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Inflammation and Notch signaling: a crosstalk with
opposite effects on tumorigenesis

Chiara Fazio*,1 and Luigi Ricciardiello*,1

The Notch cascade is a fundamental and highly conserved pathway able to control cell-fate. The Notch pathway arises from the
interaction of one of the Notch receptors (Notch1–4) with different types of ligands; in particular, the Notch pathway can be
activated canonically (through the ligands Jagged1, Jagged2, DLL1, DLL3 or DLL4) or non-canonically (through various molecules
shared by other pathways). In the context of tumor biology, the deregulation of Notch signaling is found to be crucial, but it is still
not clear if the activation of this pathway exerts a tumor-promoting or a tumor suppressing function in different cancer settings.
Untill now, it is well known that the inflammatory compartment is critically involved in tumor progression; however, inflammation,
which occurs as a physiological response to damage, can also drive protective processes toward carcinogenesis. Therefore, the
role of inflammation in cancer is still controversial and needs to be further clarified. Interestingly, recent literature reports that
some of the signaling molecules modulated by the cells of the immune system also belong to or interact with the canonical and
non-canonical Notch pathways, delineating a possible link between Notch activation and inflammatory environment. In this review
we analyze the hypothesis that specific inflammatory conditions can control the activation of the Notch pathway in terms of
biological effect, partially explaining the dichotomy of both phenomena. For this purpose, we detail the molecular links reported in
the literature connecting inflammation and Notch signaling in different types of tumor, with a particular focus on colorectal
carcinogenesis, which represents a perfect example of context-dependent interaction between malignant transformation and
immune response.
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Facts

� Notch signaling is an evolutionarily conserved molecular
pathway, crucial for the development and homeostasis of
most tissues.

� The Notch receptors, a family of trans-membrane proteins,
are also known to be involved in the pathogenesis of a
spectrum of human diseases, including cancer. Nowadays,
Notch receptors are reported to act both as tumor
suppressors and oncogenes.

� Inflammation is characterized by a complex mixture of
mediators that have a strong impact on normal and
cancer cells.

� The role of Notch in inflammatory-driven tumors is now
emerging, but its effect is still controversial.

Open question

� How does inflammation influence Notch signaling?
� Is the inflammatory context a contributing factor for Notch

pathway activation?
� What is the relevance of the Notch pathway in

inflammatory-driven cancers?
� Can the targeting of inflammation impact Notch pathway

activity?

Notch signaling is a molecular pathway used as a general
developmental tool for controlling organ formation and mor-
phogenesis in both invertebrate and vertebrate organisms,1

and avails itself of a direct cell-cell model of communication.2

The signals exchanged between neighboring cells through the
Notch pathway can orchestrate a surprisingly wide spectrum of
specific programs, including differentiation, proliferation and
apoptosis, which are able to influence cell-fate and to regulate
tissue homeostasis.3

Importantly, the deregulation of Notch signaling has been
found involved in many pathological processes, including
cancer.4,5 In particular, a double role of the Notch pathway,
acting as both tumor suppressor or tumor promoter, has been
reported.6

Although the inflammatory microenvironment arises from a
normal host defense with the goal of inducing pathogen
elimination, it is well documented that low-grade/chronic
inflammation plays a pivotal role in cancer promotion.7

Moreover, the tumor microenvironment, which is largely
orchestrated by inflammatory cells and their secreted factors,
is an indispensable participant in cellular apoptosis/survival
and migration.8

Interestingly, inflammatory cells share and/or modulate
some of the signaling molecules of the tumor cells, including
those belonging to the Notch canonical and non-canonical
signaling pathways.9 Thus, inflammation could have an

1Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
*Corresponding author: C Fazio or L Ricciardiello, Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, Bologna 40138, Italy.
Tel: +390512143381; Fax: +390512143381; E-mail: chiara.fazio28@gmail.com or luigi.ricciardiello@unibo.it
Received 04.6.16; revised 08.10.16; accepted 07.11.16; Edited by R Johnstone

Citation: Cell Death and Disease (2016) 7, e2515; doi:10.1038/cddis.2016.408
Official journal of the Cell Death Differentiation Association

www.nature.com/cddis

http://dx.doi.org/10.1038/cddis.2016.408
mailto:chiara.fazio28@gmail.com
mailto:luigi.ricciardiello@unibo.it
http://dx.doi.org/10.1038/cddis.2016.408
http://www.nature.com/cddis


‘intrinsic’ effect, specifically stimulating the Notch pathway in
the epithelial cells; likewise, inflammation could have an
‘extrinsic’ effect on tumor progression, since it modulates
Notch within cells of the inflammatory compartment, that in
turn are able to interact with tumor cells (Figure 1). The
involvement of inflammatory mediators in the regulation of
Notch signaling is documented in many malignancies,
including breast cancer,10 multiple myeloma,11 hepatocellular
carcinoma12 and colorectal cancer.13–15

Given these premises, an intriguing overview for under-
standing the ambiguity of Notch signaling in tumors relies on
its crosstalk with the inflammatory milieu. Therefore, in this
review we will examine the state of the art concerning the
influence of inflammation on the biological effect of the Notch
signaling in different types of cancer, with a particular focus on
the intestinal epithelium.

Canonical Notch pathway

The Notch pathway, which is able to regulate many different
biological functions, relies on a cell-to-cell model of
communication.16 In humans, the canonical Notch cascade
begins when one of the specific trans-membrane Notch
ligands of the sending cell (Jagged1-2, DLL1, DLL3 and
DLL4) binds to one of the Notch receptors (Notch1–4)
expressed on a receiving cell surface. The receptor-ligand
binding triggers two consecutive proteolytic cleavages in the
Notch receptor. The first proteolytic event, catalyzed by the
TACE metalloproteinase (ADAM17), cleaves the extracellular
portion of the receptor; the second proteolytic step involves
the remaining membrane-anchored fragment, which is pro-
cessed by the γ-secretase enzyme, and induces the release of
the active intracellular domain of Notch (NICD). NICD
translocates into the nucleus where it interacts with the
transcriptional repressor protein CSL/RBP-J. Following the
recruitment of Mastermind-like co-activators and the histone
acetyltransferase p300, CSL/RBP-J is converted to a tran-
scriptional activator leading to the induction of downstream
target genes, including Hes1 and Notch-regulated ankyrin
repeat protein 1.17

Non-canonical Notch pathway

Importantly, to date a non-canonical role for Notch signaling
has been reported, especially regarding the immune system.
The non-canonical Notch pathways are RBP-Jκ-independent
signals involved in several physiological and pathological
cellular processes, including oncogenesis.18 A role for non-
canonical Notch signaling in transformed cells has been
suggested by the evidence that inhibition of γ-secretase does
not block all Notch-related functions in tumor cells.19 The
principal mechanisms able to interact in a non-canonical
manner with Notch and involved in the response to inflamma-
tion are: I- the pathway of the nuclear factor kappa-light-chain-
enhancer of activated B cells (NFkB);20,21 II- hypoxia;22–27 III-
the epithelial-to-mesenchymal transition (EMT), in particular
involving Transforming growth factor-beta (TGF-β),28 and
matrix metalloproteinases (MMP9);29 IV- the Wnt signaling
pathway, affecting the stability of β-catenin;9,30 V- the mitogen-
activated protein kinase (MAPK) and nutrient sensor kinase

mTOR.31 Table 1 shows the principal molecular mechanisms
concerning the inflammation-driven non-canonical Notch
pathways in the field of malignant progression.

The Notch pathway: oncogenic or tumor-suppressive
role?

Although there has been extensive research on Notch dereg-
ulation in cancer in the last two decades, the biological effects
upon Notch signaling activation are still not fully understood.
Indeed, some reports clearly describe a tumorigenic activity of
this pathway32 but, on the other hand, a tumor suppressor
function of Notch signaling has also been reported.33

For instance, while studies demonstrated that the truncated
form of Notch4 has a causative role in the development of
mammary tumors in animal models,34 others reported a
possible oncogenic role of Notch1 overexpression in human
breast cancer tissues.35

Another context in which Notch exerts a tumor-promoting
role is melanoma: indeed, global gene expression profiling
revealed an overexpression of Notch receptors in primary
human malignant melanomas.36 Importantly, it was demon-
strated that the activation of Notch1 enables primary
melanoma cells to gain metastatic capability via β-catenin.37

On the other hand, a protective role of Notch in other tumor
settings has been reported. In a model of small cell lung
cancer Sriuranpong and colleagues demonstrated that the
overexpression of the active forms of Notch1 and Notch2
causes the block of cell cycle at G1 phase and the arrest of the
tumor growth.38

Furthermore, Notch1-deficient animals spontaneously
develop basal cell-carcinoma-like tumors associated with
upregulation of Shh signaling. The authors also found that
Notch1 deficiency leads to increased expression of β-catenin
expression in the epidermis, which was reverted by the re-
introduction of a dominant active form of the Notch1

Figure 1 Extrinsic and intrinsic effect of inflammatory-driven Notch activation on
tumorigenesis. When Notch signaling is activated in macrophages, it can induce the
production of specific inflammatory mediators which in turn stimulate epithelial cells:
thus, although not occurring into the epithelial cell, the dysregulation of the Notch
pathway can indirectly exert a control on tumor progression (extrinsic effect).
Alternately, the inflammatory milieu can directly modulate the Notch signaling within
the epithelial cells, regulating several molecular processes involved in tumorigenesis
(intrinsic effect)
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receptor.39 Consistently with these findings, it has been
reported a reduced expression of Notch1, Notch2 and
Jagged1 in human basal cell carcinomas.40

Taken together, these data highlight that the activation of
Notch pathway can trigger both oncogenic and tumor-
suppressive functions depending on the specific cell and
tissue context.

Inflammation and cancer: the oncogenic role of Notch

The rationale for studying the inflammation-mediated carcino-
genesis arises from the evidence that chronic inflammation is
a known unfavorable condition, which predisposes to the
onset of cancer; moreover, most solid tumors are character-
ized by an intrinsic tumor-promoting inflammatory response.41

For example, Rokavec and colleagues reported a feedback
loop among Interleukin (IL)-6, STAT3 and miR34a, able to
increase the invasiveness of colorectal cancer (CRC) cells.42

In a mouse model of colon cancer, the overexpression of IL-8
induces cancer growth and metastatization.43

Several studies demonstrated a strong correlation between
Notch signaling and specific inflammatory mediators. It is
known that high expression levels of Jagged1, Notch 1 and
Notch2 correlate with tumor progression of myeloma;44 in this
context, it has been recently proposed an activating role of
Notch on IL-6 proliferating signals in the bone marrow niche,
which results in an enhancement of tumor growth.45

In amousemodel of pancreatic cancer, it has been found that
the crosstalk between TNF-α, the basal Notch signaling and
Ikk2 (the Inhibitor of κB kinase 2, a component of the NF-κB
signaling) induces the suppression of the nuclear receptor
Pparg, which encodes for the anti-inflammatory nuclear
receptor Pparγ. In particular, the Hes1-mediated suppression
of Pparg perpetuates the autocrine inflammatory activity of
tumor pancreatic cells, inducing the production of inflammatory
mediators, such as TNF- α, IL-6 and IL-1β. Therefore, through
this loop, inflammation sustains the pancreatic cancer progres-
sion through the activation of the Notch pathway.46

A role for TNF-α/IKKα in the regulation of Notch1 signaling
has also been reported in liver cancer cell lines: it has been
proposed that the phosphorylation of FOXA2 (critical gene
required for bile acid homeostasis), by IKKα, leads to
activation of Notch1 signaling through downregulation of
NUMB, thereby inducing tumorigenesis.47

Sansone et al. demonstrated that IL-6 is able to induce
cancer stem cell renewal via Notch3 in an in vitro model of
breast cancer.48 Another study showed that a gamma
secretase inhibitor, able to block the Notch signaling and to
attenuate the stem-like phenotype of cancer cells, reduced the
T-cell-mediated production of both IL-6 and IL-8 in an in vitro
model of inflammatory breast cancer.10 Another interesting
interaction between the pro-inflammatory cytokine IL-1 and
Notch1-4 has been reported in breast cancer, where Leptin, a
well-defined pro-proliferation factor, is the link that leads to the
expression of pro-angiogenic molecules, promoting cell
proliferation and migration.49

In tongue squamous cell carcinomas, the IL-1β upregulates
CXC chemokine receptor 4 (CXCR4), that mediates cancer
growth and metastasis, leading to the concomitant activation
of extracellular sregulated kinase (ERK); interestingly, theTa
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pharmacological inhibition of Notch1 signaling reversed this
up-regulation.50

These multiple lines of evidence support the idea that
pro-inflammatory stimuli, such as IL-1β, IL-6, IL-8 and TNF-α
can lead to the activation of Notch signaling with a tumor-
promoting effect on epithelial cells.

Inflammation-mediated tumor suppressor role of Notch

As previously addressed, some data support a possible
protective role of Notch signaling towards cancer progression51

and also in this case inflammation plays an important role. An
example is the work of Talora and colleagues, in which they
demonstrated that HPV-positive cervical carcinoma cell lines
express significantly lower levels of the Notch1 indicating a
protective role in infected keratinocytes.52

Another evidence is that NF-kB blockade and oncogenic
Ras trigger invasive human epidermal neoplasia through
TNF/JNK activity.53 Since Notch activation leads to induction
of NF-κB,54 an attractive possibility is that the tumor suppres-
sing function of Notch in keratinocytes is mediated by NF-κB.
Another context in which pro-inflammatory factors can drive a
tumor-suppressive role for Notch is within the endothelium,55

where specific pro-inflammatory cytokines play a pivotal role
in regulating functions of endothelial cells.56 Although this
regulation is not directly connected to tumorigenesis, it is
important to highlight that endothelial cell-fate is implicated in
angiogenesis.57 An example is provided by Quillard et al., who
found that the inflammatory cytokines TNF-α and IL-1β lead
to overexpression of Notch2 over Notch4, promoting
apoptosis.58

On the other hand, other works support the hypothesis that
proinflammatory factors, such as IL-6, may positively con-
tribute to the abnormal angiogenesis in cancer.59

The previous examples support the hypothesis that, in some
specific cases, the inflammation-dependent activation of
Notch signaling could result in tumor-suppressive effects.

Notch activation in intestinal inflammation

The interplay between inflammation and Notch is particularly
intriguing in the context of the intestinal epithelium (Figure 2).
In the intestinal mucosa, Notch signaling is crucial for the

maintenance of the stem cell phenotype, as well as for
determining cell-fate.60 In particular, the balanced composition
of the four types of intestinal epithelial cells is essential for
intestinal homeostasis as well as for host defense functions.
ATOH1, repressed by the Notch target gene Hes1, is a master
regulator for differentiation of secretory cell lineages.61,62 In
this scenario, Notch activation is necessary for epithelial
regeneration after an inflammatory injury (such as in ulcerative
colitis) where a depletion of secretory cells is observed.15

Interestingly, Kim and colleagues showed that the activation of
Notch in the Apcmin/+ mouse model converted intestinal
high-grade into low-grade adenomas, suggesting a negative
effect on cancer progression. They demonstrated that this
mechanism is mediated by the negative control of Notch-
regulated ankyrin repeat protein 1 on WNT target genes.63

The involvement of WNT/β-catenin in the protective role of
Notch has also been demonstrated in an in vivo model of

colitis-associated cancer (CAC), indicating that these path-
ways (Notch and WNT) cooperate even under sustained
inflammation.64 More recently, an innovative link between the
above mentioned protective role of Notch and
inflammation has been proposed by Taniguchi and his group.
They showed that gp130, a co-receptor for IL-6, triggers
activation of Yes-associated protein (YAP) and Notch,
independently of the classic gp130 effector STAT3, in order
to stimulate epithelial cell proliferation and confer resistance to
mucosal erosion.65

In the context of colorectal cancer and inflammation, a
further mechanism that explains the role of Notch activation in
carcinogenesis is related to Matrix metalloproteinases-9
(MMP9), a protein involved in the epithelial to mesenchymal
transition (EMT). Garg and colleagues demonstrated that
MMP9, which is a mediator of pro-inflammatory response,
plays a protective role in the AOM/DSSmousemodel of colitis-
associate colorectal cancer, by activating p21WAF1/Cip1,
which in turn modulates Notch1 and suppresses β-catenin.66

Intriguingly, in a different model of intestinal inflammation the
role of MMP9 has also been related to an oncogenic function
of Notch signaling. Indeed, Pope and his collaborators
recently postulated that the up-regulation of Claudin-1, an
integral component of the tight junctions structure, induces
MMP9 and p-ERK signaling, leading to subsequent activation
of Notch signaling, which in turn decreases goblet cell number
thus enhancing susceptibility to mucosal inflammation.67 This
evidence is in accordancewith our recent in vitrowork in which
we demonstrated that the Notch1 pathway is activated in CRC
cells in an MMP9-dependent manner under the stimulus of a
complex mixture of pro-inflammatory factors obtained by
activated macrophages.29 Indeed, other reports sustain the
role of inflammatory factors in promoting Notch pathway
activation and colon cancer progression, for example through
the IL-6/Notch1/CD44 signaling axis.68 Table 2 summarizes
the different roles of MMP9 realtive to the Notch activity.
While the common object is Notch signaling, what effec-

tively changes among the above-mentioned reports is the
‘type’ of inflammatory context, which profoundly differs in
colitis, CAC or in the inflammatory microenvironment of CRC,
as explained in the next section. Therefore nowadays, what we
can affirm concerning the role of Notch activation and its
complex interplay with inflammatory processes in intestinal
epithelium is that the ‘quality’ of the inflammation and the
tissue-specific characteristics certainly influence the biological

Figure 2 Notch1 function on tumorigenesis depending on the type of
inflammatory stimulus on intestinal epithelia
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meaning of the activated pathway. Further studies are needed
to increase our knowledge regarding the context specific
function of Notch.

Notch in immune system

In the previous sections we approached the issue of how the
Notch signaling can be ‘bidirectionally’ regulated by
inflammatory context in epithelial or cancer cells. However,
the modulation of Notch occurs in immune cells as well.69

Since the polarization of myeloid cells, primarily macro-
phages, can influence carcinogenesis, this topic has to be
taken into account for a complete understanding of the
relationship between Notch and inflammation in cancer
progression.
Depending on environmental signals, macrophages can be

differentially activated: they can be classically activated
(M1 phenotype) or alternatively activated (M2 phenotype).
While M1 macrophages are characterized by production of
inflammatory mediators in response to microbial product-
mediated activation of Toll-like receptors, M2 macrophages
express less inflammatory molecules and play a key role in
host defense and resolution of inflammation.70 Specific
inflammatory mediators are expressed in relation to the
context; for instance, during the transition from acute to
chronic inflammation of colitis, a switch from Th1-Th17 derived
cytokines to a prevalent Th2 inflammatory mediated response
occurs.71

Several reports link Notch activation to macrophage func-
tional phenotypes. Outz et al. demonstrated that Notch1
deficiency regulates vascular endothelial growth factor
Receptor-1 (VEGFR-1) and inflammatory cytokine expression
in macrophages, in particular Tumor Necrosis Factor-alpha
(TNF-α), inducing a decrease of inflammation during wound
healing.72 In particular, Notch1 system activation in
macrophages drives the acquisition of the M1 phenotype,
through the axis RBP-J-TLR4-IRF8.73 A recent study identified
a novel function of Numb, a negative regulator of Notch1
signaling, in the induction of TNFα, IL-6, and IL-12 cytokine
production in macrophages. Furthermore, Numb interacts with
Itch that, in turn, regulates downstream signaling pathways,
including NF-κ B p65 and p38MAPK. Interestingly, the authors
also report that sustained Notch activity in bone marrow, as a
result of interrupting Numb, do not affect monocyte differentia-
tion intomacrophages, and speculate that Numbmay influence
cellular differentiation in a context-dependent manner.74

An appropriate example of the impact of Notch signaling on
inflammatory responses is represented by cardiovascular
disorders, such as myocardial infarction or atherosclerosis,
and Leukemia, since Notch receptors and ligands are shared
or simultaneously modulated by inflammatory effectors aswell
as endothelial cells.55 An example is provided by a mouse
model of atherosclerosis and metabolic disorders resembling
the cardiometabolic syndrome obtained by feeding
LDL-receptor–deficient (Ldlr− dlrmple is provided by a mouse
model of atherosclerosis and metabolic disorders resembling
the cardiometabolic syndrome obtained by feeding
LDL-receptor–deficient (sclerosis, and Leukemia, since Notch
receptoy, reduces MCP-1 expression and attenuates the
proinflammatory phenotype of macrophages, thus demon-
strating that Notch signaling is able to drive proinflammatory
programs of gene associated with the cardiometabolic
syndrome. In particular, a central role seems to be played by
DLL4, which acts both in homotypic and heterotypic crosstalk
between different pathways that control inflammatory
responses.75

Taken together, these data suggest that Notch, especially
Notch1 and Notch3, appears to be a regulatory pathway
controlling the balance of the immune system.

Targeting inflammation to control the Notch pathway

Given its dichotomy between tumor-promoting and -suppres-
sing function, and at the same time given its important
implications in tissue homeostasis, direct intervention on
Notch signaling as a target for cancer therapy is a delicate
issue. When its precise function, in terms of positive or
negative regulation of tumorigenesis, is clearly defined (at
present only in specific in vitro or in vivo models), then the
manipulation of Notch could be a relevant therapeutic target.
This is the case of the employment of the γ-secretase inhibitor
DBZ for the conversion of metaplastic Barrett’s epithelium into
post-mitotic goblet cells76 or in mouse models of familial
adenomatous polyposis.77 However, since Hath1 mediates
the effects of γ-secretase inhibitor, it has been proposed that
only the subset of colorectal cancers that retain Hath1
expression could respond to the treatment.78 This evidence
suggests that the pharmacological manipulation of the Notch
pathway should be considered with caution and requires an
in-depth knowledge of the related context.
Besides this approach, another attractive target for mole-

cular intervention could be aimed at controlling the inflamma-
tory processes which in turn modulate the Notch signaling.

Table 2 Role of interaction between MMP9 and Notch pathway in colon carcinogenesis

MMP9 function Molecular mechanism Effect on Notch pathway Model References

Protective role against CAC Activation of p21WAF1/Cip1,
suppression of b-catenin

Increased Notch1 activation MMP9-/- and WT mice;
AOM/DSS mouse model

66

Enhanced susceptibility to
mucosal inflammation

Claudin-1 induced activation Activation of Notch signaling,
inhibition of differentiation of
intestinal epithelial cells into goblet
cells, decrease of Muc-2 positive
cells

Villin-claudin1 transgenic
mouse model

67

Oncogenic role in CRC Inflammation-driven activation Overexpression of NICD and
Jagged1; induction of Notch-
regulated ankyrin repeat protein 1

In vitro model of interaction
between macrophages and
CRC cells

29
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Notably, Chang Mo Moon and his group found that treatment
with NSAIDs (indomethacin, sulindac and aspirin) has a
suppressing effect on cancer stem cells both in an in vitro and
in a xenograft model of colorectal cancer. Importantly, they
contextually explored the modulation of Notch signaling, and
they found that the effect of inhibition on colosphere formation
is related to the downregulation of Notch/Hes1 signaling and
to the upregulation of PPARG.79

Similarly, epidemiological evidence suggests that diet
supplementation with anti-inflammatory agents exerts a
protective role toward tumorigenesis.80 Noteworthy, our
in vitro and in vivo studies revealed that the omega-3
polyunsatured fatty acids (ω-3 PUFAs), which are natural
anti-inflammatory compounds, and in particular Eicosapen-
taenoic Acid is able to counteract the Notch pathway at normal
expression levels in different settings of inflammatory-related
colorectal cancers.29,66,81

Conclusion

The crosstalk between inflammation and Notch signaling is
extremely complex, due to the multifactorial nature of the
inflammatory stimulus, which is context-specific, as well as for
the duality of the Notch expression pattern. We analyzed
how different effects of the Notch pathway in terms of
biological meaning could be at least in part explained by
the influence of the inflammatory context. We explored how
this interaction generates a large number of cell type-specific
responses.
In this scenario, the improvement of the knowledge

regarding the molecular mechanisms at the basis of this
interaction is indispensable to achieve adequate and innova-
tive therapies.
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