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METRIC PROJECTIVE GEOMETRY, BGG DETOUR COMPLEXES

AND PARTIALLY MASSLESS GAUGE THEORIES

A. ROD GOVER♦, EMANUELE LATINI♣ & ANDREW WALDRON♠

Abstract. A projective geometry is an equivalence class of torsion free connections
sharing the same unparametrised geodesics; this is a basic structure for understand-
ing physical systems. Metric projective geometry is concerned with the interaction of
projective and pseudo-Riemannian geometry. We show that the BGG machinery of
projective geometry combines with structures known as Yang-Mills detour complexes
to produce a general tool for generating invariant pseudo-Riemannian gauge theories.
This produces (detour) complexes of differential operators corresponding to gauge in-
variances and dynamics. We show, as an application, that curved versions of these se-
quences give geometric characterizations of the obstructions to propagation of higher
spins in Einstein spaces. Further, we show that projective BGG detour complexes
generate both gauge invariances and gauge invariant constraint systems for partially
massless models: the input for this machinery is a projectively invariant gauge oper-
ator corresponding to the first operator of a certain BGG sequence. We also connect
this technology to the log-radial reduction method and extend the latter to Einstein
backgrounds.

Keywords: Projective geometry, BGG sequences, gauge theories, higher spin theories, detour complex.
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1. Introduction

A fundamental problem in physics, mathematics, and their interface is that of finding
the right way to describe and treat the natural differential equations describing fields.
Naturality here refers to equations determined by the underlying geometry, so this is in
essence a geometric problem. For the case of particle theories in space-time physics it
appears, on the surface, that pseudo-Riemannian geometry should be the central struc-
ture. However pseudo-Riemannian invariance is a rather weak condition, in the sense
that by far more equations are invariant in this sense than are interesting or important.
For field equations of motion, other principles can be brought to bear, and in particular
the requirement that theories exhibit suitable gauge invariance, and corresponding inte-
grability conditions, plays a critical rôle in determining systems with, for example, the
correct propagating degrees of freedom (DoF). It is then reasonable to ask if there is a
more fundamental geometric structure, underlying pseudo-Riemmannian geometry, that
includes the entire picture. The payoff for a positive answer can be significant. Apart
from developing theory for the unification and extension of gauge theories, this can give
insight into how to treat fields at infinity and thus understand decay, scattering, and
possible holographic features.
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It has long been realised that, in dimension four, the equations governing massless fields
exhibit conformal invariance. This suggests conformal geometry (a manifold M and a
conformal class of metrics c) as a central organizing principle for field theories [52, 53].
However four dimensional physics also requires fields that are not massless, and so one
may consider alternative basic structures, such as a projective class of connections: Given
an affine connection ∇, the collection of its geodesics as unparametrised curves is the
corresponding projective structure p; or p may be viewed as the equivalence class of
torsion free connections sharing the same unparametrised geodesics. To each pseudo-
Riemannian metric, there is associated a unique projective structure via the metric’s Levi-
connection (or its geodesics). Then, metric projective geometry studies the interaction
between these geometries. Building partly on earlier works, e.g. [63, 65], there has been a
recent surge of interest in the links between metric and projective geometry with powerful
results obtained, see e.g. [58, 62]. Through its projective structure a metric determines
a projective Cartan connection or, equivalently, tractor connection [2, 19, 68]. This is a
higher order geometric structure which encodes geometry, at each point, not just in the
tangent space but also in higher order Taylor series data of the manifold. Furthermore it
exposes deeper links between metrics and projective geometry [42]. In particular, there
is a striking connection between projective geometry and Einstein metrics [1, 17, 49].
The latter are generalised through suitable Cartan holonomy reductions [15, 16]. These
new insights have led to the development of a metric-projective analogue of conformal
compactification [14].

Geodesics are basic geometric structures; physically they encode how particles inter-
act with background geometries. Projective geometry is also intimately related to mass-
less spin two dynamics: On constant curvature backgrounds, the differential complex
controlling deformations of Riemannian structure (metric fluctuations) is a projectively
invariant Bernstein-Gelfand-Gelfand (BGG) complex–see Eastwood’s interpretation [37]
of the Calabi complex [9].

BGG complexes have their origins in representation theory [6, 74], but in geometry
the dual structures that go by the same name (or BGG sequences more generally) arise
naturally from a tractor connection twisting of the de Rham complex and algebraic tools
of Kostant [59, 3, 10, 18]. These are extremely powerful tools for the organisation and
interpretation of invariant differential operators but, as we shall explain in Section 4.1,
are not the right objects for dynamical field theories. In the setting of even dimensional
conformal geometry, detour complexes were introduced in [7, 8] as complexes which are
linked to the BGG sequences but which, importantly, involve weaker integrability con-
ditions. It was quickly realised that these fit into a wider framework which fits closely
with variational principles. In particular, in [54] it is shown that, for each linear vector
bundle connection, there is a corresponding differential (detour) sequence that forms a
complex if and only if the given connection satisfies the Yang-Mills equations; for the vec-
tor bundle corresponding to the adjoint representation of the gauge group the sequence
governs second variations of the Yang-Mills action. These Yang-Mills detour complexes
can be linked to the first operators in BGG sequences (and their adjoints) via differential
splitting operators to yield further complexes that may be called BGG detour complexes.

In this article, we show that bringing together the BGG machinery and the Yang-
Mills detour theory, in the setting of metric projective geometry, produces a general tool
for generating invariant pseudo-Riemannian gauge theories. This yields the underlying
geometric picture we were seeking. In particular in Theorem 5.1, for fields of any inte-
gral spin on constant curvature backgrounds, we construct equations of motion that are
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invariant with respect to maximal depth (i.e., highest possible derivative order) gauge
transformations. The detour complexes involved also give the corresponding Bianchi
identities. In fact, more than the complex arises: in Theorem 5.3 we show that the de-
tour machinery also produces the gauge invariant constraint systems and corresponding
relations between the constraints. Thus one obtains a rather complete picture for what
are called, following [28], (maximal depth) partially massless fields.

To illustrate concretely by example the link between partially massless (PM) theories
and projective BGG sequences, consider the formula

δϕab =
Ä
∇a∇b +

Λ

3
gab
ä
α .

Physically the above is the gauge invariance of a PM spin two field. From a geom-
etry perspective, the terms in brackets are a projectively invariant BGG operator, but
specialised to an Einstein scale. There have also been indications of the importance of
projective geometry for PM systems in the physics literature: It was first observed in [56]
that PM models have as a geometric origin massless models in a flat space of one higher
dimension. This was achieved by a log-radial reduction [4] which projectivised this flat
ambient space. This also suggests an intimate link between projective geometry and PM
models. Further evidence for this, especially in light of the conformal-projective link
on Einstein manifolds [49], is that these models can also be described by conformally
invariant equations coupled to a parallel, conformal, scale tractor [52, 53, 55]. Since PM
models are our running example of a physical system whose underpinning is a projec-
tive structure, let us briefly review those models: The first PM theory was discovered
by Deser and Nepomechie who were searching for a modification of the spin two equa-
tions of motion that supported lightcone propagation in conformally flat spacetimes [24].
Subsequently Higuchi realized that this gives a unitarity bound on massive spin two exci-
tations [57]. Later still, it was understood that PM theories existed for all spins and also
Fermi fields [27]. Their novel, higher derivative, gauge invariances implied they described
the lightlike propagation [30] of sets of helicity states that were intermediate between the
usual massless and massive models [27, 28, 29, 31].

In more detail, massless higher spin systems are described by second derivative order,
gauge invariant equations of motion. These gauge symmetries guarantee that only phys-
ical DoF propagate. Massive higher spin systems take a different route. Again, their
equations of motion are second derivative order, but are no longer gauge invariant. In-
stead, a set of integrability conditions of the equations of motion imply constraints that
are required for propagation of only physical DoF. The PM system’s route is an inter-
mediate one: Their second derivative field equations enjoy both gauge invariances and
integrability conditions implying gauge invariant constraints. As mentioned, the beauty
of our BGG detour complex approach to these systems is that it automatically produces
a system of gauge invariant equations, for a minimal field content, that includes both
equations of motion and constraints.

The BGG and detour apparatus is also linked to other approaches in the physics lit-
erature such as the higher spin unfolding programme [64] whose σ− cohomology, see for
example [70, 66], is really the homology of the Kostant differential [59]. Also, BRST ma-
chinery (which is intimately related to Lie algebra cohomology) applied to parabolic Lie
superalgebras represented by differential operators acting on higher rank tensor bundles,
has been used to construct detour operators for massless higher spin models and related
systems describing supersymmetric black hole dynamics in [20, 21, 22].
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Despite its being a fundamental geometric structure, projective geometry is still rarely
utilized in physical settings, so we briefly review its key ingredients, and those of metric
projective geometry, in Section 2. Our key tool for handling projective geometries is
the tractor calculus of [2]. This is detailed in Section 3. Detour complexes and BGG
sequences are powerful technologies, these are described in generality in Section 4. There
we also explain their relationship to physical systems. Armed with all the above ma-
chinery, we finally turn to explicit physical models in Section 5. In Theorem 5.1, using
the BGG detour complex apparatus, we establish the existence of a complex describ-
ing the equations of motion and gauge invariances of a broad class of models. Then in
Theorem 5.3, we show that the BGG complex also encodes a gauge invariant system
of constraints for those models. In Section 5.2 we spell out the case of PM spin three
on constant curvature backgrounds. In Section 6 we study the extension of our higher
spin results to general Einstein backgrounds. For spin two there is no obstruction here,
but already for spin three, the BGG detour technology neatly characterizes an obstruc-
tion to propagation in these spaces. There we also present a new complex coupling spin
three to a mixed symmetry field giving, at least, gauge invariant dynamics in an Einstein
background. Section 7 discusses action principles within the BGG formulation; here we
focus on the spin two case. In Appendix A, we relate the log-radial reduction technique
(which is a popular method for studying higher spin systems and their interactions) to
projective tractor calculus.

2. Metric projective differential geometry

At the level of underlying geometry we will exploit the interaction between metric
and projective geometry. The discussion of projective geometry here follows [2, 39, 50]
while [17, 42, 49] provide background theory for metric projective theory.

2.1. Projective Geometry. Projective geometry is one of the simplest examples of a
parabolic geometry; it can be defined as a Cartan geometry modeled on the homogeneous
space Sl(n + 1,R)/P where P is the parabolic subgroup stabilizing a ray in R

n+1. A
projective manifold is the structure (M,p) where M is a smooth n-dimensional manifold
and p is an equivalence class of torsion-free affine connections, where “∇ ∼ ∇ if, acting
on any one-form field ω, or vector field v, they are related by

(2.1) “∇aωb = ∇aωb −Υaωb −Υbωa ⇔ “∇av
b = ∇av

b +Υav
b + δbaΥcv

c ,

for some one-form Υ. This definition is derived from the fact that the relationship given
in (2.1) is exactly the condition that “∇ and ∇ share the same geodesics as unparametrised
curves. This is a classical result; see [39] for a modern treatment. Extending the above
by linearity to a p-form ωbc···d we have,

“∇aωbc···d = ∇aωbc···d − (p + 1)Υaωbc···d − (p + 1)Υ[aωbc···d] ,

and in particular, for a top form “∇aω
top
bc···d = ∇aω

top
bc···d − (n+ 1)Υaω

top
bc···d. Taking powers

of the volume density bundle gives the projective density bundle

E(w) :=
Ä
(∧nT ∗M)2

ä−w/2(n+1)
;

and thus for a section σ of this we have:
“∇aσ = ∇aσ +wΥaσ .

As a point of notation, in the following, given any vector bundle B, we will write B(w)
as a shorthand for B⊗E(w), and we say the vector bundle B(w) (and any section thereof)
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has projective weight w. Quite generally, we also use the same notation for a bundle and
its section space.

Note that, at this juncture, there is no notion of a Riemannian metric, nevertheless
given a torsion-free affine connection ∇, its curvature tensor is given by

[∇a,∇b]ωc = −R d
ab cωd ,

and R[ab
d
c] = 0. Moreover, we can decompose the curvature into its trace-free and trace

pieces as [2]

(2.2) Rab
d
c =Wab

d
c + 2δd[aQb]c − 2Q[ab]δ

d
c ,

where Wab
d
c and Qab are the projective Weyl and Schouten tensors. The former obeys

W[ab
d
c] = 0 = Wad

d
c and is projectively invariant while the projective Schouten tensor

has no definite symmetry and transforms as
“Qab = Qab −∇aΥb +ΥbΥa .

It should not be confused with its conformal geometry counterpart denoted Pab. The
curl of this, ∇aQbc −∇bQac =: Cabc, defines the projective Cotton tensor.

2.2. Scales. Any ∇ ∈ p also gives a connection on any tensor bundle, and in particular
on the line bundle (∧nT ∗M)2. Conversely a connection ∇ ∈ p is determined by a choice
of connection on (∧nT ∗M)2. The skew part of the Schouten tensor, Q[ab], is (up to a
non-zero constant multiple) the curvature of ∇ on that line bundle. As already used
above, the line bundle (∧nT ∗M)2 is trivial. In fact it is also canonically oriented and the
positive square root is the volume density bundle. A nonvanishing section of (∧nT ∗M)2,
or equivalently any of its roots E(w) with w 6= 0, is called a choice of scale and in an
obvious way determines a line bundle connection preserving the given section (which
may be thought of as a global frame). Thus a choice of scale determines a connection
∇ ∈ p which, by slight abuse of terminology, we shall also call a choice of scale. (Such
a connection determines a section of E(w), w 6= 0, up to multiplication by a non-zero
constant.) It is clear that for any such connection we have

Q[ab] = 0,

and different choices of scale yield a transformation on the form (2.1) where Υ is exact,
cf. [17, 49, 50].

In our subsequent discussions we restrict to connections ∇ ∈ p which correspond to a
choice of scale; such connections form a distinguished class so this results in no loss of
generality. Moreover, for simplicity, we will assume M is orientable.

2.3. Connecting with pseudo-Riemannian geometry. Given a projective mani-
fold (M,p), a natural question is whether there is a Levi-Civita connection in the pro-
jective class p, and if so, what the consequences are. A route towards answering these
questions is provided by the following result due to Mikes [63] and Sinjukov [65].

Proposition 2.1. If “∇a preserves some volume density, and there exists a metric ten-
sor σab ∈ ⊙2TM(−2) satisfying the projectively invariant condition

(2.3) trace-free (“∇aσ
bc) = 0 ,

then there is a projectively related connection ∇ which is the Levi-Civita connection of
the metric gab = τσab, for some nonvanishing smooth density τ ∈ E(2), where Υ (as
defined in (2.1)) is given by Υ = −1

2∇ log τ .
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The formulation here follows [42].

Remark 2.2. When the projective class of connections has a Levi-Civita connection ∇g,
the antisymmetric part of the projective Schouten tensor vanishes. Then, in this scale,
we can decompose the projective Weyl tensor into SO-irreducible parts, see [42]:

Wab
d
c = W̊ab

d
c +

2

(n− 1)(n − 2)
δd[aR̊b]c +

2

n− 2
R̊[a

dgb]c ,

where R̊bd and W̊ab
d
c are the totally trace-free parts of, respectively, the Ricci and pro-

jective Weyl tensors. By construction the latter is the usual, conformally invariant, Weyl
tensor W of Riemannian geometry (so W̊ = W). It follows immediately that, for an
Einstein metric g, we have

Wab
d
c = Wab

d
c.

It turns out that many simplifications occur when dealing with an Einstein metric.
First we make a definition.

Definition 2.3. If there exists ∇g ∈ p where ∇g is the Levi-Civita connection for a
metric, we call (M,p) a metric projective structure. If in addition, g is an Einstein
metric, we say that this is Einstein projective.

When the structure is Einstein projective, computations performed using the Einstein
metric g and its Levi-Civita connection ∇g will be referred to as being done in an Einstein
scale.

The following observation of [49] is an easy consequence of equation (2.2) and the
subsequent discussion.

Proposition 2.4. When g is an Einstein metric, the conformal Schouten tensor P for g
and the projective Schouten tensor Q for ∇g obey

Pab =
Λ

(n − 1)(n − 2)
gab =

1

2
Qab .

Moreover the conformal Weyl curvature W of g equals the projective Weyl curvature W
of ∇g.

Remark 2.5. Note that the scalar curvature is 2nΛ
n−2 and Λ in the above has been defined

to coincide with the usual cosmological constant appearing in physics applications for
which the Einstein tensor obeys Gab + Λgab = 0.

3. Tractor calculus for projective geometries

On a general projective manifold (M,p) there is no distinguished (i.e., canonical)
connection on the tangent bundle. However the projective structure p does determine a
distinguished connection on a related vector bundle of rank (n + 1) called the standard
tractor bundle; this connection is known as the (standard) projective tractor connection
and is due to Thomas [68]. The modern treatment was initiated in [2], and is equivalent
to the projective Cartan connection of Cartan [19], see [13]. Other developments relevant
to our treatment can be found in [17, 49].

The (projective) tractor bundle T , or T A in an abstract index notation, can be defined
as follows. For each choice of a connection in the projective class we identify the tractor
bundle with the direct sum

T A ∼= TM(−1)⊕ E(−1) ∋

Ç
va

ρ

å
,
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where on the right we indicate how elements will be denoted. Equivalently for its dual,
namely the (projective) cotractor bundle T ∗, or TA, we have

TA ∼= T ∗M(1) ⊕ E(1) ∋
(
wa σ

)
.

Changing the connection in the projective class according to (2.1), these transform as

(3.1)
Ç
va

ρ

å
→

Ç
va

ρ+Υav
a

å
,

(
ωa σ

)
→
(
ωa +Υaσ σ

)
,

and it is easily verified that this leads to well defined vector bundles on (M,p). The
transformations (3.1) mean that these bundles are filtered with composition series, re-
spectively,

(3.2) T = TM(−1) E(−1), and T ∗ = T ∗M(1) E(1).

For the second of these, for example, this means that there is a canonical (so projectively
invariant) short exact sequence of bundles

(3.3) 0 → Ea(1)
Za
A−→ TA

XA

−→ E(1) → 0,

where we have written Ea as an abstract index notation for T ∗M . The canonical ho-
momorphism XA may be viewed as a section of T A(1) and is often called the canonical
tractor. This also gives the canonical bundle inclusion XA : E(−1) → T A indicated by
the dual composition the series for T .

In a given scale ∇ ∈ p, we may define a covariant derivative on T (and its dual on T ∗)
as follows:

(3.4) ∇T
a

Ç
vb

ρ

å
=

Ç
∇av

b + δbaσ

∇aρ−Qabv
b

å
, ∇T

a

(
ωb σ

)
=
(
∇aωb +Qabσ ∇aσ − ωa

)
.

Upon changing to a different connection in p, as in (2.1), it is easily verified that the right-
hand-sides here transform according to (3.1), signaling that ∇T descends to a projectively
invariant connection on T . This is the projective tractor connection and we denote it also
by ∇T .

The tractor connection determines a connection on all tensor products of T and its
dual, in an abstract index notation such a bundle may be denoted TA1...Ap

B1...Bq . The
connection above also induces connections on “Sl(n+1)-irreducible” tensor parts of these
bundles. An alternative perspective on this is via a principal bundle picture as follows.

It is straightforward to construct an adapted frame bundle G for T , with frame trans-
formations that respect the filtration structure (3.2) and give G a typical fibre isomorphic
to the parabolic P . The tractor connection then determines a Cartan connection ω on G,
and this is the normal Cartan connection for projective geometry, see [13]. We do not
need the details of this here, but the point is that the tractor bundle and connection may
then be viewed as induced by the Cartan connection through the standard representation
of P on R

n+1 with
T = G ×P R

n+1.

From the properties of Cartan connections it follows at once that the Cartan connection
similarly gives a connection on any associated bundle

(3.5) G ×P V,

where V is an Sl(n+1)-representation space viewed as a P -representation by restriction.
This perspective is developed fully, in the setting of general parabolic geometries, in [13].
Here we denote any such tractor connection by ∇T .
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3.1. Projective curvature. The curvature of the tractor connection is given by

Ωab
C
D =

Ñ
Wab

c
d 0

Cbad 0

é
,

where Wab
c
d and Cabc are the projective Weyl and Cotton tensors. This is the invariant

curvature associated with projective geometry and a projective structure is flat if and
only if ΩabCD = 0.

3.2. The Thomas D-operator. Given any tractor bundle V there is a projectively
invariant operator

D : V(w) → T ∗ ⊗ V(w − 1)

known as the Thomas D-operator, see [2]. In a choice of scale this is given by

(3.6) V 7→ DAV =

Ç
wV

∇aV

å
,

where ∇a is a coupling on the tractor connection with the scale connection on E(w), and
the indices of V are omitted. It is an elementary exercise to verify that this transforms
according to (3.1), and so D is projectively invariant.

3.3. Einstein projective structures. Recall that a metric is said to be Einstein if
Rab = Λgab for some constant Λ. The Einstein condition has a striking interpretation
in projective geometry, and one that plays a key rôle in our developments below. The
following result is established from different perspectives in [17] and [49]. (The non-
degenerate case was first due to Armstrong [1].)

Proposition 3.1. Let (M,p) be a projective manifold. There is an Einstein metric g
with Levi-Civita connection p if and only if there is a symmetric tractor field

HAB ∈ ⊙2T

that is parallel for the tractor connection and of rank at least n. If HAB is non-degenerate,
then it is equivalent to a non-Ricci flat metric g. If HAB is degenerate (of rank n) then
it is equivalent to Ricci flat metric.

In the case that HAB is non-degenerate there is an easy and conceptual way to re-
construct the metric g from HAB, as follows. Denote by HAB its inverse. Then this
determines a scale

(3.7) τ := HABX
AXB ∈ E(2) ,

where XA is the canonical tractor from (3.3). This or its negative is a positive section
(we assume M connected) and so may be used to trivialise density bundles. Thus from
the sequence (3.3) we may view T ∗M as a subbundle on T ∗ and so we obtain a metric
on T ∗M by the restriction of H to T ∗M . This is g−1. It is a straightforward use of
the formula for the tractor connection to verify that the metric g has its Levi-Civita
connection in p.

In fact, a slight variant of this construction recovers g in the case that HAB has
rank n, as shown in [17] and [49], but this is less obvious. Some insight is gained by
recalling from Proposition 2.1 that if we have a connection and tensor σab in ⊙2TM(−2)
satisfying (2.3), then we have a metric connection in the projective class. In fact this
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equation is projectively invariant and the operator on the left-hand-side is a first BGG
operator. In this case the BGG splitting operator L0 applied to σbc is given explicitly by

L0(σ
bc) =

Ñ
σab 1

n+1∇cσ
cb

1
n+1∇cσ

ca 1
n(n+1)∇c∇dσ

cd +Qcdσ
cd

é
.

If σab is non-degenerate is clear that this has rank at least n and σab is said to be a normal
solution to (2.3) if and only if HAB := L0(σ

bc) is parallel [17]. By taking its determinant
in an obvious way, the solution σab determines a scale τ ∈ E(2) and τσab = gab is
the inverse of the Einstein metric. Further details from this perspective may be found
in [14, 17].

Computed in the Einstein scale τ , the previous display reduces to

(3.8) HAB =

Ñ
gab 0

0 1
(n−1)Λ

é
.

Note that on an Einstein manifold the projective Cotton tensor ∇[aQb]c is zero. More-
over ∇aWab

c
d = 0 by dint of the contracted Bianchi identity. From these observations it

follows easily that
∇aΩab

C
D = 0 ,

and so the tractor connection is Yang-Mills.

4. BGG and detour complexes

Algebraic BGG resolutions appear naturally in the representation theory of semi-
simple Lie algebras, and sequences of Verma modules associated to representations of
Borel subalgebras [6]. An extension to parabolic representation theory was developed
with Verma modules replaced by generalised Verma modules where the rôle of Borel
subalgebras is replaced by parabolic subalgebras [60].

These constructions are, in a suitable sense, dual to complexes of invariant differen-
tial operators on the corresponding G/P , where G is a semi-simple Lie group and P a
parabolic subgroup. Such homogeneous parabolic geometries G/P are the flat models for
parabolic geometries and the complexes so obtained are called BGG complexes. There
are canonical curved analogues of these sequences due to Baston, Čap et al, and others
[3, 10, 41], but in general these sequences, do not form complexes.

4.1. Gauge theory and differential complexes. It has been known for some time
that BGG complexes are related to gauge theories in physics, see e.g. [35]. The latter
are described in terms of gauge fields, curvatures and their Bianchi identities. Their
kinematical gauge structure is captured by a complex:

· · · −→
gauge

parameters −→
gauge

potentials −→ curvatures −→
Bianchi

identities −→ · · ·

However, for the dynamics, a different sort of complex is required.
It was observed, first in the setting of even dimensional conformal geometry, that as

well as BGG complexes there are detour complexes that, in addition to part of the BGG
sequence, also use conformally invariant “long operators” [7, 8]. See also [45, 5], where
a non-conformal but related construction is developed and studied from a very different
perspective. Part of the interest in these detour complexes stems from the fact that they
can be complexes in curved settings where the BGG sequences fail to be a complex. This
idea was further extended in [54], where classes of detour complexes are constructed for
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each solution of the Yang-Mills equations; these are conformally invariant in dimension 4.
Both [8] and [54] link to variational constructions. Quantisation of the latter was taken
up in [48].

For our current purposes, detour complexes are important because they provide a tool
for generating gauge theories with dynamics where the diagram we seek takes the form:

· · · −→
gauge

parameters −→
gauge

potentials
detour operator

−−−−−−−−−−−→
equations

of
motion

−→
Noether
identities −→ · · ·

It is this approach that we follow below. First we sketch the construction of BGG
sequences focusing on projective geometries.

4.2. BGG sequences. In this section we mostly follow the notation and conventions
of [38]. On a projective manifold (M,p) there is a BGG sequence for every irreducible
representation of Sl(n+ 1),

V =

m+k−1︷ ︸︸ ︷

which we indicate schematically here with a Young diagram. Let us fix V. The corre-
sponding tractor bundle is associated to the Cartan bundle via this representation, as
in (3.5).

The first operator in the BGG sequence is then determined by the tractor connection
acting on V. This is understood in terms of the general tools developed in [18, 10, 12].
We sketch the key ideas.

The operator D : B0 → B1 is projectively invariant and acts between weighted ir-
reducible tensor bundles B0 and B1. Let us say this has order k. Then its symbol is
obtained by a composition of the form

B0 → (⊙kT ∗M)⊗ B0 → (⊙kT ∗M)⊚ B0 ∼= B1 ,

where ⊚ denotes the Cartan product. Ignoring the projective weight, the bundle B0 is
associated to the Cartan bundle by an irreducible Sl(n) representation (extended trivially
to a P -representation)

B0 ≃

m︷ ︸︸ ︷

.

The projective weight of B0 is determined easily from V, but this detail is not important
for this general discussion. In the above we used unbolded and bolded Young tableaux
for Sl(n) and Sl(n+ 1) representations, respectively.

Before describing the construction of D, we introduce some algebraic ingredients.
There is a grading operator h ∈ sl(n + 1) which (identifying Sl(n + 1) with its stan-
dard linear representation) can be given in the form

h =
1

n+ 1

(
1n×n 0

0 −n

)
.

This induces a decomposition of g := sl(n + 1)

g = g−1 ⊕ g0 ⊕ g+1 ,
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with [h, gℓ] = ℓ gℓ. This is a |1|-grading, so [gi, gj ] ⊂ gi+j . On any g-irreducible repre-
sentation V, the grading element can be diagonalized thus producing a natural splitting
into eigenspaces for the action of h

V0 ⊕ V1 ⊕ ...⊕VN ,

with V0 (or VN ) corresponding to the eigenspace with the lowest (or highest) eigenvalue;
moreover, for any eigenvector v with eigenvalue i, we have gjVi ⊂ Vi+j. The parabolic
subgroup P has Lie algebra g0 ⊕ g1, and so we thus obtain a natural filtration on the
corresponding projective tractor bundle

V = B0 · · · .

We now introduce the Kostant codifferential

∂∗ : ∧p+1g+1 ⊗V −→ ∧pg+1 ⊗ V ,(4.1)

defined by

∂∗(Z1 ∧ · · · ∧ Zp+1 ⊗ v) =
p+1∑

i=1

Z0 ∧ · · · Ẑi · · · ∧ Zp+1 ⊗ Ziv ,

when g+1 is abelian. The Kostant codifferential is P -equivariant and nilpotent (meaning
∂∗ ◦ ∂∗ = 0), and its homology is denoted Hp(g+1,V). We use now the fact that T ∗M
can be canonically identified with G ×P g+1, and so the Kostant codifferential induces a
projectively invariant map of tractor valued differential forms:

∂∗ : ∧p+1V −→ ∧pV .(4.2)

We denote by Hp(V) the corresponding holomology bundle at degree p and note that
Hp(V) = G×PHp(g+1,V). We denote by π the natural bundle map π : ker(∂∗) → Hp(V).
We are finally ready to construct the splitting operator and the BGG operators.

By construction the bundle B0 = H0(V) and B1 = H1(V) and the BGG sequence
continues in this way. The BGG machinery constructs for each p a projectively invariant
differential operator called a splitting operator Lp : Hp(V) → ∧pV. This is characterised
as follows.

Proposition 4.1. The following conditions determine a splitting operator:

◮ ∂∗Lp(α) = 0

◮ πLp(α) = α

◮ ∂∗d∇Lp(α) = 0

for any section α of Hp(V).

We then obtain, by construction, the invariant differential operators

Dp := π ◦ d∇ ◦ Lp : Hp(V) → Hp+1(V) ,

and these operators form the BGG sequence:

V•
d∇

> ∧1(V•)
d∇

> · · ·

B0

L0

∧

D0

> B1

π
∨

L1

∧

D1

> · · ·

π

∨
L2

∧
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When the geometry is flat, in the Cartan sense, this sequence becomes a complex.
In this section we sketched the construction of the BGG sequences for projective

geometries; the construction is quite similar for general parabolic geometries.

4.3. Yang–Mills detour complexes. On a pseudo-Riemannian manifold, a basic de-
tour complex arises from the de Rham complex and the Maxwell operator δd, where δ
is the formal adjoint of the exterior derivative d.

(4.3) 0
d

−−→ ∧0M
d

−−→ · · ·
d

−−→ ∧p(M)
δd

−−−−→ ∧p(M)
δ

−−→ · · ·
δ

−−→ ∧0M
δ

−−→ 0.

In particular if n is even and p = n/2− 1 then this complex is conformally invariant (at
least after the introduction of conformally weighted bundles for the right hand side of the
complex). This is the simplest case of the family of (in general higher order) complexes
found in [7].

If we drop the requirement of conformal invariance then the complex (4.3) is available
in both dimension parities and for all p-forms. In particular, if p = 1, we obtain the
complex

(4.4) 0 → ∧0(M)
d
−→ ∧1(M)

δd
−→ ∧1(M)

δ
−→ ∧0(M) → 0 ,

which, in the spirit of discussion above, encodes the gauge theory of classical source-free
electromagnestism.

Now consider twisting the Maxwell detour (4.4) with a connection ∇ on some vector
bundle V and replacing the exterior and interior derivatives by d∇, δ∇ twisted by the
connection on V. This is in general doomed to failure as curvature means that δ∇ ◦ d∇ ◦
d∇ is not zero. However, as shown in [54], there is a useful variant on this first idea as
follows.

Suppose that the connection has curvature F . We define its action on V-valued dif-
ferential forms by

End(F ♯) : ∧1(V) −→ ∧1(V)

∈ ∈

Ξ C
a 7−→ F bC

a D Ξ D
b

where C, D are abstract indices for the bundle V. We will often simply write End(F ♯)Ξa
C

for image of this map acting on Ξa
C .

We construct now the operator

M∇ : ∧1(V) −→ ∧1(V)

∈ ∈

Ξ C
a 7−→

Ä
δ∇d∇ − End(F ♯)

ä
Ξ C
a ,

which leads to the following theorem:

Theorem 4.2. (See [54].) The sequence of operators

0 −→ ∧0(V)
d∇

−−−→ ∧1(V)
δ∇d∇−End(F♯)

−−−−−−−−−−−−→ ∧1(V)
δ∇

−−−→ ∧0(V) −→ 0 ,

is a complex if and only if the curvature F satisfies the Yang–Mills equation

(4.5) δ∇F = 0 .

If ∇ preserves a metric on V then the complex is formally self-adjoint.
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Proof. A short calculation shows that

(4.6) M∇d∇ = ε(δ∇F) and δ∇M∇ = −ι(δ∇F) ,

where ι and ε denote interior and exterior multiplication. Finally, in the case that ∇
preserves a metric, the operator M∇ is formally self-adjoint by construction. Then, also
by construction, the sequence is formally self-adjoint. �

Following [54], we call the sequence of the theorem the Yang-Mills detour complex and
say a connection is Yang–Mills when it obeys the source-free Yang-Mils equation (4.5).
There is such a complex for every Yang-Mills connection, but our interest here is that
some of these can be used to generate other interesting complexes. A first observation
in this direction is that if a connection on a vector bundle U is Yang-Mills, then so are
the induced connections on the dual of U , on tensor powers of these and on tensor parts
thereof. So in each case there is such a complex. We wish to combine this observation
with the next less obvious construction.

4.4. Translating. Consider the general situation

(4.7)

∧0(V)
d∇

> ∧1(V)
M∇

> ∧1(V)
δ∇

> ∧0(V)

E

L0

∧

D
> F

L1

∧

M
> F ⋆

L1

∨
D⋆

> E⋆

L0

∨

where D : E → F and D⋆ : F ⋆ → E⋆, L0 : E → ∧0(V), L1 : F → ∧1(V), L1 :
∧1(V) → F ⋆, and L0 : ∧0(V) → E⋆ are differential operators and M is defined to be the
composition

L1M∇L1 : F → F ⋆.

Suppose now that the left and right squares are commutative:

d∇L0 = L1D and D⋆L1 = L0δ∇ .

Then it follows that
MD = L1ǫ(δ∇Ω)L0 ,

D⋆M = −L0ι(δ∇Ω)L1 .

Thus, if the connection is Yang–Mills (i.e., δ∇F = 0), it follows at once from Theorem 4.2
that the lower differential sequence

E
D

−−→ F
M

−−−−→ F ⋆
D⋆

−−−→ E⋆ ,

is a complex. Furthermore, observe that if E and F are tensor bundles and also the
connection ∇ preserves a metric on V, then we can construct the last square by taking
adjoints of all the differential operators from the first square. In this case the commu-
tativity of the last square is immediate from commutativity of the first square, and by
using once more Theorem 4.2 it follows that the lower sequence is formally self-adjoint.

In summary we have recovered the following paraphrasing of a result from [54]:

Theorem 4.3. Suppose that the connection ∇ on V is metric and Yang-Mills. Suppose
also that the first square of the diagram (4.7) commutes. Then we obtain a formally
self-adjoint detour complex

(4.8) 0 −→ E
D

−−→ F
M

−−−−→ F ⋆
D⋆

−−−→ E⋆ −→ 0.



Metric projective geometry 15

In the spirit of the discussion in Section 4.1, we can use the construction leading to
Theorem 4.3 as a tool for generating equations on motion M operators on potentials in F .
Then, also by construction, these are invariant with respect to the gauge transformations
D : E → F , and satisfy Bianchi identities D⋆ : F ⋆ → E⋆.

4.5. BGG detour complexes. We use the term BGG detour complex to mean detour
complexes which use, in part, operators from the BGG complexes.

In the following we will be, in particular, interested in using Theorem 4.3 to generate
BGG detour complexes of the form (4.8), where D is a first BGG operator. In these
constructions, suitable projective tractor bundles will play the rôle of V, and we recall
that, in the case the projective structure is Einstein and non Ricci-flat, these have a
metric preserved by the tractor connection.

5. Partially massless models of maximal depth

Here, on non-flat constant curvature backgrounds, we show, using the Yang-Mills
detour theory, that for any spin k ∈ Z≥2, there is a PM gauge invariant equation of
motion and gauge invariant constraint system for fields in ⊙kT ∗M . The gauge operators
are given by the restriction to constant curvature manifolds of the projectively invariant
first BGG operators

D : E(k − 1) → ⊙kT ∗M(k − 1) .

These linear operators take the form

D(σ) = ∇(a · · · ∇c)σ + lower order terms.

General algorithms for the explicit formulae for these are available in [40]. In fact these
formulae are members of general families that take the same form on all parabolic ge-
ometries [11, 47]. The examples of order three and two are given in, respectively, (5.8)
and (6.4) below.

Theorem 5.1. Let k be a positive integer. On a constant curvature manifold the
Yang-Mills detour complex associated with the projective tractor connection determines
a canonical formally self-adjoint detour complex

0 → E
D
−→ ⊙kT ∗M

M
−→ ⊙kT ∗M

D⋆

−→ E → 0,

where D⋆ is the (order k) adjoint of the operator D and the equation of motion operator M
is second order.

Proof. We work first on any projectively flat structure (M,p).
There is a projectively invariant BGG splitting operator

L0 : E(k − 1) → ⊙k−1T ∗.

Thus the composition d∇L0 : E(k − 1) → ∧1(⊙k−1T ∗) is also projectively invariant.
Next, by the standard BGG theory H1(⊙

k−1T ∗) ∼= ⊙kT ∗M(k − 1) (and we identify
these spaces), ∂∗ ◦d∇ ◦L0 = 0, and the first BGG operator above is given by π ◦d∇ ◦L0,
where π is the bundle map arising from the map from ker(∂∗) to homology.

In fact we can say more. First we observe that, from the composition series for the
tractor bundle, there is a projectively invariant bundle inclusion

(5.1) ı : ⊙kT ∗M(k − 1) → ∧1(⊙k−1T ∗),
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and so it follows from the characterising properties of L1 that L1 = ı. But then it follows
that

(5.2) d∇ ◦ L0 = L1 ◦ D.

This last result holds because, from the classification of projectively invariant differential
operators on the sphere, there is only one, up to multiplication by a non-zero constant,
projectively invariant operator on E(k−1), and this is the operator D. On the other hand,
the bundle ⊙kT ∗M(k − 1) occurs only once in the composition series for ∧1(⊙k−1T ∗),
and this is realised by ı.

This establishes a commuting first square, as in the diagram (4.7) leading to Theo-
rem 4.3. Now we restrict to a constant curvature manifold (M,g), with Λ 6= 0. This has
the projective structure p = [∇g] and we note that p is, in particular, projectively flat, so
the above results are available. Furthermore, in this setting the manifold is Einstein so
we may use τ (see (3.7)) to trivialise density bundles and there is a parallel tractor metric
given by (3.8). This metric induces a metric on ⊙k−1T ∗. Thus we may write adjoints for
all of the operators in the first square and so obtain a commuting last square, as in the
diagram (4.7). Furthermore using this metric, the operator M∇ is formally self adjoint
and so the claimed system follows from Theorem 4.3. �

By construction then, the operator M : ⊙kT ∗M → ⊙kT ∗M is gauge invariant with re-
spect to the order k gauge operator D, while D⋆ : ⊙kT ∗M → E provides the integrability
conditions (i.e. “Bianchi identities”) for this.

Remark 5.2. For those familiar with tractor calculus, there is an alternative approach
to aspects of the proof above. For example, in the projectively flat setting (as in the
theorem) it is easily verified that the splitting operator L0 : E(k−1) → ⊙k−1T ∗, is given
explicitly by

σ 7→ DA1
· · ·DAk−1

σ ,

where DA is the projective Thomas D-operator. The right-hand-side here is symmetric
since on projectively flat manifolds the D-operators mutually commute. Then

XA1DA1
· · ·DAk−1

DAk
σ = 0 ,

and from this it follows that (5.2) holds.

5.1. Constraints. In our current context, the detour construction leading to Theo-
rem 4.3 encodes more than the detour complex of Theorem 5.1. As well as the Bianchi
identity on the equation of motion operator M of the Yang-Mills detour complex, it also
captures gauge invariant constraints on the potential.

Theorem 5.3. Applied to give equations on the potential, the differential operator

(5.3) M∇◦ L1 : ⊙
kT ∗M → ∧1(⊙kT ∗),

extends the equation of motion of the BGG detour operator M : ⊙kT ∗M
M
−→ ⊙kT ∗M

(of Theorem 5.1) by a system of gauge invariant constraints.
There are relations between these constraints and the equations of motion captured by

the fact that image of M∇ ◦ L1 lies in the kernel of δ∇.

Proof. The first statement follows at once from the fact that

M∇ ◦ L1 ◦ D = 0,

since the diagram (4.7) is commutative. The last statement is adjoint of this. �
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We are now ready to take up examples. There is no strictly partially massless system
for spin one. We will treat spin two in more general setting below, so we begin with spin
three.

5.2. Spin three. Theorem 5.1 shows that the BGG detour complex produces a system
of gauge invariant equations of motion and constraints for higher spin fields in non-flat,
constant curvature backgrounds. These spaces arise from the intersection of projectively
flat and Einstein projective structures. In the following we show, as a special case,
that this recovers the standard, maximal depth, PM spin three theory in four dimensions
of [27, 28]. This theory is described in terms of a totally symmetric rank three tensor ϕabc
and a scalar auxiliary χ, introduced in order that the equations of motion are Lagrangian.
These read

(5.4)





∆ϕabc −
5Λ
3 ϕabc − 3∇(a∇.ϕbc) + 3∇(a∇bϕ̄c) − 3g(ab∆ϕ̄c)

+ 3g(ab∇
d∇eϕc)de − 3

2g(ab∇c)∇.ϕ̄ + 3
4g(ab∇c)χ = 0 ,

∆χ+ Λ
3∇.ϕ̄ = 0 ,

where ϕ̄a := ϕab
b and ∇.ϕbc := ∇aϕ

a
bc. These equations imply, as integrability condi-

tions, the constraints

(5.5)





∇(a∇b)◦χ− Λ∇.ϕ(ab)◦ + 2Λ∇(aϕ̄b)◦ = 0 ,

∇aχ+ Λ
3 ϕ̄a = 0 .

We use the notation (· · · )◦ to indicate the trace-free, symmetrized part of a group of
indices. In addition to these constraints, this system enjoys a higher derivative, scalar,
gauge invariance 




δϕabc =
Ä
∇(a∇(b∇c)◦) +

Λ
2 g(ab∇c)

ä
ς ,

δχ = −Λ
3

Ä
∆+ 10Λ

3

ä
ς .

In the above, the key ingredient linking the PM model to the BGG machinery is the
gauge operator ∇(a∇(b∇c)◦)+

Λ
2 g(ab∇c) acting on the scalar gauge parameter ς. For that,

we must relate it to a projectively invariant operator. To facilitate this we remove all
instances of the inverse metric; this can be achieved by defining the trace-adjusted field

(5.6) ψabc := ϕabc +
1

2
g(abϕ̄c) ,

whose gauge transformation is

(5.7) δψabc =

Å
∇(a∇b∇c) +

4Λ

3
g(ab∇c)

ã
ς .

Remarkably, the projectively invariant operator

(5.8)
D : E(2) −−→ ⊙3T ∗M(2)

∈ ∈

σ 7→ 1
2

î
∇(a∇b∇c) + 4Q(ab∇c) + 2(∇(aQbc))

ó
σ

matches the gauge operator appearing in (5.7) when computed in the Einstein scale (for
which Qab =

Λ
3 gab).

As a further happy consequence of the field redefinition (5.6), the divergence constraint
on the first line of (5.5), using the second line of that display to eliminate χ, simplifies to

∇.ψab = ∇(aψ̄b) .
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According to the BGG construction described in the previous section, the Sl(5) module
required for maximal depth, spin three is given by the Young diagram , and hence
sections of the symmetric product of the cotractor bundle, denoted by T(AB). In a given
scale, a general section of this bundle splits as

Ç
wab va
vb τ

å
=:

Ñ
τ
va
wab

é
,

on which the tractor connection acts as follows:

∇T
c

Ñ
τ
va
wab

é
=

Ü
∇cτ − 2vc

∇cva +Qcaτ − wca

∇cwab + 2Qc(avb)

ê

.

The first part of the diagram (4.7) (encoding the gauge transformation) is easily com-
puted:

T(AB)∋

á
σ

1
2∇aσ

(12∇a∇b +Qab)σ

ë
d∇

>

á
0

0

1
2 ∇∇a∇bσ + Q(a∇b)σ + ∇(Qabσ)

ë

∈ ∧1(T(AB)) ∋

Ñ
0
0
ψab

é

E(2) ∋ σ

L0

∧

D
>
Ä
1
2∇(a∇b∇c) + 2Q(ab∇c) + (∇(aQbc))

ä
σ

π
∨

∈⊙3T ∗M(2)∋ ψabc

L1

∧

Here ψab and Qa denote the one-forms made from ψabc and Qab by soldering (the
soldering form is denoted ea) and ∇ is any connection in p.

We now calculate in the Einstein scale and use the parallel tractor metric:

HAB =

Ç
gab 0

0 3
Λ

å
.

This allows us to construct the detour long operator M∇ ≡ δ∇d∇ − End(Ω#):

∧1(T(AB))∋

Ñ
0
0
ψab

é
M∇

>

Ö
0

∇.ψa − ∇ ψ̄a

∆ψab − ∇∇.ψab +
2Λ
3 e(aψ̄b) −

5Λ
3 ψab

è

∈ ∧1(T(AB))

⊙3T ∗M ∋ ψabc

L1

∧

M
> ∆ψabc −∇(a∇.ψbc) +

2Λ
3 g(abψ̄c) −

5Λ
3 ψabc

L1

∨
∈ ⊙3T ∗M

The operator M on the bottom line of this diagram should be compared with the equa-
tions of motion of the PM system. By construction, it annihilates the gauge operator
of (5.7). Before making this comparison, we first note that the detour complex on the
top line of the diagram encodes further information. First, the second line in the image
of M∇ reads (making the form index explicit)

∇.ψab −∇aψ̄b = 0 .

This equation has both a symmetric and antisymmetric piece. The latter implies that ψ̄a
is a closed one-form, and thus locally the gradient of some scalar, which we identify with
the auxiliary field χ:

ψ̄a = −
6

Λ
∇aχ .
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This reproduces the second constraint in (5.5). Turning to the totally symmetric piece,
it immediately reproduces the divergence constraint as expressed in (5.2).

It remains to analyse the bottom slot of the image of M∇. It is not difficult to verify
that its mixed symmetry part vanishes, modulo the divergence constraint (5.2); here
one also uses that the structure is Weyl-flat. The totally symmetric part of the bottom
slot in the image of M∇ matches exactly the equation of motion (5.4) for ϕabc, upon
employing (5.6), again modulo (5.2). Since the operator L1 projects the bottom slot onto
its totally symmetric part, this establishes our claim.

Finally, we note, that for any projectively flat structure, d∇L1(ϕabc) produces a tractor
for which only the bottom slot, ∇ϕbc, is nonvanishing, and hence both projectively and
gauge invariant. This quantity is the spin three generalization of the PM curvature found
in [33].

6. Einstein Backgrounds

Einstein metrics play a special rôle in projective geometry. In particular, recall from
Section 3.3, that a metric g which is Einstein but not Ricci flat, is equivalent to a
non-degenerate parallel metric H on the projective tractor bundle T [17]. We now
study projective BGG sequences and possible detour complexes in an Einstein setting.
This allows us to address the physical question of higher spin propagation on Einstein
manifolds.

6.1. Partially massless spin two. We begin our Einstein investigation with the propi-
tious, spin two case. As mentioned in the introduction, PM spin two was first discovered
in studies of constant curvature, lightcone propagation [24] (see as well [27, 30]). How-
ever, it also has an interesting geometric, conformal gravity, origin [61, 25, 26]: Consider
the four-dimensional conformal gravity action,

S =

∫
ǫabcdW

ab ∧ W cd .

This action is extremized by vanishing of the Bach tensor Bcd. The latter can be defined
by a differential operator acting on the Schouten tensor

Bab =
(
− δca∆ δdb +∇cδd(a∇b) + W

c
ab
d
)
Pcd .

Defining ϕab = Λ
6 gab − Pab, then the Bach flat condition of the above display, dropping

terms nonlinear in ϕ, becomes (denoting the trace by ϕ̄ := ϕaa and ∇.ϕa := ∇bϕab)
∆ϕab − 2∇(b∇.ϕa) + gab∇.∇.ϕ+∇a∇bϕ̄− gab∆ϕ̄

− 2Wa
cd
bϕcd −

4

3
Λ(ϕab −

1

4
gabϕ̄) = 0 .

(6.1)

The above display is exactly the PM equation of motion in an Einstein background [36]
while the quantity ϕab measures the failure of gab to be Einstein. The divergence con-
straint

(6.2) ∇bϕab = ∇aϕ̄ ,

follows as an integrability condition of (6.1). Moreover, the PM equation of motion is
variational and enjoys a higher derivative gauge invariance

(6.3) δϕab =
Ä
∇a∇b +

Λ

3
gab
ä
ε .

The gauge operator here is intimately related to projective geometry and BGG sequences.
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6.2. Spin two BGG. We now return to projective geometry and consider the operator

(6.4)
D : E(1) −→ ⊙2T ∗M(1)

∈ ∈

σ 7→
Ä
∇(a∇b) +Q(ab)

ä
σ

For Einstein projective structures, computing in the Einstein scale, the above reproduces
the gauge operator appearing in 6.3.

Using the parallel tractor metric we construct a detour complex which describes the
spin two PM system on Einstein backgrounds. The first BGG operator is the one dis-
played in (6.4). We have summarized the other ingredients of this complex in the table
below:

D : E(1) → ⊙2T ∗M(1) D∗ : ⊙2T ∗M(−1) → E(−5)

∈ ∈ ∈ ∈

σ 7→
Ä
∇a∇b +Qab

ä
σ γab 7→

Ä
∇a∇b +Qab

ä
γab

L0 : E(1) → TA L0 : TA(−4) → E(−5)

∈ ∈ ∈ ∈

σ 7→ (σ,∇σ) (ρ, µa) 7→ Λ
3 ρ−∇aµa

L1 : ⊙2T ∗M(1) → ∧1(TA) L1 : ∧1(TA(−2)) → ⊙2T ∗M(−1)

∈ ∈ ∈ ∈

ϕab 7→ (0, ϕab) (ξa, νab) 7→ ν(ab)

A straightforward computation shows that

(6.5) M∇L1(ϕab) =

(
−∇.ϕ + ∇ϕ̄

∆ϕa −∇b
∇ϕab − W cd

aϕcd

)
.

Here, as earlier, (ϕa, W
cd
a) denote the soldered one-forms made from ϕba and Wb

cd
a,

while ∇ is the Levi-Civita coupled exterior derivative and ∆ := ∇a∇a is the Bochner
Laplacian. By construction (see Theorem 5.1), the quantities in the above enjoy the
gauge invariance (6.3). The top slot is exactly the constraint 6.2. The bottom slot has
both a symmetric and antisymmetric piece. The latter vanishes on Einstein backgrounds
using the constraint. The symmetric piece (which is the image of L1), again modulo the
constraint, is precisely the PM equation of motion 6.1. Finally, note that d∇L1(ϕab)
produces a tractor for which only the bottom slot, ∇ϕb, is nonvanishing, and hence both
projectively and gauge invariant. This quantity is the PM curvature found in [33].

6.3. Higher spin Einstein obstructions. Spins greater than two do not enjoy the
special status of metric fluctuations which arise as the linearization of a consistent in-
teraction theory. Their propagation in constant curvature spaces has been studied in
detail [27, 28, 29, 30, 31, 32, 34]. In this section we employ the BGG machine to char-
acterize the obstruction to putative maximal depth PM spin three couplings to Einstein
backgrounds.
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Again our starting point is the projectively invariant operator D given in (5.8). How-
ever, now reconsider the diagram:

T(AB)
d∇

> ∧1(T(AB))

E(2)

L0

∧

D
> ⊙3T ∗M(2)

L1

∧

When the structure p is projectively flat the above diagram is commutative, while to con-
struct the corresponding detour complex we must require the structure to be projective
Einstein; these two conditions together yield constant curvature theories.

Relaxing the projectively flat condition, we may still construct a BGG detour, at the
cost of replacing the space ⊙3T ∗M(2) by the reducible bundle (T ∗M ⊗⊙2T ∗M)(2). We
chronicle this new detour complex in Proposition 6.6 at the end of this section. There
is however, an alternate—well-known in the theory of prolongations for overdetermined
systems [39, 42])—method to maintain commutativity of the above diagram. This is
achieved by replacing ∇ by the prolongation connection ‹∇, defined such that the diagram
above commutes. Of course, this new connection may not, in general, solve the Yang–
Mills equations required for the detour sequence to be a complex. This gives a tight
characterization of the obstruction to higher spin, Einstein, PM models.

We are now tasked with finding the prolongation connection ‹∇ on the vector bun-
dle T(AB) obeying

d∇̃ ◦ L0 = L1 ◦ D .

For that computation we focus, for simplicity on Einstein projective structures. In the
Einstein scale we find

(6.6)
(
d∇ ◦ L0 − L1 ◦ D

)
(σ) =

1

3
ZaZbW(ab)

d∇dσ =: q
(1
3
Wc(ab)

d∇dσ
)
.

Here we have used the map Z : T ∗M(1)−→T ∗ in the composition series (3.3) to define
the insertion operator q into the bottom slot of ∧1

Ä
T(AB)

ä
:

(6.7)

q :
Ä
T ∗M ⊗⊙2T ∗M

ä
(2) −→ ∧1

Ä
T(AB)

ä

∈ ∈

αcab 7−→

Ö
0

0
αab

è

The canonical projection ker(ι(X))∩∧1
Ä
T(AB)

ä
→
Ä
T ∗M⊗⊙2T ∗M

ä
(2) is denoted by q⋆.

Note that for Einstein projective structures, q⋆ is the formal adjoint of q.
On sections of T(AB) the prolongation connection is given by

‹∇a

Ñ
τ
vb
wbc

é
:=

Ö
∇aτ − 2va

∇avb +Qabτ − wab

∇awbc + 2Qa(bvc) −
2
3Wa(bc)

dvd

è

.

Hence we have by now established the following result:
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Lemma 6.1. The following diagram commutes for projective Einstein structures:

T(AB)
d∇̃

> ∧1(T(AB))

	

E(2)

L0

∧

D
> ⊙3T ∗M(2)

L1

∧

Remark 6.2. The above result can be trivially extended to general projective structures p.

The curvature ‹Ω ∈ ∧2
Ä
End(T(AB))

ä
of the prolongation connection ‹∇ acting on a

section of T(AB) is given by:

‹Ω ◦

Ö
τ

va

wab

è
=

Ö
0

0

−2
3(∇W(ab)

c)vc + 2W(a
cwb)c +

2
3W(ab)

cwc

è
.

As usual, wb here denotes the one-form obtained by soldering wab. This curvature does
not obviously obey the Yang–Mills equation (4.5) (replacing, of course ∇ → ‹∇) unless
the structure is projectively flat.

Remark 6.3. The detour operator arises as the second variation of a Yang–Mills action
principle [54]. Hence, one might consider other gauge invariant action principles whose
first and second variations would modify, respectively, the Yang–Mills equation and de-
tour operator. Whether there exists such an action principle for which the connection ‹∇
is “Yang–Mills”, is an open question.

Remark 6.4. It is interesting to note that some results do exist for massive spin three the-
ories coupled to curved backgrounds. In particular, Zinoviev has given an action principle
purported to describe massive spin three excitations on general Ricci flat spacetimes [72].
This action depends on a quartet of totally symmetric, rank (0, 1, 2, 3), tensor fields and
enjoys accompanying gauge invariances. For Minkowski backgrounds, the rank (0, 1, 2)
“Stückelberg” fields of that model can be algebraically gauged away leaving a minimal
field content that can be compared with that found within our BGG framework. This
might be taken as evidence for the existence of curved versions of the spin three PM BGG
detour complex. However we note that for general Ricci flat backgrounds, the auxiliaries
in the approach of [72] can no longer be algebraically gauged away.

Finally, as promised, we describe a new detour complex whose long operator is defined
for reducible bundles. First we recompute (6.6) for general projective structures:

[
d∇ ◦ L0 −L1 ◦ D

]
(σ) =

1

3

Ä
W(ab)

c∇c − 2C(ab)

ä
σ .

This gives a projectively invariant operator

D : E(2) −→ T ∗M(2)

∈ ∈

σ 7−→
Ä
Wa(bc)

d∇d − 2Ca(bc)
ä
σ .

The above is trivial for projectively flat structures. It is the mixed symmetry part of the
map

‹D : E(2) −→
Ä
T ∗M ⊗⊙2T ∗M

ä
(2)

∈ ∈

σ 7−→ 1
2∇c∇a∇bσ +Qc(a∇b)σ +∇c(Qabσ)
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We use this map to establish the following result.

Lemma 6.5. For any projective structure p, the following diagram commutes:

T(AB)
d∇

> ∧1(T(AB))

	

E(2)

L0

∧

D̃
>
Ä
T ∗M ⊗⊙2T ∗M

ä
(2)

q
∧

We have by now gathered together the main parts of the BGG detour machine and
assemble them in the next proposition:

Proposition 6.6. Let p be an Einstein projective structure and denote the formal adjoint

of ‹D by ‹D⋆. Then, calling

M := q⋆◦M∇◦ q ,

we have the following complex

0 −→ C∞(M)
D̃

−−→
Ä
T ∗M ⊗⊙2T ∗M

ä M
−−−−→ T ∗M ⊗⊙2T ∗M

D̃⋆

−−−→ C∞(M) −→ 0.

Proof. We have constructed ‹D so that the analog of the first square in the diagram (4.7)
commutes. Moreover the connection ∇T is Yang–Mills. Thus we are in the situation of
Theorem 4.3. �

Remark 6.7. The above proposition defines a novel gauge theory on Einstein backgrounds.
However, since the image of the gauge operator ‹D is no longer reducible, the irreducible
gauge field content is a totally symmetric and a mixed symmetry tensor, both of rank
three. These are, by construction, subject to a single, scalar, gauge invariance as well
as a system of gauge invariant constraints and equations of motion determined by M∇.
The physical consequences of the mixed symmetry field content is currently unclear.

7. Action principles

Action principles for PM models were first constructed, for lower spin examples, in [28].
These were extended to arbitrary spins in [71] by integrating in additional auxiliary fields
and then requiring there exist extra gauge invariances removing these leaving the PM
systems. Shortly afterwards it was realized that action principles could be obtained
geometrically by log-radially reducing [4] massless systems in one higher dimension [56].
As mentioned in the introduction and explicated in Appendix A, log-radial reduction is
intimately related to projective geometry. The actions obtained from this reduction were
“metric–like”, meaning that the field content was arranged in sections of totally symmetric
projective tractor bundles. The BGG machine gives what is often called a “frame-like
formulation” because one deals with tractor-valued differential forms. Frame-like PM
action principles have been given in [67, 73]. These methods introduce progressively
more field content in order to make actions simple, and possibly amenable to interacting
theories [69]. Conversely, first order, Hamiltonian action principles written in terms of
only the physical DoF were introduced in [32]. Here, we give action principles germane
to the detour set-up because we are interested in the connection of these systems to
projective geometry.

Our key principle is to construct gauge invariant functionals; these are far from unique.
Ensuring that gauge invariant equations also imply a gauge invariant system of con-
straints as their integrability conditions singles out the correct action principle.
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The operatorM∇ annihilates the gauge operator d∇. Therefore the functional, defined
on projective Einstein structures,

(7.1) S[V ] := 〈V ,M∇V 〉 ,

where V ∈ ∧1(⊙kT ∗), is gauge invariant for any spin s = k+1. Here the pairing 〈U ,V 〉
denotes

〈U ,V 〉 :=

∫

M
gab UaA1...Ak

VbB1...Bk
HA1B1 · · ·HAkBk .

We now focus (partly for simplicity, but also because this case is special) on spin two.
In this case, calling

VaA :=

Ç
va
ψab

å
,

the gauge invariance of (7.1) reads

(7.2)

{
δva = ∇aε− ξa

δψab = ∇aξb +Qabε ,

where
(
ξa ε

)
∈ TA. Thus, since the one-form va enjoys an algebraic gauge invariance,

it can be gauged away. However, there is still the freedom to further gauge transform ψ
along the locus ξa = ∇aε, yielding

δψab =
Ä
∇a∇b +Qab

ä
ε .

Here only the symmetric part of ψab transforms (while its antisymmetric piece ψ[ab] is
gauge inert). Therefore, in the action (7.1), we may set

ψab = ϕab , va = 0 ,

where ϕab is symmetric, and so obtain a functional S[L1(ϕ)] invariant under the gauge
symmetry δϕ = Dε, which is, of course, the PM gauge symmetry 6.4.

We must still account for the gauge invariant constraints. These are encoded by the
Bianchi identity corresponding to the gauge symmetry (7.2) of the original action (7.1),

δ∇M∇ V = 0 .

Denoting the two equations of motion of the action (7.1)

M∇Va :=

(
Gva

Gψab

)
,

the above Bianchi identity implies

(7.3) ∇aGψab + Gvb = 0 .

Now observe that the equation of motion of the PM gauge invariant action S[L1(ϕ)] is
related to that of S[V ] by

Gϕab = Gψ(ab)
∣∣∣ψ=ϕ,v=0

.

Applying the Bianchi identity (7.3) to the field configuration V = L1(ϕ), we thus learn

∇aGϕab +
(
∇aGψ[ab] + Gvb

)∣∣∣ψ=ϕ,v=0
= 0 .

The second and third terms above are an integrability condition of the PM equation of
motion and thus ought yield the divergence constraint. Indeed, the last of these is

Gva
∣∣∣ψ=ϕ,v=0

= XA
î
M∇L1(ϕ)

ó
aA

= −∇.ϕa +∇aϕ̄ ,
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which is precisely the divergence constraint. However, we still need to remove the
term ∇aGψ[ab]. It is proportional to the divergence of the variation of the square of the
divergence constraint so can be removed by adding such a term to the action. This yields
the PM spin two action principle

S[ϕ] = 〈L1(ϕ),M
∇L1(ϕ)〉 −

1

2
〈ι(X)M∇L1(ϕ), ι(X)M∇L1(ϕ)〉 .

Note that Fabc := ∇aϕbc −∇bϕac is a gauge invariant curvature for the PM field ϕ (the
PM action in terms of this curvature first appeared in [33]). The top slot of the image
of M∇L1, denoted above by ι(X)M∇L1(ϕ), is the both the trace of this curvature and
the divergence constraint. Finally, we note, that by construction, the variation of the
above action yields the PM equation of motion (6.1).
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Appendix A. Log-radial reduction

Actions and gauge operators for PM models with arbitrary spin were originally com-
puted using the log-radial reduction method [4] in [56]. This technology is closely related
to projective geometry. Here we sketch this link and extend the log-radial reduction
technique to Ricci flat metric cone spaces, and therefore Einstein backgrounds. Note
that, in a general projective setting, this ambient space is known as the Thomas cone
space, in view of [68], and the link between this, (the metric cone [44]) and the projective
tractor connection and calculus treated in [15, 51].

We wish to consider a Ricci flat, (n+1)-dimensional “ambient” manifold (M̃, ds2). For
that we make the metric ansatz

ds2 = e2u
Ä
du2 + dΩ2) .

Here we focus on Riemannian signature (but other signatures can be treated similarly).
If the n-dimensional metric dΩ2 is u-independent, this metric ansatz implies that the
vector field ξ := ∂

∂u is a homothety, namely

£ξds
2 = 2ds2 .

Furthermore, the diffeomorphism r = eu shows that ds2 is a cone over the n-dimensional,
constant u, manifold M with metric dΩ2. (Note that for the ambient metric g̃ = ds2, we
have ∇g̃

Aξ
B = δBA ; see [46] for the proof that this condition implies g̃ is a cone metric.)

Thus u is a logarithm of the “radius” r, hence the terminology “log-radial reduction”.
Further, requiring that the metric dΩ2 is Einstein with scalar curvature Sc = n(n − 1)

makes ds2 Ricci flat. For the metric dΩ2, we have Λ = (n−1)(n−2)
2 . Choosing a frame

EA = eu
Ç
ea

du

å
,
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where dΩ2 = ea ⊙ ea, the Levi-Civita connection of ds2, pulled back to M acts as

∇
∗

Ç
va

ρ

å
=

Ç
∇ρ − v

∇va + eaρ

å
= ∇

T

Ç
va

ρ

å
.

Here we employ ea as the soldering form and recognize the above as exactly the tractor
connection (3.4) for Einstein projective structures whose Schouten tensor obeys Qab =
gab. Specializing to homogeneous sections V A ∈ TM̃ , with homogeneity condition

∂

∂u
V A = wV A ,

we further see that ∇AV
B evaluated along a constant u hypersurface M , yields precisely

the Thomas D-operator acting on V B , so DAV
B , as given in (3.6).

Massless higher spins in flat space were first written down in [43, 23]. They can be
described by a totally symmetric tensor ΦA1...As subject to the gauge symmetry

(A.1) ΦA1...As ∼ ΦA1...As +∇(A1
ΞA2···As) ,

where the fields and gauge parameters obey trace conditions

ΦA
A
B
B
A5...As = 0 = ΞA

A
A3...As−1

.

Specializing to distinguished homogeneities, the gauge transformation (A.1) is known to
encode the PM gauge operators [56]. Let us explicate this for the case of spin s = 2.
We now identify ΦAB with a section of T(AB)(w) of homogeneity w and ∇A with the
Thomas D-operator. The gauge parameter is thus a section of TA(w+ 1) and the gauge
transformation becomes (denoting ΞA :=

(
ξa ε

)
)

D(AΞB) =

(
∇aξb + gabε ∇aε+ wξa

∇bε+ wξb (w + 1)ε

)
.

The PM model appears at homogeneity w = −1. Denoting

T(AB)(−1) ∋ ΦAB =:

Ö
τ

va

ϕab

è

,

we have the PM gauge transformations

(A.2)





δτ = 0

δva = ∇aε− ξa

δϕab = ∇aξb + gabε .

Because the field τ is gauge inert, it can be consistently set to zero. Moreover, in our
Einstein projective setting Qab = gab, so we see that the above transformation exactly
matches those produced by the BGG detour machine in (7.2).
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