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RESONANCE WIDTHS FOR GENERAL HELMHOLTZ

RESONATORS WITH STRAIGHT NECK

THOMAS DUYCKAERTS & ANDRÉ MARTINEZ

Abstract. We prove an optimal exponential lower bound on the widths
of resonances for a general Helmholtz resonator with straight neck.

1. Introduction

A resonator consists of a bounded cavity (the chamber) connected to the
exterior by a thin tube (the neck of the chamber). The frequencies of the
sounds it produces are determined by the shape of the chamber, while their
duration by the length and the width of the neck in a non-obvious way,
and our goal is to understand these. Mathematically, this phenomenon is
described by the resonances of the Dirichlet Laplacian −∆Ω on the domain
Ω consisting of the union of the chamber, the neck and the exterior.

In [MN1], an optimal bound has been optioned for very particular two-
dimensional Helmholtz resonators, for which the exterior consists of an infi-
nite straight half tube. Then, the result has been generalized in [MN2] for
much more general two-dimensional Helmholtz resonators, under the condi-
tion that that the neck meets the boundary of the external region perpen-
dicularly to it, and that the boundary is flat there. Moreover, an extension
to larger dimensions (up to 12) was obtained, too, but only for necks with
a square section.

Here, we plan to generalize the result to any n-dimensional Helmholtz res-
onator with straight neck, without particular assumption on the section of
the neck or on the flatness of the boundary near the mouth of the neck. The
only assumption we need is that the boundary of the exterior is analytic
there.

We recall that resonances are the eigenvalues of a complex deformation of
−∆Ω; their real and imaginary parts are the frequencies and inverses of
the half-lives, respectively, of the corresponding vibrational modes. It is
of obvious physical interest to estimate these two quantities as precisely
as possible. One practical way to do this involves studying this problem
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in the asymptotic limit when the width ε of the neck tends to zero. Those
resonances whith imaginary parts tending to zero converge to the eigenvalues
of the Dirichlet Laplacian on the cavity, and there is an exponentially small
upper bound for the absolute values of the imaginary parts (the widths)
of the resonances [HM]. However, without very restrictive hypotheses, no
lower bound is known. We mention in particular that lower bounds are
known in the one-dimensional case [Ha, HaSi]. As for the higher dimensional
case, we mention [Be, Fe, FL, Bu2, HS] which contain results concerning
exponentially small widths of quantum resonances, but these do not apply
to a Helmholtz resonator. We also mention that the semiclassical lower
bound obtained in [HS] is optimal (see also [FLM] for a generalization).

Here, we obtain an optimal lower bound in a very general case (see Theorem
2.1) under a somehow natural condition of analyticity near the mouth of the
neck. As in [MN2], the problem is first related to a lower bound on the res-
onant function in a large . Assuming, by contradiction, that this function is
small there, the smallness can be propagated up to a small neighborhood of
the end part of the neck, by means of general Carleman estimates. Then,
we construct highly oscillating local solutions to the equation by solving a
Cauchy problem (this is where the assumption of analyticity is used) that
permit us to propagate the estimate up to the exterior boundary of the neck
(in a way similar to that of propagation of analytic singularities). Finally,
this estimate is propagated in the inside part of the neck by using an ex-
plicit version of Carleman estimates. At that point, the contradiction is
obtained as in [MN2], by using a result of [BHM] on the size of the Dirichlet
eigenfunctions of the cavity.

2. Assumtions and results

Let C and B be two bounded domains in Rn (n ≥ 2), with C∞ boundary, and
denote by C, B their closures, and by ∂C, ∂B their boundaries. We assume
that Euclidean coordinates x = (x1, . . . , xn) =: (x1, x

′) can be chosen in
such a way that, for some L > 0, one has,

(2.1) C ⊂ B ; 0 ∈ ∂C ; (L, 0Rn−1) ∈ ∂B ; [0, L]× {0Rn−1} ⊂ B\C.
We also assume,

[0, L]× {0Rn−1} is transversal to ∂B at (L, 0Rn−1);

∂B is analytic at (L, 0Rn−1).
(2.2)

Let D1 ⊂ Rn−1 be a bounded domain containing the origin, with smooth
boundary ∂D1. For ε > 0 small enough, we set Dε := εD1 and,

E := Rn\B;

T (ε) := ([−ε0, L+ ε0]×Dε) ∩ (Rn\(E ∪ C)) ;

C(ε) = C ∪ T (ε),

where ε0 > 0 is fixed sufficiently small in order that [−ε0, L+ ε0]× {0Rn−1}
crosses ∂C and ∂B at one point only. Then, the resonator is defined as,

Ω(ε) := C(ε) ∪E.



RESONANCE WIDTHS FOR HELMHOLTZ RESONATORS 3

As ε→ 0+, the resonator Ω(ε) collapses to Ω0 := C ∪ [0,M0]∪E, where M0

is the point (L, 0Rn−1) ∈ Rn.

For any domain Q, let PQ denote the Laplacian −∆Q with Dirichlet bound-
ary conditions on ∂Q, and set Pε := PΩε .

The resonances of Pε are defined as the eigenvalues of the operator obtained
by performing a complex dilation with respect to x, for |x| large. We are
interested in those resonances of Pε that are close to the eigenvalues of PC .
Thus, let λ0 > 0 be an eigenvalue of PC with u0 the corresponding normalized
eigenfunction. As in [MN2], we assume,

λ0 is simple;

u0 does not vanish on C near 0.
(2.3)

Observe that these two properties are automatically satisfied when λ0 is
the lowest eigenvalue of −∆C , and when it is a higher eigenvalue, the last
property just means that 0 does not lie on the closure of a nodal line of u0.

By the arguments of [Be, HM], we know that there is a resonance ρ(ε) ∈ C
of Pε such that ρ(ε) → λ0 as ε → 0+. Furthermore, denoting by α0 the
square root of the first eigenvalue of −∆D1 , there is an eigenvalue λ(ε) of
PC(ε) such that, for any δ > 0,

(2.4) |ρ(ε)− λ(ε)| ≤ Cδe−2α0(1−δ)L/ε,

for some Cδ > 0 and all sufficiently small ε > 0. In particular, since λ(ε) ∈ R,
this gives

(2.5) | Im ρ(ε)| ≤ Cδe−2α0(1−δ)L/ε.

We now state our main result.

Theorem 2.1. Under Assumptions (2.1)-(2.3), for any δ > 0 there exists
Cδ > 0 such that, for all ε > 0 small enough, one has,

| Im ρ(ε)| ≥ 1

Cδ
e−2α0(1+δ)L/ε.

Remark 2.2. Gathering (2.5) and Theorem 2.1, we can reformulate the
result as,

(2.6) lim
ε→0+

ε ln | Im ρ(ε)| = −2α0L.

3. Background properties

By definition, the resonance ρ(ε) is an eigenvalue of the complex distorted
operator,

Pε(µ) := UµPεU
−1
µ ,

where µ > 0 is a small parameter, and Uµ is a complex distortion of the
form,

Uµϕ(x) := ϕ(x+ iµf(x)),
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with f ∈ C∞(Rn;Rn), f = 0 near B, f(x) = x for |x| large enough. (Observe
that by Weyl Perturbation Theorem, the essential spectrum of Pε(µ) is
e−2iθR+, with θ = arctanµ.)

It is well known that such eigenvalues do not depend on µ (see, e.g., [SZ,
HeM]), and that the corresponding eigenfunctions are of the form Uµuε with
uε independent of µ, smooth on Rn and analytic in a complex sector around
E. In other words, uε is a non trivial analytic solution of the equation
−∆uε = ρ(ε)uε in Ω(ε), such that uε

∣∣
∂Ω(ε) = 0 and, for all µ > 0 small

enough, Uµuε is well defined and is in L2(Ω(ε)) (in our context, this lat-
ter property will be taken as a definition of the fact that uε is outgoing).
Moreover, uε can be normalized by setting, for some fixed µ > 0,

‖Uµuε‖L2(Ω(ε)) = 1.

In that case, we learn from [HM] (in particular Proposition 3.1 and formula
(5.13)), that, for any δ > 0, and for any R > 0 large enough, one has,

(3.1) ‖uε‖L2(Ω(ε)∩{|x|<R}) ≥ 1−O(e(δ−α0)/ε),

and

(3.2) ‖uε‖H1(E∩{|x|<R}) = O(e(δ−α0))/ε).

Now, we take R > 0 such that B ⊂ {|x| < R}. Using the equation −∆uε =
ρuε and Green’s formula on the domain Ω(ε) ∩ {|x| < R}, and using polar
coordinates (r, ω), we obtain,

Im ρ

∫
Ω(ε)∩{|x|<R}

|uε|2dx = − Im

∫
Sn−1

∂uε
∂r

(R,ω)uε(R,ω)Rn−1dσn−1(ω),

(where dσn−1(ω) stands for the surface measure on Sn−1), and thus, by
(3.1)-(3.2), and for some δ0 > 0,
(3.3)

Im ρ = −(1 +O(e(δ−2α0)/ε)) Im

∫
Sn−1

∂uε
∂r

(R,ω)uε(R,ω)Rn−1dσn−1(ω)

where the O is locally uniform with respect to R.

Therefore, to prove our result, it is sufficient to obtain a lower bound on
Im
∫
Sn−1

∂uε
∂r (R,ω)uε(R,ω)Rn−1dσn−1(ω). Note that, by using (3.2), we im-

mediately obtain (2.5).

Starting from this formula, the following proposition has been proved in
[MN2] (the proof is actually done in 2 dimensions only, but can be general-
ized easily to any dimension: see [MN2], Remark 4.6):

Proposition 3.1 (Martinez-Nédélec [MN2]). Let R1 > R0 > 0 be fixed
in such a way that B ⊂ {|x| < R0}. Then, for any C > 0, there exists a
constant C ′ = C ′(R0, R1, C) > 0 such that, for all ε > 0 small enough, one
has,

| Im ρ| ≥ 1

C ′
‖uε‖2L2(R0<|x|<R1) − C

′e−C/ε.
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Then, reasoning by contradiction as in [MN2], we assume the existence of
δ0 > 0 such that, along a sequence ε→ 0+, one has

(3.4) | Im ρ| = O(e−(2α0+δ0)/ε).

Proposition 3.1 (added to standard Sobolev estimates) tells us that for any
R1 > R0 > 0 such that B ⊂ {|x| < R0}, we have,

(3.5) ‖uε‖H1(R0<|x|<R1) = O(e−(α0+δ0)/ε).

Still following the procedure used in [MN2], we see that this estimate can be
propagated up to the boundary of B, away from an arbitrarily small neigh-
borhood of M0 := (L, 0Rn−1) (this is done by means of Carleman inequalities
up to the boundary [LR, LL]), and one obtains (see [MN2], Proposition 6.1),

Proposition 3.2 (Martinez-Nédélec [MN2]). Under the assumption (3.4),
for any neighborhood U of M0 and any compact set K ⊂ Rn, there exists
δK > 0 such that,

‖uε‖H1(E∩K\U) = O(e−(α0+δK)/ε),

uniformly as ε→ 0+.

From this point, the proof starts to differ completely from that of [MN2].
As a first step, we will propagate this estimate on u up to ∂B at bounded
frequencies, by solving a Cauchy problem and use the solution as a prop-
agator (in the same spirit as for the propagation of analytic singularities:
see, e.g., [Sj]). Next, for high frequencies, the propagation will be obtained
by taking a partial Fourier transform of u and by using the properties of
the differential equation in x1 it is solution to. The final step will consist in
propagating the estimate inside the thin tube, by using some “hand-made”
Carleman estimate on such an ε-dependent domain. After that, the proof
can be completed exactly as in [MN2].

4. Estimate near M0 at bounded frequencies

We first make a translation and rotation of Euclidean coordinates, in such
a way that M0 becomes the origin and, in the new coordinates, B is given,
near M0, by an inequality f(x) < 0 with f(x) = x1 +O(x2). In particular,

TM0∂B = {x1 = 0}.

Then, for η ∈ Rn−1\{0} and a > 0 small enough, we set,

ψη,a,±(x) := eiη·x
′/ε±(η2−ε2ρ)

1
2 (x1−a)/ε.

In particular, ψη,a,± is solution to the Cauchy problem,

(4.1)


−∆ψη,a,± = ρψη,a,±;

ψη,a,± |x1=a = eiη·x
′/ε;

∂ψη,a,±
∂x1

|x1=a = ±ε−1(η2 − ε2ρ)
1
2 eiη·x

′/ε.
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Now, let χ ∈ C∞0 (Rn) be supported in a small neighborhood of M0, and
such that χ = 1 near M0, and set,

v := χu.

We have,
−∆v = ρv − [∆, χ]u,

and thus, by the Green formula on Ωa := E ∩ {x > a}, and by using
Proposition 3.2, (2.5) and (3.2),∫

∂Ωa

(
v
∂ψη,a,±
∂ν

− ∂v

∂ν
ψη,a,±

)
dσa = 〈−2i(Im ρ)v + [∆, χ]u, ψη,a,±〉Ωa

= O(e−(α0+δ1−r0|η|)/ε),

where ν stands for the normal interior unit vector to Ωa (defined almost
everywhere on ∂Ωa), dσa is the surface measure on Ωa, δ1 > 0 is independent
of η, and r0 := sup{x1 − a ; x ∈ Suppχ}.

5. Estimate near M0 at high frequencies

6. Estimate inside the neck

7. Completion of the proof of Theorem 2.1

By Assumption (2.3), we see that the Dirichlet eigenfunction u0 satisfies the
hypothesis of [BHM] Lemma 3.1. Then, following the arguments of [BHM]
leading to (13) in that paper, and using again [HM], Proposition 3.1 and
Formula (5.13), we conclude that for any δ > 0 and any x ∈ (0, L), there
exists C1 such that the resonant state uε verifies (see [BHM], Formula (13)),

(7.1) ‖uε‖L2([x,L]×[−ε,ε]) ≥
1

C0
ε??+δe−α0x/ε.

But this contradicts the inequality ??, and thus completes the proof the
theorem 2.1.
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[Sj] J. Sjöstrand. Lecture on resonances. Preprint, 2002.
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