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Abstract

Microbiota plays an important role in the homeostasis of the gastrointestinal tract. Under-

standing the variations of the commensal microbiota composition is crucial for a more effi-

cient control of enteric infectious diseases and for the reduction of the use of antibiotics in

animal production, which are the main points of interest for improved animal healthcare and

welfare and for consumer health protection. Even though the intestinal microbiota has been

extensively studied, little is known about the gastric microbiota. This pilot study was aimed

at a descriptive analysis of the gastric microbiota in healthy pigs and at the identification of

any differences among four potentially distinct microbial niches in the stomach. Gastric

mucosal samples from the oxyntic area, the pylorus and the gastric groove, and a sample of

gastric contents were collected from four healthy weaned pigs. Bacterial DNA was isolated

and extracted from each sample and amplicons from the V6 region of the 16S rRNA gene

were sequenced using Ion Torrent PGM. The data were analysed by an “unsupervised” and

a “supervised” approach in the Ribosomal Database Project (RDP) pipeline. Proteobacteria

was the dominant phylum in all the samples. Differences in bacterial community composition

were found between mucosal and content samples (one-way ANOSIM pairwise post hoc

test, p < 0.05); instead, the different mucosal regions did not show differences between

them. The mucosal samples were characterised by Herbiconiux and Brevundimonas, two

genera which include cellulolytic and xylanolytic strains. Nevertheless, additional larger trials

are needed to support the data presented in this pilot study and to increase the knowledge

regarding the resident microbiota of the stomach.

Introduction

The importance of the microbiota to the health status of the gastrointestinal tract is widely rec-

ognised. Over the years, the Microbial Ecology of the GI tract has been extensively explored

[1] but the stomach ecosystem has received less attention; this was due to the technical limita-

tions and to the fact that the gastric environment was considered too inhospitable. The poten-

tiality of the gastric environment as a microbial niche was reconsidered after the discovery of

Helicobacter pylori and thanks to successive technological advances [2]. In recent years, one of

the most used methods for exploring the microbial diversity of an environment is 16S rRNA

profiling conducted using Next Generation Sequencing (NGS) approaches; however, the
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studies which use these techniques to analyse the stomach microbiota of monogastric animals

(non-human) are still infrequent [3,4]. In particular, as regards the pig, only the work [4] of

Mann et al. (2014) which also analyses the gastric microbiota using this technique was found.

The stomach is a system of temporary storage and pre-processing of the food bolus for

additional digestion and absorption; this system is directed by an integrated control (neural,

hormonal, paracrine) which takes into account the different signals (chemicals, nutrients,

xenobiota components) from the luminal content [5]. In the stomach three anatomic parts

(fundus, corpus and antrum) and two functional regions -oxyntic (acid secretion) and pyloric

(gastrin secretion) glandular mucosa- can be distinguished.

This anatomical and functional geography within the stomach has been investigated in sev-

eral ways [6,7].

In the pig, the oxyntic glands are found in the cardia gland and the fundic gland regions

(OXY), while the antral-type mucous glands are found in the pyloric gland region (PYL).

Furthermore, in the pig stomach, regional differences were also observed in the protective

layer of the mucus[8,9] which represents the first line of interaction between bacteria and the

gastrointestinal tract [10].

The question arises as to whether the different gastric regions may represent distinct niches

for diverse communities within that ecosystem; this possibility has been investigated for

monogastric mammals in only a few studies, such as in humans (corpus and antrum) [11] and

in horses (squamous, glandular, antral) [3] but the identification of a specific gastric micro-

biota, excluding H. pylori, requaires additional investigation [12].

The present study fits into the context of our other studies regarding the pig gastric mucosa

[7,13–15] our aim was to contribute to the description of the gastric microbiota, in particular,

of the pig, and to identify possible differences of the bacterial community in different parts of

the stomach.

For this purpose, Next generation semiconductor-based sequencing of the V6 hypervariable

region of the 16S rRNA gene was used on gastric mucosal samples from the oxyntic area (acid

production), the pylorus (gastrin secretion)and the gastric groove, a point in the small curva-

ture close to cardia, (immunological function) [13] and also from the gastric content.

Materials and methods

Pigs and sample collection

The procedures were conducted in compliance with Italian laws regarding experimental ani-

mals and were approved by the Ethic-Scientific Committee for Experiments on Animals of the

University of Bologna. Four crossbred (Large White x Landrace) healthy weaned pigs (6.5

weeks of age, 15.30 kg average body weight), normally fed a standard post-weaning diet (ingre-

dient composition: corn 38.2%, barley13%, wheat middlings 16%, soybean meal, 50% crude

protein 13%, dried milk whey 9%, potato protein concentrate 4%, soybean oil 3%, vitamin-

mineral premix 1%, dicalcium phosphate 1.2%, calcium carbonate 0.61%, salt 0.3%, L-lysine

HCl 0.38%, Dl-methionine 0.11%, L-threonine 0.15%, L-tryptophan 0.05%), were anaesthe-

tised 1 h after the morning meal with sodium thiopental (10 mg/kg body weight) and were

then slaughtered by intracardiac injection (Tanax, 0.5 mL/kg body weight; Intervet Italia,

Peschiera Borromeo, Italy). For each subject, the stomach was removed, and gastric mucosal

samples from the oxyntic area, the pylorus, and the small curvature close to cardia (hereinafter

called Groove) were collected. A sample of gastric contents was also collected from each pig; in

total 16 samples were obtained (4 from each pig). The samplings in each pig and each stomach

region were carried out using sterile instruments to avoid potential cross-contamination of the

microbial DNA.

Gastric microbiota in pigs
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The samples were stored at -80˚C until use. The bacterial DNA was isolated and extracted

using QiaAmp DNA Stool Mini Kit (Qiagen, Hilden, Germany). The protocol followed the

manufacturer’s instructions with a pretreatment step with TES buffer + Lysozyme at 37˚C for

two hours. After isolation, the purified DNA was eluted in 50 μl of elution buffer. The quality

and purity of the isolated DNA was checked using spectrophotometry on the NanoDrop

(Fisher Scientific, Schwerte, Germany).

Library generation and sequencing

Polymerase chain reaction (PCR) amplification of the V6 hypervariable region from the 16S

rRNA gene was carried out with a pool of 5 forward primers and 4 reverse primers pooled

equimolar as described by Huber et al. [16]. Phusion Hot Start Flex 2X Master Mix (New

England Biolabs Inc., Beverly, MA) was used following the manufacturer’s protocol for a 25μl

reaction; the PCR conditions were as follows: 98˚C for 30 s, followed by 35 cycles at 98˚C for 5

s, 61˚C for 8 s, 72˚C for 12 s, and a final elongation step at 72˚C for 5 s.

Ion Torrent sequencing was obtained from 16 different DNA libraries. The libraries were

constructed using the aforementioned amplified products, after ExoSAP-IT (USB Corpora-

tion, Cleveland, Ohio, USA) treatment, and 16 equimolar pools of amplicons were obtained.

The preparation of the libraries was carried out according to the instructions for the Ion Tor-

rent Personal Genome Machine (PGM; Life Technologies,Carlsbad, CA) sequencing of short

amplicons; for each library, 200 ng of amplified DNA was end-repaired and ligated with a spe-

cific barcode, in total 16 different barcodes were used, using the Ion Xpress™ Barcode Adapters

1–16 kits (Life Technologies). Subsequently, the protocol included the following steps: quanti-

fication of each library with the Ion Library Quantitation Kit (Life Technologies) by quantita-

tive polymerase chain reaction (qPCR), utilising a StepOnePlus™ Real-Time PCR System (Life

Technologies); equimolar pooling of the 16 barcoded libraries, amplification by emulsion

PCR with the Ion One TouchTM 200 Template kit (Life Technologies), and purification and

sequencing with the Ion PGMTM Sequencing 200 kit using a Ion 314 chip (Life Technologies),

following the manufacturer’s protocols.

Raw reads of all the samples were deposited at the EBI Short Read Archive (SRA) under the

study accession number ERP010584.

Data analysis

A total of 353,656 Raw reads from sequencing were filtered for length� 70 and average

quality� 20. The following steps were carried out in the Ribosomal Database Project (RDP)

pipeline of the RDP release 11.3, using both ‘unsupervised’ and ‘supervised’ methods (http://

rdp.cme.msu.edu/) [17]; primer matching and trimming were performed by the ‘Pipeline Ini-

tial Processor’ of the RDP pipeline (Maximum number of Ns: 0; Max forward primer distance:

0; Max reverse primer distance: 0; Minimum sequence length: 50), chimera checking was car-

ried out using the tool ‘Find Chimeras’ in DECIPHER (Database Enabled Code for Ideal

Probe Hybridization Employing R) [18]. Non-chimeric sequences were aligned by RDP

Aligner and the sequence reads not covering the V6 region were eliminated. After quality con-

trol steps, 86,731 total sequences were obtained.

For bacterial taxonomy assignment, the RDP-classifier (version 2.2) [19] was used with

50% as confidence value threshold and gene copy number adjustment. Operational Taxo-

nomic Unit (OTU) analysis was carried out on a clustering at the 97% identity threshold using

the complete linkage clustering algorithm.

For the unsupervised approach 2961 reads (the lowest number of reads recovered in a single

sample) were randomly subsampled from each sample (package GUniFrac in R) in order to

Gastric microbiota in pigs
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minimise the impact of the varied sequencing depth among samples. For the supervised

approach, sequence tag data were normalised to relative abundance within the sample for anal-

ysis and visualisation. The statistical software PAST version 2.17 [20] was used to analyse the

abundance data of the reads assigned to taxa within the samples, with one-way ANOSIM

(Analysis of Similarities) testing significance of the difference between the groups of samples

based on differences in the gastric region. Cluster Analysis and Principal Components Analy-

sis were used to generate graphical representations of the differences in community composi-

tion. The SIMPER (Similarity Percentage) analysis was used to identify the specific genera

with the greatest contribution to the differences observed between the groups identified.

Results

Unsupervised approach

After rarefaction, 2,020 OUTs were represented among the 47,376 reads from the16 samples

in this study. The sequencing depth and the total OTU richness within individual samples are

reported in Table 1 and the per sample rarefaction curves are reported in S1 Fig.

The Shannon-Weaver diversity index and Eveness were calculated for each sample and the

average indices at each of the points (Content, Groove, Oxyntic and Pyloric) showed a quite

similar diversity, though with a lower equitability (eveness) of the OTUs within the Content

samples (Fig 1).

The Cluster analysis based on the abundance of the different OTUs in the samples (Fig 2)

showed two well-supported clusters; one consisted of all the samples from the content and the

other consisted of all the samples from the mucosa. The clustering did not show an individual

effect or an effect of the regions in the mucosa; however, 3 out of the 4 samples from pyloric

region formed a sub-cluster poorly supported by bootstrap probability (BP = 41).

The null hypothesis, that there were no significant differences in community structure

based on the sample type (Content, Oxyntic, Pyloric, Groove), was rejected by one-way ANO-

SIM with an R of 0.632 (p = 0.0001). The pairwise post hoc test showed significant differences

Table 1. Distribution of reads and Operational Taxonomic Units (OTUs), before (pre rarefaction) and after (post rarefaction) normalization by sub-

sampling to the lowest number of reads recovered in a single sample.

Individual Sample pre rarefaction post rarefaction

Reads OTUs Reads OTUs

1 Content 9273 813 2961 476

2 Content 7504 573 2961 366

3 Content 5967 562 2961 401

4 Content 9408 787 2961 450

1 Oxyntic 5660 401 2961 311

2 Oxyntic 4648 319 2961 264

3 Oxyntic 4891 396 2961 335

4 Oxyntic 6096 460 2961 351

1 Pyloric 4033 428 2961 381

2 Pyloric 2961 332 2961 332

3 Pyloric 4127 391 2961 335

4 Pyloric 4412 392 2961 338

1 Groove 3586 383 2961 356

2 Groove 4025 374 2961 337

3 Groove 4717 428 2961 365

4 Groove 5423 457 2961 370

doi:10.1371/journal.pone.0173029.t001
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(p< 0.05) between the mucosal and the content samples, but no significant differences were

seen for the comparisons between the different mucosal regions (Table 2).

Supervised approach

The quality checked reads were analysed using the taxonomy-supervised method in the RDP

pipeline, which consists of a ‘taxonomy binning’ of the reads on the basis of the existing bacte-

rial taxonomy. This approach has some advantages, such as the least computational effort

required, minor sensibility at the sequencing errors and easier handling of the data [21].

First of all the classification at the phylum level showed the dominance of the unclassified

bacterial reads and chloroplast sequences, which represented chloroplast from the ingested

vegetal matter, in the content samples and a uniform distribution of the phyla in the different

regions of the mucosa (Fig 3). In order to focus the study on the classifiable bacterial commu-

nity, the unclassified and plasmidial sequences were excluded from additional analysis.

The dominant phylum was Proteobacteria with 50% (on average) in the content samples

and 60.9% (on average) in the mucosal samples, the second phylum was Firmicutes for the

Fig 1. Box-plot of the Shannon-Weaver (a) and Eveness (b) index values in the samples from different

regions of the stomach.

doi:10.1371/journal.pone.0173029.g001

Fig 2. Unweighted Pair Group Method with Arithmetic Mean (UPGMA) Cluster analysis (Bray-Curtis

distance) of the samples of the gastric mucosa based on the abundance of the OTUs. Labels indicate

the pig identification number and the stomach region (CO: contents, OX: oxyntic, PY: pyloric, GR: groove)

with 10,000 Bootstrap resamplings used: the bootstrap Probability values (BP) are shown at the nodes.

doi:10.1371/journal.pone.0173029.g002
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content samples (27.5% on average) and Actinobacteria for mucosal samples (30.8% on aver-

age) followed by Bacteroidetes (5.53% in the content samples; 2.78% in the mucosal samples).

One-way ANOSIM showed weak (R = 0.272) but significant (p = 0.0075) differences in com-

munity structure; in the pairwise post hoc test, significant differences (p< 0.05) were reported

between the mucosal and the content samples but not for the comparisons between the differ-

ent mucosal regions.

The classification at the genus level identified 238 genera in total. The Cluster analysis,

based on the relative abundance of the Genera (Fig 4), showed a situation similar to that seen

in the unsupervised approach with a cluster for all samples from the content samples and

another cluster for all the mucosal samples. No clusterings by subject or for different mucosal

regions were found.

One-way ANOSIM again showed significant differences (R = 0.354; p = 0.0018) between

the mucosal and the content samples but not for the comparisons between the different muco-

sal regions (Table 3).

The SIMPER analysis (Table 4) was carried out in order to identify the Genera wich most

influenced the difference between the bacterial communities of mucosa and content. The over-

all average dissimilarity (Mucosa VS Content) was 51.43%. The SIMPER analysis showed that

the differences between the bacterial communities of the gastric mucosa are primarily driven

by the dominance of the genus Herbiconiux with an average abundance of 41.9% in the muco-

sal samples and 21.6% in the content samples. Other principal genera characterising the

mucosa are Brevundimonas and Moritella; instead, Pasteurella, Streptococcus, Lactobacillus and

Lactococcus characterise the contents.

Principal component analysis (PCA) regarding the relative abundances of the bacterial gen-

era showed that the 78.5% of variance in the data could be explained by the first two principal

Table 2. ANOSIM (analysis of similarities) post hoc test based on abundance of OTUs in samples.

Content Oxyntic Pyloric Groove

Content 0.029 0.033 0.028

Oxyntic 0.029 0.059 0.088

Pyloric 0.033 0.059 0.715

Groove 0.028 0.088 0.715

Significant differences in pairwise comparisons are highlighted in gray. The one-way ANOSIM was performed on Bray-Curtis distance with 10,000

permutations, the samples were grouped according to the point of origin.

doi:10.1371/journal.pone.0173029.t002

Fig 3. Relative abundance (average) of the principal phyla in the different stomach regions. Before and

after removal of unclassified Bacteria and Chloroplast reads. Verrucomicrobia, Fusobacteria and

Acidobacteria phyla (not visible in the Figure) were also found with abundances <1%.

doi:10.1371/journal.pone.0173029.g003
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components. This analysis confirmed the subdivision of the samples into two main clusters

along the first component (Fig 5), a cluster consisting of contents samples and a cluster con-

taining samples obtained from the mucosa and the PCA biplot (Fig 5) shows the influence on

this clustering of genera also reported by SIMPER analysis.

Discussion

The current study revealed values of alpha diversity of the pig gastric microbiota similar in the

different areas of the stomach anlysed (Oxyntic, Pyloric, Gastric Groove and Content), and

comparable to those reported by Mann (2014). The bacterial community composition, ana-

lysed at different taxonomic levels (Phyla, Genera, OTUs), did not show differences in the dis-

tribution of the bacterial populations between the different areas of the gastric mucosa. This

indicated that the anatomic and physiological differences in the different gastric areas (see

Introduction) may not directly impact the bacterial community, which is probably more influ-

enced by the outer mucus layer. Unfortunately, however, the exact location of the microbiota

in the stomach of mammals is still unknown [22].

Instead, significant differences in bacterial distribution at the phyla, genera and OTU levels

are observed between the mucosa and gastric content. Even if our results should be treated with

caution since they are based on a limited number of replicates, this differentiation between the

mucosal and the luminal microbiota has already been described for the gastrointestinal tract of

Fig 4. Unweighted Pair Group Method with Arithmetic Mean (UPGMA) Cluster analysis (Bray-Curtis

distance) on the samples of the gastric mucosa based on the relative abundance of the sequence

reads classified at the genus level. Labels indicate the pig identification number and the stomach region

(CO: contents, OX: oxyntic, PY: pyloric, GR: groove) with 10,000 Bootstrap resamplings used; bootstrap

probability values (BP) are shown at nodes.

doi:10.1371/journal.pone.0173029.g004

Table 3. ANOSIM post hoc test based on relative abundance of genera in samples.

Content Oxyntic Pyloric Groove

Content 0.031 0.027 0.031

Oxyntic 0.031 0.969 0.441

Pyloric 0.027 0.969 0.623

Groove 0.031 0.441 0.623

Significant differences in pairwise comparisons are highlighted in gray. The one-way ANOSIM was performed on Bray-Curtis distance with 10,000

permutations the samples were grouped according to the point of origin.

doi:10.1371/journal.pone.0173029.t003
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other mammals [23], indicating that the digesta bacterial community may not be sufficiently

informative of the bacterial community associated with the gastric mucosa.

First of all regarding the taxonomic classification of the reads, the large number of unclassi-

fiable bacterial sequences, approximately 55% in the content and 30% in the mucosa at the

phylum level is first of all evident. This gives a general idea regarding the bacterial diversity

still unexplored. When focusing on the reads taxonomically identified, it can be seen that the

principal phyla (Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes) are those usu-

ally reported for the gastric ecosystem of mammals [22]. In our study, however, the dominant

Table 4. Similarity Percentage (SIMPER) genera contribution.

Genus Contribution Mean ab. Cont. Mean ab. Muc.

Herbiconiux 10.15 21.60 41.90

Pasteurella 3.45 7.51 0.62

Streptococcus 3.09 6.79 0.64

Brevundimonas 2.77 8.29 12.90

Moritella 2.41 5.01 9.83

Lactobacillus 2.30 5.58 0.98

Lactococcus 1.96 4.23 0.32

Phenylobacterium 1.34 2.55 0.53

Ochrobactrum 1.19 3.31 4.62

Prevotella 1.18 2.74 0.42

Delftia 1.10 1.76 3.85

Stenotrophomonas 0.98 1.02 2.74

Curtobacterium 0.68 1.41 0.05

Pseudomonas 0.59 1.38 0.21

Cloacibacterium 0.55 1.01 0.17

Eikenella 0.55 1.17 0.15

“Contribution” represents the average contribution of a given Genus to the average dissimilarity between samples (overall mean = 51.43%). “Mean ab.

Cont.” is the average relative abundance (in %) in content samples “Mean ab. Muc.” is the average relative abundance (in %) in mucosal samples. The list of

genera is not exhaustive, an arbitrary threshold of a mean contribution of 0.5 was used as a cut-off.

doi:10.1371/journal.pone.0173029.t004

Fig 5. Biplot of the Principal Component Analysis of the stomach samples based on the relative

abundance of bacterial genera per sample. Labels indicate the pig identification number and the stomach

region (+ CO: contents, ■OX: oxyntic, * PY: pyloric, ^ GR: groove). Names of the bacterial genera with the

highest loadings are plotted as vectors according to their correlation to the first two components.

doi:10.1371/journal.pone.0173029.g005

Gastric microbiota in pigs
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phylum was Proteobacteria, in contrast to what was reported by Mann et al. (2014) for the

non-glandular area of the pig stomach in which Firmicutes represented the dominant phylum

with Lactobacillus genus. This difference could be due to the different gastric area analysed; in

fact, the non-glandular stomach area is reported as that which hosts primarily lactobacilli

[24,25].

In the present study, classification at the genus level identified Pasteurella, Streptococcus and

Lactobacillus as those most characterising the gastric content. In the pig, Pasteurella is mainly

reported for the upper respiratory tract [26] and it is linked to diseases of the respiratory sys-

tem [27]. Streptococci and lactobacilli, for which our study found relative abundances slightly

in favour of streptococci (6.79% vs. 5.58%), have already been described in the pig stomach as

competitors in the post weaning period [28].

Instead, the bacterial genera which characterise the gastric mucosa were Herbiconiux and

Brevundimonas; Herbiconiux included strains associated with plant matter [29,30] which has

never been described before in the gastrointestinal tract of mammals. The genus Brevundimo-
nas includes opportunistic strains ubiquitous in the environment, and a strain with growth

requirements typical of Helicobacter wich has been reported in the gastric mucosa of dogs [31].

The presence of both Herbiconiux and Brevundimonas was also observed in a set of samples of

the pyloric mucosa analysed, using the same technique, in another our study (unpublished

data), but with lower abundances (about 4%), this could be explained by the association of

these bacteria with the last meal ingested. Interestingly, Herbiconiux and Brevundimonas
include strains which can degrade cellulose and xylan found in the gut of some insects [32,33]

and it was noted that the bacteria associated with the plant matter of the meal could represent

an inoculum of functionally similar strains in mammals [34]. Furthermore, the action of cellu-

lase and xylanase enzymes has already been the subject of interest in pig feeding studies [6,35];

the possibility of exogenous xylanase activity in the pig gastric environment has also been

reported [36]. Mann et al. (2014), for example, suggest for Prevotella the degrading activity

of hemicelluloses in the stomach of pig; regrettably, microbiota profiling through the 16s

rRNA gene cannot provide information regarding the functionality and vitality of the bacteria

reported.

Finally, must not be forgotten that the bacterial community of the stomach is more directly

influenced by the last meal ingested [37] and by the sampling and the management of the ani-

mals [3], and that the scarcity of studies in the literature explicitly addressing the gastric micro-

biota makes the formulation of stronger hypotheses regarding the impact of different gastric

locations on microbiota composition difficult. The present results indicated that proper

designs could be formulated for the additional identification and isolation of variables which

modify gastric microbiota in the pig; nevertheless, the exploratory nature of this pilot study

must be pointed out, and larger studies focused on the stomach would provide validation of

the data presented herein. It is hoped, therefore, that the efforts now dedicated to the descrip-

tion of the gut microbiota will stimulate additional studies involving the gastric ecosystem.

Supporting information

S1 Fig. Per Sample Rarefaction Curves. Numbers indicate the pig identification number and

the initials indicate stomach region (CO, contents; OX, oxyntic; PY, pyloric; GR, groove).
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