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Abstract: The popularity of using wearable inertial sensors for physical activity classification has 
dramatically increased in the last decade due to their versatility, low form factor, and low power 
requirements. Consequently, various systems have been developed to automatically classify daily 
life activities. However, the scope and implementation of such systems is limited to  
laboratory-based investigations. Furthermore, these systems are not directly comparable, due to the 
large diversity in their design (e.g., number of sensors, placement of sensors, data collection 
environments, data processing techniques, features set, classifiers, cross-validation methods). 

Hence, the aim of this study is to propose a fair and unbiased benchmark for the field-based 
validation of three existing systems, highlighting the gap between laboratory and real-life 
conditions. For this purpose, three representative state-of-the-art systems are chosen and 
implemented to classify the physical activities of twenty older subjects (76.4 ± 5.6 years). The 
performance in classifying four basic activities of daily life (sitting, standing, walking, and lying) is 
analyzed in controlled and free living conditions. To observe the performance of laboratory-based 
systems in field-based conditions, we trained the activity classification systems using data recorded 
in a laboratory environment and tested them in real-life conditions in the field. The findings show 
that the performance of all systems trained with data in the laboratory setting highly deteriorates 
when tested in real-life conditions, thus highlighting the need to train and test the classification 
systems in the real-life setting. Moreover, we tested the sensitivity of chosen systems to window 
size (from 1 s to 10 s) suggesting that overall accuracy decreases with increasing window size. 

Finally, to evaluate the impact of the number of sensors on the performance, chosen systems 
are modified considering only the sensing unit worn at the lower back. The results, similarly to the 
multi-sensor setup, indicate substantial degradation of the performance when laboratory-trained 
systems are tested in the real-life setting. This degradation is higher than in the multi-sensor setup. 
Still, the performance provided by the single-sensor approach, when trained and tested with real 
data, can be acceptable (with an accuracy above 80%). 

Keywords: inertial sensors; physical activity classification; overall accuracy; real life conditions; 
older subjects 
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1. Introduction 

Physical activity (PA) is fundamental for functionality of the human body and it is one of the 
strong predictors of healthy ageing and wellbeing. Low physical activity in the elderly population is 
strongly associated with many fall related injuries, age-related loss of muscle, mobility disorders, and 
loss of independence in daily life. A study conducted by the World Health Organization (WHO) in 
the 28 member states of European Union (EU), proposed that promotion of physical activity and 
prevention of falls are among the five priority interventions to promote healthy ageing [1]. The 
statistics shows that the proportion of falls per year is 30% among the population over 65 which 
increases to 50% in the population above 80 [1]. Better knowledge about activities of daily life (ADL) 
is needed in order to design interventions to prevent inactivity and improve health and function 
during the ageing process. 

Recent technological advances in the IMU (inertial measurement unit) sensors have encouraged 
researchers and scientists to incorporate these in personal health systems. This is mainly due to their 
low cost, low power consumption, small size, wearability, and reliable data transfer capabilities. A 
typical IMU device is composed of a tri-axial accelerometer and gyroscope capable of measuring linear 
acceleration and angular velocity. There is an increasing number of physical activity classification 
(PAC) systems to classify the ADL by utilizing these sensors [2–16]. The overall performance of these 
PAC systems presented in the literature can depend on many factors, illustrated in Figure 1. 

(i). Dataset: Nature of the datasets differs in terms of the population studied, how and where the 
ADLs are performed and the type of ADLs included in the dataset. Majority of the existing 
PAC systems developed in the literature have used datasets collected in a laboratory setting 
or in a controlled environment with predefined sets of activities [13,14,17,18]. 

(ii). Number of sensors: Varies from a single sensor setup [3] to multiple sensors setup [2,4,5]. 
(iii). Placement of sensors: Varies, covering different body locations in order to record the upper 

and lower body movements. The common sensor placements are L5, hip, thigh, waist, foot, 
ankle, chest, and wrist [4,5,14,17–19]. 

(iv). Features set: Existing PAC systems are composed of numerous time and frequency domain 
features, statistical features and bio-mechanical features [8,20]. 

(v). Window size: Window size and overlapping intervals used for the feature computation vary 
and they may affect the performance of machine learning algorithms and classifiers. The 
window sizes largely differs across the PAC systems proposed in the literature: 2 s [4], 2.5 s 
[11], 5 s [5], 5.12 s [3], 6.7 s [2], and 10 s [9]. The overlapping interval used in most of the PAC 
systems is 50% of the window size [20]. 

(vi). Classifier: In most of the PAC systems, a single classifier is used to differentiate between all 
the different ADLs in the dataset. A common choice for such classifiers may include a 
decision tree classifier [2], support vector machine (SVM), artificial neural network (ANN) 
[13], and K-nearest neighbors (KNN) [4]. However, some systems have attempted to integrate 
the base level classifiers either by plurality voting [3] or by defining a hierarchical 
classification process which uses different classifiers for each subset of ADL [6,10,15]. 

The choice of each single aspect discussed above is crucial in the development of a robust PAC 
system since all of these factors contribute directly to overall performance. Due to the large diversity in 
the design process, the existing PAC systems are not directly comparable which hinders the development 
of new techniques informed by the strengths and the gaps in these systems. Another issue is that most of 
the existing PAC systems used younger subjects for data collection [3–6,9,10,13,14,17,21,22] and few 
systems collected data on older subjects [11,23–26]. Furthermore, most PAC systems are developed 
in a controlled environment, which is quite different from real-life conditions [27]. A group of 
researchers [28] recently proposed a set of recommendations about the standardization of validation 
procedures for PAC systems in older people, which emphasizes the need to develop and validate the 
systems using a semi-structured protocol where ADLs are performed in real-life conditions, in 
addition to the validation performed in the laboratory setting. 
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Figure 1. Factors that contribute to the overall performance of the PAC system. 

In the past, some researchers [10,29,30] have tried to compare the performance of their proposed 
PAC systems with existing systems. However, in our opinion, they failed to provide a fair comparison, 
since they did not consider that the factors reported in Figure 1 were just not comparable. Therefore, 
the present study aims to propose a fair and unbiased benchmark for the field-based validation of 
existing state of the art (SOA) systems for PAC of older subjects highlighting the gap between the 
laboratory and real-life conditions. The specific aims of this study are as follows: 

(1) To compare the performance of existing PAC systems in a common dataset of activities of older 
subjects in an unbiased way (i.e., with the same subjects, sensors, sampling frequency, window 
size and cross-validation procedure), and to investigate the effect of varying window size on 
system’s performance. 

(2) To validate and compare the performance of the PAC systems in real-life scenarios compared to 
an in-lab setting in order to check if these systems are transferrable to real life settings. 

(3) To evaluate the impact of the number of sensors on the performance in the analyses in (1) and 
(2) using a reductionist approach (i.e., analyzing only the sensing unit worn at the lower back 
instead of the multi-sensor setup). The lower back location is chosen since it is a very common 
case that shows no major drawbacks for the monitoring of the activities of older subjects. 

For the presented aims, we selected three representative SOA systems for PAC [2,9,10] 
motivated by the following reasons: (i) diversity in the number of sensors used; ranging from four 
sensing units by Leutheuser et al. [10] up to six sensing units by Cleland et al. [9]; (ii) use of different 
time intervals for windowing (ranging from 5 s [10] to 10 s [9]); (iii) different classification techniques 
i.e., decision tree classifier by Bao et al. [2], SVM by Cleland et al. [9], and hierarchical classification 
by Leutheuser et al. [10]. 

Four ADLs (sitting, standing, walking, and lying) are studied in this work in order to provide a 
fair comparison. These ADLs are chosen as they are the most common in this kind of studies and due 
to these four activities being present in all of the selected systems. 

The rest of the article is structured as follows: Section 2 presents the methodology of the study and 
the description of the dataset used; in Section 3, results with a comprehensive discussion on the findings 
are presented; in this section comparative analysis of the three systems is also presented; Section 4, 
concludes the study. 

2. Materials and Methods 

2.1. Data Collection in Real-Life Scenarios 

The data collection was performed at the Department of Neuroscience, Faculty of Medicine, at 
the Norwegian University of Science and Technology (NTNU) Norway, by the research group on 
Geriatrics, Movement, and Stroke, as part of the ADAPT project (A Personalized Fall Risk Assessment 
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System for promoting independent living). The data collection protocol was composed of two 
sessions; semi-structured supervised protocol (in-lab) and a free-living unsupervised protocol  
(out-of-lab). Twenty older subjects (76.4 ± 5.6 years) participated in the study. For both data protocol 
sessions, video recording was used as a gold standard. Various inertial sensing units were placed on 
different body locations and a subset of these sensors was used in our analysis: chest, lower back (L5), 
wrist, waist, thigh, and foot. The details of the sensors used and their respective placements are 
presented in Table 1. The wrist sensor was down sampled to 100 Hz to keep the same sampling 
frequency for all sensors. All mentioned sensors were part of in-lab and out-of-lab protocols except 
the sensor on the feet which was excluded from out-of-lab data recording for usability issues. Each 
subject performed a variety of ADLs in both sessions with the ADLs analyzed in our study being 
sitting, standing, walking, and lying. The in-lab session was performed in a smart home environment 
where subjects were supervised and instructed to perform ADLs. Video recording was performed 
using the ceiling mounted cameras at 25 fps. The in-lab session was followed by an  
out-of-lab session on the same day where subjects performed their daily routine activities in an 
unsupervised way. They were instructed to perform as much ADLs as possible and to incorporate 
certain tasks into their daily routine. A GoPro camera unit with frame rate of 29 fps (fixed to the chest 
pointing downward towards the feet) was used to video record the gold-standard information of the 
ADLs performed in free living protocol. Video annotation of the camera units used in the in-lab and 
out-of-lab protocol was performed by the recruited raters. Raters were instructed on the marking 
procedures and activity definitions. For both sessions, video annotation agreement was around 90%. 
The original sampling frequency (25 Hz) of the annotations was up-sampled to 100 Hz [31]. A 
detailed description of the ADAPT dataset and the video annotation process is presented in the study 
protocol by Bourke et al. [31]. Due to technical issues with the wrist sensor, 16 subjects were used for 
analysis purposes as authenticity of sensed data was compromised in rest of the cases due to missing 
data at the time of recording. Therefore, four subjects were excluded from the analysis as all selected 
PAC systems make use of the wrist sensor data. 

A summary of the ADLs from 16 subjects analyzed from the in-lab and the out-of-lab protocol 
is presented in Tables 2 and 3, respectively. Statistical analysis is performed and various parameters 
are computed: occurrences (how many times a single ADL occurred in all subjects), mean (average 
duration of each ADL in seconds), STD (standard deviation of each ADL in seconds), min (minimum 
duration of each ADL in seconds), max (maximum duration of each ADL in seconds), and range 
(difference between min and max in seconds). 

Table 1. Description of the sensors used for data collection. 

Sensor Type Location Sampling Frequency Measured Signals 
uSense Thigh 100 Hz 3D Accelerometer, 3D Gyroscope 
uSense L5 100 Hz 3D Accelerometer, 3D Gyroscope 

ActiGraph Waist 100 Hz 3D Accelerometer 
uSense Chest 100 Hz 3D Accelerometer, 3D Gyroscope 

Shimmer Wrist 200 Hz 3D Accelerometer, 3D Gyroscope 
uSense Feet * 100 Hz 3D Accelerometer, 3D Gyroscope 

* Sensor on the feet were not included in out-of-lab data collection. 

Table 2. In-lab ADLs. 

ADL Total (h) Occurrences Mean * STD * Min * Max * Range *
sitting 1.67 708 8.50 18.90 0.03 267.36 267.33 

standing 2.67 1319 7.28 16.40 0.03 296.97 296.94 
walking 0.90 613 5.29 2.79 0.96 20.07 19.11 

lying 0.28 187 5.47 9.87 0.13 113.23 113.10 
* The values are in seconds. 
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Table 3. Out-out-lab ADLs. 

ADL Total (h) Occurrences Mean * STD* Min * Max * Range *
sitting 13.45 497 97.44 200.74 0.04 2075.64 2075.60 

standing 6.52 4304 5.45 12.27 0.03 388.52 388.49 
walking 4.10 2617 5.64 8.75 0.28 139.56 139.28 

lying 0.36 12 106.69 154.02 3.48 583.84 580.36 
* The values are in seconds. 

2.2. Implementation of the SOA Systems for PACs Using Their Original Framework 

The set of sensors used in our work for the in-lab (SIN) and out-of-lab (SOUT) analysis performed 
on the ADAPT dataset is shown in Table 4. 

Table 4. Sensors used from ADAPT dataset to perform the performance on three PAC systems. 

Author SIN SOUT 
Cleland et al. [9] Chest, L5, Wrist, Waist, Thigh, Foot Chest, L5, Wrist, Waist, Thigh 

Bao et al. [2] L5, Wrist, Thigh, Foot L5, Wrist, Thigh 
Leutheuser et al. Wrist, L5, Chest, Foot Wrist, L5, Chest 

SIN—Sensors used in our data analysis from In-lab protocol of ADAPT dataset; and SOUT—Sensors 
used in our data analysis from out-of- lab protocol of ADAPT dataset. 

The brief description of the three PAC systems, selected for the comparative analysis is presented 
in Table 5. It is much evident from Table 5 that all PAC systems possess different solutions for a number 
of sensors, sensor locations, set of features, classifiers, and time window used for feature computation. 

To investigate the sensitivity of the classification accuracy to window size (first specific 
objective), all systems are trained and tested in the in-lab data with a window size ranging from  
w = 1 s to w = 10 s in steps of 1 s. The sensor set SIN (Table 4) is used with leave-one-subject-out  
cross-validation. 

Analysis of the out-of-lab data is performed by training and testing all systems with the real-life 
data. The window size of 5 s is used with the sensor set SOUT (Table 4) and leave-one-subject-out  
cross-validation is performed. The window size of 5 s is chosen, since it is closer to the window size 
used by two out of three PAC systems (Table 5). 

To address the second specific objective, each PAC system is trained with the in-lab data and 
tested on the out-of-lab data. To overcome any bias in the training process, the in-lab data of all 
subjects except one is included in the training stage. The left-out subject is tested in free living 
conditions (i.e., with the out-of-lab data). In this way, all participants are tested in free living condition 
using this leave-one-subject-out strategy. The sensor set SOUT is used with the window size of 5 s. 
The overlap is set to 50% of the window size for all the analysis. Furthermore, a majority voting 
scheme is implemented to assign the window labels i.e., if a window of 5 s (500 samples) contains 400 
samples of sitting and 100 samples of standing then the assigned label to this window would be 
sitting. 

All of the PAC systems are implemented in MATLAB (Release 2014b, The MathWorks, Inc., 
Natick, MA, USA) and respective classifiers are implemented using the libraries of Weka data mining 
software (University of Waikato, Version 3.6.12 [32]). The analysis is performed on a Dell laptop 
(Model # M3800, Intel® Core™ i7-4712HQ, CPU @2.30Gz, 16GB RAM, 64-bit operating system). For 
all systems, overall accuracy, accuracy by class and sensitivity by class of all activities is computed in 
the in-lab training/out-lab testing scenario. The overall accuracy term will be used interchangeably 
as accuracy or performance in the upcoming sections. The formulas used for the computation of 
performance metrics are reported in Appendix A and the respective classification methods 
implemented for each PAC system are described in Appendix B. 
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Table 5. Overview of the three SOA systems for PACs implemented in this study for performance analysis. 

Author Fs  
(W) SO Experiment Setting 

(Population) Features Activities Accuracy Reported 

Cleland 
et al. [9] 

51.2  
(10 s) 

Chest, lower 
back, wrist, hip, 
thigh, foot 

Laboratory setting (8 
young adults) (26.25 
± 2.86 years) 

Mean, standard deviation, skewness, 
kurtosis, energy and correlation of axes 
(separately and average over 3 axes) 

Walking, jogging on a treadmill, 
sitting, lying, standing, walking 
up stairs, walking down stairs 

97.26% SVM 

Bao et al. 
[2] 

76.25  
(6.7 s) 

Hip, wrist, arm, 
thigh, ankle 

Semi-naturalistic 
conditions (20 
subjects) age group 
not reported  

Mean, energy, frequency domain entropy, 
correlation between the acceleration 
signals 

Walking, sitting, standing, eating or 
drinking, watching tv, reading, 
running, bicycling, stretching, 
strength-training, scrubbing, 
vacuuming, folding laundry, lying, 
brushing, climbing stairs, riding 
elevator, riding escalator 

84% using Decision 
tree 

Leutheus
er et al. 

[10] 

204.8  
(5 s) 

Wrist, hip, 
chest, ankle 

Laboratory setting 
(23 young adults) (27 
± 7 years) 

Minimum, maximum, mean and variance, 
spectral centroid, bandwidth, energy, 
gravitational component 

Sitting, lying, standing, washing 
dishes, vacuuming, sweeping, 
walking, running, stairs climbing, 
bicycling, rope jumping 

89.6% hierarchical 
classifier 

Fs—Sampling Frequency in Hz, W = Window Size, SO—Original set of sensors used by the authors to develop PAC system, Activities—Set of Activities used by authors 
to develop their PAC system. 
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2.3. Implementation of the SOA Systems for PAC Using a Reductionist Framework 

The performance of all systems is also computed in the reductionist framework implemented 
using only the sensor data collected at waist-level in L5 (third specific objective). The steps in the 
analysis are the same as described in Section 2.2. 

3. Results and Discussion 

3.1. Performance Comparison of the PAC Systems in the In-Lab Setting Using Their Original Framework 
and Sensitivity Analysis to the Window Size 

Overall accuracy computed for the sensitivity analysis of the in-lab data to different window 
sizes (w = 1 s to 10 s) is presented in Figure 2. The system by Cleland et al. [9] is the one which performs 
better in our framework, with an overall accuracy ranging from 98.4% for w = 1 s to 94.6% for w = 10 s. 
It, hence, shows a degradation by 3.8% when increasing the window size. Our result for in-lab data 
compares well with the original paper that, for w = 10 s, reported an overall accuracy of 97.3%. The 
second-best performance we obtained is with the system proposed by Bao et al. [3]. It also shows a 
decreasing trend in the overall accuracy from 97.3% (for w = 1 s) to 94.4% (for w = 10 s) with a 
difference of 2.9%. The original system was implemented with w = 6.7 s and had an overall accuracy 
of 84%; our closest term of comparison is the window with w = 7 s, which produces an accuracy of 
95.4%. The accuracy of the system by Leutheuser et al. [10] is fairly below the previous ones. In the 
system by Leutheuser et al. [10] we obtain an overall accuracy which, unlike previous systems, 
increases by 2.3%, from 83.7% (w = 1 s) to 86.0% (w = 10 s). Results obtained in our framework (overall 
accuracy of 86.4%) fits well with the original one at w = 5 s (overall mean classification rate of 89.6%). 
A possible reason for the increase in the performance (although the performance is the worst of the 
three) for increasing window sizes of the system by Leutheuser et al. is the difference in the classifier 
design. Their work is the only one that uses a hierarchical classification approach. 

 
Figure 2. Sensitivity analysis of overall accuracy of in-lab data when window size is increased from 
w = 1 s to w = 10 s using sensor set SIN (Table 4). The symbol ( ) specifies the window size used in 
the original PAC system by the authors. 

The systems by Bao et al. [2] and Cleland et al. [9] achieved very high accuracies, at the cost of 
using a large number of sensors, which is a practical issue in real-life conditions. The system 
developed by Bao et al. uses four sensors and the system proposed by Cleland et al. uses six sensors, 
which raise feasibility and computational complexity issues for these systems which could make 
them less practical in real life conditions. 
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The probable cause in the overall lower performance of the system by Leutheuser et al. could be 
the fact that in their original implementation six subsets of ADLs were considered (1: HOUSE 
(vacuuming, sweeping); 2: REST (sitting, standing, and lying); 3: WALK (walking, running, 
ascending stairs, descending stairs); 4: bicycling; 5: rope jumping; 6: washing dishes). Instead, in our 
analysis, only two sub-systems are used i.e., REST (sitting, standing, lying) and WALK (walking). 
The subdivision of ADLs which characterizes this hierarchical classification can be a limitation in 
implementing the original work when choosing only a subset of activities, as in our case. It could also 
be an issue if a hierarchical classification approach is implemented on a set of activities which is not 
the same as the original PAC system. 

Our findings regarding the decrease in performance are in line with the recent work by  
Fida et al. [21] who analyzed the effect of varying window size from w = 1 s to 3 s and suggests that 
1 s to 2 s window size gives a better tradeoff when analyzing static and dynamic activities. On the 
contrary, more recently Shoaib et al. [22] proposed a system for complex human activity recognition 
by varying window sizes from 1 s to 30 s and found that increasing window size improves the 
recognition rate of complex activities. However, our analysis is novel due to the demographics of the 
studied population. Our work indeed investigates the activities of older adults, whose ADLs may 
differ from those analyzed by Fida et al. and Shoaib et al. on the younger subjects. 

3.2. Performance of the PAC Systems in Real-Life Scenarios 

3.2.1. In-Lab vs. Out-of-Lab 

The results of out-of-lab analysis show a decreased accuracy with respect to the in-lab across all 
systems. Figure 3 (first and last point on time axis), shows the overall accuracy of the three systems 
in the in-lab and out-of-lab with w = 5 s, chosen as a representative window size. A slight decrease of 
1% (96.4%–95.4%) in the work by Cleland et al. and 1.3% (94.7%–93.4%) in the work by Bao et al., is 
observed. However, such degradation is larger in the work by Leutheuser et al. with a decline of 6.2% 
(83.7%–77.5%). The best performance of 95.4% is obtained (when trained and tested on the real life 
data) by the system of Cleland et al. which is quite encouraging, but at the cost of using five sensors 
and a large features set, which may not be feasible in real-life conditions. 

 
Figure 3. Performance analysis of in-lab, out-of-lab, and in-lab training/out-lab testing scenario for all 
PAC system using sensor set SOUT (Table 4). 

3.2.2. In-Lab Training/Out-Lab Testing 

We then evaluated the performance of in-lab trained systems in the real-life setting. In the in-lab 
training/out-lab testing scenario, the performance of all the SOA systems decreased between 4–6% 
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when compared to the in-lab results (Figure 3). The respective confusion matrix for each SOA system 
for PAC is shown in Table 6, where sensor set SOUT (Table 4) is used for implementation of all systems. 
Each sample of the confusion matrix corresponds to a 5s window. Moreover, the accuracies by class 
and the sensitivities by class for all PAC systems in the in-lab training/out-lab testing scenario are 
listed in the Table 7. The decreases in accuracy are: from 96.4% to 92.3% (4.1%) in the work by  
Cleland et al., from 94.7% to 90.6% (4.1%) in the work by Bao et al., and from 83.7% to 77.7% (6.0%) 
in the work by Leutheuser et al. 

The degradation of performance in all the systems in this scenario reflects the lack of field-based 
validity as highlighted more recently by Lindemann et al. [28]. The reason of this degradation is due 
the fact that: 

(i). Most of the existing PAC systems are developed using a standardized protocol which does 
not include the ADLs performed under real-life conditions. 

(ii). The order and way of performing these activities in a more natural and quite different 
environment to the one performed in a laboratory environment. 

Table 6. Confusion matrix for the systems; (a) Bao et al.; (b) Cleland et al.; and (c) Leutheuser et al.; 
in the in-lab training/out-lab testing scenario. 

 
(a) Bao et al.

Predicted Class 

A
ct

ua
l C

la
ss

 stand walk sit lie ←classified as 
9214 571 4 0 stand 
2329 4000 2 9 walk 
24 16 19,260 197 sit 

233 0 2 278 lie 

 
(b) Cleland et al.

Predicted Class 

A
ct

ua
l C

la
ss

 stand walk sit lie ←classified as 
9712 73 4 0 stand 
2474 3857 9 0 walk 

1 1 19,492 3 sit 
0 0 234 279 lie 

 
(c) Leutheuser et al.

Predicted Class 

A
ct

ua
l C

la
ss

 stand walk sit lie ←classified as 
7423 350 1572 16 stand 
395 5397 94 0 walk 
5289 107 13,950 0 sit 

0 0 15 480 lie 

Table 7. Accuracy and sensitivity by class for all SOA systems for PAC in the in-lab training/out-lab 
testing scenario. 

Authors Accuracy 
Accuracy by Class Sensitivity by Class 

Stand Walk Sit Lie Stand Walk Sit Lie 
Bao et al. 90.6 91.3 91.9 99.3 98.8 94.1 63.1 98.8 54.2 

Cleland et al. 92.3 92.9 92.9 99.3 99.3 99.2 60.8 100.0 54.4 
Leutheuser et al. 77.7 78.3 97.3 79.8 99.9 79.3 91.7 72.1 97.0 

Therefore, these PAC systems are unable to recognize unstructured and unplanned activities in 
real-life conditions, which emphasizes the urge of developing in-field, validated, PAC systems, as we 
did when considering the out-of-lab scenario. 
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Our findings are in-line with the work by Ganea et al. [26], where performance deteriorated 
when the laboratory-trained system was tested in real life. Our analysis generalizes the fact of 
performance deterioration over several activities in real life conditions by analyzing sitting, standing, 
walking, and lying instead of only postural transitions, as analyzed by Ganea et al. 

3.3. Computational Complexity in the Real-Life Setting 

Computational complexity of testing out-of-lab data (when trained on in-lab) is also analyzed 
by measuring the time required for the feature extraction and for classification (Table 8). The feature 
computation time is the time required to compute the features of all 16 subjects from out-of-lab data 
using the sensor set SOUT (Table 4). The testing out-of-lab time, is the total time to test all the  
out-of-lab data for 16 subjects. Mean and standard deviation of 10 runs (in order to account for 
computer performance variability) are reported in Table 8. The total window instances obtained (after 
the feature extraction of the out-of-lab data) for all systems are 36,139 except the system by Leutheuser 
et al. [10], for which the samples are 35,088 because of the software dependencies. The time 
consumption analysis of the features computation shows that the time required to compute the 
features has a direct relationship with the number of sensors. All three systems use multiple sensors 
and took longer time for feature computation. Moreover, the number of features, and the nature of 
the features, also plays an important role in computational complexity of the system. For instance, in 
the work by Leutheuser et al. [10], activity-specific features and hierarchical structure increased the 
time consumption for the validation. The complexity of the classifier, along with the number of 
sensors increased the computational time in the systems by Leutheuser et al., and Cleland et al. On 
the other hand the time taken by Bao et al. is much shorter since it utilizes a simpler classifier 
approach (decision tree classifier). The computational analysis suggests that in order to make the 
PAC system operational in real time, optimum number of sensors, proper feature selection to 
eliminate redundant features, and the choice of simpler and more robust classifier, is very critical. 
Most of the existing systems do not highlight these factors, especially the selection of features, and of 
a reduced set of sensors. These factors are crucial for the practical implementation of these systems 
out of the laboratory. 

Table 8. Computational complexity in the in-lab training/out-lab testing scenario. 

Author Feature Computation Mean ± Std (s) Testing Out-of-Lab Mean ± Std (s)
Bao et al. 337.07 ± 3.10 25.27 ± 0.95 

Cleland et al. 458.79 ± 6.57 738.21 ± 1.09 
Leutheuser et al. 772.41 ± 11.99 957.83 ± 18.38  

3.4. Performance Comparison of the PAC Systems in the In-Lab Setting Using a Reductionist Approach and 
Sensitivity Analysis to the Window Size 

The overall performance of the PAC systems using a reductionist approach obtained from the 
in-lab sensitivity analysis to window size is depicted in Figure 4. In-lab sensitivity analysis using a 
single sensor at L5 location (Figure 4) follow a decay in performance with the increase in window 
size (similar to that presented in Section 3.1) for the systems by Bao et al. [2] and Cleland et al. [9]. 
The deterioration in accuracy from w = 1 s to w = 10 s was 5.3% by Bao et al. and 4.8% by  
Cleland et al. However, an improvement of 1.7% in accuracy is observed in the work by Leutheuser 
et al. [10]. In this case, the use of activity specific classification systems instead of using the 
generalized systems for ADLs seem to be the probable cause. 



Sensors 2016, 16, x FOR PEER REVIEW 11 of 16 

 

 

Figure 4. Sensitivity analysis of overall accuracy of in-lab data when window size is increased from 
w = 1 s to w = 10 s using reductionist approach. The symbol ( ) specifies the window size used in 
the original PAC system by the authors. 
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Figure 5. Performance analysis of in-lab, out-of-lab, and in-lab training/out-lab testing scenario for all 
PAC systems using a reductionist approach. 

3.5.2. In-Lab Training/Out-Lab Testing 

The in-lab training/out-lab testing analysis on the single sensing unit also followed the 
deterioration in overall accuracy and the differences are a bit larger (between 6–8%) than in the  
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multi-sensor setting (Section 3.2.2) as described by Figure 5. The reduction in the accuracies are: 79.8% 
to 73.3% (6.5%) by Cleland et al. [9], 84.4% to 77.8% (6.6%) by Leutheuser et al. [10], and 78.0% to 
70.3% (7.7%) by Bao et al. [2]. 

The performance of all systems, both in the original framework and in the reductionist approach 
degrades for the in-lab testing/out-lab training scenario (when compared to in-lab analysis). 
Therefore, it is very important to develop a PAC system in the real-life data before releasing it for real 
life applications, as we did in the out-of-lab analysis. Most of existing system lack this perspective so 
their performance cannot be generalized for the real life conditions. 

4. Conclusions 

A benchmark study is presented which investigates the performance of various SOA systems 
for PAC in the in-lab and out-of-lab environment. The sensitivity analysis to window size shows that 
the increase in window size generally degrades the performance. The in-lab training/out-lab testing 
analysis concludes that the systems developed in controlled settings are not capable of performing 
well in real-life conditions where the ADLs are performed in a more natural way. Therefore, the 
newly-developed systems should be trained and tested on the dataset collected in the real-life 
conditions. The reductionist approach also obtained similar results for all analyses (in-lab sensitivity 
analysis to window size, out-of-lab analysis, in-lab training/out-lab testing) but the degradation is 
much larger than the multi-sensor setup. Furthermore, investigation of the computational complexity 
is conducted for the feature extraction stage and the classifier testing stage of out-of-lab data. The 
findings, as we expected, show that the systems with more complex classifier approaches and large 
numbers of sensors increases the computational complexity of the system. 

The number of analyzed subjects (16) is a limitation to overcome in future studies by adding 
more subjects. However, the analyzed database is one of the largest databases available to date [31], 
especially considering that the activities were manually annotated with a very high frequency (25 Hz, 
25 annotations per second) and this process required significant resources. Another limitation of this 
study is that it only investigates basic ADLs while real life conditions contain many other activities.  

The reductionist approach we developed which, derived from existing systems, is an important 
first step to study the effect of reducing the number of sensors in order to find an optimal trade-off 
between usability and performance (the use of multiple sensors on various body locations can be 
impractical in real-life). 

Our future aim is to develop a physical activity classification system in real life conditions with 
optimal number of sensors (by exploring various sensor locations), improved feature set (using 
various feature selection approaches), and robust classification methods to perform comparably to, 
or better than, existing systems. 
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Appendix A: Computation of Accuracy and Sensitivity by Class in the In-Lab Training/Out-Lab 
Testing Scenario of All SOA for PAC 

This section provides the details about the computation of the performance metrics used in this 
study. The expressions to calculate overall accuracy, accuracy by class, and sensitivity by class are 
described below: 
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= ++ + + × 100 (A1) 

= ++ + + × 100 (A2) 

= + × 100 (A3) 

whereas, TP= True Positive, TN = True Negative, FN = False Negative, FP = False Positive. 
Ac is the accuracy by class, and Sc is the sensitivity by class. Subscript “c” is used with TP, TN, 

etc., to represent the metrics by class, for instance, if we are interested in calculating the accuracy and 
sensitivity of walking activity from the in-lab training/out-lab testing scenario of Bao et al. (Table A1). 

Table A1 Confusion matrix of the PAC system by Bao et al. in in-lab training/out-lab testing scenario. 

Stand Walk Sit Lie ←Classified as 
9214 571 4 0 stand 
2329 4000 2 9 walk 
24 16 19,260 197 sit

233 0 2 278 lie

TPc = 4000, FNc = 2340 (2329 + 2 + 9 = 2340), FPc = 587 (571 + 16 + 0 = 587);  
TNc = 29,212 (9214 + 4 + 0 + 24 + 19,260 + 197 + 233 + 2 + 278 = 29212) 
Therefore: = ++ + + = 9214 + 4000 + 19260 + 27836139 ( ) × 100 = 90.6%  

= ++ + + = 4000 + 292124000 + 2340 + 587 + 29212 × 100 = 91.9%  

= + = 40004000 + 2340 × 100 = 63.1%  

Appendix B: Detailed Description of the Training and Classification Process Used 

This section provides the details about the classifiers used and the training process adapted. The 
details about the classification procedure and cross-validation procedure are described in Table B1. 

The cross-validation process is leave-one-subject-out for the in-lab windowing analysis (trained 
and tested on in-lab data) and for the out-of-lab analysis (trained and tested on out-of-lab data). The 
training and testing procedure was different in the in-lab-training/out-lab-testing analysis. In this 
case, the model was trained using the in-lab data of all subjects, but one, which is being tested on the 
out-of-lab data. 

Table B1. Classification procedure used for each PAC system. 

Authors Classifier Used Cross-Validation Procedure 

Cleland et al. 
SVM Classifier (with universal Pearson VII 
function based kernel and complexity value of 
100 using WEKA libraries) 

Leave-one-subject-out-cross-
validation 

Bao et al. 
Decision Tree Classifier (J48 with default 
parameters using WEKA libraries) 

Leave-one-subject-out-cross-
validation 

Leutheuseur et al. 
Hierarchical Classification (KNN and SVM 
using WEKA libraries) 

Leave-one-subject-out-cross-
validation 
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