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A Discovering two cluster structures through a
greedy search

For the description of the greedy search algorithm em-
ployed in the analyses reported in Sections 4 and E it
is convenient to use the following notation. A model for
the marginal distribution of a variable sub-vector Xa

obtained from equation (1) with Ka mixture compo-
nents and the parameterisation Pa of the component-
covariance matrices is denoted as M = (Xa,Ka, Pa);
the BICM of such a model is BIC(Xa, Ka, Pa). Fur-
thermore, let M1(Xa) be the class of models for Xa

defined using equation (1) with K1 ∈ {2, . . . , K1max}
and by considering all the possible parameterisations
for the component-covariance matrices. In an analo-
gous way, a model for the conditional distribution of
a variable sub-vector Xb given Xa, defined according
to equations (2)-(6) with Kb mixture components and
the parsimonious parameterisation Pb, is denoted as
M = (Xb|Xa,Kb, Pb); BIC(Xb|Xa,Kb, Pb) is the BIC

value of such a model and M2(Xb|Xa) is the class of
the models for the conditional distribution of Xb given
Xa obtained from equations (2)-(6) by admitting that
K2 ∈ {2, . . . , K2max} and by considering all the param-
eterisations for the component-covariance matrices.
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The greedy search algorithm is composed of three
parts. In the first part the selection of the variables that
provide information on the first cluster structure (i.e.,
XS1) is carried out; the second part identifies the rel-
evant variables for the second cluster structure (XS2);
in the last part the uninformative variables (XU ) are
defined. The stages that characterise the first two parts
are similar to the ones of the algorithm described in
Raftery and Dean (2006) for performing variable selec-
tion. The main difference with the first part is given by
the use of model (6), that makes it possible to discover a
second cluster structure in the conditional p.d.f. of XS2

given XS1 . As far as the second part is concerned, the
most important difference with the algorithm of Raftery
and Dean (2006) is that the analyses are carried out by
conditioning all the examined models on the variables
selected in the first part.

Specifically, the main stages of the greedy search
algorithm are described in the following. A sequence of
adding and removing steps characterises both the first
and the second part.

Part 1 Selection of the relevant variables for the first
cluster structure
(1a) (First adding step) In order to select the first

relevant variable for the first cluster structure
the evidence of clustering in the univariate marginal
distributions of the L variables has to be eval-
uated. This task is carried out through the fol-
lowing measure:

∆BIC(Xl) = BICclust1(Xl) (A)

−BICnotclust(Xl), l ∈ I,

where I = {1, . . . , L} is the variable index set,

BICclust1(Xl) = max
M1(Xl)

BIC(Xl,K, P )
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and BICnotclust(Xl) is the BIC of the univariate
Gaussian model for the variable Xl. Thus, the
first variable selected as informative for the first
cluster structure is the one that has the highest
value of the measure in equation (A):

X̂
(1)
1 = argmax

l∈I
∆BIC(Xl).

Let Ŝ1 be the set composed of the integer num-
ber associated with X̂

(1)
1 .

(1b) (Second adding step) In order to choose the
second relevant variable for the first cluster struc-
ture L− 1 bivariate distributions have to be ex-
amined. Namely, the evidence of clustering in
the joint bivariate distributions of (Xl,XŜ1), l ∈
I r Ŝ1, is evaluated through the following mea-
sure:

∆BIC(Xl ∪XŜ1) = BICclust1(Xl ∪XŜ1)

−BICclust2(Xl|XŜ1)

−BICclust1(X
Ŝ1), l ∈ I r Ŝ1, (B)

where

BICclust1(Xl ∪XŜ1) =

max
M1(Xl∪XŜ1 )

BIC(Xl ∪XŜ1 ,K, P ),

and

BICclust2(Xl|XŜ1) = (C)

max
M2(Xl|XŜ1 )

BIC(Xl|XŜ1 ,K, P ).

Then, the second variable selected as informative
for the first cluster structure is the one that has
the highest value of the measure in equation (B):

X̂
(1)
2 = argmax

l∈IrŜ1

∆BIC(Xl ∪XŜ1), (D)

and Ŝ1 becomes the set composed of the variable
indices associated with X̂

(1)
1 and X̂

(1)
2 .

(1c) (General adding step) The next variable se-
lected for the first cluster structure is the one
that shows the strongest positive evidence of clus-
tering in the joint multivariate distributions of
(Xl,XŜ1), l ∈ I r Ŝ1, according to the mea-
sure ∆BIC(Xl ∪XŜ1) defined in equation (B).
Namely:

X̂(1)
q = argmax

l∈IrŜ1

∆BIC(Xl ∪XŜ1);

furthermore, if ∆BIC(X̂(1)
q ∪ XŜ1) > 0, then

X̂
(1)
q is selected as a relevant variable for the first

cluster structure and the variable index associ-
ated with X̂

(1)
q is added to Ŝ1.

(1d) (General removing step) The next variable to
be removed from the current vector XŜ1 of the
relevant variables for the first cluster structure is
the one that shows the weakest negative evidence
of clustering in the joint p.d.f. of XŜ1 . In order
to identify this variable, the following measure
is computed:

∆BIC(XŜ1rl) = BICclust1(X
Ŝ1)

−BICclust2(Xl|XŜ1rl)

−BICclust1(X
Ŝ1rl), l ∈ Ŝ1. (E)

The variable that shows the weakest evidence of
clustering is identified as the one that registers
the lowest value of the measure in equation (E):

X̂(1)
r = argmin

l∈Ŝ1

∆BIC(XŜ1rl).

If ∆BIC(XŜ1rs) < 0, where s is the variable
index associated with X̂

(1)
r , then X̂

(1)
r is removed

from the current vector of the relevant variables
for the first cluster structure and s is removed
from Ŝ1.

(1e) Steps (1c) and (1d) are iterated until two con-
secutive steps do not lead to any change in the
vector of the selected relevant variables for the
first cluster structure.

Part 2 Selection of the relevant variables for the second
cluster structure
(2a) (First adding step) In order to select the first

relevant variable for the second cluster structure
the evidence of clustering in the conditional uni-
variate p.d.f. of Xl given XŜ1 has to be evaluated
for l ∈ I r Ŝ1. This task is carried out through
the following measure:

∆BIC(Xl|XŜ1) = BICclust2(Xl|XŜ1)

−BICnotclust(Xl|XŜ1), l ∈ I − Ŝ1, (F)

where BICclust2(Xl|XŜ1) is defined in equation (C)
and BICnotclust(Xl|XŜ1) is the BIC of the uni-
variate Gaussian linear regression model with Xl

as the response and XŜ1 as predictors. Thus,
the first variable selected as informative for the
second cluster structure is the one that has the
highest value of the measure in equation (F):

X̂
(2)
1 = argmax

l∈IrŜ1

∆BIC(Xl|XŜ1).

Then, let Ŝ2 be the set composed of the variable
index associated with X̂

(2)
1 .
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(2b) (Second adding step) The second relevant vari-
able for the second cluster structure is selected
as the one that, together with X̂

(2)
1 , shows the

strongest evidence of clustering in their condi-
tional bivariate p.d.f. given XŜ1 , according to
the following measure:

∆BIC(Xl ∪XŜ2 |XŜ1) = BICclust2(Xl ∪XŜ2 |XŜ1)

−BICnotclust(Xl|XŜ1∪Ŝ2)

−BICclust2(X
Ŝ2 |XŜ1), l ∈ I r Ŝ1 r Ŝ2. (G)

Thus,

X̂
(2)
2 = argmax

l∈IrŜ1rŜ2

∆BIC(Xl ∪XŜ2 |XŜ1).

Then, the variable index associated with X̂
(2)
2 is

added to Ŝ2.
(2c) (General adding step) The next relevant vari-

able for the second cluster structure is the one
that shows the strongest positive evidence of clus-
tering in the joint conditional p.d.f.’s of (Xl,XŜ2)
given XŜ1 , l ∈ IrŜ1rŜ2, according to the mea-
sure defined in equation (G). Namely:

X̂(2)
q = argmax

l∈IrŜ1rŜ2

∆BIC(Xl ∪XŜ2 |XŜ1);

if ∆BIC(X̂(2)
q ∪XŜ2 |XŜ1) > 0, then X̂

(2)
q is se-

lected as a relevant variable for the second clus-
ter structure and its variable index is added to
Ŝ2.

(2d) (General removing step) The next variable to
be removed from the current vector XŜ2 of the
relevant variables for the second cluster struc-
ture is the one that shows the weakest negative
evidence of clustering in the joint conditional
p.d.f. of XŜ2 given XŜ1 . In order to identify this
variable the following measure is computed:

∆BIC(XŜ2rl|XŜ1) = BICclust2(X
Ŝ2 |XŜ1)

−BICnotclust(Xl|XŜ1∪Ŝ2rl)

−BICclust2(X
Ŝ2rl|XŜ1), l ∈ Ŝ2, (H)

where BICnotclust(Xl|XŜ1∪Ŝ2rl) is the BIC of
the univariate Gaussian linear regression model
with Xl as the response and XŜ1∪Ŝ2rl as predic-
tors. The variable showing the weakest evidence
of clustering is the one with the lowest value of
the measure in equation (H):

X̂(2)
r = argmin

l∈Ŝ2

∆BIC(XŜ2rl|XŜ1).

If ∆BIC(XŜ2rs|XŜ1) < 0, where s is the vari-
able index associated with X̂

(2)
r , then X̂

(2)
r is re-

moved from the vector of the relevant variables
for the second cluster structure and s is removed
from Ŝ2.

(2e) Steps (2c) and (2d) are iterated until two con-
secutive steps do not lead to any change in the
vector of the selected variables for the second
cluster structure.

Part 3 Definition of the uninformative variables
XÛ = XrXŜ1 ∪XŜ2 .

At steps (1a)-(1b) and (2a)-(2b) the largest ∆BIC(.)
value is not required to be positive because it may
happen that the evidence of clustering in univariate
and bivariate analyses can be weak, but it can become
stronger when a multivariate analysis is performed (see
Raftery and Dean (2006)). These steps simply allow to
initialise the search for the vectors of relevant variables
for the first and the second cluster structure, respec-
tively. Removal steps (1d) and (2d) are introduced in
order to overcome the well-known drawback of forward
selection procedures as well as possible wrong initial-
izations of XS1 and XS2 . It is worth noting that the
algorithm may stop after step (1e). This happens when
the evidence of one cluster structure in the observed
data is strongest than the one in favour of two cluster
structures. Thus, this algorithm can also be employed
as a diagnostic tool to check the model assumptions
(namely, the presence of two cluster structures in the
dataset).

B Two genetic algorithms for discovering two
cluster structures

This section provides some details about the actual im-
plementation of the genetic algorithms introduced in
Section 3.8.

B.1 Genetic algorithm 1

Recall that the generic model in the class M̃(2) is de-
noted by (S1, S2, U,K1,K2). The first genetic algorithm
is organized into two parts:

a) selection of S1 and K1 (information extraction for
the first cluster structure); for all models examined
in this part U = ∅;

b) selection of S2, K2 and U (information extraction for
the second cluster structure and the uninformative
variables), given the solution obtained in part a).

Part a) is structured as follows:
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a.1) Generation of the initial population
N1 chromosomes are randomly generated accord-
ing to the genetic coding scheme described in Sec-
tion 3.8. In particular:
• genes in position from one to L are generated ac-

cording to L independent draws from a Bernoulli
random variable with probability 0.5;

• gene in position L+1 is randomly selected from
the set of the integer values {2, . . . , K1max};

• gene in position L+2 is randomly selected from
the set of the integer values {2, . . . , K2max}.

For example, if L = 6, the chromosome (0, 1, 1, 0, 0, 1, 3, 2)
corresponds to the model with S1 = {2, 3, 6}, S2 =
{1, 4, 5}, K1 = 3 and K2 = 2.
,

a.2) Fitness evaluation
For each chromosome, the BIC value of the cor-
responding model is used as a fitness measure. By
default, the fitness measure for chromosomes corre-
sponding to models with S1 = ∅ (all genes in posi-
tions from 1 to L are equal to zero) or S2 = ∅ (all
genes in positions from 1 to L are equal to one) is
considered a missing value and set to NA. Further-
more, if the maximum likelihood estimation for a
model fails because of numerical issues (for exam-
ple, due to singularities in some matrices that must
be inverted in the EM algorithms), the fitness mea-
sure of the corresponding chromosome is also set to
NA.
A preliminary check is performed on each chromo-
some, in order to establish whether it corresponds
to a model that has been already fitted. If this holds
true, the corresponding model is not refitted, since
its BIC is already available (this allows to save com-
putational time).

a.3) Generation of a new population
a.3.i) Selection: after excluding chromosomes with

NA fitness values, parent chromosomes for the
new population are selected using a linear-rank
method (Scrucca 2013). In particular, bN1/2c
pairs of parent chromosomes are randomly gen-
erated, where bN1/2c denotes the largest integer
lower than N1/2.

a.3.ii) Crossover : given a pair of parent chromo-
somes, single point crossover is performed. In
particular, the probability of crossover is set to
0.8. Pairs of parent chromosomes that are not
subject to crossover are directly inserted in the
new population. For pairs of parent chromosomes
that are subject to crossover, a crossover point
is selected at random among the values of the
set {1, . . . , L + 2}.

a.3.iii) Mutation: the probability of a mutation is
set to 0.1 for each chromosome obtained after
crossover. The gene on which the mutation oc-
curs is selected at random. The actual mutation
depends on the position of the mutating gene:
• if the mutating gene is in position from 1 to

L, the gene is changed from 0 to 1 or from
1 to 0;

• if the mutating gene is in position L + 1,
the mutation depends on the value of the
gene. Denoting this value by k̃, the possible
mutations are:
– if k̃ = 2, it is increased by one;
– if k̃ = K1max, it is decreased by one;
– otherwise, k̃ can be either increased or

decreased by one. The direction of the
mutation is randomly selected, with a
probability of an increase equal to 0.5;

• if the mutating gene is in position L + 2,
the mutation scheme is similar to the one
for gene in position L + 1 (after replacing
K1max with K2max).

Steps a.2) and a.3) are iteratively repeated d1max−
1 times, so that a total of d1max populations are ex-
amined. Among all examined chromosomes, the one
with the largest fitness measure is selected. The optimal
values Ŝ1 and K̂1 are derived from the corresponding
model. Furthermore, let L̂1 denote the number of ele-
ments in Ŝ1 (the number of variables for the first cluster
structure). These optimal values are considered as fixed
in the second part of the genetic algorithm.

Part b) is structured as follows:

b.1) Generation of the initial population
N2 chromosomes are randomly generated accord-
ing to the genetic coding scheme described in Sec-
tion 3.8. In particular:
• genes in position from 1 to L− L̂1 are generated

according to L − L̂1 independent draws from a
Bernoulli random variable with probability 0.5;

• gene in position L− L̂1 + 1 is randomly selected
from the set of the integer values {2, . . . , K2max};

For example, assuming that L = 6, L̂1 = 2, Ŝ1 =
{2, 3}, and K̂1 = 3, the chromosome (0, 0, 0, 1, 2)
corresponds to the model with S1 = {2, 3}, S2 =
{6}, U = {1, 4, 5}, K1 = 3 and K2 = 2.

b.2) Fitness evaluation
For each chromosome, the BIC value for the cor-
responding model is used as a fitness measure. By
default, the fitness measure for chromosomes corre-
sponding to models with S2 = ∅ (all genes in posi-
tions from 1 to L−L̂1 are equal to zero) is set to NA.
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The fitness measure of a chromosome is also set to
NA whenever the maximum likelihood estimation of
the corresponding model fails because of numerical
issues.
Furthermore, if a chromosome corresponds to a model
already fitted, that model is not refitted.
Note that, given the particular structure of the log-
likelihood functions of the proposed models (see Sec-
tion 3.5), the ML estimates of θ1 do not vary among
the chromosomes examined in this part of the algo-
rithm, and can be obtained from the results of part
a). Thus, they must not be recomputed.

b.3) Generation of a new population
b.3.i) Selection: the selection process is similar to

the one described in step a.3.i). The only differ-
ence is in the number of pairs of parent chromo-
somes, that changes to bN2/2c.

b.3.ii) Crossover : the crossover process is similar to
the one described in step a.3.ii). The only dif-
ference is in the selection of the crossover point,
that is randomly chosen among the values of the
set

{
1, . . . , L− L̂1 + 1

}

b.3.iii) Mutation: the mutation process is similar to
the one described in step a.3.iii). The only dif-
ference is that there is only one gene (in position
L − L̂1 + 1) that can be increased or decreased
by one.

Steps b.2) and b.3) are iteratively repeated d2max−1
times, so that a total of d2max populations are exam-
ined. Among all examined chromosomes, the one with
the largest fitness measure is selected. The optimal val-
ues Ŝ2 and K̂2 and Û are obtained from the correspond-
ing model. These optimal values, along with the ones
obtained with the execution of part a), define the opti-
mal model (Ŝ1, Ŝ2, Û , K̂1, K̂2).

B.2 Genetic algorithm 2

This second algorithm extends the one just described
by considering also the parsimonious covariance struc-
tures introduced in Section 3.6. Details about these pa-
rameterisations are provided in Table A, along with the
genetic coding schemes that are used in the algorithm.
Note that the fourteen parameterisations described is
Table A are meaningfully defined when Lg > 1 (g =
1, 2). Whenever Lg = 1, the corresponding component-
covariance matrices are scalar and some parameterisa-
tions lead to the same model. In particular, the fourteen
parameterisations can be collapsed into only two differ-
ent situations: constant component-variances or varying
component-variances (see column 8 in Table A).

Recall that the generic model in the class M̃(2)
pars is

denoted by (S1, S2, U,K1, K2, P1, P2, PU ). The second
genetic algorithm is organized into two parts:

ā) selection of S1, K1 and P1; for all models examined
in this part U = ∅;

b̄) selection of S2, K2, P2, U and PU , given the solution
obtained in part ā).

Part ā) is structured as follows:

ā.1) Generation of the initial population
N1 chromosomes are randomly generated accord-
ing to the genetic coding scheme described in Sec-
tion 3.8. Chromosomes in this part have L+4 genes:
the first L+2 genes have the same meaning of genes
described in step a.1). The two additional genes are
used to encode the parameterisations P1 and P2.
Thus, for each chromosome:
• genes in position from 1 to L + 2 are randomly

generated following the rules given in step a.1);
• gene in position L+3 is randomly selected from

the set of the integer values {1, . . . , 14};
• gene in position L+4 is randomly selected from

the set of the integer values {1, . . . , 14} .
For example, assuming that L = 6, the chromosome
(0, 1, 1, 0, 0, 1, 3, 2, 4, 12) correspond to the model with
S1 = {2, 3, 6}, S2 = {1, 4, 5}, K1 = 3, K2 = 2, P1 =
VII and P2 = VVE.
Before proceeding to the following steps, each chro-
mosome is examined, in order to check whether it
assigns only one variable to S1 or to S2. Consider,
for example, the following chromosome: (0, 0, 0, 0,

0, 1, 3, 2, 4, 12). The corresponding model has S1 =
{6}, K1 = 3 and P1 = VII, thus implying a univari-
ate Gaussian mixture for the marginal distribution
of X6, with varying component variances. Note that
also the chromosome (0, 0, 0, 0, 0, 1, 3, 2, 13, 12) leads
to the same univariate Gaussian mixture for the
marginal distribution of X6. Thus, the two chromo-
somes encode the same model, although they are dif-
ferent. In order to avoid such inconsistencies, when-
ever in a chromosome only one of the first L genes
is equal to one (only one variable is assigned to S1),
gene in position L + 3 is modified according to the
genetic coding scheme reported in the last column
of Table A. A similar modification is performed on
gene in position L+4 whenever only one of the first
L genes is equal to zero (only one variable is as-
signed to S2).

ā.2) Fitness evaluation
This step is similar to step a.2).
The only difference is in the estimation of the com-
ponent covariance matrices, that is carried out un-
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Table A Parsimonious parameterisations for the component covariance matrices (g = 1, 2)

Gene coding scheme
Acronym Model Distribution Volume Shape Orientation Lg > 1 Lg = 1

EEE λ(g)D(g)A(g)D′(g) Ellipsoidal Equal Equal Equal 1 1

VVV λ
(g)
kg

D
(g)
kg

A
(g)
kg

D
′(g)
kg

Ellipsoidal Variable Variable Variable 2 2

EII λ(g)ILg Spherical Equal Equal − 3 1

VII λ
(g)
kg

ILg Spherical Variable Equal − 4 2

EEI λ(g)A(g) Diagonal Equal Equal − 5 1

VEI λ
(g)
kg

A Diagonal Variable Equal − 6 2

EVI λ(g)A
(g)
kg

Diagonal Equal Variable − 7 1

VVI λ
(g)
kg

A
(g)
kg

Diagonal Variable Variable − 8 2

EEV λ(g)D
(g)
kg

A(g)D
′(g)
kg

Ellipsoidal Equal Equal Variable 9 1

VEV λ
(g)
kg

D
(g)
kg

A(g)D
′(g)
kg

Ellipsoidal Variable Equal Variable 10 2

EVE λ(g)D(g)A
(g)
kg

D′(g) Ellipsoidal Equal Variable Equal 11 1

VVE λ
(g)
kg

D(g)A(g)D
′(g)
kg

Ellipsoidal Variable Variable Equal 12 2

VEE λ
(g)
kg

D(g)A(g)D′(g) Ellipsoidal Variable Equal Equal 13 2

EVV λ
(g)
kg

D(g)A
(g)
kg

D
′(g)
kg

Ellipsoidal Equal Variable Variable 14 1

der the restrictions introduced by the parsimonious
parameterisations.

ā.3) Generation of a new population
ā.3.i) Selection: see step a.3.i).

ā.3.ii) Crossover : this step is similar to step a.3.ii).
Before proceeding to the following steps, new
chromosomes obtained after crossover are exam-
ined and modified as described in step ā.1), in
order to avoid the previously illustrated incon-
sistencies.

ā.3.iii) Mutation: this step is similar to step a.3.iii).
The gene on which the mutation occurs is se-
lected at random. The actual mutation depends
on the position of the mutating gene:
• if the mutating gene is in position from 1

to L + 2, the same rules described in step
a.3.iii) apply;

• if the mutating gene is in position L + 3,
the mutation depends on the values of genes
from 1 to L. In particular:
– if only one of the first L genes is equal to

one (only one variable in S1), the mutat-
ing gene is changed from 1 to 2 or from
2 to 1;

– otherwise, the new value for the mutat-
ing gene is randomly selected among the
set {1, . . . , 14}rk̃, where k̃ is the current
value for that gene;

• if the mutating gene is in position L + 4,
the mutation scheme is similar to the one
for gene in position L + 3.

Before proceeding to the following steps, new
chromosomes obtained after mutations in genes
from 1 to L are examined and modified in or-
der to avoid the same inconsistencies described
in step ā.1).

Steps ā.2) and ā.3) are iteratively repeated d1max−1
times, so that a total of d1max populations are exam-
ined. Among all examined chromosomes, the one with
the largest fitness measure is selected. The optimal val-
ues Ŝ1, K̂1 and P̂1 are derived from the corresponding
model. Furthermore, let L̂1 denote the number of ele-
ments in Ŝ1 (the number of variables for the first cluster
structure). These optimal values are considered as fixed
in the second part of the algorithm.

Part b̄) is structured as follows:

b̄.1) Generation of the initial population
N2 chromosomes are randomly generated accord-
ing to the genetic coding scheme described in Sec-
tion 3.8. Chromosomes in this part of the second
genetic algorithm have L − L̂1 + 3 genes: the first
L − L̂1 + 1 genes have the same meaning of genes
described in step b.1). The two additional genes are
used to encode the parameterisations P2 and PU .
Thus, for each chromosome:
• genes in position from 1 to L − L̂1 + 1 are ran-

domly generated following the rules given in step
b.1);

• gene in position L− L̂1 + 2 is randomly selected
from the set of the integer values {1, . . . , 14};

• gene in position L− L̂1 + 2 is randomly selected
from the set of the integer values {1, 2, 3}. These
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three values correspond to isotropic, diagonal or
unconstrained covariance matrices, respectively.

For example, assuming that L = 6, L̂1 = 2, Ŝ1 =
{2, 3}, K̂1 = 3 and P̂1 =VEE, the chromosome (0, 0, 0
, 1, 2, 1, 2) corresponds to the model with S1 = {2, 3},
S2 = {6}, U = {1, 4, 5}, K1 = 3, K2 = 2, P̂1 =VEE,
P̂2 =EEE and diagonal ΣU .

Before proceeding to the following steps, each chro-
mosome is examined, in order to avoid the same in-
consistencies already described. In particular, when-
ever in a chromosome only one of the first L genes
is equal to one (only one variable is assigned to S2),
gene in position L− L̂1 +2 is modified according to
the genetic coding scheme reported in the last col-
umn of Table A. A similar modification is performed
on gene in position L− L̂1 +3 whenever only one of
the first L genes is equal to zero (only one variable
is assigned to U). In this latter situation, gene in
position L− L̂1 + 3 is set equal to 1.

b̄.2) Fitness evaluation
For each chromosome, the BIC value for the cor-
responding model parameter is used as a fitness
measure. By default, the fitness measure for chro-
mosomes corresponding to models with S2 = ∅ (all
genes in positions from 1 to L−L̂1 are equal to zero)
is set to NA. Furthermore, if the maximum likelihood
estimation for a model fails because of numerical is-
sues, the fitness measure of the corresponding chro-
mosome is also set to NA.
Similarly to part b) of the first genetic algorithm,
given the particular structure of the log-likelihood
functions of the proposed models (see Section 3.5),
the ML estimates of θ1 do not vary among chromo-
somes, and can be obtained from the results of part
ā). Thus, they must not be recomputed.

b̄.3) Generation of a new population
b̄.3.i) Selection: see step b.3.i).

b̄.3.ii) Crossover : this step is similar to step b.3.ii).
Before proceeding to the following steps, new
chromosomes obtained after crossover are exam-
ined and modified as described in step b̄.1).

b̄.3.iii) Mutation: this step is similar to step b.3.iii).
The gene on which the mutation occurs is se-
lected at random. The actual mutation depends
on the position of the mutating gene:
• if the mutating gene is in position from 1 to

L− L̂1 + 1, the same rules described in step
b.3.iii) apply;

• if the mutating gene is in position L−L̂1+2,
the mutation depends on the values of genes
from 1 to L− L̂1. In particular:
– if only one of the first L − L̂1 genes is

equal to one (only one variable in S2),
the mutating gene is changed from 1 to
2 or from 2 to 1;

– otherwise, the new value for the mutat-
ing gene is randomly selected among the
13 values of the set {1, . . . , 14} remain-
ing after excluding the current value for
that gene;

• if the mutating gene is in position L−L̂1+3,
the mutation depends on the values of genes
from 1 to L− L̂1. In particular:
– if only one of the first L − L̂1 genes is

equal to zero (only one variable in U),
no mutation is allowed;

– otherwise, the new value for the mutat-
ing ene is randomly selected among the
two values of the set {1, 2, 3} remaining
after excluding the current value for that
gene.

Again, before proceeding to the following steps,
new chromosomes obtained after mutations in
genes from 1 to L− L̂1 are examined and mod-
ified as described in step b̄.1), so that to avoid
the above illustrated inconsistencies.

Steps b̄.2) and b̄.3) are iteratively repeated d2max−1
times, so that a total of d2max populations are exam-
ined. Among all examined chromosomes, the one with
the largest fitness measure is selected. The optimal val-
ues Ŝ2, K̂2, P̂2, Û and P̂U are derived from the cor-
responding model. These values, along with the ones
obtained with the execution of part ā), define the opti-
mal model (Ŝ1, Ŝ2, Û , K̂1, K̂2, P̂1, P̂2, P̂U ).

C Second Monte Carlo study

In order to extend the performance evaluation of the
first genetic algorithm (with the BIC as a fitness mea-
sure), a second Monte Carlo experiment is performed.
This second experiment considers a more challenging
situation than the one examined in the first study. It is
obtained by increasing the number of variables and by
reducing the separation among clusters in both cluster
structures. In particular, artificial datasets are gener-
ated in the Euclidean space R12 using model (8), where
XS1 = (X1, X2, X3), K1 = 2, XS2 = (X4, X5, X6),
K2 = 2, and XU = (X7, X8, X9, X10, X11, X12). Thus,
in comparison with the first Monte Carlo experiment,



8 Galimberti et al.

the increase in the total number of variables is only due
to the presence of a greater number of uninformative
variables.

The parameters of the marginal p.d.f. of XS1 used
to generate the data are: π

(1)
1 = 0.5,

µ
(1)
1 =




0
0
0


 , Σ

(1)
1 =




1 −0.6 −0.3
−0.6 1 −0.4
−0.3 −0.4 1


 ,

µ
(1)
2 =




3
−3

3


 , Σ

(1)
2 =




1 0.6 0.3
0.6 1 0.4
0.3 0.4 1


 .

The parameters of the conditional p.d.f. of XS2 given
XS1 are: π

(2)
1 = 0.5,

γ
(2)
1 =



−2
−1
3.5


 , Σ

(2)
1 =




1 0.5 0.6
0.5 1 0.4
0.6 0.4 1


 ,

γ
(2)
2 =




0
1

1.5


 , Σ

(2)
2 =




1 −0.5 −0.6
−0.5 1 −0.4
−0.6 −0.4 1


 ,

B21 =




1.5 2 1.5
1.5 −2.5 −2
1.5 2 −2.5


 .

These parameters coincide with the ones employed in
the first Monte Carlo study except for µ

(1)
2 and γ

(2)
2 ,

whose values are modified such that the separation be-
tween clusters in every univariate variable subspace is
reduced.

Finally, the parameters of the conditional p.d.f. of
XU given (XS1 ,XS2) are:

α0 =




2
2
2
2
2
2




, A1 =




2 2 2
−2 −2 −2

2 2 2
−2 −2 −2

2 2 2
−2 −2 −2




,

A2 = −A1, ΣU = 2.025 · I6 + 0.225 · 161′6,

where I6 is the identity matrix of order 6 and 16 is a
unit-column vector of length 6. Thus, the detection of
the two cluster structures is made more complex than
in the first experiment because of a reduction in the
evidence of clustering both in the p.d.f. of XS1 and in
the conditional p.d.f of XS2 given XS1 . The complex-
ity of the task is also increased by the fact that now
the number of uninformative variables equals the total
number of informative ones.

One hundred samples of n = 400 observations each
are generated. The genetic algorithm is executed three
times on each sample, by changing the values of the

tuning parameter N1 that controls the information ex-
traction for the specification of model (1). Namely, the
examined values are 120, 240 and 360. The other tun-
ing parameters are kept constant throughout the ex-
periment; they are set as follows: K1max = K2max = 3,
d1max = 30, N2 = 80 and d2max = 20.

The obtained results are summarized in Table B.
Similarly to the first experiment, the percentage of sam-
ples for which XS1 , XS2 and XU are correctly identified
tends to increase as the value of N1 increases. However,
since the increase in the number of variables (from 8 to
12) implies an enlargement of the model space, larger
values of N1 are needed in order to obtain a satisfactory
performance with the genetic algorithm. It is interest-
ing to note that, despite the errors in identifying the
correct variable partition, there is a good agreement
between true and estimated cluster structures also in
this second experiment (see the mean values and stan-
dard deviations of the adjusted Rand index reported in
Table B).

D An example of an exhaustive search

The dataset used in this example is described and anal-
ysed in Ingrassia et al. (2014) and is available in the R
package flexCWM (Mazza et al. 2015). This dataset re-
ports L = 3 measurements for n = 270 students (151
females, 119 males) attending a statistics course: weight
(WEIGHT, in kilograms) and height (HEIGHT, in cen-
timeters) of the student and height of the student’s fa-
ther (HEIGHT.F, in centimeters).

As for the examples in Sections 2, 4.1 and E, this
dataset is analysed using an unsupervised approach and
ignoring the information about students’ gender. In par-
ticular, the optimal model for this dataset is searched
by comparing different kinds of models for the joint dis-
tribution of WEIGHT, HEIGHT and HEIGHT.F.

The first group of models is obtained from equa-
tion (8), by setting K1 = 1, 2, 3 and K2 = 2, 3. For
each examined value of K1 and K2, also the parsimo-
nious models illustrated in Section 3.6 are estimated.
The Gaussian mixture models for clustering and regres-
sion described in Section 3.2 are included in the search.
This leads to 888 distinct models: 768 are characterised
by the presence of two cluster structures (K1 ≥ 2 and
K2 ≥ 2), the remaining 120 models consider a single
cluster structure defined on the conditional distribu-
tion of XS2 given XS1 (K1 = 1 and K2 ≥ 2). Further-
more, 96 distinct models with only one cluster struc-
ture and at least one uninformative variable are consid-
ered. These latter models correspond to the solutions
explored in the approach of Raftery and Dean (2006)
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Table B Summary of results obtained in the second Monte Carlo Study.

N1
120 240 360

Correct classification of all the variables 50 70 78
aRi for the first cluster structure:
mean 0.986 0.986 0.988
s.d. 0.012 0.012 0.010
aRi for the second structure:
mean 0.840 0.843 0.843
s.d. 0.042 0.043 0.040

to perform variable selection in model-based cluster-
ing. They are obtained by setting XS2 = ∅, K1 = 2, 3
and by examining all the possible parameterisations for
the component covariance matrices. Gaussian mixture
models with only one cluster structure on the joint dis-
tribution of the three observed variables (i.e., without
uninformative variables) are also examined. These mod-
els are derived by considering XS2 = XU = ∅ and
K1 = 2, 3. For each of these values of K1, all the 14 par-
simonious parameterisations have been estimated, thus
leading to 28 models. Finally, also the Gaussian model
for the joint distribution of the observed variable is in-
cluded in the analysis (K1 = 1, XS2 = XU = ∅). The
total number of examined model is 1013.

According to the BIC, if one restricts the attention
to models with XS2 = ∅, the best model for the joint
distribution of the three measurements is obtained with
the following splitting of the variable vector: XS1 =
(HEIGHT, HEIGHT.F), XU = WEIGHT. The same
splitting is obtained using clustvarsel. The BIC value
of this model is −5347.7. A mixture of two Gaussian
components with equal covariance matrices is selected
for modelling the joint distribution of students’ and fa-
thers’ height.

By allowing XS2 6= ∅ (such as in equation (8)), the
model with the largest BIC value for the joint dis-
tribution of the three measurements has the following
splitting: XS1 = HEIGHT.F, XS2 = HEIGHT, XU =
WEIGHT. The BIC value of this model is −5342.7.
As far as the model for the marginal distribution of
the fathers’ height is concerned, a Gaussian distribu-
tion is selected. Thus, this marginal distribution does
not provide any evidence of clustering of the students
(note that this information cannot be directly recovered
from the results obtained when setting XS2 = ∅). The
BIC value of this marginal model is −1739.1. A mix-
ture of two Gaussian regression models with the same
regression coefficients and unconstrained variances is
used to model the linear dependence of the students’
height on the height of their fathers (see Figure A).
The BIC value of this conditional model is −1850.6.
This model allows to detect a latent clustering of the
students that is strongly associated with their group-

Table C Classification of the students according to their gen-
der and the cluster membership estimated by the Gaussian
mixture of regression models selected for the conditional dis-
tribution of HEIGHT|HEIGHT.F.

Cluster
Gender 1 2
F 151 0
M 7 112
aRi 0.899

ing based on gender (see Table C). As already noted,
HEIGHT.F does not provide information about this
cluster structure. This is consistent with the fact that
the gender of a student is expected to be independent
from his/her father’s height. Finally, a Gaussian linear
regression model is employed for the conditional distri-
bution of the students’ weight in which both heights
are used as predictors (BIC = −1753.0). According
to this latter result, conditionally on HEIGHT.F and
HEIGHT, the students’ weight does not provide any
information about the clustering of the students.

The results obtained using models defined accord-
ing to equation (8) are consistent with the ones de-
scribed in Ingrassia et al. (2014). It is worth noting
that Ingrassia et al. (2014) analyse this dataset using
an approach that differs from the one proposed in this
paper. Namely, Ingrassia et al. (2014) focus on two dis-
tinct bivariate analyses (one for the joint distribution
of HEIGHT.F and HEIGHT, the other for the joint dis-
tribution of WEIGHT and HEIGHT) instead of consid-
ering the joint distribution of the three measurements.
Furthermore, in each of these two bivariate analysis,
they follow a regression approach, by specifying in ad-
vance which variable plays the role of dependent vari-
able and using the other variable as a regressor. These
a priori distinctions in the roles of the variables are
not required when using the approach proposed in this
paper.

E Results from the analysis of the AIS dataset

The AIS dataset is described in Cook and Weisberg
(1994) and is available in the R package sn (Azzalini
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Fig. A Scatterplot of the students’ and fathers’ heights and fitted regression lines using a mixture of two Gaussian linear
regression models with the same regression coefficients. Male and female students are represented using circles and squares,
respectively. White and black colours are used to distinguish between the two clusters detected by the mixture model.

2014). It contains information concerning n = 202 ath-
letes (102 males and 100 females) at the Australian
Institute of Sport. The analysis described in this Sec-
tion focuses on L = 9 variables: red cell count (RCC),
white cell count (WCC), hematocrit (Hc), hemoglobin
(Hg), plasma ferritin concentration (Fe), body mass in-
dex (BMI), sum of skin folds (SSF), body fat percent-
age (Bfat) and lean body mass (LBM). This dataset
is analysed using mclust, clustvarsel, SelvarClust,
SelvarClustIndep, the greedy search algorithm (see
Section A) and the second genetic algorithm (Section B.2).

The best Gaussian mixture model resulting from the
analysis performed through mclust (with a maximum
number of components equal to five) is a mixture of
three Gaussian ellipsoidal components with the same
orientation. This result is obtained with the mclust
option for the initialisation of the EM algorithm that
transforms the variables using a singular value decom-
position. The value of BIC for such a mixture model is
−9028.2. The clustering obtained from this model re-
produces quite well the two classes of athletes based on
their gender (see Table D, left part).

The three examined variable selection methods lead
to different decisions about the variables that provide
relevant information on the clustering of the athletes
(see Table E). Using clustvarsel (with a maximum

number of components for the p.d.f. of the informative
variables equal to five), only the biometrical variables
are selected. The best Gaussian mixture model fitted to
the p.d.f. of these variables is a mixture of three Gaus-
sian ellipsoidal components with the same shape. The
BIC value of the resulting joint model for the nine vari-
ables is −9008.1. Thus, according to the BIC, this joint
model is better than the best model detected without
variable selection. However, the partition of the athletes
resulting from the best mixture model for the biometri-
cal variables shows a slightly lower agreement with the
partition based on gender (see Table D).

In addition to the four biometrical variables, soft-
wares SelvarClust and SelvarClustIndep also select
two blood composition variables: one is plasma ferritin
concentration and the other is hemoglobin or hemat-
ocrit. Namely, the best joint model obtained after three
independent executions of SelvarClust is given by the
product of a Gaussian mixture model with three equally-
oriented components for the joint marginal distribution
of BMI, SSF, Bfat, LBM, Fe and Hg, and a Gaussian
linear regression model for the conditional distribution
of the remaining variables in which only Hg is used as
a regressor and the covariance matrix is unconstrained.
The BIC value of the joint model obtained in this way
is −8935.3. Using SelvarClustIndep the best model is
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Table D Classification of the athletes according to their gender and the cluster membership estimated by the models selected
using mclust, clustvarsel, SelvarClust and SelvarClustIndep.

mclust clustvarsel SelvarClust SelvarClustIndep

Cluster Cluster Cluster Cluster
Gender 1 2 3 1 2 3 1 2 3 1 2 3
F 97 2 1 39 61 0 2 1 97 2 97 1
M 2 40 60 13 1 88 25 75 2 23 2 77
aRi 0.682 0.586 0.735 0.745

composed of a mixture of three Gaussian components
with the same orientation for the joint marginal distri-
bution of BMI, SSF, Bfat, LBM, Fe and Hc, and a Gaus-
sian linear regression model for the conditional distri-
bution of the remaining variables in which the selected
regressors are Hc, BMI and Bfat and the covariance
matrix is diagonal. None of the uninformative variables
results to be independent of all the informative ones.
Overall, this joint model registers a BIC of −8934.5.
As far as the recovery of the classification based on gen-
der is concerned, the partitions of the athletes resulting
from the mixture models for the variables selected by
SelvarClust and SelvarClustIndep reach a very sim-
ilar performance, that is better than the ones obtained
using both mclust and clustvarsel (see Table D).

Table E Variables selected by the packages clustvarsel,
SelvarClust and SelvarClustIndep from the AIS dataset.

Package Selected variables
clustvarsel BMI, SSF, Bfat, LBM
SelvarClust BMI, SSF, Bfat, LBM, Fe, Hg
SelvarClustIndep BMI, SSF, Bfat, LBM, Fe, Hc

The splitting of the nine measurements obtained us-
ing the greedy search algorithm (with K1max = K2max =

Table F Second cluster structure detected by the greedy
search algorithm and its association with the classification
of the athletes based on gender.

Structure 2
Cluster

Gender 1 2 3
F 90 8 2
M 77 21 4
aRi 0.014

Table G Cluster structures detected by the genetic algo-
rithm and their association with the classification of the ath-
letes based on gender.

Structure 1 Structure 2
Cluster Cluster

Gender 1 2 3 1 2 3
F 98 1 1 50 49 1
M 1 74 27 54 34 14
aRi 0.754 0.015

4) is XŜ1 = (BMI, SSF, Bfat, LBM), XŜ2 = (RCC,
Fe), XÛ=(WCC, Hc, Hg). The CPU time requires by
this algorithm is 9 hours and 35 minutes. The model
selected for the joint p.d.f. of the variable sub-vector
(BMI, SSF, Bfat, LBM) coincides with the one detected
by clustvarsel. Thus, the first cluster structure dis-
covered through the greedy search coincides with the
clustering of the athletes obtained from the variable se-
lection methods implemented in clustvarsel (see Ta-
ble D). As far as the conditional p.d.f. of the variable
sub-vector (RCC, Fe) given (BMI, SSF, Bfat, LBM)
is concerned, a mixture of three Gaussian ellipsoidal
components with the same shape and orientation is se-
lected. The second cluster structure detected from this
conditional model is not associated with the athletes’
gender (see Table F). Finally, a Gaussian linear regres-
sion model with unconstrained covariance matrix is se-
lected for the conditional distribution of (WCC, Hc,
Hg) given all the other measurements. The BIC value
of the joint model for the nine variables is −8950.22.
Thus, this model is better than the model selected by
clustvarsel but worse than the models selected through
SelvarClust and SelvarClustIndep.

Nine independent executions of the second genetic
algorithm are performed, one for each combination of
the following values for the tuning parameters: N1 =
300, 500, 700, d1max = 30, 50, 70. The remaining tuning
parameters are set as follows: N1 = N2, d1max = d2max

and K1max = K2max = 4. A tenth execution is carried
out with N1 = 100 and d1max = 30. Using this set-
ting the CPU time of the analysis is 8 hours and 39
minutes. The model selected by the algorithm in this
latter execution coincides with the best overall model,
that is selected in other five executions. According to
this model, a first cluster structure is defined in the
sub-vector XŜ1 = (BMI, SSF, Bfat, LBM, Hg). The
best model for the p.d.f. of this sub-vector is a mix-
ture of three Gaussian ellipsoidal components with the
same orientation. The recovery of males and females
classes obtained using the segmentation of the athletes
based on this model is slightly improved over the previ-
ous models (see Table G, left part). The second cluster
structure is found in the conditional distribution of the
sub-vector XŜ2 = (Hc, Fe) given XŜ1 , resulting from
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a mixture of three Gaussian components with diago-
nal covariance matrices having the same volume. The
partition of the athletes obtained from this second mix-
ture model is not associated with the athletes’ gender
(see Table G, right part). Since in model (8) the la-
tent variables Z1 and Z2 are assumed to be indepen-
dent, this latter result is not surprising. Thus, the sec-
ond structure is reasonably associated with other (un-
observed) factors independent of the gender. Finally,
red and white cell counts compose XÛ and, thus, re-
sult to be uninformative variables. Their conditional
distribution is modelled using a Gaussian linear regres-
sion model with a diagonal regression covariance ma-
trix. The BIC value of the joint model for the nine
variables is −8933.2.

An improvement of the linear regression mixture
model with three components selected for (Hc, Fe) is
obtained after performing a regressors selection through
an exhaustive search, given the splitting of the variables
detected by the genetic algorithm. This task is carried
out by allowing each dependent variable to have its own
specific set of regressors (see equation (18)). Further-
more, all fourteen parameterisations are estimated for
each examined model. According to the BIC, the best
solution is obtained using a model for the linear de-
pendence of (Hc, Fe) on (BMI, SSF, Bfat, LBM, Hg)
in which haematocrit is regressed on hemoglobin, sum
of skin folds and body fat percentage, while the se-
lected predictors for plasma ferritin concentration are
hemoglobin, body mass index, body fat percentage and
lean body mass. The component-covariance matrices of
this model are unconstrained. In a similar way, the best
Gaussian linear regression model for (RCC, WCC) ob-
tained after performing regressors selection is the one
that has haematocrit as a predictor for both dependent
variables and sum of skin folds only for WCC; further-
more, the covariance matrix in this model is diagonal.
The joint model for the nine variables obtained in this
way has a BIC value of −8856.9; thus, it provides a
description of the relevant information contained in the
AIS dataset which is better than the previously illus-
trated models.

F Proof of Theorem 1

The proof exploits arguments similar to the ones used
by Hennig (2000). It refers to any given splitting (XS1 ,
XS2 , XU ,XI) of X in which both XU and XI are not
empty. Thus, θM is composed of four non empty sub-
vectors. This proof can be easily modified so as to deal
with situations in which XU = ∅ and/or XI = ∅.

Let θM and θ∗M∗ be such that

f(x;θM ) = f(x;θ∗M∗) ∀ x ∈ RL. (I)

In the following it is shown that the equality (I) implies
that M = M∗ and θM = θ∗M∗ . This is the only impli-
cation that needs to be proved in order to guarantee
identifiability (Hennig 2000).

The proof is composed of four parts. In the first
part it is shown that K1 = K∗

1 and θ1 = θ∗1; the second
part proves that K2 = K∗

2 and θ2 = θ∗2; finally, the
last two parts demonstrate that θU = θ∗U and θI = θ∗I ,
respectively.

According to equations (14) and (1), integrating
each side of the equality (I) with respect to XS2 , XU

and XI yields f
(
xS1 ; θ1

)
= f

(
xS1 ; θ∗1

) ∀ xS1 ∈ RL1 ,
that is:
K1∑

k1=1

π
(1)
k1

φL1

(
xS1 ;µ(1)

k1
,Σ

(1)
k1

)
=

K∗
1∑

k1=1

π
∗(1)
k1

φL1

(
xS1 ;µ∗(1)k1

,Σ
∗(1)
k1

)
∀ xS1 ∈ RL1 .

Given the constraints (I1) on θ1, the class of dis-
tributions that contains f

(
xS1 ; θ1

)
and f

(
xS1 ; θ∗1

)
is

identifiable. Thus, K1 = K∗
1 and θ1 = θ∗1 (up to a

permutation of the mixture components).
For the second part of the proof it is useful to recall

from equation (6) that the expected value of XS2 given
XS1 within the k2-th component of the model (2) is

µ
(2)
k2

= γ
(2)
k2

+ B21xS1 , k2 = 1, . . . , K2.

Let

C(1) = {xS1 ∈ RL1 : ∀j ∈ {1, . . . , K1}, ∀l ∈ {1, . . . , K∗
1},

γ
(2)
j + B21xS1 = γ

∗(2)
l + B∗

21x
S1

⇒ γ
(2)
j = γ

∗(2)
l ,B21 = B∗

21}.
The set C(1) contains all the vectors xS1 that can be
used to distinct different values of (γ(2)

k2
,B21) by dif-

ferent values of µ
(2)
k2

. This set is the complement of a
finite union of (L1−1)-dimensional hyperplanes of RL1 .
Thus, P(RL1 \ C(1)) = 0 and P(C(1)) = 1 according to
the Gaussian mixture model defined in equation (1).

Integrating each side of the equality (I) with respect
to XU and XI and then conditioning on any xS1 ∈ C(1)

leads to f
(
xS2 |xS1 ; θ2

)
= f

(
xS2 |xS1 ;θ∗2

) ∀ xS2 ∈ RL2 ,
that is:
K2∑

k2=1

π
(2)
k2

φL2

(
xS2 ;γ(2)

k2
+ B21xS1 ,Σ

(2)
k2

)
=

K∗
2∑

k2=1

π
∗(2)
k2

φL2

(
xS2 ;γ∗(2)k2

+ B∗
21x

S1 , Σ
∗(2)
k2

)
∀ xS2 ∈ RL2 .
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Given the constraints (I2) on θ2, for each xS1 ∈ C(1)

the class of distributions that contains f
(
xS2 |xS1 ; θ2

)
and f

(
xS2 |xS1 ;θ∗2

)
is identifiable. Thus, K2 = K∗

2 and
θ2 = θ∗2 with a probability equal to one (up to a per-
mutation of the mixture components).

According to equation (7), the conditional expected
value of XU given XS1 and XS2 is µU |1,2 = α0 +
A1xS1 + A2xS2 . Let

C(2) = {(xS1 ,xS2) ∈ RL1+L2 :

α0 + A1xS1 + A2xS2 = α∗0 + A∗
1x

S1 + A∗
2x

S2

⇒ α0 = α∗0,A1 = A∗
1,A2 = A∗

2}.

The set C(2) contains all the vectors (xS1 ,xS2) that can
be used to distinct different values of (α0,A1,A2) by
different values of µU |1,2. This set is the complement of
a (L1 +L2−1)-dimensional hyperplane of RL1+L2 . Ac-
cording to equation (10), the joint marginal distribution
of (XS1 ,XS2) is a Gaussian mixture model with K1K2

components. Given assumptions (A1) and (A2), the
component-covariance matrices of this Gaussian mix-
ture for (XS1 ,XS2) are positive definite. Thus, accord-
ing to such a mixture, P(C(2)) = 1.

Integrating both sides of the equality (I) with re-
spect to XI and then conditioning on any (XS1 ,XS2) ∈
C(2) yields f

(
xU |xS1 ,xS2 ; θU

)
= f

(
xU |xS1 ,xS2 ; θ∗U

)
∀ xU ∈ RLU , that is:

φLU

(
xU ; α0 + A1xS1 + A2xS2 , ΣU

)
=

φLU

(
xU ; α∗0 + A∗

1x
S1 + A∗

2x
S2 ,Σ∗

U

) ∀ xU ∈ RLU .

Thus, θU = θ∗U with a probability equal to one.
Finally, integrating both sides of the equality (I)

with respect to XS1 , XS2 and XU leads to φLI

(
xI ; µI , ΣI

)
= φLI

(
xI ; µ∗I ,Σ

∗
I

) ∀ xI ∈ RLI . From this result it fol-
lows that θI = θ∗I . This completes the proof.
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