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A competitive design-based spatial predictor

A. Vaghegginia∗ F. Brunoa and D. Cocchia

Summary: Under the finite population design-based framework, locations’ spatial information coordinates

of a population have traditionally been used to develop efficient sampling designs rather than for estimation

or prediction. We propose to enhance design-based individual prediction by exploiting the spatial information

derived from geography, which is available for each population element before sampling. Individual

predictors are obtained by reinterpreting deterministic interpolators under the finite population design-

based framework, making it possible to derive their statistical properties. Monte Carlo experiments on real

and simulated data help to appreciate the performances of the proposed approach in comparison both with

estimators that do not employ spatial information and with kriging. We found that under the most favourable

conditions for kriging, the proposed predictor shows good performances, particularly for small sample sizes.

Keywords: Finite populations design-based inference; Finite populations model-based inference;

Individual spatial prediction.

1. INTRODUCTION

Prediction in finite populations is often performed under a model-based approach, where a

superpopulation is assumed (Little, 2004, 2014). Samples are used for estimating model

hyperparameters, which are the basis for the prediction of unsampled individual values

(Bolfarine and Zacks, 1992). Model misspecification is, in this case, a real danger: the

unsuitability of the proposed superpopulation model is a major criticism to model-based

inference in finite populations. Superpopulation models are also the typical statistical
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tools for individual probabilistic prediction in spatially structured populations; the most

popular method is kriging, which exploits a stochastic setting opposite to the deterministic

interpolators that are popular in geography.

On the other hand design-based inference has a very long and established tradition in

finite population theory. It relies on considering the population elements as unknown non-

random quantities, while the only source of randomness lies on the discrete distribution that

manages sample drawing (Gregoire, 1998). Totals, means or ratios are the most common

objects of estimation. Design-based methods have traditionally not been considered suitable

for spatially structured populations due to a conceptual misunderstanding first highlighted by

Brus and de Gruijter (1997). Indeed, probabilistic sampling was believed not able to capture

the spatial dependence of the problem at hand. However, in recent decades, a reappraisal

of these methods has been promoted (Cox et al., 1997; Stehman, 2000; Wang et al., 2012)

because, as suggested by de Gruijter and ter Braak (1990), a probabilistic sampling design

selects locations and not the values of the variable under study. Baffetta et al. (2009) derive a

design-based estimator of population synthetic quantities based on the k -nearest neighbour

method for data from remotely sensed digital imagery. Cicchitelli and Montanari (2012) use

geographical relationships as auxiliary variables in the structure of design-based estimators,

allowing them to sensibly improve the performance of the estimators of the population total.

Margalho et al. (2014) instead propose to include the sampling design in the prediction

model as a covariate.

Individual spatial prediction is routinely performed either under a statistical model-based

framework, usually via kriging (Cressie, 1993; Stein, 1999), or via deterministic interpolators

in a non-stochastic framework (Mitas and Mitasova, 1999). Both approaches present some

drawbacks. Indeed, kriging may not be suitable when the available sample size is small

because it needs the semivariogram parameter estimation, performed using the few locations

available and therefore only a few spatial lags. Conversely, deterministic spatial interpolators
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which use weights that depend on functions of the spatial distances between the observed

locations, fail to capture the random nature of the phenomenon being studied, because

they are based only on the geographical arrangement, making it impossible to assess any

probabilistic property (Webster and Oliver, 2007; Li and Heap, 2008).

In this paper, we illustrate how probabilistic structures can be associated with such

interpolators. Thus, when the set of available locations is seen as the outcome of a

probabilistic sampling design, any deterministic interpolator can be reinterpreted under

randomization. This consideration fits with the finite population design-based inference

paradigm, where the weighting system associated with any estimator is constructed for

the whole population before sampling and is not constructed only for the available data

set. Recently, Vagheggini (2013) proposed a new method for design-based spatial inference,

leading to a predictor able to use the spatial information known at the population level to

obtain individual values at any location.

Our aim is to use spatial information at the estimation level rather than at the sampling

design level. When dealing with spatial data under a design-based framework, we consider

geographical locations as further information associated with each population element.

Spatial coordinates constitute a very special type of information ; geographical proximity

can improve inference, but its influence must be assessed. Spatial coordinates must be kept

separate from labels, still remaining population elements identifiers; thus, when coordinates

are preserved, simple random sampling, which is the basic randomization of a population,

does not contrast with spatial inference. This setting allows for a renewed motivation to

equal probability random sampling, in a context where spatial information is separated from

labels. On the converse, varying probability sampling is able to exploit information on an

auxiliary variable that customarily does not correspond to spatial information. Its degree of

association with study variable is often measured by the linear correlation coefficient.

In what follows, we refine the approach of Bruno et al. (2013) under a probabilistic sampling
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design. The presentation is structured as follows. In the next section, spatial interpolators are

revisited under the design-based framework. Section 3 summarizes the statistical properties

of the individual predictor. Monte Carlo experiments on a real environmental data and

simulated populations are described in Section 4, where we compare kriging with the results

obtained from the proposed design-based strategy. A thorough discussion concludes the

paper. Appendix A contains proofs of the propositions stated in Section 3 and Appendix B

reports results in the special case of simple random sampling.

2. REVISITING SPATIAL INTERPOLATION UNDER THE

DESIGN-BASED FRAMEWORK

In this work, we introduce a methodology for design-based individual prediction. Starting

from a deterministic interpolator, we consider the set of known locations used to construct

the interpolating function as the realization of a fixed-size probabilistic sampling design. We

thus need to conform the usual design-based inference assumptions to the case under study.

First, design-based techniques rely upon considering the values in the population as fixed

but unknown; therefore, the probabilistic sampling design is the only source of randomness.

For this reason, without loss of generality, we assume that the values at any location in the

domain are the outcome of an unknown deterministic function of the coordinates. Second,

in this work, we specifically address the case of a finite population; however, following the

results of Cordy (1993), extending this case to the case of sampling from a continuous domain

is straightforward (Vagheggini, 2013).

We develop the idea of using the spatial information at the estimation level rather than at

the sampling design level, as already introduced by Bruno et al. (2013). The starting point

is a deterministic spatial interpolator that usually is not associated with any uncertainty

measure. When the set of known locations is considered as a realization of a probabilistic
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sampling design, then the deterministic interpolator itself can be randomized because the

extraction of each population element is managed by probability.

2.1. From a deterministic interpolator to a design-based individual spatial

predictor

Let us consider a bounded spatial domain D Ă R2 and a function zpuq, u P D.

Furthermore, let L “ tu1, . . . ,unu be the set of n available locations, each with geographical

coordinates ui “ pxi, yiq. According to this notation, a spatial interpolator is defined as

a weighted sum of the observed values; whether it assigns the true value to the known

locations, the interpolator is defined as exact. A class of exact interpolators that generalizes

the proposal of Shepard (1968) is

pzpuq “

$

’

’

&

’

’

%

ÿ

iPL

wizpuiq, if u R L;

zpuq, otherwise,

(1)

where the weights are standardized monotonically decreasing functions of the Euclidean

distances between locations in the domain

wi “
fp}ui ´ u}q

ÿ

iPL

fp}ui ´ u}q
.

The weighting system states, as a milestone of our future considerations, that geographical

proximity favours the similarity of values of the variable under study.

Furthermore, let us suppose that we are interested in estimating the value of the variable

under study at a finite number of locations in the domain D or that a (regular) finite

grid has been superimposed over the spatial domain D. In the former case, we assume

that the coordinates are known for each location before sampling; in the latter, without
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loss of generality, we assume to know the coordinates of the centroid ui “ pxi, yiq of each

grid element. Both cases fit the idea of finite population inference where a population P of

size N is considered. By considering the number of spatial locations as finite, we are able to

define the N ˆN symmetric matrix Φ collecting the appropriate values of the function of

Euclidean distances of each location from any other in the off-diagonal elements and having

null diagonal values

Φ “

»

—

—

—

—

—

—

—

–

0 fp}u2 ´ u1}q ¨ ¨ ¨ fp}uN ´ u1}q

fp}u1 ´ u2}q 0 ¨ ¨ ¨ fp}uN ´ u2}q

...
...

. . .
...

fp}u1 ´ uN}q fp}u2 ´ uN}q ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Moving to a finite population design-based framework, one can see the set L of known

locations as the realization of a fixed-size probabilistic sampling design which can now

be denoted as s, as customary in survey sampling. Formally, we define S as an arbitrary

element of the σ-algebra of all possible samples belonging to the sample space; s is the

realization of S. Let us suppose that the values zpu1q, . . . , zpuNq refer to an unknown

non-stochastic function, z : D Ñ R, evaluated at the sampled locations, u1, . . . ,un. We

propose a way to exploit the spatial information at the estimation level, stating that any

sampling design without replacement appears more suitable because it guarantees that the

spatial information will be used only once. Inclusion in sample S is therefore managed

by the Bernoulli random variables IpiPSq, i “ 1, . . . , N , such that πi “ Prpi P sq ą 0 for

all i P P ; the Bernoulli random variables can be collected in the N -dimensional random

vector q “ rIp1PSq, . . . , IpNPSqsJ. Analogously, inclusion of a generic t-tuple of locations

ui,ui`1, . . . ,ui`t´1, is managed by the Bernoulli random variables Ipi,i`1,...,i`t´1PSq such that

πi,i`1,...,i`t´1 “ Prpi, i` 1, . . . , i` t´ 1 P sq ą 0 for all i, i` 1, . . . , i` t´ 1 P P . Quantities

πi,i`1,...,i`t´1 are the tth-order inclusion probabilities. Once a sample s is drawn from the
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population, the realization of the random vector q is the N -dimensional vector containing

n unit values in correspondence of the sampled locations and zero otherwise. Exclusion

from the sample is managed by the complement to one of the Bernoulli random variables

managing inclusion, (i.e. 1´ IpiPSq) because inclusion in and exclusion from the sample are

two mutually exclusive events. These considerations lead to rewrite interpolator (1) as an

individual design-based predictor as follows.

Let us rewrite the weighting system of interpolator (1) accordingly to the finite population

design-based framework previously highlighted

hi “ IpiPSqei ` p1´ IpiPSqqq ˝ φi, i “ 1, . . . , N, (2)

where φi “ Φei is the ith column of matrix Φ, ei is the ith N -dimensional canonical basis

and ˝ is the (Hadamard) element-wise product. Then, the interpolator for the ith generic

location can be rewritten as a design-based individual predictor, resulting in the ratio of

linear combinations of random quantities

ẑpuiq “ ph
J
i 1Nq

´1hJi z (3)

“

IpiPSqzpuiq ` p1´ IpiPSqq
ÿ

j‰i

φijzpujqIpjPSq

IpiPSq ` p1´ IpiPSqq
ÿ

j‰i

φijIpjPSq
, i “ 1, . . . , N,

where φij “ fp}uj ´ ui}q is the ij th element of matrix Φ. Predictor (3) can be rewritten in

matrix form to account for predictions at all the locations in the domain

ẑ “ diagpH1Nq
´1Hz, (4)

where z “ rzpu1q, . . . , zpuNqs
J is the N -dimensional vector collecting the population values;

and H “ rh1, . . . ,hN s
J is the N ˆN matrix collecting by row the non-normalized weighting
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vectors hi. Individual predictor (3), when the ith location is sampled, assumes the observed

value; for unsampled locations, it computes expression (1), further adding uncertainty

according to the principles of design-based finite population inference.

3. STATISTICAL PROPERTIES OF THE INDIVIDUAL SPATIAL

PREDICTOR

Individual predictor (3) is a ratio of linear combinations of random quantities and, therefore,

its properties can be analytically obtained only in approximated form.

Theorem 1 The first-order Taylor expansion approximated expectation of predictor (3) is

Erẑpuiqs »
pπiei ` pπ ´ rπiq ˝ φiq

Jz

pπiei ` pπ ´ rπiq ˝ φiq
J1N

, (5)

where vector π “ pπ1, . . . , πNq
J collects the first-order inclusion probabilities and vector rπi “

pπ1i, . . . , πpi´1qi, πi, πpi`1qi, . . . , πNiq
J involves first- and second-order inclusion probabilities in

the sample.

Proof. See Appendix A.

Theorem 2 The first-order Taylor expansion approximated variance of predictor (3) is

Vrẑpuiqs » kJi Erhih
J
i ski (6)

where we define vector

ki “
pπiei ` pπ ´ rπiq ˝ φiq

J1N z´ pπiei ` pπ ´ rπiq ˝ φiq
Jz 1N

pπiei ` pπ ´ rπiq ˝ φiq
J1Nq

2
(7)

and the expectation of quantity hih
J
i

Erhih
J
i s “ πieie

J
i ` p

rΠ´ qΠiq ˝ φiφ
J
i , (8)
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which involves matrix rΠ collecting the column vectors rπi and matrix qΠi “ ErIpiPSqqqJs,

which involve the inclusion probabilities up to the third-order.

Proof. See Appendix A.

The individual predictor is finite population consistent (Särndal et al., 1992)

lim
nÑN

ẑpuiq “ zpuiq,

as interpolator (1) is exact.

Theorems 1 and 2 for simple random sampling without replacement (SRSWoR) are shown

in Appendix B.

4. ASSESSMENT OF PREDICTOR PERFORMANCES

In this section, we evaluate and compare the performances of several individual predictors in

varying spatial scenarios under different sampling designs. Our aim is to highlight situations

where our proposal is competitive with respect to kriging, which is the benchmark model-

based technique.

Design-based inference is rather rigid: it makes use of the spatial information by means of

matrix Φ, which summarizes the inter-subjective shared geographical knowledge. A different

aspect is represented by the choice of useful auxiliary information for varying probability

sampling. Suitable auxiliary variables follow the basic geography laws, according to which

individuals that are close tend to share more similar values than individuals that are far, as

well as are strongly correlated with the study variable. We do not debate between design- and

model-based inference in finite population, which has already been thoroughly examined, for

instance, by Hansen et al. (1983), Little (2004) and Wang et al. (2012).

In order to investigate the properties of predictor (3), we first take into account a real

dataset. Then, we conduct a simulation study for better managing different aspects of spatial
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populations. A Monte Carlo experiment is performed in both cases for assessing the behaviour

of the predictor.

4.1. A case study

Environmental literature is rich of spatial datasets, very often analyzed via statistical

techniques by data collectors. When spatial data are processed by non-statisticians, non-

stochastic predictors are usually adopted without associating uncertainty to them. As

statisticians, with (3), we make a proposal able to attach a measure of uncertainty to

the prediction; therefore, we highlight the design-based spatial predictor performances by

starting from a popular environmental dataset.

We refer to a dataset available in the R CRAN’s library geoR (Ribeiro Jr and Diggle, 2001),

in this way by giving the possibility of testing further methodological proposal. The Kattegat

dataset consists of 70 measures of salinity (Diggle and Lophaven, 2006) taken in the estuaries

between Denmark and Sweden limited by the North Sea (see Figure 1). Water exchange

between the Baltic Sea and the North Sea through Kattegat is closely coupled to the wind

conditions. Salinity is given in psu (practical salinity unit). In the Kattegat salinity varies

from approximately 30 psu in the northern part to approximately 20 psu in the south; a

decreasing large scale component in this direction might be assumed. Values above 30 psu

are termed as oceanic environment while freshwater is characterised by values less than 0.5.

Distances between locations range from 0.65 to 212.15 kilometres.

[Figure 1 about here.]

The population size leads to a number of possible samples that is not computationally

manageable; thus, a Monte Carlo experiment is performed. The samples of the Monte

Carlo experiment constitute a randomly drawn subset of the sampling space having a

computationally manageable dimension; eight sampling fractions, varying from 0.05 to 0.40

by 0.05, are considered. For each sampling fraction, 1000 random samples are drawn and
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for each of them predictor (3) is computed under two different choices of function f of the

Euclidean distances. Firstly, we consider the inverse squared distance between a specified

location u1 and the generic location u in the spatial domain

φij “ }uj ´ ui}
´2, (9)

in this way randomizing, under a design-based framework, the inverse distance weighted

(IDW) interpolator proposed by Shepard (1968). Secondly, we use a Gaussian kernel of the

Euclidean distances between a specified location u1 and any generic other u in the domain

φij “ exp

"

´
}uj ´ ui}

2

2r2

*

, (10)

where r is the bandwidth, or radius, of the kernel. Along with predictor (3), the kriging

predictor (Cressie, 1993) and the individual predictive form of the estimator of the total

(Bolfarine and Zacks, 1992), which assigns the sample mean to the unsampled elements of

the population

ẑpuiq “

$

’

&

’

%

zpuiq, if ui has been sampled;

z̄, otherwise,
(11)

are also computed. Results are summarised in terms of bias and RMSE in Figures 2 and 3,

respectively.

Each figure contains the eight boxplots of predictors’ bias or RMSE at the different sample

sizes. Predictor (11) (denoted in both figures as “BZ”) gives, in terms of bias, the worst

performances for all sampling fractions. The result was expected since this predictor does not

account for spatial information. For the other three predictors, the spatial information enters

in the weights according to equations (9) and (10) for IDW and Gaussian kernel (G in both

figures), as well as in the estimation of the variogram and trend for kriging. The median bias
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is very close to zero for all sampling fractions. In particular for IDW and G, it is almost always

negative and ranges from -0.16 to 0.09 and from -0.08 to 0.04, respectively. An exception

occurs for the smallest sampling fraction: the kriging’s bias is always positive and ranges

from 0.08 to 0.14. The bias for IDW decreases as the sampling fraction increases whereas it

is almost stable for G. The boxplot sizes decrease as the sampling fraction increases, meaning

that the biases tend to be similar for each predictor considered; since they are close to zero,

the predictor can be considered as unbiased.

[Figure 2 about here.]

In terms of RMSE (Figure 3), except for the smallest sampling fraction, estimator (11) is

always the worst; performances of the other three predictors are almost equivalent. In the

first plot, kriging presents a very large RMSE that can be ascribed to the small dimension

of the sample and the difficulty of estimating reliable variograms. For the other sampling

fractions RMSE varies from 1.21 to 2.47 for IDW, from 1.02 to 2.06 for G and from 1.081 to

2.63 for kriging.

[Figure 3 about here.]

As a conclusion, proposal (3) suits for the Kattegat dataset, since its performances, both in

terms of bias and RMSE, are equivalent to the kriging’s, without suffering of the model-based

solution pitfalls.

4.2. Simulated data

A simulation study is performed to thoroughly investigate the behaviour of predictor (3)

in comparison with the design- and model-based results in the case of spatially varying

populations (in the spirit of Baffetta et al., 2009; Vagheggini, 2013; Bruno et al., 2013). This

simulation study is necessary to assess via computation the analytic properties of predictor

(3). The unmanageable sampling space led us to perform a Monte Carlo study to estimate
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the performances of the predictor. The spatial domain is a regular grid of dimension 15ˆ 15

on the unit square (i.e., a total of 225 point units). Data are generated according to Gaussian

random fields with fixed mean, µ, and sill, σ2, equal to 2 and 4, respectively; the nugget effect,

η, is null. Various spatial correlation structures are taken into account via three different

semivariogram models (i.e. exponential, Gaussian and a pure nugget) in order to appreciate

the performances of predictor (3) in relation to the geographical distribution of the data.

The chosen parameterization fixes the same effective range (h “ 0.7) for the exponential

and Gaussian semivariogram models; the pure nugget semivariogram imposes a null effective

range as it is an uncorrelated spatial process.

For each of the three superpopulation models so obtained, we generate 100 populations. For

each of these, three different auxiliary variables are generated over the same spatial domain

imposing linear correlation with the study variable of ρ “ 0.35, 0.50, 0.85. Each auxiliary

variable is used to compute the first-order inclusion probabilities as the proportions of the

auxiliary variable values over their total in the varying probability without replacement

sampling (VPSWoR).

For each of the populations obtained, the Monte Carlo experiment consists of drawing

1000 random samples using the SRSWoR and VPSWoR designs at three different sampling

fractions (i.e., f “ 0.05, 0.10 and 0.15). For each sample, the value of the study variable at

unsampled locations is predicted by means of predictor (3) under two different choices of

function f of the Euclidean distances: IDW and G corresponding to equations (9) and (10),

respectively. The kriging predictor and the individual predictive form of the estimator of the

total (11) are computed as well (in the case of SRSWOR z̄ in (11) is the sample mean, whereas

for VPSWoR it corresponds to the usual probability weighted estimator). The comparison is

then performed via the bias and root mean squared error (RMSE) computed for each point

of the domain over the 1000 Monte Carlo samples. The values of the bias and RMSE so

obtained, are then averaged over the 100 populations generated from each superpopulation
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model, allowing to reduce the randomness induced by the random field. In the Monte Carlo

experiment, we impose the same semivariogram model used for generating the corresponding

populations in the kriging predictions, also the initial values used in the REML parameter

estimation are set equal to those of the superpopulation model thus preventing the danger

of misspecification; this simulation context puts kriging in the best case scenario.

In this simulation we address the following four topics. First, we check whether the use

of Euclidean distances improves design-based individual spatial predictions. Secondly, we

assess how the sample fraction influences the performances of the design-based individual

predictor by itself or compared to the kriging predictor. Third, we compare the results

obtained using SRSWoR and VPSWoR. Finally, we study whether the spatial dependence

structure influences the performances of the design-based individual predictor in itself and

in comparison with the kriging predictor. As mentioned above, all evaluations are based on

the bias and RMSE averaged over the 100 generated populations, as shown in Figures 4-7.

Each figure is composed of nine plots, where each row collects the results of one of the three

superpopulations and each column shows one of the three sampling fractions. Each plot

contains the boxplots of the overall bias (Figures 4 and 5) or RMSE (Figures 6 and 7) for

all the strategies of sampling designs and predictors. Light boxplots refer to the results of

the SRSWoR, while the dark boxplots refer to those of VPSWoR.

Figure 4 presents the boxplots of the overall bias of all 225 points in the domain obtained

in the cases of SRSWoR (light boxplots) and VPSWoR (dark boxplots) when the auxiliary

variable is generated with a correlation of ρ “ 0.35 with the variable under study. First of all,

when comparing results of predictor (11) and our proposal, it appears that the use of spatial

information reduces bias. The overall median bias in case of SRSWoR is approximately null,

whereas when using VPSWoR, overestimation is detected. This is less evident when the

data come from a superpopulation model with a Gaussian semivariogram. Regardless of the

sample fraction and the semivariogram structure, the biases of the IDW and G predictors
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are approximately equal to that of kriging.

[Figure 4 about here.]

Figure 5 compares SRSWoR and VPSWoR when the auxiliary variable is generated with

a correlation of ρ “ 0.50. The results for the SRSWoR case are equal to those of Figure 4

because the auxiliary variable does not affect this sampling plan. In this case, the Monte Carlo

experiment shows that the bias of VPSWoR slightly increases regardless of the sampling

fraction and the semivariogram model, except for (11), which reduces its bias. Since the

results when ρ “ 0.85 have the same behaviour we do not show the corresponding figure.

[Figure 5 about here.]

Figure 6 compares the RMSE of the four predictors in the presence of different

semivariogram models and at different sampling fractions; again, the light boxplots refer

to SRSWoR, while the dark boxplots to VPSWoR. The auxiliary variable is generated

with ρ “ 0.35. In this case, estimator (11) shows the poorest performance. When increasing

the sampling fraction, the RMSE of all spatial predictors decreases, with higher evidence

when data are generated imposing a Gaussian semivariogram. Negligible differences appear

between the RMSE obtained for SRSWoR and VPSWoR; therefore, SRSWoR could be

adopted without reducing performance. When the exponential semivariogram model is

used to generate populations (i.e., the upper panels), the spatial predictors present similar

performances: the kriging predictor and the two different specification of predictor (3) are

very similar for all sampling fractions. For this spatial superpopulation, which is usually

characterized by smooth behaviour in space, the three predictors are almost equivalent in

terms of RMSE. When data are generated under the Gaussian semivariogram model (i.e.,

in the central panels), sampling fractions affect the performances of the spatial predictors

by reducing their RMSE. At the smallest sampling fraction, they present very similar

performances; as the sampling fraction increases, the kriging predictor tends to perform
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better. This is likely due to the spatial clusters that characterize populations generated from

random fields with Gaussian semivariogram. In this simulation, this peculiarity seems to

be better captured by kriging rather than by the rather simple functions of the Euclidean

distances (9) and (10). The results on the pure nugget superpopulation model (i.e., the lower

panels) show that kriging has quite a lower RMSE than the other techniques, particularly

at the lowest sample size. As the sampling fraction increases, the RMSE slightly decreases,

but less so for kriging; at f “ 0.15 the three predictors have nearly identical performances.

For the pure nugget case, the improvement in considering Euclidean distances (i.e., IDW

and G) in a design-based setting is still appreciable but not as evident as for the other

superpopulations with different semivariogram models. This result is reasonable because

the pure nugget model corresponds to a spatially uncorrelated process where employing

distances in predictions is theoretically irrelevant. At each sampling fraction, the RMSE

of the individual spatial predictor is always lower for populations generated by imposing a

Gaussian semivariogram rather than an exponential one to the random field.

[Figure 6 about here.]

Figure 7 collects the boxplots of the overall RMSE for the SRSWoR (light), which is the

same as in Figure 6, and for the VPSWoR (dark) when the auxiliary variable is generated

with a correlation of ρ “ 0.50. Differences with the results obtained for ρ “ 0.35 are almost

negligible except for the pure nugget model at f “ 0.05. In this case, choosing VPSWoR

produces lower RMSE, regardless of the technique used. Surprisingly, for VPSWoR with the

pure nugget superpopulation model, increasing the sampling fraction leads to higher RMSE.

Generating the auxiliary variable with a correlation of ρ “ 0.85 produces results similar to

those obtained by imposing ρ “ 0.50 which are not reported.

[Figure 7 about here.]
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5. CONCLUSIONS

Design-based individual prediction constitutes an inter-subjective alternative to kriging,

since the specification of a superpopulation model, in the case of kriging, is based on the

researcher’s conjectures. On the contrary, the definition of matrix Φ, which is a collection of

functions of the Euclidean distances between locations, can be negotiated before sampling.

In this paper, individual design-based spatial predictor (3) is compared with kriging and

predictor (11). The design-based individual predictor performs well when the geographical

relationship among elements, defined through the decreasing function of the Euclidean

distances collected in matrix Φ, mimics the spatial distribution of the study variable over

the entire domain, both in the environmental example and in the simulation experiment.

According to our knowledge in this field, the proposal of a spatial design-based individual

predictor represents a novelty. For any sampling design, the comparison of this proposal with

predictor (11) shows that using spatial information in estimation reduces bias and, therefore,

RMSE.

In our simulation study, when assessing kriging predictions, we choose to model the spatial

correlation by adopting the same semivariogram models used for generating populations.

Thus, we somewhat prevented the misspecification problem by placing kriging in the most

favourable scenario. Therefore, the validity of this proposal is strengthened by the biased

experimental conditions imposed as favourable to kriging, which are far from real world

applications.

The comparison with kriging needs a deeper discussion. First, if some spatial correlation is

assumed, bias and RMSE of predictor (3) appear very similar to those of kriging. At small

sample sizes, in some cases, our proposal has even better performances (e.g. in the application

to a real dataset). Conversely, when data are generated according to an uncorrelated spatial

process (i.e., the pure nugget model), kriging always shows better performances regardless

of the sampling fraction, because it produces reliable estimates of the sill parameter. Despite
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this, kriging does not substantially outperform our proposal. Second, it is known that kriging

predictions are not robust when sample sizes are small; since the few available spatial lags

are not enough to obtain good estimates of the parameters of the semivariogram model. In

fact, at the lowest sample size, predictor (3) has approximately the same null bias as kriging

and RMSE values that in some cases outperform kriging. Adopting VPSWoR does not affect

RMSE, but unfortunately produces higher bias. Varying probability sampling is known as

a very appropriate tool for improving finite population inference, when auxiliary variables

are available for building unequal inclusion probabilities is available. However, geographical

information is available for all population elements, and may improve inference even when

simple random sampling is performed.

In general, improvements in inference due to the knowledge of a quantitative auxiliary

variable producing varying inclusion probabilities is lower than the direct use of geographical

information in design-based inference.

This work is the first step towards the development of inference on population summaries

(i.e., means or totals), able to account for spatial information available before sampling, in

agreement with the idea of model-assisted design-based inference proposed by Cassel et al.

(1976) and Särndal et al. (1992).

ACKNOWLEDGEMENTS

The research of the first two authors was funded by a FIRB 2012 grant (project

no. RBFR12URQJ; title: Statistical modelling of environmental phenomena: pollution,

meteorology, health and their interactions) for research projects by the Italian Ministry

of Education, Universities and Research.

18



A competitive design-based spatial predictor Environmetrics

REFERENCES

Baffetta F, Fattorini L, Franceschi S, Corona P, 2009. Design-based approach to k-nearest neighbours

technique for coupling field and remotely sensed data in forest surveys. Remote Sensing of Environment

113(3): 463–475.

Bolfarine H, Zacks S, 1992. Prediction Theory for Finite Populations. Springer–Verlag, New York.

Bruno F, Cocchi D, Vagheggini A, 2013. Finite population properties of individual predictors based on spatial

patterns. Environ Ecol Stat 20: 467–494.

Brus D, de Gruijter J, 1997. Random sampling or geostatistical modelling? Choosing between design-based

and model-based sampling strategies for soil (with discussion). Geoderma 80: 1–44.

Cassel CM, Särndal CE, Wretman JH, 1976. Some results on generalized difference estimation and generalized

regression estimation for finite populations. Biometrika 63(3): 615–620.

Cicchitelli G, Montanari G, 2012. Model-assisted estimation of a spatial population mean. Int Stat Rev 80:

111–126.

Cordy C, 1993. An extension of the Horvitz-Thompson theorem to point sampling from a continuous universe.

Statistics & Probability Letters 18: 353–362.

Cox D, Cox L, Ensor K, 1997. Spatial sampling and the environment: some issues and directions. Environ

Ecol Stat 4: 219–233.

Cressie N, 1993. Statistics for Spatial Data. Wiley, New York.

de Gruijter J, ter Braak C, 1990. Model-free estimation from spatial samples: a reappraisal of classical

sampling theory. Math Geol 22: 407–415.

Diggle P, Lophaven S, 2006. Bayesian geostatistical design. Scandinavian Journal of Statistics 33(1): 53–64.

Gregoire T, 1998. Design-based and model-based inference in survey sampling: appreciating the difference.

Canadian Journal of Forest Research 28: 1429–1447.

Hansen MH, Madow WG, Tepping BJ, 1983. An evaluation of model-dependent and probability-sampling

inferences in sample surveys. Journal of the American Statistical Association 78(384): 776–793.

Li J, Heap A, 2008. A Review of Spatial Interpolation Methods for Environmental Scientists. Geoscience

Australia, Canberra.

Little RJ, 2004. To model or not to model? competing modes of inference for finite population sampling.

Journal of the American Statistical Association 99: 546–556.

Little RJA, 2014. Survey sampling: Past controversies, current orthodoxies, and future paradigms. In Lin

19



Environmetrics A. Vagheggini, F. Bruno and D. Cocchi

X, Genest C, Banks D, Molenberghs G, Scott D, Wang JL (eds.), Past, Present and Future of Statistical

Science, COPSS 50th Anniversary Volume, chapter 37, CRC Press.

Margalho L, Menezes R, Sousa I, 2014. Assessing interpolation error for space–time monitoring data.

Stochastic Environmental Research and Risk Assessment 28: 1307–1321.

Mitas L, Mitasova H, 1999. Spatial interpolation. In Longley P, Goodchild M, DJ M, DW R (eds.),

Geographical Information Systems: Principles, Techniques, Management and Applications, volume 1,

chapter 34, Wiley, London.

Ribeiro Jr P, Diggle P, 2001. geoR: A package for geostatistical analysis. R-NEWS 1: 14–18.

Särndal CE, Swensson B, Wretman J, 1992. Model Assisted Survey Sampling. Springer-Verlag, New York.

Shepard D, 1968. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the

1968 23rd ACM national conference.

Stehman S, 2000. Practical implications of design-based sampling inference for thematic map accuracy.

Remote Sens Environ 75: 35–45.

Stein M, 1999. Interpolation of Spatial Data: Some Theory for Kriging. Springer-Verlag, New York.

Stuart A, Ord K, 1987. Kendall’s Advanced Theory of Statistics: Distribution Theory, volume 1. Arnold,

London.

Vagheggini A, 2013. Employing Distances in Design-based Employing Distances in Design-based Spatial

Estimation. Ph.D. thesis, Department of Statistical Sciences, University of Bologna.

Wang JF, Stein A, Gao BB, Ge Y, 2012. A review of spatial sampling. Spatial Statistics 2: 1–14.

Webster R, Oliver M, 2007. Geostatistics for Environmental Scientists. John Wiley and Sons, Chichester.

APPENDIX

A. PROOFS

A.1. Approximated Expectation

Following Stuart and Ord (1987), the expectation of predictor (3) is obtained in approximate

form using the first-order Taylor approximation because the individual predictor is the ratio

of linear combinations of random quantities.
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Proof of Theorem 1. Starting from equation (3) the first-order Taylor approximation of the

expectation is

Erẑpuiqs » pErhis
J1Nq

´1Erhis
Jz.

Expectation of vector hi is

Erhis “ ErIpiPSqsei ` Erp1´ IpiPSqqqs ˝ φi

“ πiei ` pπ ˝ φi ´ rπi ˝ φiq

“ πiei ` pπ ´ rπiq ˝ φi,

where ErIpiPSqs “ πi is the first-order inclusion probability which can be

collected in the vector Erqs “ π “ pπ1, . . . , πNq
J and vectors ErIpiPSqqs “ rπi “

pπ1i, . . . , πpi´1qi, πi, πpi`1qi, . . . , πNiq
J are retrieved.

A.2. Approximated Variance

For the same reasons as for the expectation, the variance of the individual predictor is

obtained in approximate form using the first-order Taylor approximation.

Proof of Theorem 2. The resulting first-order Taylor approximation of the variance is

Vrẑpuiqs »
ErphJi zq2s pErhJi s1Nq

2

pErhJi s1Nq
4

´ 2
ErhJi zhJi 1N s ErhJi sz ErhJi s1N

pErhJi s1Nq
4

`
ErphJi 1Nq

2s pErhJi szq
2

pErhJi s1Nq
4

“
pErhJi s1N zJ ´ ErhJi sz 1JNqErhih

J
i spErh

J
i s1N z´ ErhJi sz 1Nq

pErhJi s1Nq
4

“ kJi Erhih
J
i ski, (A.1)

where the last equality is obtained via algebraic manipulation.
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Vector ki is defined as

ki “
ErhJi s1N z´ ErhJi sz 1N

pErhJi s1Nq
2

“
pπiei ` pπ ´ rπiq ˝ φiq

J1N z´ pπiei ` pπ ´ rπiq ˝ φiq
Jz 1N

pπiei ` pπ ´ rπiq ˝ φiq
J1Nq

2
.

Expectation of matrix hih
J
i is

Erhih
J
i s “ ErIpiPSqeie

J
i s ` Erpq ˝ φiqpq ˝ φiq

J
s ´ ErIpiPSqpq ˝ φiqpq ˝ φiq

J
s

“ ErIpiPSqeie
J
i s ` ErqqJs ˝ φiφ

J
i ´ ErIpiPSqqqJs ˝ φiφ

J
i

“ πieie
J
i `

rΠ ˝ φiφ
J
i ´

qΠi ˝ φiφ
J
i

“ πieie
J
i ` p

rΠ´ qΠiq ˝ φiφ
J
i .

In the previous equation we define matrix ErqqJs “ rΠ “ prπ1, . . . , rπNq
J collecting the

second-order inclusion probabilities in the off-diagonal elements and the first-order ones

in the diagonal, and matrix

ErIpiPSqqqJs ˝ φiφ
J
i “

qΠi “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

π1i π12i ¨ ¨ ¨ π1i ¨ ¨ ¨ π1Ni

π21i π2i ¨ ¨ ¨ π2i ¨ ¨ ¨ π2Ni

...
...

. . .
...

...

πi1 πi2 ¨ ¨ ¨ πi ¨ ¨ ¨ πiN
...

...
...

. . .
...

πN1i πN2i ¨ ¨ ¨ πNi ¨ ¨ ¨ πNi

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

which collects the third-order inclusion probabilities in the off-diagonal elements, except for

the ith column and row, each containing the second-order inclusion probabilities as well as

the diagonal except iith element, which is the first-order inclusion probability πi.
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B. CASE OF SIMPLE RANDOM SAMPLING WITHOUT REPLACEMENT

B.1. Approximated expectation

In the case of SRSWoR the approximated expectation (5) of predictor (3) reduces to

Erẑpuiqs »
zpuiq ` at1i

1` at2i
,

which contains the population quantities t1i “ φJi z and t2i “ φJi 1N and the constant

a “
N ´ n

N ´ 1
.

In the SRSWoR case the residuals of the first-order Taylor approximated expectation are of

order Opn´1q.

B.2. Approximated variance

In the case of SRSWoR, quantities (7) and (8) involved in the approximated variance of

predictor (3) reduce to

ki “
N

n

p1` at2iqz´ pzpuiq ` at1iq1N

p1` at2iq2

and

Erhih
J
j s “

n

N
peie

J
i ` b diagpφiq

2
` c φiφ

J
i q,

where constants derived from inclusion probabilities up to the third-order are

b “
N ´ n

N ´ 1

N ´ n´ 1

N ´ 2
c “

N ´ n

N ´ 1

N ´ n

N ´ 2
.
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In the SRSWoR case the residuals of the the first-order Taylor approximated variance are of

order Opn´2q.
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Figure 1. Locations and values of the Kattegat dataset.
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Figure 2.Bias for the Kattegat dataset.
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Figure 3.RMSE for the Kattegat dataset.

27



Environmetrics FIGURES

−0.5

0.0

0.5

1.0

BZ IDW G kriging

e
x
p
o
n
e
n
ti
a
l

f = 0.05

−0.5

0.0

0.5

1.0

BZ IDW G kriging

f = 0.10

−0.5

0.0

0.5

1.0

BZ IDW G kriging

f = 0.15

−0.5

0.0

0.5

1.0

BZ IDW G kriging

G
a
u
s
s
ia

n

−0.5

0.0

0.5

1.0

BZ IDW G kriging

−0.5

0.0

0.5

1.0

BZ IDW G kriging

−0.5

0.0

0.5

1.0

BZ IDW G kriging

p
u
re

 n
u
g
g
e
t

−0.5

0.0

0.5

1.0

BZ IDW G kriging

−0.5

0.0

0.5

1.0

BZ IDW G kriging

Figure 4.Overall bias; light boxplots are for SRSWoR and dark boxplots are for VPSWoR when the auxiliary variable has been

generated with ρ “ 0.35.
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Figure 5.Overall bias; light boxplots are for SRSWoR and dark boxplots are for VPSWoR when the auxiliary variable has been

generated with ρ “ 0.50.
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Figure 6.Overall RMSE; light boxplots are for SRSWoR and dark boxplots are for VPSWoR when the auxiliary variable has been

generated with ρ “ 0.35.
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Figure 7.Overall RMSE; light boxplots are for SRSWoR and dark boxplots are for VPSWoR when the auxiliary variable has been

generated with ρ “ 0.50.
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