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Abstract

Artificial intelligence can make numerous contributions to synthetic biology. I would like to suggest
three that are related to the past, present and future of artificial intelligence. From the past, works in
biology and artificial systems by Turing and von Neumann prove highly interesting to explore
within the new framework of synthetic biology, especially with regard to the notions of self-
modification and self-replication and their links to emergence and the bottom-up approach. The
current epistemological inquiry into emergence and research on swarm intelligence, superorganisms
and biologically inspired cognitive architecture may lead to new achievements on the possibilities
of synthetic biology in explaining cognitive processes. Finally, the present-day discussion on the
future of artificial intelligence and the rise of superintelligence may point to some research trends
for the future of synthetic biology and help to better define the boundary of notions such as “life”,

“cognition”, “artificial” and “natural”, as well as their interconnections in theoretical synthetic
biology.

Keywords: artificial intelligence; synthetic biology; cognitive systems; emergence; superorganism;
superintelligence.

1. Introduction

I would like to suggest a triple contribution that Artificial Intelligence (AI) can make to Synthetic
Biology (SB) within the framework of embodied cognition. This contribution is on three temporal
dimensions: the past, present and future. My claims are: that Al can help SB through the study of
some past issues that we can rethink in a present-day way, particularly issues that are related to the
origins of Al; that Al can offer something to SB as regards some particular current research on
complex adaptive systems and superorganisms, which involves an Al treatment of biological
systems, and vice versa; that Al can provide some insight into SB through present-day theoretical
and epistemological research on Al future development, especially that concerning the notions of
general Al and superintelligence.

Contributions from these three specific segments of Al development can concur to create a general
framework within which it is possible to steer the efforts of SB in the building of synthetic
biological parts, cells or even more complex organisms, with the aim of exploring the basis of
cognition and cognitive processes. This is in the spirit of the origins of Al because the initial
impulse of Al has not disappeared today and it has been totally recovered following renewed
interest in past elements that come together in the current embodied approach to cognition. In
section 2, I outline what Al and SB are in general and what their aims are, trying to establish a
common ground of interaction. In sections 3 and 4, I deal with issues of early Al that may prove
useful to current SB. In sections 5 and 6, I address present issues of complex adaptive systems and
biological systems that can help to create a fruitful interaction between Al and SB. In section 7, I
raise some issues regarding the future of Al that may be relevant to discussions on future research
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on SB. In section 8, I draw conclusions and point out that Al can, by contributing to SB, also can
gain something from SB.

2. Al and SB: an overview

Since its origins, Al has been aimed at simulating any feature of intelligence by a machine (the
starting conjecture of Dartmouth’s proposal on Al in 1955). Two very different approaches have
been used to achieve this aim: top-down, centralized, control-driven, logical-based systems that
model one or several specific intelligent features or cognitive process; bottom-up strategies that
involve systems, in which low level agents interact with each other, or micro-entities simulate the
behavior of parallel processing, giving rise to emergent cognitive phenomena. While the former is
the traditional approach, the latter is more typical in the new Al of recent decades, which is strictly
connected to embodied and enactive cognition. While the former is considered to be too
engineering-driven and oriented to explain (human-level) cognition, the latter appears to be more
suited to explaining cognitive features of entities provided with a body and a brain, and acting in an
environment.

Both approaches are still alive (Russell, Norwig, 2010), have a long history and have interacted
with each other, leading among other things to the development of in-between positions and
outcomes (hybrid models and systems), as well as specific and autonomous sub-fields of research.
These include artificial life (A-Life), which is one of the most important because it is rooted in
cybernetics, and deals with simulation and creation of artificial living entities. A-Life is also closely
connected with new trends in Al, including complex adaptive systems. New Al, however, is a more
general approach and is involved not only with life, but with cognition and cognitive processes.
Most likely, Al is not a science, in the traditional meaning of the word, that is provided with a
specific object, language and method (Matteuzzi, 2005). Al is a set of closely-related disciplines
with different objects, languages and methods, but with a general aim and at least an abstract overall
methodological feature: computational simulation and modeling. The history of its changes and
trends is rich and justifies an attempt to find suggestions and ideas in Al that may enrich SB.

SB is somewhat different. Even if the idea and the expression are old', it is only with biological and
genetic engineering and DNA sequencing — starting in the 1980s — that true synthetic biology has
become possible. SB has two general main trends of research: i) designing and constructing new
biological parts and systems; ii) re-designing natural and already existing biological systems, or
parts of these systems, for useful purposes. Both trends involve biology but their targets are quite
different and imply different methodologies. While the latter uses a top-down approach to build
new biological systems by integrating biological parts into an existing system by exploiting
mathematical models, the former makes use of a bottom-up approach to design and construct
synthetic protocells starting from biochemical building blocks (Freemont, Kitney, 2012). In the last
fifteen years the field of SB has split into specific subfields: bio-inspired and bio-mimetic SB;
recombinant DNA applied to metabolic engineering; genome engineering; evolution; biological
building using bio-bricks (Church, Regis, 2012).

Therefore, SB is a set of related disciplines — just as Al is — whose general aim is to obtain
something living or that occurs substantially in living systems by manipulating biological matter.
Both Al and SB exploit top-down and bottom-up approaches and both share a mathematical (SB)
and/or logical (AI) conceptual framework and modeling in top-down approaches. Bottom-up
approaches appear to be the common ground upon which Al and SB may influence each other. If
SB wishes to deal with cognitive problems and develop proto-cognitive systems and systems with
real cognitive processes, some Al bottom-up approaches, which I shall address in the next sections,
are useful and fruitful. Bottom-up and bio-inspired Al approaches opened Al to the embodied and
enactive approach. This is the new Al, which can influence SB approaches, insofar as its aims are

! The phrase has been used for the first time by Stépane Leduc in “La biologie synthétique, étude de biophysique”, in
1912.



shared by and benefit from SB technologies, methods and conceptual framework, to refine its
biological inspiration and commitment.

3. Biology and early Al

Interest in biology has been part of Al ever since this field of research originated, even before the
birth of the label “Artificial Intelligence”. Turing, one of the acknowledged fathers of Al, especially
of the traditional, symbolical and logical Al, was interested in biological structure in the very years
in which he dealt with the epistemological and philosophical problems of Al by addressing them
starting from the question “can a machine think?” (Turing, 1948, 1950). In an article from 1952,
Turing outlines a theory of morphogenesis based on chemical substances that “react together and
diffuse through a tissue”, producing a structure (Turing, 1952). The main idea of Turing’s theory is
that chemical reactions in an embryo generate spatial patterns or forms. He was interested in the
abstract idealized chemical model underlying morphogenesis, which he called “reaction-diffusion”
model. It is a mathematical model that, according to Turing, can be simulated, tested and improved
by computer. Turing was far ahead of his time and unsurprisingly his work has been considered as a
forerunner of A-Life?.

A-Life is obviously not the same as SB. However, it is something that lies in the middle between Al
and SB, because its methodology is strongly based on the synthesis of life-like behaviors and
entities through computer and other artificial supports. Therefore, in some ways it is not just
simulation: it is also realization of life (Langton, 1986). The question is quite simply whether life
can be made artificially (Boden, 2006: 1322). But the general principle of extracting the logical
form of living systems closely corresponds to Turing’s ideas on morphogenesis and a mathematical
theory of pattern formation from chemical abstract bases. According to Turing, pattern formation
and differentiation are due to a breaking of symmetry> and uniformity that leads to new, different
stable forms. Thus, providing a theory of morphogens and morphogenesis is basically providing a
theory of what chemical reaction constraints, expressed with a non-linear differential equation,
produce a new stable system.

The mathematical theory of embryology sketched by Turing is very interesting, especially in the
light of his remarks on unorganized and self-organized machines of a work from 1948%. This paper
introduces the idea of connectionism in a very similar way to the artificial neuron of McCulloch and
Pitts (1943), and its main aim is to connect intelligence and learning. Turing speaks about models of
artificial neural networks in terms of unorganized machines. These machines are formed by units
(the abstract neurons) connected to each other and capable of having two definite states. The initial
structure of neurons is random, which means the machine is unorganized, though the neurons can
be trained through interference from outside. Two kinds of interference are possible: “there is the
extreme form in which parts of the machine are removed and replaced by others. This may be
described as ‘screwdriver interference’. At the other end of the scale there is ‘paper interference’,
consisting in the mere communication of information to the machine, which alters its behavior”
(Turing, 1948: 419). The two kinds of interference can be seen as hardware replacement and
software change, respectively. But this is too narrow a view. The two kinds of interference are not
so different and the notion of interference closely overlaps, in present-day terms, the one of
interaction (with an unspecified environment), though it may also result from a self-change process.
Indeed, interference changes the machine. When interference is due to “internal operations of the

2 On the birth of present-day A-Life see Langton (1986, 1989). On Turing and A-Life see Copeland (2004: 507-513)
and Boden (2006: 1261-1267).

3 Simmetry-breaking systems in the sense of Turing (1952) are studied in current research on multicellularity (Lu et al.,
2014).

4 The two works (1948 and 1952) are different but connected, as Turing says in a letter to Young (8 February 1951); see
Copeland (2004: 517).



machine” and affects the part of storage containing the instructions describing the machine itself,
the machine is modifying itself.

Interference, in the sense of information communication and interaction, is a very interesting notion.
It underlies the possibility to educate a machine, through interfering training. It is a very insightful
and unprecedented anticipation by Turing of the idea of supervised training for improving the
performance of a neural network, which is crucial for connectionism® and for machine learning and
deep-structured learning, the present-day development of Turing’s ideas on unorganized machines.
The notion of educating a machine is fundamental, since it is equivalent to organizing an
unorganized machine. The machine Turing is thinking of is the brain, in particular the brain of a
newborn. So, interference and the possibility of self-modification are the crucial notions at the basis
of self-organizing machines, from the point of view of biological systems. To Turing, interference
by information communication is the most important of these notions because it is the origin of the
self-modification capability. Thus, according to Turing, Al is the discipline that can help to create
(virtual) machines capable of modifying themselves by exploiting the power of information self-
communication, which is equivalent to the behavior of a machine that influences the machine itself.
These Al ideas are deeply rooted in biology and show how to connect biological inspiration to some
biological fundamental features. The bottom-up approach to SB can make some progress by
exploiting the link between self-modification and learning in the way Turing suggested, for example
by trying to create collective systems of similar protocells that evolve into organized systems of
specialized cells in response to external stimuli and environment.

4. From self-modifying to self-replicating machines

Von Neumann’s approach to self-replicating systems is another theoretical contribution to our
discussion. Von Neumann’s interest in biology concerns replication, reproduction and evolution. In
particular, his emphasis on connection between replication and reproduction is significant. On the
one hand, reproduction is not merely replication. Biological organisms usually give rise to, or
“produce”, kittens. On the other hand, pure replication is not subject to evolution; for evolution to
occur, we need ‘errors’ in the replication process. The aim of von Neumann was to define a theory
of self-replication in general and to determine the conditions under which a replicator can be
universal and reproduce any system, including itself. This kind of replicator is more a general than
biological one, but it includes every sense in which replication and reproduction are part of the
biological world. Moreover, von Neumann was interested in the logical, not physical, notion and
explanation of replication. He was influenced by his mathematical and engineering attitude.

In the Hixon symposium of 1948, Von Neumann dealt with the problem of self-reproductive
systems in general, and he addressed the problem of evolution through errors in reproduction (von
Neumann, 1951). But in that talk he “described [just] an (imaginary) mechanical system capable of
self-assembly from physical parts” (Boden, 2006: 1269). Although it was an interesting attempt, it
was physical, not logical. In order to grasp the power of Turing Machines (Turing, 1936) and use it
for biological purposes, and even for a general theory of self-replication, he needed a logical
formulation of biological entities, which he found in cellular automata. A cellular automaton is a
space in which cells change according to specific rules. Even though self-replication is not the only
property of a cellular automaton (and not every cellular automaton can replicate itself), the logical
simulation of self-replication both of single cells and of their “organic” clusters was von Neumann’s
first aim.

Cellular automata have been in practice, developed and realized by followers of von Neumann’s
work (he died in 1957). Many works by him were unpublished for several years and illustrate von
Neumann’s range of interests: cybernetics, symbolic emerging Al and simple computational models

5> See Ruhmelhart, McClelland et al. (1986).



of the neuron®. A-Life is another outcome of his pioneering work, though it only started to be truly
developed in the mid 1980s. Nevertheless, the contribution made by von Neumann cannot be
limited to A-Life. By means of his theoretical computational systems (cellular automata), von
Neumann encapsulated the two dimensions of self-replication: of a single entity, i.e. a cell, and of
systems made by cells replicating themselves. The former is simple self-replication, the latter is
replication and self-replication of complex systems, that reproduce themselves at some emergent
level which is not necessarily the highest one. Self-replication and different grades of self-
replication are made possible by the implementation of self-replication rules at a lower level.
Therefore, even if it is in the form of mathematical and logical modeling, von Neumann provided a
theoretical bridge between the collective behavior of micro-entities and emergence of phenomena in
the realm of life, connecting Al with biology from a bottom-up point of view.

Traditional Al was not ready back in the 1950s for a general development of these ideas. A-Life
reawakened interest in them because, even though mathematical modeling is crucial in von
Neumann’s view, it is closely aligned with biological evolution, which means he paved the way for
collective evolutionary emergent phenomena in general. A-Life is the synthesis and simulation of
living systems, but it is only partly interested in cognition and mind (Aguilar et. al., 2014).
Contributions from phenomenological views on cognition encourage the philosophy of A-Life to
deal with the notion of emergence. In the same way, it can help to develop SB in the direction of a
less logical and mathematical model. Enactive perspective claims that simulation is too poor to have
cognitive systems and that we cannot avoid considering reality to achieve cognition. SB has an
advantage over A-Life because most SB is on material things. SB can try to develop biological
collective entities provided with proto-cognitive features by creating real cells that evolve into
systems that behave collectively and are made up of specialized entities. Even in this case, the
bottom-up approach, which is consistent with von Neumann’s modeling, seems to be highly suited
to producing emergent cognitive phenomena in synthesized biological entities, namely with a real
body in a real (experimental) environment.

5. The present: emergence, superorganism and the foundations of cognition

How can current Al contribute to SB? My suggestion is that we can find the answer in studies on
emergent biological phenomena, especially those on biologically inspired cognitive systems and
complex adaptive systems. In particular, a good contribution can stem from swarm intelligence and
its epistemological and theoretical grounding. An understanding of biological phenomena in terms
of Al and computer science notions is equally important. The latter trend is the other side of the
coin of the former.

In recent years, research on emergent phenomena and emergentism has become one of the most
important topics in a range of fields (Bedau, Humphreys, 2008; Corradini, O’Connor, 2010). In
cognitive science, emergence and emergentism have played an increasingly crucial role owing to
the growing interconnection between cognition and biology, especially as regards two facts: 1)
cognitive phenomena have been progressively seen as part of biological ones; ii) cognitive
modeling has developed far more deeply in the direction of embodied cognition and biologically
inspired cognitive architectures. In order to support my suggestion and better understand emergent
phenomena, I will discuss some aspects of individuality of entities involved in a specific kind of
(complex) biological systems.

The shift in cognitive science research on such trends is not equivalent to an overall rejection of the
standard, traditional problems and principles of Al and cognitive science, such as
representationalism, functionalism and the identity of explanatory principles’. Cognitive models
stemming from new trends in cognitive science have to deal with old problems and try to provide

¢ Von Neumann, as well as Turing, was interested in simulation of brain by means of the computer (von Neumann,
1958); see also Asaro (2011).
7 See the five theses on the artificial in last chapter by Cordeschi (2002).



new solutions or solution methods. Moreover, the new trends in Al and cognitive science,
especially the ones connected to biological heuristics, are deeply rooted in older traditions of
research, such as cybernetics (Cordeschi, 2002) and complex adaptive systems, which have been
studied and used in different fields since the 1970s (Holland, 1992). In particular, in recent decades
a growing number of researchers have regarded such systems as the best way to solve
computational problems of symbolic Al to achieve new engineering feats, and to model cognitive
phenomena in a bottom-up perspective that fills the gap between low-level and high-level cognitive
capabilities — namely between learning, recognition, motion, etc., and abstract reasoning, planning,
creativity, self-awareness, etc.

Swarm intelligence is one of the fields that has attracted a lot of attention over the last two decades.
The swarm intelligence notion (Beni, 2007) is exploited in Al, especially on account of its
connection with biological collective phenomena (the behavior of flocks, shoals and insect
colonies) seen as a good inspiration for robotics and robot development (Bonabeu, Dorigo,
Theraulaz, 1999), but also for multiagent-like software intelligent systems and for the study of
cognitive features. Swarm intelligence is also connected with the notion of superorganism. Indeed, a
superorganism, like an ant colony or a bacterial colony, is a form of swarm intelligence.

If we consider the most recent discoveries on superorganism behavior and structure, the case of
insect colonies is particularly interesting for swarm (artificial) intelligence and for cognitive
explanations and modeling. The notion of superorganism encompasses many different species:
bacterial colonies such as Myxobacteria, Myxomycetes, colonial organisms such as Portuguese man
o’war, bee colonies, termite colonies and ant colonies. Each of these shares the feature to be a group
displaying more intelligent behavior than the behavior of each individual within the group. In the
most evolved species of ants, group specialization has led to a high level of colony complexity,
though this complexity does not correspond to a parallel complexification of the individuals that
make up the colony.

The colony is a superorganism insofar as self-control, communication and adaptation to
environment capabilities can be compared to those of an organism that shares the same complexity,
such as some mammals or human beings. In the most recent approaches to cognition, especially the
embodied approach, low-level and high-level cognitive capabilities are closely related to
environment adaptation and interaction. Therefore, if we compare an organism and a
superorganism, it is noteworthy that the latter seems to have a greater robustness and flexibility than
the former thanks to the structure and the organization that serve different functions and purposes
that we may refer to as cognitive (for example, communication and control, food research, defense
from external threats). The organs and their functions in superorganisms are not compact entities
like those in organisms, and the organ functions are processes that take place in a very distributed
substrate, that can be replaced, to some extent and if required, more easily than in an organism. For
example, in an ant colony, we have a nest in the place of a skeleton, stigmergy in the place of
nervous systems, reproductive castes in the place of gonads, and so on. Thus, information and
knowledge in superorganisms are distributed more widely than in organisms®.

The comparison between complex organisms and superorganisms highlights the superiority, to
some extent, of superorganisms, especially as regards flexibility and robustness of functions in their
interaction with the environment. We may find a precedent of this comparison in the analogy
between an ant colony and a brain within a framework of the philosophy of mind and Al
(Hofstadter, 1979). It was used for several purposes: a) to define the relationship between
reductionism and holism; b) to defend a multilevel perspective in mind/brain systems; ¢) to provide
an explanation for mental phenomena from an epistemological standpoint; d) and to outline an
explanation for emergent phenomena that preserves scientific plausibility and to explain downward
causality. The aim of Hofstadter’s analogy was thus to outline a new, dynamic and multi-level
hierarchical way to consider the emergence of intelligence and mental phenomena in complex

8 Consider, for instance, the case of bee colonies (Tautz, 2008).



systems. It is a view that combines both bottom-up and top-down aspects in the explanation of
cognitive processes.

In keeping with this analogy, but from a reverse point of view, superorganisms have recently been
described through a computer science terminology, a noteworthy inversion of traditional biological
inspired computation methodology (Holldobler, Wilson, 2009). In an ant colony, ants are agents
that execute simple algorithms. They come to decision points where a change either in the behavior
or in the anatomy/physiology of the ant can take place, depending on the group (caste) it belongs to.
This is how higher processes or functions are transmitted to low levels. The resulting system is
structured on different levels through which we have, on the one hand (the bottom-up “hand”),
emergence, and on the other (the top-down “hand”), downward causality. It is only possible to
speak of downward causality if we mean weak emergence, as weak emergence (Bedau, 1997)
allows us to combine an autonomous explanation of the phenomenon with its causal dependence.

In the epistemological context of autonomy and dependence, we may see ants as physical and yet
functional parts of the global systems, playing the role of linking different levels: the explanation of
high levels is the outcome of complex interactions of micro-entities. If we consider an ant colony as
being able to carry out cognitive tasks, in the same way as the ant-colony/brain analogy suggests,
ants and the computational account of their functions within the global system can shed some light
on cognitive aspects of similarly complex biological systems.

A superorganism as an organized level structure is an outcome of evolution. In particular, it is
through multilevel selection that the complexity of the superorganism has increased, unlike the
complexity of individuals that make it up. Indeed, the individuals are becoming increasingly
specialized, with the number of tasks they can perform dropping increasingly over the evolutionary
process. The first question is therefore: is there a suitable level (or range of levels) of individuality
that single entities that make up a more complex biological entity need to have so as to be able to
produce a single, complex, flexible and robust entity such as a superorganism? What are the
requirements of this level of individuality, if any, in terms of autonomy from and dependence on the
whole system? I suggest naming the hypothesis of this level of individuality the “principle of
individuality”. Being able to characterize it is relevant to the explanation of emergence of cognitive
phenomena on biological bases, and to the creation of cognitive systems stemming from
synthesizing biological entities with such properties.

6. The “principle of individuality”

Let’s continue with our hypothesis and try to define the “principle of individuality” more
accurately. We may assume that it is the optimal level to explain (and give rise to) emergent
phenomena and that it should have a physical realization. For example, in a superorganism such as
an ant colony, it may be the level of ants. What features do ants need in order to give rise to a
superorganism, such as a global complex system? Ants can be characterized as both autonomous
and dependent entities, i.e. individuals that not only have degrees of freedom and powers but also
constraints.
Degrees of freedom or powers that seem to be relevant are:

1. autonomous movements;
simple and limited choice;
auto-supporting;
absence of reproduction;
minimal vital functions.

el

Constraints that seem to be important are:
1. connection with other similar individuals (by communication or specific behavior);
2. chemical “bonds”;
3. physical proximity but not contiguity;



4. conditioned choice by environment (including superoganism “body” itself, i.e. the behavior
of all ants as a whole);

5. the possibility of only being able to perform a simple action or a very limited number of
simple actions;

6. high-level “programming” (the real-time needs of the colony).

These are only two hypothetical lists, but the point is that this way of considering things may prove
useful in order to computationally or biologically create, from a bottom-up standpoint, global
entities that exhibit typical features of a superorganism, like flexibility and robustness in
environment interaction. An analysis of this kind may help to find the same features within other
organizational entities. For example, we can make an analogy between superorganisms and human
societies and cultures, and so (in our particular case) between ants and human beings. There are
several differences between these two types of organization, the foremost being the higher degree of
freedom and autonomy of human beings. Nevertheless, a comparison between colonies and
societies, in accordance with the principle of individuality, might turn out to be interesting,
especially in the perspective of agent-based models (Axelrod, 1997).

As a better analogy for our aims, I suggest the one concerning bacterial colonies and their ability to
display and produce collective behavior (Ben Jacob et al., 2011). If one takes the bacterial colonies
as the first step leading to a superorganism — even though with some differences from ant and bee
colonies — and if it is possible to find some preliminary conditions of cognition and cognitive
capabilities in these colonies, it would be interesting to try to identify individuals that fall under the
“principle of individuality”. For instance, does a bacterium play the same role as an ant in a
bacterial colony? Or should we consider the bacterial/cellular aggregate as the best candidate?
Differences between ants and bacteria may be crucial: multicellular versus unicellular entities,
stigmergy versus different chemical signaling, and so on. If we accept, however, that bacterial
colonies display some foundations of cognition — like meaning-based intelligence as contextual
interpretation of information from the outside (Ben Jacob, Shapira, 2005; Ben Jacob et al., 2006) —
there are interesting connections with the plausible assumption of cognitive features in
superorganisms such as ant colonies. Moreover, by comparing different entities that are good
candidates for the principle of individuality in hierarchical structures, we may attempt to clarify the
relationship between emergent phenomena and the type of levels halfway between the lowest
physical level and the highest organized level.

Why should such a view be relevant to SB? In recent decades, many cognitive researchers have
drawn their inspiration from biological complex adaptive systems in order to reproduce knowledge
and representational capabilities in systems provided with self-control and self-awareness, for both
low-level and high-level cognitive capabilities: for instance, inspiration from the cellular
metabolism or immune system (Hofstadter e al., 1995; Mitchell, 2006), also for robotic building
(Lawson, Lewis, 2004). A natural or artificial system requires some specific features to attain (self-)
control, self-awareness and non-deterministic behavior: global information distributed in statistical
and dynamic patterns, a random explorative capability, a strong but fluid interaction between low
and high levels. Such a system is meant to be able to adapt to situations that it is “considering” and
that it has to face while fulfilling its tasks. The building of a coupling relationship between the
system and the situation involves (or rather, is) its representational capability and is closely
connected to low-level and high-level interaction. For this reason, the system needs a micro-agent
structure on different levels. This may also apply to relatively low-level capabilities, such as robotic
navigation and mapping. We may consider this approach within the field of enactive cognition and
the general thesis that patterns emerge inside an autonomous agent through a coupling relationship
with its environment (Ziemke, 2003).

Self-awareness and self-control are not currently relevant targets in SB research, though they are
relevant to the perspective of exploring foundations of cognition as they are closely related to
system autonomous complex behavior. So, if these targets are not addressed for the time being



because they are beyond the scope of SB, the constraints I mentioned above may be an example of
goals at a functional level that are relevant to SB in order to explore the foundations of cognition in
biology, especially as regards the SB subfield of synthetic multicellularity. Multicellular systems
have recently been investigated (Markson, Elowitz, 2014) because of their potential technological
repercussions and by-products, such as tools and platform technologies for SB, as well as to gain an
understanding of “the limits of developmental regulation, stability, and plasticity until we have
recapitulated developmental processes on our synthetic platforms” (Maharbiz, 2012).

Other authors highlight further advantages of multicellularity, such as cross-feeding, shape selection
or sex for exchanging genetic material and the creation of new genomic sections, thus accelerating
the evolutionary steps, especially with methods like the conjugative assembly genome engineering
(CAGE); however, they also point out the disadvantages, like the loss of cell immortality in
multicellular organisms that leads to the loss of lifetime experience upon death (Church, Regis,
2012). Multicellularity is attained using self-assembly methods by genetically engineering desired
behavior in cells, which once again constitutes a bottom-up approach (Galle, Hoffmann, Aust,
2009); or using constrained assembly for the formation of multicellularity (Maharbiz, 2012) under
contextual pressures. In particular, the latter is close to the study of adaptive complex systems and
swarm cognition systems because the interaction between body systems and environment brings
about, or at least affects, the system capabilities. A major role is played by environmental
constraints, but also by the functional constraints through which we describe the desired
(hierarchical) system whose purpose is to provide cognitive behavior of the type described above.
The fact that functional constraints are seen in Al as emergent may be an obstacle for SB, which
uses assembly methods for controlling every step of multicellular system formation and does not
willingly adopt emergent properties’ for technological purposes or, for the same reason, uses bio-
brick assembly. Nonetheless, an emergent interpretation and description of biological and cognitive
phenomena seems to be unavoidable above a certain level of complexity and one of the most
fruitful ways to study them is, at present, to consider the connection and interaction between
systems and the environment.

The long-term contribution of SB to Al may therefore be based on trying to reproduce this
particular intermediate level, by synthesizing organic individuals to create entities between a lower
chemico-physical level and the level of the overall (super-)organic complex system. In other terms,
entities need to be synthesized, starting from a chemico-physical substrate, in order to achieve
collective behavior that is comparable to that of a (super-)organic system and that displays cognitive
capabilities.

On the other hand, the contribution made by Al to SB is based on the notion that superorganisms
can be described in computational terms. As for swarm intelligence techniques, we already have
classes of optimization algorithms modeled on behavior of an ant colony!®. A description of
biological organisms in computational terms inside biology would, however, be far more interesting
since it is different from a functional description of cognitive systems, even at the neuronal level,
within cognitive science and Al. The stress lies on the explanation of biological events and not
cognitive capabilities. In other terms, in this case biology makes use of A, unlike the more common
trend in which Al makes use of biology, such as in cybernetics, early Al and connectionism. We
may cite just one example from the discussion on how interaction between levels takes place in
superorganisms: “The steps of the program, in insect and machines, are envisioned as sequences of
decision rules [...]. The programs unfold in a linear manner. As each successive binary decision
point is reached, the individual colony member proceeds down one pathway or another until it
comes either to the next decision point or to the end of the sequence. A particular program may
guide the gradual anatomical and physiological development of individual colony members into one

% “I hate emergent properties. I like simplicity. I don’t want the plane I take tomorrow to have some emergent property
while it’s flying” (Endy, 2005).

19 Such as the Stochastic Diffusion Search algorithm of Nasuto and Bishop (1999). On this topic see also Dorigo and
Stiitzle (2004). Similar attempts have also recently been carried out on bacterial colonies (Niu, Wong, 2012).



caste or another, or it may cause changes in a member’s behavior within the ambit of its caste
repertoire [...] A complete sequence of decision points that produces a caste, product or full
behavioral response is called an algorithm’ (Holldobler, Wilson, 2009: 54).

This description allows us to examine a system and its properties from an abstract point of view,
without considering whether it is a natural or artificial one, but addressing biological issues in an
attempt to cast new light on biological emergent phenomena. Likewise, SB can make use of Al to
tackle problems that originated in complex multicellular synthetic systems, in an attempt to hold
together their emergent collective behavior and the control over single synthesized micro-entities
(cells or bricks) that give rise to the organism. In addition, producing a synthesized superorganism
as well as multicellular organisms can offer different views on the body-environment interaction,
thereby clarifying the hierarchical levels of the biological entities involved.

7. The future: synthesizing superintelligence

The future is mostly unpredictable. Nevertheless, many predictions about future evolution of
intelligence have been made in order to explore the possibility of superintelligence!'. The main idea
regarding this issue is that (sooner or, most likely, later) our technological achievements will place
us in a position to build machines or biological entities that are more intelligent than human beings.
This may come about in two ways: A) a superintelligence we can recognize on account if its power
to do things we wish to do, but we are unable to do; B) a superintelligence that we cannot recognize
because its powers, goals, motivations and methods are too far from our understanding. If A occurs,
presumably we will be able to predict when we have it and control the artificial superintelligence
achieved in this way. If B occurs, presumably we won’t have control over the entity and the
catastrophic forecast is, in the best-case scenario, that we will have to adapt our life to coexist with
a different kind of intelligence system whose peculiarity is that it is more intelligent than ours; in
the worst-case scenario, that the exact moment in which that happens will be the beginning of the
end of mankind. There is a huge body of literature on this topic that is sometimes a cross between
science and science fiction. However, setting aside science fiction and the ethical, social and
cultural implications, I wish to mention a few points on superintelligence that deserve discussion
and that may be relevant to the relationship between SB and Al

Superintelligence is bound up with the development of computation power and processing
technologies. In particular, the key point is to establish whether acceleration in technology at an
exponential rate, as the one in recent years seems to show, could lead to a point of no return: the so-
called technological singularity (Vinge, 1993), namely the achievement of a superhuman artificial
intelligence. The accelerating process could, however, first lead to key enabling technologies that
increase the potential of SB, also by drastically reducing the price of technologies involved in SB
(Kurzweil, 2001). In a technologically-improved scenario, genetic manipulation, selection and
engineering could lead to biological superintelligence through an understanding of the mating
patterns behind intelligence. Implantation in embryos and embryo selection over many generations
might significantly increase the intelligence quotient. Challenging problems have to be faced,
however. For instance: a time delay and generation lag. Moreover, even if “DNA synthesis is
already a routine and largely automated biotechnology, [...] it is not feasible to synthesize an entire
human genome that could be used in a reproductive context” (Bostrom, 2014: 30-41). Let’s assume,
however, that every genetic problem is solved; we will have biological enhancement “probably
sufficient for the attainment of at least a weak form of superintelligence” (Bostrom, 2014: 43-44).
Nevertheless, these hypothetical achievements would merely be forms of biological
superintelligence that could at best produce smarter human beings by accelerating the evolutionary
process. Such an outcome of SB is also known as transhumanism (Regis, 1991; Church, Regis,
2012: epilogue) and might result in a large number of increasingly intelligent people that produce

' For a general and up-to-date discussion of superintelligence see Bostrom (2014).



artificial superintelligence by playing the same role in future Al research as that played by Turing or
von Neumann in the past. Moreover, SB techniques and methods can provide control over
transhuman entities, according to “the rule ‘Never hide information from the programmers’”
(Church, Regis, 2012: 246). So, from this point of view, future SB could help future AIl. And the
other way around?

There are domains in which Al systems surpass human beings. Consider, for example, expert
systems or some games, such as checkers, chess or Jeopardy! All these systems are dedicated to
specific problems or tasks. There is no such thing as general Al and for the present it may seem too
much to expect. It does not, however, appear to be impossible in principle. How can we achieve
general Al and, shortly after that by using the same methodology, artificial superintelligence? Many
answers are possible. Two pathways appear to be particularly promising: brain emulation'?, through
neuron by neuron simulation'’, and artificial evolution, through evolutionary computation
techniques (Chalmers, 2010).

Evolutionary computation, especially by using genetic algorithms, is a good candidate to achieve
artificial superintelligence. After all, human intelligence is a product of evolution, and we may be
able to identify and reproduce all features of evolution, not just some of them as happens nowadays,
in order to produce intelligence (Moravec, 1988, 1998). The question of how evolutionary
computation could achieve artificial superintelligence is a matter of discussion: will it be by feature
simulation of the evolutionary process or just by increasing computation power in order to exploit
the existing evolutionary computational technology in a fuller way? In both cases, the outcomes of
evolutionary computation in attaining or not attaining (at least part of what we will recognize as)
artificial superintelligence might help to achieve or avoid a similar development in SB. In other
terms, recent analysis of possible future scenarios in Al and superintelligence can be exploited to
gain some insight into current research on general and specific Al systems. This is a sort of
regulative topic, used for orienting research in this set of disciplines. The same regulative and
guiding role can be played by a similar kind of analysis in the SB field, both for social and ethical
implications, and to decide what trends are most useful and promising according to different long-
term targets.

Finally, another important contribution of this kind of research is to define the boundary between
artificial entities and biological entities. If we achieve artificial superintelligence by means of an
interaction of computationally evolved micro-agents, will this sort of superorganism be artificial or
biological? What if this global entity is attained by transferring computationally evolved
information into a synthetic unicellular or pluricellular organism? Will this kind of superorganism
still be artificial? Collective superintelligence is another form of superintelligence (Bostrom, 2014:
54-56). The study of collective superintelligence, not within a social or cultural context but a
biological one, as discussed in previous sections, may offer Al and SB reciprocal advantages.

8. Conclusion

In previous sections, I outlined the contributions that Al can make to SB, and in some cases SB to
Al, by exploring a tri-temporal dimension scheme. Past research is relevant, especially for the
biological aspects of early AL I believe that Turing’s and von Neumann’s work was very open-
minded and unconditioned by the subsequent development of the discipline. For the first time, they
posed the question of whether life and intelligence can be exploited by exploiting biological notions
in a bottom-up approach to cognition (intelligence features, evolutionary systems) and its
functionalist characterization.

12 That is not brain uploading onto a machine, because brain emulation implies an evolution of the brain itself, while
brain uploading requires a machine that is able to “receive” all the information in a brain and let it process
autonomously. Nevertheless, both approaches might share the same technological substrate, even if it is not logically
necessary. On uploading and its implications, see Strout (2006).

13 This is the main objective, for instance, of Human Brain Project (https://www.humanbrainproject.eu/).



Current research on emergent phenomena, swarm intelligence and superorganism can help SB to
outline interesting and more useful definitions of “life” and “cognition”, and the relationship
between them. This goal can be achieved by means of a computational, algorithmic description of
biological events and collective phenomena within biology, which is the other side of the coin of
the creation of biologically inspired cognitive architecture. Even in this case, a bottom-up approach
to cognitive systems appears to be relevant to explaining emergent cognitive capabilities of
embodied systems that interact with the environment. These ideas are likely to be relevant to SB
research, especially that on multicellular systems.

Through an analysis of long-term targets, research on future prospects in superintelligence may help
to pinpoint interconnections between Al and SB, and to sketch out a new general paradigm within
which it will be possible to study Al and SB at an inclusive level of abstraction, thereby producing a
new, more inclusive concept of life.

These three temporal dimensions are connected by the idea that intelligence is a biological and
embodied phenomenon. The SB research area seems to afford new ways of testing Al assumptions
by exploiting both earlier and more recent ideas to develop relevant biological material for a
bottom-up exploration and creation of cognition.
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