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A stopping criterion for iterative regularization methods

G. Landi1 and E. Loli Piccolomini2 and I. Tomba3

Keywords: Iterative regularization; regularization parameter choice; linear
discrete ill-posed problems; CGLS; Discrete Picard Condition.

1. Introduction

In this work we consider least squares problems

min
x

∥Ax− b∥2, A ∈ Rm×n, x ∈ Rn, b ∈ Rm, m ≥ n (1)

where the coefficient matrix A is ill-conditioned and derives from the discretiza-
tion of a continuous ill-posed operator. The data b is assumed to be corrupted
by measurement errors, which we will refer to as noise. In particular, we sup-
pose that b = bexact+e, where bexact is the unknown noise-free right-hand side
vector and e is a zero-mean white noise vector. In (1) and in the sequel, ∥ · ∥
denotes the Euclidean norm.

Discrete ill-posed problems of the form (1) arise, for example, from the dis-
cretization of Fredholm integral equations of the first kind that are commonly
used to model instrument distortions. They are often encountered in large-scale
image deblurring applications, where A is typically the matrix representation
of a convolution operator. Under periodic boundary conditions, A is block
circulant with circulant blocks (BCCB) and matrix-vector products can be per-
formed using FFTs [28]. This type of observation model may describe, for
example, motion blur, atmospheric turbulence blur and out-of-focus blur.

Background. Because of the ill-conditioning of A, regularization techniques are
necessary in order to reduce the sensitivity of the solution of (1) to the noise
in b. Iterative regularization methods are some methods of choice when the
dimensions of problem (1) are large and A cannot be explicitly stored, but
matrix-vector products involving A can be easily computed. Iterative meth-
ods have a semiconvergence behaviour when applied to ill-posed problems and
they can be used as regularization methods if suitably stopped before the noise
enters the computed solution. The stopping iteration plays the role of the regu-
larization parameter, providing a fair balance between data fidelity and solution
smoothness.

For example, in image restoration problems, Krylov subspace methods are
very important, as pointed out in [22] where an insightful analysis is performed.
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Popular iterative regularization methods are, for example, the Conjugate Gradi-
ent Least Squares (CGLS), the Preconditioned CGLS (PCGLS), the MINimal
RESidual (MINRES), the Generalized Minimal Residual (GMRES) and the
Range Restricted GMRES (RRGMRES) methods [16, 18, 31, 43, 10, 35, 32].
When nonnegativity constraints are added to the least squares problem (1),
the Scaled Gradient Projection method (SGP), the Iterative Space Reconstruc-
tion Algorithm (ISRA), the Projected Landweber (PL) method or the Pro-
jected Newton (PN) method may be used as iterative regularization methods
[4, 11, 12, 5, 38, 39].

A wise choice of the regularization parameter is a vital issue in applying
iterative regularization methods to practical applications, since the quality of the
regularized solution crucially depends on this choice. The recent literature on
ill-posed inverse problems shows that efficient regularization parameter selection
techniques are under active research.

The famous discrepancy principle [41] is probably the most widely used
parameter choice strategy in the context of regularization. It is an a-posteriori
criterion choosing the regularization parameter as a function of the data and
the noise norm which must be known. Unfortunately, this information may not
be available in real-world applications and methods not requiring an estimate of
the noise norm are actually desirable. The recent literature shows an increasing
interest in heuristic (or noise-level-free) parameter choice strategies, even if
the well-known Bakushinsky veto [1] states that, in Hilbert spaces, all heuristic
parameter choice rules, which do not make use of the knowledge about the exact
noise level, will never converge in the worst-case scenario analysis. Nevertheless,
heuristic parameter selection techniques are used quite frequently in practical
applications, often giving good results [46, 3]. The L-curve method [40, 26]
and the Generalized Cross Validation method [14] are likely the most popular
heuristic parameter selection strategies; they have been deeply investigated by
several authors [9, 34, 17, 53]. Some variants of the L-curve criterion have been
described, e.g. the residual L-curve criterion [47, 46] and the Reginska’s method
[45]. A number of other choice rules have been proposed in the literature, e.g.
the Hanke-Raus rule [19] and the quasi-optimality criterion [52, 51] which have
recently received an increasing interest [2, 37, 36, 42]. Other parameter choice
techniques, called extrapolation methods [6, 7], are based on suitable a posteriori
estimates of the error norm in the solution of (1) while another method obtains
estimates of the noise level from the Golub-Kahan iterative bidiagonalization
[29] (this last method, referred to as quadrature method, is specific for LSQR).
Several minimization rules for the selection of the regularization parameter for
many iterative regularization methods as the Landweber method and the CGLS
method are given in [15], both in case of known and unknown noise norm. A
detailed and careful comparison of many parameter choice rules is performed in
[3, 46].

Other criteria for choosing the parameter of iterative regularization methods
are based on the estimation of the residual norm of a regularized solution. A
recent and innovative approach is illustrated in [50, 49, 48] where several di-
agnostic tools, which are statistically motivated, are presented to evaluate the
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suitability of a candidate regularization parameter for the Truncated Singular
Value Decomposition (TSVD) and Tikhonov methods. In [50], an automatic
procedure, based on the aforementioned diagnostic tools, is presented to select
the regularization parameter so that the residual of the corresponding solution
resembles white noise. In [21], the authors develop the so-called Normalized Cu-
mulative Periodogram (NCP) method, an automatic procedure that chooses the
regularization parameter making the residual as close as possible to white noise.
The NCP method can be applied to direct regularization (TSVD and Tikhonov
regularization) as well as iterative regularization and requires to calculate the
NCP of the residual vector for each choice of the regularization parameter,
starting from large values and stopping at the first parameter whose associ-
ated residual satisfies the Kolmogorov-Smirnov test. The methods developed
in [50, 49] and [21] use the Fourier coefficients to determine the regularization
parameter since they all use the periodogram and the cumulative periodogram
to judge if the residual resembles white noise.

Finally, even if the Singular Value Decomposition and the Discrete Picard
Condition (DPC) [20, 26] are well-known tools for the analysis of ill-posed in-
verse problems, to the best of the authors’ knowledge, very little work has been
done in the literature on the development of suitable parameter choice tech-
niques using the DPC. Zama [54] has proposed a fast and efficient method based
on the SVD coefficients for the computation of the regularization parameter of
the TSVD and Tikhonov methods. Jones [33] has developed a method for au-
tomatically estimating the noise norm via the DPC and thus the regularization
parameter for Tikhonov method.

Contribution. In this work, we focus on iterative regularization methods such
as, for example, Krylov subspace methods and other methods exhibiting a semi-
convergence behavior [5, 26]. In the sequel, therefore, the general term iterative
method will refer to a method with the semiconvergence property.

The main purpose of this work is to propose a criterion for the selection of the
stopping iteration of iterative methods. Our criterion is based on an estimate
of the residual norm of a suitable regularized solution performed through the
TSVD solution of (1). We present the criterion from an algorithmic point of
view and we show that it is efficient on large size problems.

As pointed out in [21], almost all the parameter choice methods proposed in
the literature involve some information about the norm of the residual vector of a
regularized solution close to the exact one. For example, the famous discrepancy
principle chooses the regularization parameter so that the residual norm is as
close as possible to the noise norm, i.e. to the residual norm of the exact
solution. In this work, we propose to choose the regularization parameter of
iterative methods so that the residual norm of the corresponding solution is as
close as possible to the residual norm of a suitable regularized TSVD solution.
It is well known that the TSVD residual norm can be expressed in terms of
the SVD coefficients and that a suitable truncation index p can be obtained
by the visual inspection of their plot [26]. Therefore, we obtain the residual
norm approximation to be used in the proposed stopping criterion via the DPC
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[20, 26] using the coefficients of a spectral decomposition of A. In particular,
we propose two algorithmic procedures for the estimation of the TSVD residual
norm. The first algorithm requires the SVD of A and obtains the residual norm
approximation by projecting the data b onto the subspace spanned by the last
m − p left singular vectors [26]. The algorithm automatically determines the
value p from the solution coefficients. The second algorithm does not require the
SVD of A but needs the noise norm value or an estimate of it which, in practical
applications, can be obtained by heuristic strategies as those proposed in [29, 21,
50] or by the measurement instruments. This second algorithm automatically
obtains the TSVD residual norm approximation from the Fourier coefficients of
the data b and from the noise norm estimate.

The presented criterion and the two algorithms, proposed for the residual
norm computation, are deeply investigated for some large-scale image restora-
tion problems. Numerous numerical results and comparisons with some state-
of-the-art techniques are presented to validate the proposed criterion and to
illustrate the numerical effectiveness of the two algorithms.

We remark that, even if we focus here on iterative regularization, the pre-
sented criterion can be easily extended to Tikhonov-like regularization formu-
lated as a constrained optimization problem.

Outline of the paper. In section 2 we give insights into the proposed criterion
motivation. In section 3, we formulate the new parameter choice criterion and
we discuss two algorithms for its implementation. Section 4 presents the numeri-
cal results and comparisons with some state-of-the-art criteria for the parameter
selection in iterative regularization methods. Conclusions are presented in Sec-
tion 5.

2. Motivation

As already stated in the previous section, almost all criteria for the selection
of the stopping index in iterative regularization methods employ some a priori
information about the residual norm of a regularized (or exact) solution. The
rationale behind our criterion is therefore based on the observation that the
SVD and the DPC, which are effective tools for the analysis of the properties
of discrete ill-conditioned least squares problems, can also be used as effective
tools for the computation of a residual norm approximation which can be used
in a discrepancy-like stopping criterion.

The Singular Value Decomposition and the Discrete Picard Condition. The
state-of-the-art tool for the analysis of the features of the ill-posed problem
(1) is the SVD of A [26]:

A = U

[
Σ
0

]
VT

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, 0 ∈ R(m−n)×n is a
zero matrix and Σ ∈ Rn×n is a diagonal matrix whose entries are the singular

4



values of A appearing in nonincreasing order:

σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0.

The SVD solution to (1) is

xsvd =
n∑
i=1

uTi b

σi
vi.

The terms uTi b are referred to as SVD coefficients and the terms uTi b/σi as
solution coefficients.

The TSVD is a well-known regularization method [26], with the truncation
index p playing the role of the regularization parameter. The TSVD solution is

xtsvd
p =

p∑
i=1

uTi b

σi
vi, p < n

and the corresponding residual norm rtsvdp is

rtsvdp =

√√√√ m∑
i=p+1

|uTi b|2. (2)

Obviously, p should be chosen so that noise is suppressed, as much as pos-
sible, in the approximated solution xtsvd

p and is only left in the residual vector.
Therefore, a suitable value of the truncation index p should provide a good
regularized solution xtsvd

p . The DPC, deeply discussed by Hansen in [26, 20],
provides insight into the influence of noise in the SVD solution. It can be stated
as follows.

Discrete Picard condition. On average, the absolute values |uTi bexact|
of the SVD coefficients of the true right-hand side bexact decay faster than the
corresponding singular values.

As claimed in [20], the DPC is “a necessary condition for obtaining a good
regularized solution”. The DPC is usually not satisfied by least squares problems
(1) where the data b is assumed to be contaminated with measurement errors.
In fact, even if bexact meets the DPC, the perturbed vector b usually does not.
This is due to the considerable influence of the terms uTi e, corresponding to
small singular values, on the solution norm. In the following, we will suppose
that bexact satisfies the DPC. If this is the case, and if the noise e is white noise,
the coefficients |uTi bexact| decrease with i faster than σi and approach zero for
increasing i. Moreover, since the noise e is supposed to be white noise and U
is orthogonal, the terms |uTi e| are roughly constant for all i and the following
approximation holds:

∥e∥ = ∥UTe∥ ≈
√
m|uTi e|.

Therefore, the TSVD residual norm can be approximated as

rtsvdp =

√√√√ m∑
i=p+1

|uTi (bexact + e)|2 ≈

√√√√ m∑
i=p+1

|uTi e|2 ≈
√
m− p

m
∥e∥. (3)
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Figure 1: phillips test problem, Picard plot. The line denotes the singular values, the
crosses indicate the SVD coefficients while the circles represent the solution coefficients. The
diamond, the triangle and the square respectively denote the solution coefficients |uTi b|/σi
for i = 12 and i = 14, 15.

The SVD and the DPC as tools for the analysis of ill-posed problems. The
DPC is a powerful diagnostic tool able to identify the components of UTb that
are completely dominated by noise. A useful truncation index p for TSVD
regularization may be chosen via the DPC by discarding those SVD coefficients
|uTi b| where this condition is violated.

As a test problem, let us consider the famous problem phillips [44] from
Hansen’s Regularization Tools [25]. This test problem is widely used in the
literature to model instruments distortion. The problem size is m = n = 64 and
the noise level δ in b is

δ =
∥e∥

∥bexact∥
= 10−4. (4)

From the Picard plot for this problem (figure 1) it is evident that the SVD co-
efficients, represented by crosses, initially decay and then level off at a plateau
determined by the noise level. At the same time, the solution coefficients, rep-
resented by circles, initially decrease and then start to increase again. This
means that the projections |uTi b| of the right-hand side b onto the left singu-
lar vector subspace of the matrix A corresponding to small singular values are
completely dominated by noise. A visual inspection of the Picard plot suggests
that a suitable choice for the SVD truncation index is p = 14. The best trunca-
tion parameter, i.e. the truncation index minimizing the TSVD relative error, is
p = 15. The truncation parameter satisfying the discrepancy principle is p = 12.
We remark that, for the TSVD method, the discrepancy principle chooses the
smallest p such that ∥Axp−b∥ ≤ τ∥e∥, with τ > 1. In the following, the TSVD
solution truncated at the index p will be denoted by xtsvd

p , the corresponding
relative error and residual norm values by errtsvdp and rtsvdp . The relative error
values of the TSVD solution satisfying the discrepancy principle (p = 12) and
those with p = 14, 15, respectively, are

errtsvd12 = 4.565238·10−3, errtsvd14 = 4.629029·10−3, errtsvd15 = 4.468127·10−3.
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The corresponding residual norms are

rtsvd11 = 1.477459 · 10−3, rtsvd14 = 1.474911 · 10−3, rtsvd15 = 1.472855 · 10−3

while the noise norm is ∥e∥ = 1.528649 · 10−3.

The SVD and the DPC as tools for the selection of the regularization parameter
of CGLS. The CGLS method is an iterative regularization method with a well-
known semiconvergence behavior: in order to get an acceptable solution, CGLS
must be stopped before the noise enters the solution. Given the value of the
noise norm ∥e∥, the discrepancy principle stops the CGLS iterations when the
residual norm becomes less than τ∥e∥ where τ > 1 [26]. Let us now consider
again the test problem phillips of the previous section. We will show that a
good regularized solution can be obtained by stopping the CGLS iterations as
soon as the residual norm is less than the residual norm of a suitable TSVD
solution. Let now xcgls

k denote the k-th CGLS iterate and let errcglsk and rcglsk

indicate the corresponding error and residual norm. The iteration index k = 13
is the first integer satisfying

rcgls13 ≤ ∥e∥, rcgls13 ≤ rtsvd14 , rcgls13 ≤ rtsvd15

where rtsvd14 and rtsvd15 are, respectively, the residual norm values associated to
the TSVD solutions satisfying the DPC and minimizing the relative error. The
optimal CGLS solution is obtained for k = 15. The relative error values of the
regularized solutions obtained for k = 13 and k = 15 are

errcgls13 = 3.894432 · 10−3, errcgls15 = 3.894081 · 10−3.

The SVD and CGLS solutions. From the previous example, based on the phillips
test problem, we can infer that the residual norm estimate of a suitable TSVD
solution, obtained via the DPC, can be succesfully used in a discrepancy-like
criterion for the CGLS regularization method. However, the need to compute
the TSVD residual norm in order to obtain a stopping criterion for iterative
methods may seem contradictory.

Let us now consider again the previous phillips test problem. Figure 2
shows, in logarithmic scale for the y-axis, the relative error histories for the
TSVD and CGLS methods versus the integers from 1 to n. Observe that these
integers represent the values of the TSVD and CGLS regularization parame-
ters. From the graphs, we observe that the CGLS error decreases more rapidly;
furthermore, as the integer grows, the CGLS error grows more slowly.

We have already shown that, when the SVD truncation index is chosen to
minimize the relative error (p = 15), the TSVD solution xtsvd

15 and the CGLS
solution xCGLS

13 , satisfying the stopping condition rcgls13 ≤ rtsvd15 , are both good
approximations to the exact solution with relative error

errtsvd15 = 4.468127 · 10−3, errcgls13 = 3.894432 · 10−3.

However, in practical applications, an automatic procedure for the selection of
the SVD truncation index using the DPC may fail in providing the optimal
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Figure 2: phillips test problem. Relative error histories for TSVD and CGLS.

value of truncation index. The following example shows that, in this case, if we
choose a wrong value of p (lower or upper the best one) the CGLS solutions
obtained are better than the corresponding TSVD solution, thus motivating
our algorithm. Figure 3 compares the TSVD solution xtsvd

10 and xtsvd
22 with the

CGLS solution xCGLS
8 and xCGLS

23 obtained with the stopping condition rcglsk ≤
rtsvdp respectively for p = 10 and p = 22. The graphs shows that, in terms of
visual evaluation, the CGLS solution are better approximations to the exact
one. This qualitative evaluation is confirmed by the relative error values of the
solutions:

errtsvd10 = 1.285097 · 10−2, errcgls8 = 8.629706 · 10−3

errtsvd22 = 2.780182 · 10−2, errcgls23 = 1.949018 · 10−2.

10 20 30 40 50 60
0

0.2
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 CGLS
exact
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Figure 3: phillips test problem. TSVD and CGLS solutions obtained for p = 10 (right) and
p = 22 (left).

These examples show that, as pointed out in [27, p. 124], we can expect the
CGLS solution to be a better approximation to the exact one than the TSVD
solution. This is the reason why CGLS is preferred to TSVD even when it is
possible to cheaply compute the SVD decomposition.

The SVD and the DPC as tools for the selection of the regularization parameter
of iterative methods. The previous example shows the well-known fact that the
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Figure 4: baart test problem. Left: Picard plot. The line denotes the singular values, the
crosses indicate the SVD coefficients while the circles represent the solution coefficients. The
square denotes the solution coefficients |uTi b|/σi for i = 6. Right: TSVD and RRGMRES
solutions for p = 6 and k = 6.

TSVD solution is qualitatively comparable to the CGLS solution. Let us now
consider the problem baart [25] of size n = m = 64 and Gaussian noise added
of level 10−6.

The RRGMRES [8] is an iterative methods whose regularizing properties
are deeply analyzed in [32] where it is shown that RRGMRES does not provide
a filtered SVD solution. It is well known that the basis vectors of the Krylov
subspace on which RRGMRES is based are well suited for the problem baart.
The visual inspection of the Picard plot (figure 4) suggests that a suitable value
of the SVD truncation parameter is p = 6. The iteration index k = 6 gives the
RRGMRES solution satisfying the stopping condition rrrgmres6 < rtsvd6 . Figure
4 shows the solutions xtsvd

6 and xrrgmres
6 whose relative errors respectively are

errtsvd6 = 4.850912 · 10−2, errrrgmres6 = 9.722830 · 10−3.

This example shows that the residual norm estimate of a good TSVD solution
could be effectively used in a discrepancy-like criterion suited not only for CGLS
but also for other iterative regularization methods.

The Fourier coefficients. The analysis of the features of the ill-posed problem
by means of the solution coefficients requires the SVD of A. However, for large
scale problems the SVD computation is often impracticable. Let F be the
unitary matrix representing the Discrete Fourier Transform (DFT) such that,
for a vector x ∈ Rm, the vector FHx is the DFT of x and let fi denote a column
of F (the superscript H is used to indicate the complex conjugate transpose
operation). The strict relationship between the SVD coefficients |uTi b| and
the so-called Fourier coefficients |fHi b| has been deeply investigated by several
authors. In [18], the authors use the stagnation of the Fourier coefficients of the
data to find an appropriate truncation parameter to be used in their “modified
preconditioner”. The Fourier coefficients are also employed in the regularization
parameter evaluation tools developed in [50, 49] and [21]. Moreover, in [21],
the overall behavior of the Fourier coefficients is shown to be similar to the

9



behavior of the SVD coefficients. In fact, the Fourier coefficients, as well as
the SVD coefficients, first decrease and then level off at the noise level. The
stagnation of the Fourier coefficients of the noisy data b can be explained as
follows [21, 18]. Since bexact is the result of the action of an integral operator
having a smoothing effect, its Fourier coefficients tend to have small values at
high frequencies. On the other hand, the Fourier coefficients of the white noise
e have the same magnitude for all frequencies and, at high frequencies, they
dominate the Fourier coefficients of the noisy data b. This behavior of the
Fourier coefficients of b suggests that they could be used to individuate the
SVD coefficients not satisfying the DPC. Figure 5 shows the Fourier and SVD
coefficients of the phillips test problem.

10 20 30 40 50 60

10
−5

10
0

Figure 5: phillips test problem. Fourier coefficients (circles) and SVD coefficients (crosses).

Notation. For clarity of exposition, the following notation is used henceforth:
p is a TSVD truncation parameter; k is the iteration index of a general itera-
tive method, xk and rk are respectively the kth iterate and the corresponding
residual norm.

3. The stopping criterion

In the previous section, we have shown that the TSVD residual norm can
be used in a discrepancy-like criterion for the selection of the stopping iteration
of iterative methods. Moreover, we have observed that the Fourier coefficients
are strictly connected to the SVD coefficients.

On the basis of these observations, we propose the following criterion for the
selection of the stopping iteration of iterative regularization methods.

Definition 3.1 (Stopping Criterion). Let 1 ≤ p ≤ n be the first index such that,
for i ≥ p, the DPC is not satisfied. Let rtsvdp denote the residual norm of the as-
sociated TSVD solution. Then, stop the iterations of the iterative regularization
method at the first index k for which

∥b−Axk∥ ≤ τrtsvdp , (5)

where τ > 1.
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As in the discrepancy principle, the parameter τ is a “safety factor”. In the
sequel, we will refer to the proposed criterion as Residual-based Discrepancy-like
Criterion (RDC) since it is a discrepancy-like criterion based on an estimate of
the TSVD residual norm. The practical implementation of the stopping criterion
(5) requires an estimate of the TSVD residual norm rp which can be obtained
from equation (2), if the left singular vectors are available, or from equation
(3), if the computation of the left singular vectors is impracticable but the noise
norm, or its approximated value, is known. Observe that formula (2), as well
as formula (3), needs the value of the truncation index p.

In the following, we describe two algorithms computing rp required for the
practical implementation of the stopping criterion (5); the first algorithm uses
the solution coefficients for the computation of the truncation index p and em-
ploys the formula (2) for obtaining the TSVD residual norm. The second al-
gorithm uses the Fourier coefficients for the computation of p and employs the
formula (3) for the TSVD residual norm. Both algorithms employ an automated
choice of the truncation index p and do not require any human inspection of the
Picard plot.

3.1. Residual norm computation: Algorithm 1

Truncation index computation. In the first algorithm, henceforth referred to as
RDC1, the truncation index is computed as the index p such that the solution
coefficients |uTi b|/σi, on the average, decay for i < p and start to increase for
i ≥ p. Such truncation index p is determined as follows.

Let h be a natural number such that 1 ≤ h ≤ n − 1 and let M = ⌈n/h⌉
be the nearest integer greater than or equal to the real number n/h. For
j = 1, . . . ,M , let ϕj be the sequence containing local maxima of the solution
coefficients |uTi b|/σi defined as:

ϕj = max

{
|uTi b|
σi

, i = 1 + (j − 1)h, . . . , jh

}
, j = 1, . . . ,M − 1

ϕM = max

{
|uTi b|
σi

, i = 1 + (M − 1)h, . . . , n

} (6)

and let αj be the sequence of the corresponding indices in {1, . . . , n}.
Finally, let ϕ̄j be the sequence of the local mean values:

ϕ̄j =
ϕ2j−1 + ϕ2j

2
, j = 1, . . . , ⌊M

2
⌋. (7)

Let j̄ be the point where the sequence ϕ̄j attains its minimum value, then
the truncation index p is chosen as the integer which corresponds to 2j̄ − 1 in
{1, . . . , n}, i.e:

j̄ = argminj{ϕj}, p = α2j̄−1.
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Residual norm computation. The TSVD residual norm is approximated by:

rtsvdp ≈

√√√√ m∑
i=p+1

|uTi b|2. (8)

Comments. The sequence ϕj is basically the subsequence of the mean values of

the local maxima of the solution coefficients |uTi b|/σi; this subsequence is able
to “capture” the overall behavior of the solution coefficients and thus it gives
usable information on the index where, on average, the solution coefficients start
to increase. The entire sequence of the solution coefficients can not be used in
an automatic procedure for locating the value p since it is very oscillating.

As an example, figure 6 depicts the sequence of the solution coefficients
|uTi b|/σi (circles) and the subsequences ϕj (dashed line) and ϕj (solid line)
obtained for the problem phillips introduced in Section 2, with h = 2. The
computed truncation parameter is p = 15 and is denoted in the plot by the
square.
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Figure 6: Solution coefficients (circles) and subsequences ϕj (dashed line) and ϕj (solid line)
with h = 2 for the phillips test problem. The square indicates the computed truncation
parameter p = 15.

Finally, we observe that this algorithm requires the SVD of A and therefore
it is suited for linear least squares problems where the SVD is computationally
inexpensive as small-size problems or image restoration problems, where A is
BCCB and the SVD is computed by means of FFTs [28].

3.2. Residual norm computation: Algorithm 2

Truncation index computation. In the second algorithm, henceforth referred
to as RDC2, the truncation index is computed as the index p such that the
Fourier coefficients |fHi b| start to level off for i ≥ p. Such truncation index p is
determined as follows.

Since b has real values, from the conjugate symmetry of the DFT it follows
that

fHi+1b = conj(fHm−i+1b), i = 1, . . . , q − 1,

12



where q = ⌊m/2⌋+ 1, and thus

|fHi+1b| = |fHm−i+1b|, i = 1, . . . , q − 1.

Therefore, it is sufficient to consider only the first q Fourier coefficients. Let ψj
be the sequence of the Fourier coefficients |fHi b|, i = 1, . . . , q, sorted into non
increasing order. Let j̄ be the point where the sequence ψj , i = 1, . . . , q, begins
to level off, i.e: j̄ is the first index such that

|ψj̄+1 − ψj̄ |
|ψ2 − ψ1|

< tolψ

where tolψ is a positive tolerance. Then the truncation index p is chosen as

p = 2j̄ − 1. (9)

Residual norm computation. Given an estimate ϵ of the noise norm ∥e∥, the
TSVD residual norm is computed as

rp =

√
m− p

m
ϵ. (10)

Comments. This algorithm needs an estimate ϵ of the noise norm ∥e∥. Some
strategies have been recently proposed in the literature for the computation of
a noise norm approximation [21, 50, 29, 30]. Among others, the Normalized
Cumulative Periodogram (NCP) method [21] chooses the stopping iteration of
an iterative method so that the residual is white noise-like; the corresponding
residual norm could be used as a fair value of ϵ. Moreover, in some practical ap-
plications, a measurement error bound can be calculated from the measurement
instruments and used as value of ϵ.

As an example, figure 7 shows the sequence of the Fourier coefficients |fHi b|
(circles) and the sequence ψj (line) obtained for the test problem phillips of
section 2; the truncation parameter, computed for tolψ = 10−5, is p = 11 and
is denoted by the square.
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0

Figure 7: Fourier coefficients (circles) and sequence ψj (line) for the phillips test problem.
The square indicates the computed truncation parameter p = 11 (tolψ = 10−5).
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Problem cond Problem cond

1) phillips 2.4 · 109 2) baart 5.2 · 1018
3) shaw 2.4 · 1021 4) foxgood 3.2 · 1020
5) heat(1) 7.7 · 10270 6) deriv2(2) 3.7 · 1005
7) gravity(1) 1.4 · 1020 8) spikes(1) 2.2 · 1023
9) wing 2.8 · 1022 10) hilbert 1.0 · 1021
11) lotkin 4.5 · 1021 12) moler 2.2 · 10305
13) random 2.1 · 1005 14) prolate 3.9 · 1020

Table 1: Test problems and condition numbers for n = 500, obtained with the condest Matlab
function.

Finally, we observe that this algorithm does not require the SVD of A and
therefore it can be used for large-scale problems where the SVD computation is
impracticable.

4. Numerical results

In this section we present some numerical results obtained with the RDC1
and RDC2 proposed in section 3.

The aim is to evaluate, on image deblurring problems, the proposed criteria
for stopping an iterative regularization method. As iterative method, we mainly
consider the CGLS method since it is the most widely used method for linear
iterative regularization and it has been proved to be efficient in image deblurring
[13]. Moreover, we present a few tests on the Landweber and the RRGMRES
methods. Finally, we compare the results obtained with RDC1 and RDC2 with
other existing criteria for stopping iterative regularization methods; the results
are evaluated in terms of relative error between the exact solution x and the
computed solution x̃:

err =
∥x− x̃∥
∥x∥

.

We remark that RDC1 is completely heuristic, in the sense that it needs
only the data vector b, while RDC2 also requires in input the noise norm (or
its estimate). In particular, in all the presented tests, we use the exact value of
the noise norm when implementing RDC2.

The tests have been performed in Matlab 2015A, on a Windows 7 platform.

4.1. One-dimensional test problems

The aim of this experiment is to test the performance of RDC1 and RDC2
on some linear discrete ill-posed problems from Hansen’s regularization Tools
[25] and from the gallery function of Matlab, for different noise level values.
The considered test problems, whose size is n = m = 500 and n = m =
1000, are listed in table 1 with their condition number (estimated with the
condest Matlab function) for n = 500. The matrix A of the test problem
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“random” is obtained by the random Matlab function. For each problem from
[25] the exact solution x of the noise-free linear system Ax = bexact is given.
For the test problems from the Matlab gallery function, the exact solution
of the test problem shaw from [25] is used. The noisy right-hand side b is
obtained by adding a Gaussian white noise vector e to bexact, with noise level
δ = 10−6, 10−5, 10−4, 10−3, 10−2, 10−1. For each value of δ, 10 realizations of
e are generated by using the Matlab randn function. This results in 1800 test
problems.

Parameters setting. For this experiment, the parameters involved in the pro-
posed algorithms have been set to the following fixed values:

• τ = 1 + 10ς in (5) and in the DP criterion (where ς is the machine preci-
sion);

• h = 2 in (6), if the matrix A is symmetric, h = 1 otherwise;

• tolψ = 0.99 in (9).

For each test problem, we compute the percentage of error values satisfying:

errmeth
errbest

> η (11)

where errmeth is the relative error obtained with the considered stopping method
and errbest is the relative error obtained stopping CGLS at best.

Table 2 compares the results obtained with η = 5, 10, 100 by RDC1 and
RDC2 with those provided by the Discrepancy Principle (DP), the L-curve (LC)
criterion [24, 23], the residual L-curve (RLC) criterion [47, 46], the Hanke-Raus
(HR) rule [19] and the Rule HRmC [15]. In the L-curve and in the resid-
ual L-curve methods, the corner of the L-curve has been computed with the
lcorner Matlab function of the Regularization Tools package [25]. Table 2
also shows the results for DP and RDC2 obtained with τ = 1.3 in order to
simulate the case of overstimated noise norm. In order to make the results
of RDC1 and RDC2 comparable with those reported in [15] for the Hanke-
Raus rule and for Rule HRmC, table 3 reports the averages of error ratios
errmeth/errbest for n = m = 100 over 10 realizations of noise at noise norm val-
ues ∥e∥ = 10−6, 10−5, 10−4, 10−3, 10−2, 10−1. (We remind that the noise norm
∥e∥ and the noise level δ are proportional since ∥e∥ = δ∥bexact∥.) The nu-
merical results in the tables show that, on average, RDC1, RLC and HRmC
perform quite comparably. It is worth mentioning that these three rules are all
heuristic rules but RDC1 needs the SVD of A while RLC and HRmC require
to perform many CGLS iterations to a posteriori select the stopping iteration.
Therefore, RDC1 may be computationally preferable when the SVD of A can
be computed using inexpensive techniques such as in image deblurring applica-
tions, for example. For the one-dimensional test problems, DP performs very
well and outperforms RDC2. Indeed, in authors’ experience, RDC2 tends to
perform favourably compared to DP in large scale application when the value
of n is very large.
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Criterion η = 5 η = 10 η = 100

DP 1% 0% 0%
DP (τ = 1.3) 4% 0% 0%
LC 24% 18% 7%
RLC 6% 1% 0%
RDC1 9% 5% 0%
RDC2 13% 10% 7%
RDC2 (τ = 1.3) 3% 0% 0%
HR 23% 11% 1%
HRmC 11% 9% 4%

Table 2: Comparison between different rules on CGLS for different values of η in (11).

Probl. DP LC RLC RDC1 RDC2 HR HRmC

1 1.06 39.95 1.84 1.51 1.06 8.96 2.76
2 1.12 1.29 1.43 1.61 107.37 2.72 1.28
3 1.26 2.12 1.88 2.30 1.26 3.09 2.05
4 1.44 45.80 3.04 16.17 45.04 9.03 4.40
5 1.19 5.25 2.15 1.25 1.17 2.42 2.43
6 1.13 1.32 120.73 1.19 1.60 2.39 1.71
7 1.46 33.38 3.55 1.90 1.38 4.92 2.85
8 1.00 1.00 1.00 1.04 1.00 1.03 1.50
9 1.10 1.06 82.59 1.32 439199.39 1.31 1.19
10 1.09 1.07 1.18 1.41 7.23 1.29 1.27
11 1.12 1.08 1.21 1.46 1.20 1.48 1.44
12 1.00 1.00 1.42 1.00 1.00 1.00 1.00
13 2.44 1.53 572.91 81743.69 2.36 1.53 9342.25
14 1.85 519.02 5.89 4.64 1.78 3.11 3.21

Table 3: Averages of error ratios for CGLS (n = 100).

4.2. Image restoration test problems

In image restoration, the least squares problem (1) is obtained as the dis-
cretization of a Fredholm integral equation of the first kind on the image domain
Ω ⊂ R2:

b(v) =

∫
Ω

A(u, v)x(u)du (12)

where the matrix A is the discretization of the Point Spread Function (PSF)
A(u, v), b is the discretization of the data function b(v) and represents the
recorded image and x is the discretization of the object function x(u) and rep-
resents the exact image to be recovered. In the case of image deblurring, the
vectors x and b are obtained by lexicographically ordering the nx×ny (nx = ny)
image arrays and have the same size n. We consider, in particular, convolution
PSF operators with periodic boundary conditions, where the matrix A has a
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PSF δ best DP RDC1 RDC2

g
0.001 8.73 · 10−2(178) 9.26 · 10−2(67) 8.95 · 10−2(103) 9.07 · 10−2(86)
0.005 9.96 · 10−2(45) 1.05 · 10−1(20) 1.00 · 10−1(33) 1.03 · 10−1(24)

d 0.001 1.19 · 10−1(64) 1.22 · 10−1(53) 1.20 · 10−1(59) 1.22 · 10−1(53)
0.005 1.60 · 10−1(28) 1.63 · 10−1(24) 1.61 · 10−1(27) 1.63 · 10−1(24)

m 0.001 4.08 · 10−2(107) 4.99 · 10−2(41) 6.16 · 10−2(26) 4.92 · 10−2(42)
0.005 7.75 · 10−2(24) 8.44 · 10−2(15) 7.76 · 10−2(23) 8.26 · 10−2(16)

Table 4: Results on the CGLS method.

Block Toeplitz with Toeplitz Blocks (BCCB) structure [28]. In this case, since
its spectral decomposition can be obtained by means of Fourier transforms, the
SVD decomposition is computationally performed by FFTs and it is not ex-
pensive even for large size problems. We choose three images for deblurring
experiments: the cameraman, the Lena and the satellite images that are widely
used in literature for imaging deblurring. We test a Gaussian (g), a defocus (d)
and a motion (m) PSF [28].

In the test problems, the noisy blurred image is obtained by adding a Gaus-
sian noise vector to the blurred version of the exact image.

Parameters setting. For all the image restoration test problems, the parameters
involved in the proposed algorithms have been set to the following fixed values:

• τ = 1 + 10ς in (5) and in the DP criterion (where ς is the machine preci-
sion);

• h = 2 ∗ nx for Gaussian PSF and h = 3 ∗ nx for motion and defocus PSFs
(in (6));

• tolψ = 10−10 in (9).

4.2.1. Results on CGLS

We start by presenting the results obtained on the CGLS method. In this
case we use two different levels of noise, δ1 = 10−3 and δ2 = 5 · 10−3. Table 4
shows the relative errors and the number of performed iterations (in brackets)
for the three PSFs (g,d,m) combined with the two noise levels δ1 and δ2, (on a
single noise realization obtained with the randn Matlab function with seed 0)
with the cameraman image. With best we intend, in all this section, the best
result, in terms of relative error, that we can obtain with the considered method.
In the table we compare RDC1 and RDC2 with the DP. The numerical results
show that, on average, our algorithms performs comparably to the DP.

Then we tested the criteria on a larger set of 180 executions obtained from
the three images, blurred with the three considered PSFs and noise of levels δ1
and δ2, with 10 realizations of noise for each noise level.
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Figure 8: Graphical representation of the difference between the DP, RDC1 and RDC2 errors.

In figure 8 we plot the values of errDP − errRDC1 (figure (a)) and errDP −
errRDC2 (figure (b)) where errDP , errRDC1 and errRDC2 are the relative errors
obtained by stopping CGLS with the DP, the RDC1 and the RDC2 criteria. In
the plot, the circles are related to the Lena, the squares to the cameraman and
the triangles to the satellite images. In figure 8(a) there are 122 nonnegative
values with mean equal to 0.0031 and 78 negative values with mean equal to
−0.01. We note that there are only few executions where the RDC1 error is
consistently greater than the DP error. From figure 8(b), we see that in the
case of RDC2 the errors are all positive with the mean equal to 0.0019; hence,
RDC2 is never overcome by DP.

In figure 9 we report the values of kbest − kRDC1 (figure (a)), kbest − kRDC2

(figure (b)), kbest − kDP (figure (c)), where k is the number of performed iter-
ations. We remark that, even if RDC2 always performs more iterations than
DP, it never goes further the best iteration. Moreover, we observe that test
number 15 is critical for all the three methods, since they stop far before the
best iteration.

Finally, we compare the RDC1 and RDC2 algorithms with other well known
heuristic stopping criteria. Basing on the results presented in [46], where a
wide experimentation has been performed to compare different stopping rules
on iterative Krylov regularization methods, we consider the following criteria
(in addition to the DP) to compare with RDC1 and RDC2 on CGLS: the L-
curve, the residual L-curve and the NCP criterium [21]. For all the considered
algorithms, we used, when available, the Matlab functions from the authors.

We experimented the criteria on the 180 tests as before and we report in
table 5 the percentage of results satisfying (11). We reported in the table the
results for the values η = 1.05 and η = 1.01. The RDC1 criterium is the best
for η = 1.05 and it is second only to NCP in the case of η = 1.01.
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Figure 9: Graphical representation of the difference between the best stopping index and the
stopping iteration computed by RDC1 (a), RDC2 (b) and Discrepancy (c).

4.2.2. Results on iterative methods different from CGLS

Here we apply the RDC1 and RDC2 criteria to other iterative methods
than CGLS. We first consider the Landweber method, whose iterates have an
expression similar to a TSVD solution, presenting a semiconvergence behavior
[27]. Then we test the criteria on the RRGMRES iterative method, that is
preferred to the standard GMRES in imaging applications, because it produces
more smoothed and less noisy restored images [32]. Its iterates do not provide a
filtered SVD solution, hence they behave differently from CGLS and Landweber
iterates [27].

In the tests, we blurred the cameraman image with the Gaussian and motion
PSFs; since Landweber and RRGMRES have different convergence behaviors,
in order to have semiconvergence for both methods we use different noise lev-
els: 0.05 for Landweber and 0.005 for RRGMRES. In table 6 we report the
errors obtained with one noise realization (with the Matlab function randn and
seed=0) and the correspondent number of iterations. We compare RDC1 and
RDC2 rules with the discrepancy (DP) and with a modified discrepancy (MDP)
proposed in [15], where the stopping iteration index is computed as the nearest
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Method η = 1.05 η = 1.01

DP 52.22% 93.90%
LC 73.33% 87.22%
RLC 61.66% 87.77%
NCP 37.22% 66.11%
RDC1 28.33% 66.67%
RDC2 37.77% 77.22%

Table 5: Comparison between different stopping methods on CGLS; percentage of tests sat-
isfying (11)

Method Criterium g m

RRGMRES

best 9.94 · 10−2(14) 7.75 · 10−2(21)
DP 1.02 · 10−1(10) 8.21 · 10−2(14)
RDC1 9.94 · 10−2(14) 7.83 · 10−2(18)
RDC2 1.01 · 10−2(15) 8.21 · 10−2(14)

Landweber

best 1.26 · 10−1(29) 1.42 · 10−1(16)
DP 1.31 · 10−1(10) 1.48 · 10−1(7)
MDP 1.26 · 10−1(23) 1.42 · 10−1(16)
RDC1 1.29 · 10−1(12) 1.42 · 10−1(13)
RDC2 1.28 · 10−1(13) 1.45 · 10−1(9)

Table 6: Errors on the RRGMRES (noise level δ = 0.005) and the Landweber method (noise
level δ = 0.05) on the cameraman image blurred with Gaussian (g) and motion (m) PSFs.

Method RRGMRES RRGMRES Landweber Landweber

η = 1.07 η = 1.05 η = 1.07 η = 1.05

DP 33.3% 100% 15% 88.3%
MDP / / 0% 0%
LC 95% 100% 40% 46.6%
RDC1 26.6% 36.6% 13.3% 21.6%
RDC2 0% 8.3% 0% 11.6%

Table 7: Comparison between different stopping criteria on RRGMRES and Landweber meth-
ods. Percentage of executions satisfying (11).

integer to 2.3 · kD, where kD is the discrepancy iteration.
Finally, we performed tests with the three images used before blurred by

Gaussian and motion PSFs with 10 noise realizations for each case. Table 7
reports the percentage of tests satisfying (11) for different values of η. It is
evident that both the proposed criteria give very good results; RDC2 better
behaves when applied to the RRGMRES method, while RDC1 when applied
to the Landweber method. The MDP rule works very well; we remind that it
needs an error estimate in order to apply the discrepancy principle.
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Figure 10: Errors obtained on the iterative methods RRGMRES and Landweber (only
Landweber method in figure (d))

Figures 10(a), 10(b), 10(c) and 10(d) report the values: errDP − errRDC1,
errDP − errRDC2, errLC − errRDC1 and errMDP − errRDC2, respectively. Since
MDP is a good rule only for Landweber method, only Landweber results are
considered in figure 10(d). In each plot the circles are relative to the RRGMRES
method and the squares to the Landweber method. The results are very similar
to those obtained on CGLS: RDC2 always performs better or equal to DP (figure
10(b)), while if we compare the totally heuristic criteria RDC1 and L-curve, we
can see that the proposed RDC1 gives better results in most cases (84 positive
values over 120) (figure 10(c)).

From the results we can conclude that the proposed RDC1 and RDC2 criteria
work well even when applied to the Landweber and the RRGMRES methods.
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4.3. Comments

At the end of this section, some comments about the behavior of RDC1 and
RDC2 are worth.

RDC1 is an heuristic criterion since it only requires the coefficient matrix
A and the noisy data vector b. It performs favorably, in terms of relative er-
ror reduction, compared with other well-known heuristic criteria (see table 2
and 5, for the CGLS method, and table 7, for the RRGMRES and Landweber
methods). Surprisingly, on many image deblurring test problems, it performs
comparably to the Discrepancy Principle which is indeed an a-posteriori cri-
terium (see figure 8). The numerical results show that, in some test problems,
the RDC1 solution is under-regularized (see figure 9) since a too large value of
the SVD truncation index is found by Algorithm 1. However, we have verified
that, when the optimal SVD truncation parameter is used in (8), the corre-
sponding solution is a good approximation to the exact one. This means that
the failure of RDC1 is due to the failure of Algorithm 1 in computing a suitable
value of the SVD truncation index.

RDC2 is an a-posteriori criterium since it needs an estimate of the noise
norm. As the discrepancy principle it is sensitive to the quality of this estimate
and often gives over-regularized solutions (see figure 9); however, the numerical
results indicate that it can be competitive with the discrepancy principle since
the value of the truncation index computed by Algorithm 2 allows the iterative
method to perform a number of iterations larger than the DP stopping iteration
but smaller than the optimal one.

Finally, we remark that our results indicate that the computation of a suit-
able value of the TSVD index is the critical issue in order to obtain usable reg-
ularized solutions. To this end, we have described two algorithms but we intend
to investigate the use of the methods recently proposed in [50, 49, 48, 54, 30] to
compute a suitable value of the SVD truncation index and improve the efficiency
and effectiveness of the proposed stopping criterium (5).

5. Conclusions

In this paper we have proposed a stopping criterion for iterative regulariza-
tion methods in the solution of linear discrete ill-posed problems. The proposed
criterion terminates the iterative procedure when the current residual norm be-
comes less than the residual norm of a suitable TSVD solution.

Two algorithms have been described for the practical implementation of
the proposed criterion. The first algorithm can be used when the SVD of the
coefficient matrix is easily computable. This is the case, for example, of one-
dimensional problems that usually have a not so large size and of BCCB matrices
arising in image deblurring with periodic boundary conditions on the PSF. The
second algorithm, requiring an estimate of the noise norm, can be employed
when the SVD of the coefficient matrix is impracticable since it uses the Fourier
coefficients.
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The proposed algorithms have been tested on many different one-dimensional
test problems as well as on large size problems in image deblurring. Many ex-
periments, mainly with the CGLS regularization method, show that the two
algorithms often outperform the widely used discrepancy principle and are com-
petitive with the most efficient criteria reported in literature, with comparable
computational cost. In particular, the second algorithm tends to perform better
than the first one since it uses a noise norm estimate.

Even if the proposed criterion is applied here to iterative regularization, it
is indeed quite general and can be extended to direct regularization formulated
as a noise-constrained optimization problem. In this case in fact, the objective
is a regularization function (Tikhonov or Total Variation regularization, for
example) and the constraint, imposing data fidelity, compares the residual norm
of the solution with the residual norm of a suitable regularized solution.
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