it

can be used as the DGP implied by our New-Keynesian DSGE model under indeterminacy.

Replacing �s with � it corresponds to system (17) in Section 3 of the paper.
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TABLES

Table 1. Values of the structural parameters of the New Keynesian model in Eqs. (9)-(12) used in

the simulation experiments of Section 4.

Great In�ation
DGP

Great Moderation
DGP

Parameter Interpretation �det �ind


 IS: forward looking term 0.744 0.744

� IS: inter. elast. of substitution 0.124 0.124

� NKPC: indexation past in�ation 0.059 0.059

� NKPC: slope 0.044 0.044

� Rule, smoothing term 0.595 0.834

'~x Rule, reaction to output gap 0.527 1.146

'� Rule, reaction to in�ation 0.821 1.749

�eo Output gap shock, persistence 0.796 0.796

�� In�ation shock, persistence 0.418 0.418

�R Policy rate shock, persistence 0.404 0.404

�2eo IS: shock variance 0.055 0.055

�2� NKPC: shock variance 0.391 0.391

�2R Policy rule: shock variance 0.492 0.492

�2on Natural rate of output: shock variance 0.25 0.25

~m; Indeterminacy parameters 1; 1.01; 0.98 -

�2s Variance of sunspot shock 0; 2; 5 -

NOTES: � under determinacy (�det) is calibrated to the medians of the posterior distributions

reported in Table 1 of Benati and Surico (2009), column �After the Volcker Stabilization�. � under

indeterminacy (�ind) is calibrated to the medians of the posterior distributions reported in Table

1 of Benati and Surico (2009), column �Before October 1979�. In bold the parameter values that

change across the two regimes.
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Table 2. Absolute and relative (average) RMSE for in�ation and output growth computed from

data simulated from the New-Keynesian DSGE model in Eqs. (9)-(13) under determinacy and

indeterminacy on di¤erent sample lenghts.

Evaluation window: P = 8

Absolute
(a)

Relative to RW
(a/c)

Relative to AR
(a/b)

VAR persistence

T = 94

DETERMINACY

in�ation

output growth

1.1714

1.3580

0.7655

0.7778

1.0094

1.0048
0.8496

T = 119

INDETERMINACY: MSV solution

in�ation

output growth

1.2793

1.3373

0.7413

0.7498

1.0029

1.0001
0.8214

INDETERMINACY: ~m=1.01, �2s=0

in�ation

output growth

2.6674

5.5618

0.8118

0.8018

0.9647

0.9942
0.8454

INDETERMINACY: ~m=0.98, �2s=0

in�ation

output growth

2.4867

5.5395

0.8467

0.8014

0.9835

0.9954
0.8238

INDETERMINACY: ~m=1.01, �2s=2

in�ation

output growth

5.5149

6.2177

1.0265

0.8284

1.0064

0.9995
0.9710

INDETERMINACY: ~m=1.01, �2s=5

in�ation

output growth

7.7233

7.0334

1.0369

0.8538

1.0170

0.9998
0.9729

NOTES: Results are based on N=1000 simulations. Data under determinacy are generated by sim-

ulating system (16) for � = �det 2 PD� , where �
det is calibrated as in the third column of Table

1. Data under indeterminacy are generating by simulating system (17) for � = �ind 2 P I� , where
�ind and the indeterminacy parameters ~m and �2s are calibrated as in the fourth column of Table 1.

Forecasts are computed using T �P observations to estimate the model and the last P observations
to evaluate forecasts (�xed scheme) and the corresponding RMSEs: (a) denotes the three-variate

VAR system for yt:=(�ot; �t; Rt)0, whose lag order is selected using Schwarz�s (SC) information

criterion considering 1 up to 4 lags; �RW�stands for univariate random walk, i.e. model (c); �AR(1)�

stands for univariate autoregressive model of order one, i.e. model (b). �VAR persistence reportes

the absolute value of the largest estimated root of the VAR companion matrix�.
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Table A1. RMSEs for Xt computed from Eq. (1) under determinacy and indeterminacy.

Equilibrium regime AR(1) Relative to DET. Relative to BENCH. Relative to AR(4)

T=500 Evaluation window: P = 1

DETERMINACY 0.5561 - 1 0.9958

INDETERMINACY. MSV 0.5561 1 1 0.9958

INDETERMINACY, ~M = 1:01 0.5627 1.0120 1.0114 0.9960

INDETERMINACY, ~M = 0:98 0.5469 0.9830 0.9829 0.9947

INDETERMINACY, ~M = 0:85 0.5393 0.9698 1.1046 0.999

INDETERMINACY, ~M = 0:80 0.5564 1.0005 1.249 1.0157

INDETERMINACY, ~M = 0:015 0.5273 0.948 63.18 0.9932

T=500 Evaluation window: P = 8

DETERMINACY 0.6791 - 1 0.9979

INDETERMINACY, MSV 0.6791 1 1 0.9979

INDETERMINACY, ~M = 1:01 0.6866 1.0110 1.0009 0.9972

INDETERMINACY, ~M = 0:98 0.6662 0.9810 1.0008 0.9976

INDETERMINACY, ~M = 0:85 0.6545 0.9638 1.0932 1

INDETERMINACY, ~M = 0:80 0.6799 1.0011 1.1639 1.0144

INDETERMINACY, ~M = 0:015 1.1526 1.6972 1.1360 1.0146

T=500 Evaluation window: P = 16

DETERMINACY 0.6919 - 1 0.9996

INDETERMINACY, MSV 0.6919 1 1 0.9996

INDETERMINACY, ~M = 1:01 0.6995 1.011 1.0008 0.9993

INDETERMINACY, ~M = 0:98 0.6785 0.9810 1.0002 0.9993

INDETERMINACY, ~M = 0:85 0.6637 0.9592 1.0604 1.001

INDETERMINACY, ~M = 0:80 0.6890 0.9958 1.1046 1.009

INDETERMINACY, ~M = 0:015 1.4076 2.0344 1.0554 1.0003

NOTES: Resu lts are based on N=1000 simulations. Data under determ inacy are generated from Eq. (3) w ith �2!=0.5. Data

under indeterm inacy are generated from Eq. (4) w ith �:= 0.95, �2! := 0.5 and �s= 0, for d i¤erent values of ~M and �xed in itia l

conditions. �AR(1)�: average (across simulations) absolute RMSEs obtained w ith the model in Eq. (5). The �rst T � P observations

are used to estim ate the model and the remain ing P observations to compute the RMSEs. �Relative to DET .�: ratio b etween the

average RMSE obtained w ith the AR(1) model under indeterm inacy and the average RMSEs obtained w ith the AR(1) model under

determ inacy. �Relative to BENCH.�: ratio b etween the average AR(1)-based RMSEs and the average RMSEs obtained under a �theory-

based� b enchmark. �Relative to AR(4)�: ratio b etween the average AR(1)-based RMSEs and the average AR(4)-based RMSEs.
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