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The Aeolian arc (Italy) is characterized by some of the strongest along the arc geochemical variations in the 
planet, making it an ideal location to study the effect of subducting components in modifying the mantle 
source of island arc melts. Here, we use high precision element concentrations in primitive phenocrystic 
olivine from basalts along the arc to elucidate the effects of mantle source modification by the subduction 
process. Olivines from this arc have Ni concentrations and Fe/Mn ratios that show similarity to peridotite 
sources that melted to produce mid ocean ridge basalts. Nevertheless, they also have systematically lower Ca 
concentrations and Fe/Mn ratios that broadly overlap with olivines from the available global arc array. These 
phenocrysts also do not show significant variations in Ca as a function of olivine forsterite content. The global 
data suggest that all olivines crystallizing from island arc melts have suppressed Ca concentrations and Fe/Mn 
ratios, relative to olivines derived from melts at intraplate and mid ocean ridge settings suggesting elevated H2O 
concentrations and higher oxidation state of the equilibrium melts. Based on olivine chemistry, we interpret a 
predominantly peridotite source (fluxed by subduction fluids) beneath the Aeolian Arc and also for other 
examples of arc related lavas.
Aeolian arc
Melt oxidation state
1. Introduction

The physical and chemical evolution of the Earth is closely linked 
to the recycling of crustal materials and elements into subduction 
zones at convergent plate margins (Hofmann, 1997; Plank and 
Langmuir, 1993; Rudnick, 1995; Ryan and Chauvel, 2014; Zindler and 
Hart, 1986). The subducting slab at convergent plate boundaries 
undergoes metamor phic processes and introduces crustal materials, 
volatiles, and fluids (aqueous fluids, hydrous melts, or supercritical 
liquids) back into the mantle (e.g., Grove et al., 2012), resulting in a 
heterogeneous upper mantle. Although subduction processes 
generate geochemical hetero geneities in the mantle, the chemical 
relationship between erupted island arc basalts and subducted 
materials in the mantle wedge requires further evaluation. The 
Aeolian Islands (Italy) stand as a singular volca nic arc to study this 
link, as the lavas record some of the most extreme geochemical 
variations along the arc (see a comprehensive synthesis in Lucchi et 
al., 2013c).
Several geochemical studies (e.g., Francalanci et al., 2007; Peccerillo et 
ed that the geochemical
variations of the mafic rocks along the arc reflect modification of the 
mantle wedge by subducting components. For example, the well 
known negative correlation between 87Sr/86Sr (0.7034 0.7075) and 
143Nd/144Nd (0.5129 0.5124) isotope ratios from west to east along 
the Aeolian Island Arc in a distance of less than 100 km is attributed to 
increasing metasomatism by subducting components (fluid and melt) 
along with local crustal contamination processes (e.g., anatexis in the 
source of Lipari, Di Martino et al., 2010, 2011). The study by Zamboni 
et al. (2016) used B and other fluid mobile elements (e.g., As, Li) 
coupled with melt mobile elements (i.e., Be) to distinguish the 
contributions of the subducting components along the Aeolian Arc 
system, and provided evidence for the presence of hydrous fluid 
components along the arc and the existence of a metasomatic melt 
component in the peripheral islands (Alicudi and Stromboli).

Our study aims to elucidate the effect of hydrous fluids and slab 
melts in the mantle wedge with evidence beyond whole rock 
geochem istry. Olivine is the most abundant mineral in the upper 
mantle and is the first to crystallize from a basaltic melt, thus 
providing critical in formation on primary magma compositions. The 
investigation of trace element compositions (e.g., Ni, Mn, Ca, Cr, Ti; in 
abundances from 10s to 1000s of ppm) in olivine is a useful tool to 
infer the lithology of the mantle source (De Hoog et al., 2010; Sobolev 

et al., 2007). These trace



 
element systematics have been previously used to discriminate be-
tween peridotite and pyroxenite sources (Barker et al., 2014; Gurenko 
et al., 2009a, 2009b, 2013; Herzberg, 2011; Herzberg et al., 2014; 
Søager et al., 2015; Sobolev et al., 2005, 2007). Olivines that crystallize 
from pyroxenite derived melts record high Ni, low Ca, and high Fe/Mn 
and the partitioning of these elements is largely controlled by 
clinopyroxene and garnet in the source (Sobolev et al., 2005, 2007). 
Olivines interpreted to have crystallized from peridotite derived 
melts, e.g., mid ocean ridge basalts (MORB), record lower Ni, higher 
Ca, and lower Fe/Mn relative to olivine crystallizing from pyroxenite 
sourced melts due to the effect of residual olivine in the source. These 
studies rely on the compositional control of Ni partitioning between 
olivine and melt. However, some studies show that the partition 
coefficient of Ni (Dlo

Ni
/melt) in olivine depends also on temperature and 

olivines crystal lizing at low pressures and temperatures from the 
melt originally in equilibrium with normal mantle olivine at high 
pressures and tem peratures will have elevated Ni contents without 
the involvement of an olivine free (pyroxenite) source (Li and Ripley, 
2010; Matzen et al., 2013; Putirka et al., 2011). Recent experimental 
studies by Mallik and Dasgupta (2012, 2013, 2014) described elevated 
Fe/Mn ratios in melts obtained by mixtures of eclogite and peridotite 
derived melts in equilib rium with residues characterized by lower 
olivine modal abundance than in peridotite, but not necessarily 
olivine free, as Mn content is also controlled by garnet in the source. 
Finally, oxidized melts, as com monly produced in arc settings, could 
crystallize olivine with signifi cantly lower Fe/Mn in olivine as Fe3+  is 
less compatible in olivine than Fe2+ (Krivolutskaya et al., 2012).

The few available studies on subduction related rocks (Foley et al., 
2013; Prelević et al., 2013; Straub et al., 2008) reported olivines with 
high Ni content and associated this characteristic to a source that
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Fig. 1. Scheme of the Apennine-Maghrebi fold-and-thrust belt (barbed lines) of the central M
Calabrian arc region (after Ventura, 2013), and the geomorphology and bathymetric setting 
al.(2016)). The red dashed lines represent the depth contours of the Wadati-Benioff zone f
System; Smt = seamount; TLF = Tindari-Letojanni Fault System.
contains an olivine free assemblage. It is imperative to distinguish be 
tween multiple source lithologies beneath the Aeolian Islands in 
order to characterize the subduction inputs involved in the magma 
genesis of this area. Here, we adopt a high precision olivine chemistry 
approach (Batanova et al., 2015; Herzberg et al., 2014; Sobolev et al., 
2005, 2007).
2. Geologic setting

The collision between the African and Eurasian plates and the re 
lated geodynamic evolution of the Mediterranean area is responsible 
for shaping the present day volcanic and tectonic setting of the Italian 
region. The Aeolian Islands originated during the steep northwestern 
subduction of the Ionian Plate beneath the Calabrian orogenic arc and 
the plate's rollback toward southeast (Chiarabba et al., 2008; 
Gvirtzman and Nur, 2001). The archipelago consists of seven volcanic 
islands (Alicudi, Filicudi, Salina, Lipari, Vulcano, Panarea, and 
Stromboli) and several seamounts (i.e., Palinuro, Marsili) inside and 
around the Marsili back arc basin (Fig. 1). The arc is subdivided into 
the western, central and eastern sectors based on structural, 
geochemical, and volca nological criteria (e.g., De Astis et al., 2003). 
Presently, the western area (Alicudi and Filicudi) is not considered 
volcanically active while young eruptions occur on Vulcano (central 
segment) and Stromboli (eastern segment). The Aeolian subaerial 
activity is geologically recent (250 270 ka, Lucchi et al., 2013a, 2013b; 
Forni et al., 2013) and is char acterized by mafic volcanic rocks having 
calc alkaline through potassic compositions with extreme variations 
in trace elements and in radio genic isotope signatures (e.g., Peccerillo 
et al., 2013). The highest Nd iso topic (0.512894) and lowest Sr 
(0.703433) contents characterize the most primitive basalts in the 
archipelago on the island of Alicudi, with ratios similar to Etna lavas 

(e.g., Peccerillo et al., 2004). In contrast,
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Fig. 2. Variation of olivine Mg-numbers from the most mafic rocks along the Aeolian 
Islands. The island of Alicudi is characterized by the highest Mg-number of 92.21. Mg-
number is defined as 100 × MgO / (MgO + FeO). Alicudi, Filicudi, Salina, and Stromboli 
are color-coded.
these values systematically change, moving toward the eastern 
sector, in which Stromboli's rocks display the highest 87Sr/86Sr isotopic 
content (0.707550) and the lower143Nd/144Nd value (0.512460), 
resembling Vesuvius lavas (e.g., Peccerillo, 2001).

3. Materials and methods

We collected mafic samples (MgO N 8 wt%) on the islands of Alicudi
Filicudi, Salina, and Stromboli based on studies that suggested that the
units collected are not only the most mafic but, do not show strong
evidence for crustal contamination (with the possible exception being
Alicudi) (e.g., Francalanci et al., 2013; Lucchi et al., 2013a; Lucchi et al.
2013b; Lucchi et al., 2013d). For additional geologic background
Lucchi et al. (2013c) presented a comprehensive geologic description
and history of the Aeolian Islands and the units selected for this study
Sample location coordinates and whole rock major and trace element
chemical compositions are provided in Zamboni et al. (2016). For
Stromboli, we collected olivine from both the calc alkaline and the po-
tassic lavas. We processed the samples in the geochemistry laboratory
at the Department of Geosciences at Virginia Tech. Olivine phenocrysts
were handpicked from the most mafic units, mounted in epoxy, and
hand polished with diamond suspensions. The polished epoxy disks
were then carbon coated with a 20 nm film using a Q150TE high
vacuum carbon coater. We performed high precision major (Si, Fe, Mg)
minor and trace (Ni, Mn, Ca, Al, Cr, Co, Ti, Zn, P and Na) element analyses
on the olivine phenocrysts using the JEOL JXA 8230 Superprobe at the
Institute des Sciences de la Terre (ISTerre), University Joseph Fourier
Grenoble, France.

Samples were analyzed using the method described by Batanova
et al. (2015) with an accelerating voltage at 25 keV and a beam current
of 900 nA. Major elements were analyzed with an ED spectrometer
with element count times of 500 s for Si, Fe, and Mg. Minor and trace
elements were analyzed by WD spectrometer. Element counts were as
follows: 160 s for Na, 180 s for Al, 160 s for Co, 180 s for Zn, 180 s for
Ca, 160 s for P, 180 s for Ti, 90 s for Cr, 160 s for Mn, and 80 s for
Ni. The San Carlos olivine standard (USNM111312 44, Jarosewich
et al., 1980) was analyzed as an unknown 3 times every 30 measure
ments in order to monitor potential instrumental drift and to estimate
accuracy and precision. The results yield precision better than 10 ppm
(2 standard errors) for trace elements and 0.06 wt% (2 standard errors)
for Fo content of San Carlos olivine analyses. A detailed discussion on the
EMPA protocol can be found in Batanova et al. (2015). Standards and
statistics for the olivine analyses are given in Table 1 in Supplementary
Materials.

4. Results

The new high precision major and trace element compositions in 
olivines from our Aeolian basaltic samples are reported in Table 1 of 
Supplementary Materials. We conducted 133 high precision olivine 
analyses for Alicudi, 92 for Filicudi, 183 for Salina, and 105 for 
Stromboli. The peripheral islands (Stromboli, Alicudi) are 
characterized by higher forsteritic content (high Mg number) than 
the central sector of the arc (Fig. 2). The Mg numbers of olivines from 
Alicudi are the highest with 92.21, while Stromboli reaches values up 
to 90.77. It is noteworthy to mention the low and constant Mg 
numbers for the olivine representing the potassic rock series (67.87 
75.88). Olivines from Filicudi reach a maximum value of 86.84, while 
those from the central sector (Salina) have Mg numbers as high as 
87.55.

Olivines from the peripheral islands are characterized by higher 
Ni contents with respect to those from the central sector (Fig. 3A). 
Olivines from Alicudi have the highest Ni values in the arc 
(maximum of 3243 ppm), followed by Stromboli calc alkaline 
derived olivines with ~2604 ppm. In contrast, olivines from Filicudi 
and Salina are character ized by lower Ni contents (1046 and 2232 

ppm, respectively). Olivines from all the islands have Fe/Mn ratios of 
~60, with the exception of a
5. Discussion and conclusions

We used the minor and trace element geochemical compositions 
of olivines from the most primitive erupted magmas along the Aeolian 
Arc to distinguish which source lithology (peridotite or olivine free 
“pyroxenite”) melted to produce the observed arc basalts (Herzberg,
2011; Sobolev et al., 2005, 2007). We present our data with olivine de-
rived from primary magmas modeled from an ~anhydrous peridotite 
source (e.g. MORB) and schematic trends for the liquid lines of 
descent (LLD) of olivine and the cotectic fractionation olivine + 
clinopyroxene (ol + cpx), as described in Herzberg (2011). Nickel 
contents in most of the Aeolian olivines (Fig. 3A) match the olivine 
LLD modeled from melts derived from a peridotite source or are even 
more depleted in Ni. The Fe/Mn ratios of most Aeolian olivines are the 
same or lower than predicted for olivine from peridotite sourced 
parental melts (Fig. 3B). These together imply for the dominant role of 
peridotitic source for the studied Aeolian magmas. The only exception 
is the high Ni olivine subgroup from Alicudi that can't be explained by 
simple fractional crystallization (Figs. 3 and 4). This subgroup of 
olivines is characteristically higher in Ni, Fe/Mn, and lower in Ca than 
olivines from the other Aeolian Island olivines and is indicative of a 
crystalliza tion from a source that includes a pyroxenite component. 
These two groups also show distinct Ti crystallization trends, 
inconsistent with derivation from the same source. The high Ni 
olivines are markedly lower in Ti (less than 50 ppm) than the low Ni 
olivine group that display elevated Ti contents (up to 73 ppm). The 
low Ti concentrations in the high Ni olivine could reflect the 
sequestration of Ti by rutile in a pyroxenite source. The elevated Ni 
contents in olivine subgroup from Alicudi are unlikely to be explained 
by temperature dependence of Ni partition between olivine and melt 
(e.g. Li and Ripley, 2010; Matzen et al., 2013; Putirka et al., 2011) 
because these are arc magmas that are not particularly hot compared 
to other geologic environments such as intraplate plume related 

small subgroup from Alicudi, that displays elevated values up to 74. 
Calcium concentrations display two populations of crystals in Alicudi 
for forsteritic olivine (Mg number ~90), with one population 
reaching almost 2000 ppm and the other characterized by values 
less than 1000 ppm (Fig. 3C). The majority of the olivines from the 
other islands display Ca concentrations in the range between 1000 
and 2000 ppm. Olivines from the potassic rock of Stromboli range 
between 2000 and 2500 ppm Ca, with a maximum of 2369 ppm.
magmatism.
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Fig. 4. Plots of Mg-numbers versus Ni (A), Fe/Mn (B), and Ca (C) for subduction related 
olivines. Data from Aeolian Islands (this study), Irazu (Ruprecht and Plank, 2013), 
Vesuvius (Redi, 2014, PhD thesis), Argentina back-arc (Søager et al., 2015), and leucite-
lamproite (Ammannati et al., 2016). Irazu olivines represent averages of the most 
forsteritic points (Mg-number N88) of each sample traverse core to rim.
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Fig. 3. Mg-number versus Ni (A), Fe/Mn (B), and Ca (C) for Aeolian Islands olivines 
compared to peridotite source derived olivines (MORB, Sobolev et al., 2007) and 
pyroxenite source derived olivines (Mauna Kea, Sobolev et al., 2007; Quepos,  Trela et al., 
2015). Schematic liquid lines of descent for derivative melts from fertile peridotite 
KR-4003 are shown for olivine (thick purple line) and cotectic crystallization of 
olivine + clinopyroxene (thin purple line).

 

The olivine Ni data from the Stromboli calc alkaline series also dis-
play two distinct trends (Fig. 3A). Nevertheless, in this case they can
be explained by a higher Ni trend (at a given Mg#) that resulted from
earlier ol + cpx cotectic crystallization, relative to the low Ni trend.
This may reflect higher crystallization pressures that would initiate
early cpx fractionation. Fe/Mn values in the Aeolian olivines are
even markedly lower than estimated for peridotite sourced magmas
(Fig. 3B). This could exclude a significant role of pyroxenitic lithologies
in the sources, but most likely it reflects the oxidized conditions for the
crystallizing magmas (Krivolutskaya et al., 2012).

Calcium contents in Aeolian olivines are lower than expected for
olivines crystallizing from an anhydrous peridotite source (Fig. 3C).
This may result from an alternative peridotite source hydrated by sub-
duction fluids. Experimental data show that the main effect of H2O on
the partitioning behavior of Ca between olivine and melt is to decrease
the partition coefficient (DCa

ol/melt), as DCa
ol/melt is a function of olivine Mg

number, and suppressed with increasing H2O (Feig et al., 2006;
Gavrilenko et al., 2016). This effect is mostly observed in olivines with
depleted Ca concentrations, relative to those crystallizing from a
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Fig. 5. Plot of Ni/(Mg/Fe)/1000 and 100Mn/Fe vs. 100Ca/Fe used to discriminate 
between pyroxenite and peridotite source lithology. All the data are plotted as averages 
(1 standard deviation) for forsterite content ranging between 87 and 93. (A) General 
trend from magma crystallized principally by a pyroxenite olivine free source through a 
peridotite source in agreement with the global array of Sobolev et al. (2007). 
Noteworthy are the Aeolian samples overlapping the peridotite end-member. (B) 
General pyroxenite–peridotite trend is separated into an “intraplate trend” (high Ca/
Fe) and an “arc trend” characterized by low Ca/Fe values. Global olivine data: Ocean 
Island Basalt (OIB), Hawaii (Sobolev et al., 2007), Quepos (Trela et al., 2015), Canary 
Islands (Gurenko et al., 2009a, 2009b), Cape Verde (Barker et al., 2014), Iceland (Spice 
et al., 2016); Mid-Ocean Ridge Basalt (MORB) (Sobolev et al., 2007); Arc, Irazu 
(Ruprecht and Plank, 2013), Argentina back-arc (Søager et al., 2015), Vesuvius (Redi, 
2014, PhD The-sis), leucite-lamproite (Ammannati et al., 2016), Mediterranean 
lamproite (Prelević and Foley, 2007); Large Igneous Province (LIP), Curacao (Trela et al., 
2015), Gorgona (Coogan et al., 2014), Central Atlantic Magmatic Province (CAMP) 
(Whalen et al., 2015), North Atlantic Igneous Province (NAIP) (Spice et al., 2016). (C) 
Graph highlight-ing the bimodal distribution of olivine trace element characteristics for 
Alicudi. The wide range of olivine compositions for this island can be explained by 
olivine crystallization from two distinct melts sourced from pyroxenite (high-Ni group) 
and peridotite (low-Ni group) sources.
nominally anhydrous source, e.g., MORB. The represented olivine
liquid lines of descent (LLD) and the corresponding peridotite
source (Herzberg, 2011) were modeled for anhydrous magmas. We
note that H2O is not considered to have a great effect on Dol

Ni
/melt and

Dol
Fe
/
/M
me

n
lt. Vol  canic arcs commonly contain high H2O contents, on

average ~ 4 wt%(Plank et al., 2013), thus the water effect on Ca
partitioning requires fur ther evaluation. In the case of the Aeolian
Islands, water contents from olivine (Fo 88 91) hosted melt
inclusions range 2 4 wt% for Vulcano (Clocchiatti et al., 1994;
Gioncada et al., 1998) and 2  3 wt% for Alicudi (Sorbadere et al.
2012), while for Stromboli olivine (Fo 83 89) hosted melt inclusions
contain 2 4 wt%  of  H2O (Métrich et al., 2001, 2010).

We first compared our Aeolian Islands high precision olivine data
with olivine compositions from different mid ocean ridge and intra
plate volcanic settings derived from pyroxenite, peridotite, or a
mixture of the two sources. The Aeolian olivines partially overlap with
MORB olivines that are consistent with peridotite source melting
(Herzberg, 2011; Sobolev et al., 2007). Only very few high Ni samples
from Alicudi overlap with the intraplate olivines (Fig. 3A). This can be
seen in Fig. 3B where several high forsteritic samples of Alicudi with
high Fe/Mn ratios overlap with intraplate olivines. In contrast, the low
Ca contents are not consistent with either an anhydrous pyroxenite or
peridotite source. We suggest that the differences between the Aeolian
olivine composi tions and the intraplate olivine data (characterized by
high Ni and low Mn and Ca) are due to the different origins of the
respective melts. For example, both Mauna Kea and Quepos (accreted
Galapagos track in Costa Rica) olivines were interpreted as
crystallizing from pyroxenite derived primary magmas (Sobolev et al.
2007; Trela et al., 2015).

Because of the dominant effect of water on the partitioning
behavior of Ca in olivine, it is necessary to compare and contrast our
Aeolian olivine data with the limited available high precision olivine
data from arc settings (Fig. 4). In the Ni vs. Mg# systematic (Fig. 4A)
we observe that the Irazu (Costa Rica) and Argentinian back arc
olivines only, though overlap with the few relatively high Ni Alicudi's
data. Vesuvius olivines plot near the Aeolian data, though exhibit
trends lower in Ni and Fe/Mn and higher Ca at any given Mg# (Fig. 4A
C). These trends are also observed in most suprasubduction related
olivines and are thought to result from the more oxidized mantle
wedge compared with intraplate mantle sources (e.g., Krivolutskaya et
al., 2012) implying  that the use of olivine Fe/Mn from magmas
produced in arc related settings should be interpreted with caution as
a source lithological dis criminator, by always considering the internal
consistency with Ni and other trace elements. The Argentinian data
(Søager et al., 2015) are  characterized by high Fe/Mn ratios (Fig. 4B)
that exceed the modeled bound of 70 for observed olivines of a
peridotite source provenance (Herzberg, 2011), indicating a
pyroxenitic source mixing with a perido titic metasomatized mantle
by fluids (Søager et al., 2015). Irazu olivines (Fo N 88) also display
slightly higher Fe/Mn values and Ni, suggesting the need of a
pyroxenitic component in the generation of these lavas (Fig. 4A). In
terms of Ca contents, the Irazu and Argentinian olivines are similarly
low than the Aeolian Islands ones (Fig. 5C). This observa tion can be
readily explained by the influence of H2O on the partitioning of Ca
(Behrens and Schulze, 2000; Gavrilenko et al., 2016), as mentioned
before, and supports a fluid fluxed source for the Aeolian lavas, as well
as for Irazu and Argentina back arc examples. In contrast, Vesuvius
olivines are characterized by higher Ca contents (N2000 ppm), similar
to data from the leucites and lamproites found in Italy, (Ammannati et
al., 2016) and interpreted as a carbonated source. This source is
probably related to metasomatism of the mantle wedge through
melting of subducted carbonated pelites and/or reactions with the
carbonates in the crust (Ammannati et al., 2016; Dallai et al., 2011; Jolis et
al., 2013).

In order to evaluate global trends and minimize the effect of crystal
fractionation, we filtered the available global olivines database to

obtain primitive compositions, selecting Mg numbers N87. In Fig. 
5A and B  we represent data as averages (1 standard deviation) and 
plot Mn/Fe ratios against parameters useful to emphasize differences 
in source lithology and geodynamic settings (Sobolev et al., 2007). Fig. 
5A
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shows 100Mn/Fe vs. Ni/(Mg/Fe)/1000 and defines a clear array
between olivines derived from pyroxenite and peridotite sources. The
Aeolian Islands olivines clearly plot within the peridotite end member,
with the exception of the high Ni group of Alicudi olivines. The
differences in trace element systematics between the two Alicudi
olivine groups highlight the significance of having two lithologically
distinguishable sourced (peridotite and pyroxenite) melts in the
generation of Alicudi olivine (Fig. 5C). In contrast, Vesuvius olivines
plot outside the area defined by the pyroxenite peridotite end
members, but with composi tion similar to Stromboli olivines. The
composition of these olivines might represent a third lithological end
member, e.g., a peridotite metasomatized by carbonatitic melts
(Ammannati et al., 2016) found in some arc settings and/or olivine
crystallization from an oxidized melt (Krivolutskaya et al., 2012).

Fig. 5B clearly shows that olivines crystallizing from hydrous
peridotite derived liquids (as in an arc setting) systematically show
lower Ca concentrations and lower Mn/Fe ratios, relative to those that
crystallized from nominally anhydrous sources, e.g., OIBs and MORB.
This trend is subparallel to the intraplate trend, yet shows similar
variations between peridotite and pyroxenite end members. Detailed
hydrous peridotite and pyroxenite melting experiments and analysis
of derived olivine phenocrysts will place better constraints on the
mantle source end member compositions in subduction zone
settings. We suggest that the intraplate trend is related to the almost
anhydrous conditions that characterized OIB melts, while the arc
trend highlights the effect of H2O on the partitioning behavior of Ca
between melt and olivine (Berndt et al., 2005; Feig et al., 2006;
Libourel, 1999) and higher  oxidation of Fe. A water diffusion study by
Behrens and Schulze (2000) suggests that hydrous species strongly
bond to Ca complexes in melts, thus resulting in a decrease of calcium
activity in the melt and an overall decrease in calcium concentrations
in crystallizing olivine. The effects of temperature, pressure, and
oxygen fugacity are considered to be negli gible factors controlling the
calcium contents of olivine. Therefore, cal cium concentrations in
primitive olivine phenocrysts from island arcs may be a more useful
indicator of H2O concentrations in primary melts.

With the exception of some samples from the island of Alicudi, the
dominant role of a peridotite source for the Aeolian Islands is a sur-
prising result, given the fact that melt components have been
identified in the peripheral islands (Zamboni et al., 2016). This new
evidence sug gests that although from a trace element and isotopic
perspective the three different components that play a role in
producing magmas be neath the Aeolian Islands are peridotite,
subducted oceanic crust, and sediments (e.g. Francalanci et al., 2007;
Peccerillo and Frezzotti, 2015; Peccerillo et al., 2013), contrary to
Mexico (Straub et al., 2008), and Argentina (Søager et al., 2015) the
source composition is a hydrated peridotite. We suggest that the ratio
of silica rich melt (from the subducting oceanic crust) to peridotite
increases and as a consequence, the source can evolve from re-
fertilized peridotite to olivine bearing pyroxenite, and finally olivine
free pyroxenite depending on the pro portion of silicic melts that can
react with peridotite, and the convection processes in the mantle
wedge. Additionally, it is also possible that high degrees of partial
melting, common in the presence of water in arc settings, obscure the
role of melting pyroxenitic veins in a dominant pe ridotitic mantle.
Finally, carbonatitic melts with very low silica activities could react
with orthopyroxene to produce olivine (Neumann et al., 2002) and
thus, reverting the reaction produced by silica rich melts, thus adding
more complexity to the metasomatic reactions that result in arc
magmas.

Finally, we suggest that the use of Fe/Mn and Ca in olivines as
tracers of mantle source lithology in island arc settings (as they have
used for intraplate magmas) should be used with caution. Iron
partitioning between olivine and melt is sensitive to the state of
oxidation of the melt (which may be more oxidized in arc settings)
and Dol

Ca
/melt is sup pressed in hydrous melts. Therefore, the use of
nickel concentrations in olivine, coupled with other geochemical 
data (whole rock major and trace element), provides internal 
consistency to infer the source
lithology in arc settings, as DNi
ol/melt is not significantly affected by the 

state of oxidation or H2O content of the melt.
Supplementary data to this article can be found online at http://dx

doi.org/10.1016/j.lithos.2016.12.004.
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