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Abstract
We study the optimal and equilibrium distribution of industrial and residential land in a
given region. The trade-off between agglomeration and dispersion forces in the form of
pollution from stationary forces, production externalities and commuting costs,
determines the emergence of industrial and residential clusters across space. In this
context, we define two kinds of spatial policies that can be used in order to close the
gap between optimal and market allocations. More specifically, we show that the joint
implementation of a site-specific environmental tax and a site-specific labor subsidy
can reproduce the optimum as an equilibrium outcome. The methodological approach
followed in this article allows for an endogenous determination of land use patterns.
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1. Introduction

The formation of residential and industrial clusters in a city or region reflects the
existence of forces that drive the observed spatial patterns. Agglomeration and
dispersion forces have been extensively analyzed in the literature of urban economics
and have played an important role in explaining the initial formation and the further
development of cities. Positive and negative aspects of spatial interaction have been
used in order to explain why economic agents are not uniformly distributed across the
globe.1 In this context, it has been established that firms benefit from operating closer to
other firms because of different sources of urban agglomeration economies, such as
labor market interactions, linkages between suppliers of intermediate and final goods
and knowledge spillovers.2 All those sources have been shown to boost productivity and
promote the formation of business clusters. This is where workers come into the picture,
as firms have to compete not only with the rest of the firms when they choose their
location, but also with workers. Since commuting to work is costly, and the cost

1 Beckman (1976) and Papageorgiou and Smith (1983) provide an early attempt to determine the
circumstances under which positive and negative externalities induce agglomeration.

2 See Duranton and Puga (2004) for a review of the theoretical literature of agglomeration economies.



increases with distance, workers prefer to locate closer to their workplaces. Thus, even
though in most regions of the globe there is an excess supply of cheap land, economic
agents are willing to pay high land rents in order to locate in large centers.

Apart from the above forces, which are well-known from both the theoretical and
empirical literature, there are additional determinants of the location decisions of
economic agents that need to be studied in a formal framework. Atmospheric pollution
is unambiguously considered to be a significant factor of concern for both industries
and consumers when taking location decisions. Industries generate emissions, and since
workers are negatively affected by pollution they try to avoid locating near them.
However, the spatial interdependence of industries and workers stemming from
commuting costs increases the problem of air pollution. If industries were located in
pure business areas with no resident population then the damage from the generation of
emissions would be much lower compared to the case of industries located close to
residential or mixed areas. Since pollution problems—especially in growing urban,
industrial centers—are becoming increasingly more serious, it is easy to understand why
pollution externalities should be studied in a spatial context.

The interaction between industrial pollution and residential areas has attracted a lot
of interest and has often been identified as a reason for government intervention.
Environmental degradation has caused major problems particularly in countries that
have experienced rapid development.3 The best example to illustrate this problem is
China’s urban growth. Over the last two decades, China has achieved high industrial
growth rates which have created numerous environmental problems. According to
China’s Energy Statistics Yearbook, in 2010, the industrial sector consumed 89.1% of
the total energy. Air and water pollution is highly connected to industrial activity in
urban areas and currently a large number of cities in China are faced with extremely
high pollution levels. Only 1% of the population living in Chinese cities enjoys air
quality that meets the European Union’s standards (World Bank, 2007). On the other
hand, the rapid development of economic activity has attracted a large number of
people who have moved from rural areas to the urban areas of China. Millions of rural
households are trying to take advantage not only of better employment opportunities in
urban areas but also of other kinds of benefits such as better education levels and a
higher quality of life. This trend, however, cannot prevent residents from locating closer
to the polluted, urban industrial areas, which clearly highlights the need for government
intervention with the aim of reducing the negative pollution externalities.

Apart from China, countries that are experiencing a similar stage of newly advanced
economic development, such as Brazil, Russia and India, are expected to grow by 46%
from 2005 to 2030, which will lead to significant levels of environmental degradation
(OECD Environmental Outlook to 2030, 2008).4 Thus, urban pollution calls for
immediate action that needs to be taken at local level and which clearly points to the
spatial aspect of the problem. In this way, the role of environmental policy is crucial in
the development of residential and industrial clusters, as strict environmental measures
can discourage firms from operating in specific areas, while the reduced pollution levels

3 The analysis in this article is particularly relevant for industrial cities that face serious environmental
problems. The case in modern cities, which specialize in services, is different since pollution mainly comes
from the means of transport and not from stationary sources. As stated in the conclusion, we leave this
issue for further research.

4 See http://www.oecd-ilibrary.org/environment/oecd-environmental-outlook-to-2030_9789264040519-en



that will result from this kind of policy could encourage people to locate even closer to

industrial areas, thus reducing commuting cost.
The objective of this article is to further analyze the trade-off between the positive

(agglomeration forces) and negative (pollution) externalities that take place in a city

context and have long attracted the interest of urban and environmental economics

(Henderson, 1977; Glaeser, 1998; Arnott et al., 2008; Zheng and Kahn, 2013). More

specifically, we study how pollution from stationary sources—which affects workers

negatively and leads to environmental regulations being imposed—combined with other

agglomeration forces such as externalities in production and commuting costs will

finally determine the internal structure of a region.5 The trade-off between a shorter

commute and worse air quality (also modeled in Arnott et al., 2008) is very relevant to

highly polluted industrial cities in the developing world. What has been added in this

context by the present article is the effect of agglomeration economies which is the main

force that drives the concentration of industries in spatial clusters. This force comes

from the existence of interactions among firms which facilitate the matching between

firms and inputs. These inputs could be either workers or intermediate goods or even

ideas that stem from the exchange of information and knowledge between firms. These

interactions create some benefits for firms and boost their productivity, which means

that, other things being equal, each firm has an incentive to locate closer to the other

firms, forming industrial or business areas.6 In this article, the introduction of

agglomeration economies combined with diffused atmospheric pollution along with the

traditional factor of commuting costs provides new insights regarding the optimal

urban structures. More specifically, we show that contrary to the monocentric city

result of the traditional land use models that study the ‘positive production

externalities—commuting cost’ trade-off (shown among others in Rossi-Hansberg

(2004)), the addition of environmental externalities promotes the formation of

multicenter cities at the optimum.
We characterize optimal and equilibrium land uses in particular and show that the

derived market allocations differ from the optimal ones due to assumed externalities in

the form of positive productivity spillovers and pollution diffusion. We use the spatial

model to define site-specific policies that will improve efficiency in the given region.

More precisely, we show that the joint enforcement of a site-specific pollution tax and a

site-specific labor subsidy reproduces the optimal allocation as a market outcome.

Numerical experiments illustrate the differences between the two solutions and show

5 The trade-off of production externalities and commuting costs has been explained extensively in a number
of studies, such as in Lucas and Rossi-Hansberg (2002), Rossi-Hansberg (2004), and Fujita and Thisse
(2013). In an earlier paper, Fujita and Ogawa (1982) presented a model of land use in a linear city, where
the population was fixed and firms and households would compete for land at the different spatial points.

6 Another type of social interaction, which is explained by the role of social networks, has recently started
being explored in urban economics models. In this context, Helsley and Zenou (2014) study the location
decisions of economic agents who have positions both within a social network and in a geographic space.
They show that there is a tendency for agents who are more central in a social network to locate closer to a
geographic center, thus promoting some kind of endogenous geographic separation based on social
distance. Another aspect of social and geographic distance is modeled in Mossay and Picard (2011, 2013),
who study the use of residential space and the formation of neighborhoods assuming that agents visit
other agents in order to benefit from face-to-face communication, while the cost of those visits is
proportional to the trip’s distance. A nice survey of externalities which propagate through networks can
be found in Jackson and Zenou (2014).



that industrial areas are concentrated in smaller intervals in the optimal solution. Also,
mixed areas emerge in the market allocation but not in the optimal one.

More specifically, using a general equilibrium model of land use we examine how
pollution created by emissions, which are considered to be a by-product of the
production process, determines the residential and industrial location decisions and
hence affects the spatial structure of a region. Accordingly, pollution negatively affects
both firms and workers. Regarding firms, it implies the implementation of environ-
mental policy in the form of a site-specific tax that imposes extra costs while
simultaneously decreasing labor productivity. Regarding workers, atmospheric pollu-
tion discourages them from locating in polluted sites and imposes on them additional
commuting costs. An important point here is that pollution comes from a stationary
source yet diffuses in space, creating uneven levels of pollution at different spatial
points. However, the higher the number of firms that locate in a spatial interval, the
more polluted this interval will be, which implies a higher environmental tax. Thus, if
firms decide to locate close to each other so as to benefit from co-located firms, they will
have to pay a higher pollution tax and suffer some loss in the form of decreased labor
productivity due to pollution. Thus, pollution discourages the agglomeration of
economic activity. As for the consumers, they are negatively affected by pollution and
prefer to locate in ‘clean’ areas. Yet, this means that they will have to move further
away from the firms, which implies higher commuting costs. The balance among these
opposite forces, as well as the use of land for both production and residential purposes,
will finally define the industrial and residential areas.

The first models of spatial pollution (e.g., Tietenberg, 1974; Henderson, 1977)
assumed a predetermined location for housing and industry, without giving workers the
possibility to locate in an area that had already been characterized as industrial and
without allowing for a change in the spatial patterns. The paper that is closest to the
present one in the modeling of pollution is Arnott et al. (2008), who assume nonlocal
pollution in order to investigate the role of space in the control of pollution
externalities. They show that in a spatial context, in order to achieve the global
optimum, a spatially differentiated added-damage tax is needed. As mentioned above,
the difference between the present article and Arnott et al. (2008) (apart from the
methodological part, which is explained below) is that we explicitly examine how
pollution diffusion interacts with the force that has been identified to explain most of
the spatial industrial concentration in clusters, i.e., the positive productivity spillovers.
This interaction is fundamental in determining the equilibrium and optimal land uses
and helps us characterize spatial policies in the form of environmental taxes and labor
subsidies that reproduce the optimum as an equilibrium outcome.

Another form of interaction between pollution diffusion and a natural cost-
advantage site, as well as its effects on the distribution of production across space, are
analyzed in Kyriakopoulou and Xepapadeas (2013). More specifically, this is an
attempt to explore whether environmental policy can reverse the premise that
agglomeration of economic activity will always emerge around a first nature advantage
site as a result of the interaction between knowledge spillovers and natural advantage
forces. Their results suggest that in the market allocation, the natural advantage site will
always attract the major part of economic activity. However, when environmental
policy is spatially optimal, the natural advantage sites lose their comparative advantage
and do not act as attractors of economic activity. Then, other sites appear to be more
attractive as they provide stronger cost advantages compared to the natural ones. In



contrast to Kyriakopoulou and Xepapadeas (2013), that only study the spatial
concentration of economic activity, the present article explicitly studies the location
decisions of workers by considering their commuting costs, while it does not include any
form of heterogeneous space. This allows a stronger focus on the endogenous location
decisions of economic agents and helps us explore the different land uses and the
location decisions of both firms and workers. The simultaneous determination of the
residential and industrial land rents in the interior of a city, following the method
suggested in this article, defines equilibrium and optimal residential and industrial areas
and provides clearer insights on how the modern cities should be built in order to
minimize the environmental damages.

The methodological approach followed in this article, that was first introduced in
Kyriakopoulou and Xepapadeas (2013), allows for an endogenous determination of
land use patterns through the endogenization of the kernels describing the two
externalities. This approach provides an accurate solution for the level of the residential
and industrial land rents, which will finally determine the spatial pattern of our region.
The method also helps in the determination of the site-specific policies studied here,
which can be used to reproduce the optimal structure as a market outcome. We believe
that this constitutes an advance compared to previous studies exploring the internal
structure of cities, where arbitrary values were assigned to the functions describing the
spillover effects (as in Lucas and Rossi-Hansberg, 2002) or there is not an explicit
endogenous solution of the externality terms (as in Arnott et al., 2008).7 We believe that
the spatial policies derived here provide new insights and can contribute to the
improvement of efficiency in the interior of a region.

The rest of the article is organized as follows. In Section 2, we present the model and
solve for the optimal and market allocations. In Section 3, we describe the spatial
equilibrium conditions, while in Section 4 we derive the optimal, spatial policies which
can be used to close the gap between efficient and equilibrium allocations. In Section 5,
we present the numerical algorithm that is used to derive the different land use patterns
and then we show some numerical experiments. Section 6 concludes the article.

2. The model

2.1. The region

We consider a single city that is closed, linear and symmetric. It constitutes a small part
of a large economy. The total length of the region is normalized to S and 0 and S are the
left and right boundaries, respectively.8 The whole spatial domain is used for industrial

7 In Kyriakopoulou and Xepapadeas (2013), this approach was used to determine the distribution of
economic activity across heterogeneous space without explicitly defining any residential areas. In this
article, the same approach is used in order to study the competition between residential and industrial
location decisions that will finally determine the different land uses.

8 There are alternative ways to model the spatial domain, such as (i) assuming a ring-shaped homogeneous
land (e.g., Arnott et al., 2008), (ii) considering a circular city of fixed radius, while studying the different
allocations across the radius and assuming symmetry around the circle (e.g., Lucas and Rossi-Hansberg,
2002), or (iii) studying a linear, unbounded city and assuming that the boundaries of the city will be set at
the point where land rents are equal to zero (e.g., Fujita, 1989).

Methodological techniques of how to solve the spatial models under different assumptions regarding the
city edges are presented in Brock et al. (2014). The conclusions of our model do not change if models like
(ii) and (iii) are used. In the case of the ring-shaped land (i), the boundary effect that weakens the



and residential purposes. Industrial firms and households can be located anywhere

inside the region. Land is owned by absent landlords.

2.2. Industrial firms

There is a large number of industrial firms operating in the interior of our region. The

location decisions of these firms are determined endogenously. All firms produce a

single good that is sold at a world price, p, and the world price is considered exogenous

to the region.9 The production is characterized by a constant returns to scale function of

land, labor LðrÞ and emissions EðrÞ. Production per unit of land at location r is given by:

qðrÞ ¼ gðzðrÞÞxðAðrÞ;LðrÞ;EðrÞÞ; ð1Þ

where q is the output, L is the labor input and E is the amount of emissions generated in

the production process. Also, production is characterized by two externalities: one

positive and one negative. Hence, A is the function that describes the negative

externality, which is basically how pollution at spatial point r affects the productivity of

labor at the same spatial point. z describes the positive production externality which can

be explained by Marshallian agglomeration economies benefiting co-located firms.
In the numerical simulations, the functions g and x are considered to be of the form:

gðzðrÞÞ ¼ e�zðrÞ

xðAðrÞ;LðrÞ;EðrÞÞ ¼ ðAðrÞLðrÞÞbEðrÞc:

The two opposing forces that will be shown to affect the location decisions of firms

are associated with the two kinds of production externalities mentioned above. The

trade-off between these two forces defines the industrial areas in our spatial domain.
Regarding the positive productivity spillovers, we assume that firms are positively

affected by locating near other firms because of externalities in production that take

several forms. Here the role of the agglomeration force is to facilitate the matching

between firms and inputs. These inputs can be workers, intermediate goods or even

ideas. More specifically, in this model, firms benefit if they locate in areas with higher

employment densities. The positive production externality is assumed to be linear and

to decay exponentially at a rate � with the distance between (r, s):

zðrÞ ¼ �

Z S

0

e��ðr�sÞ
2

�ðsÞlnLðsÞds:

Note that �ðrÞ is the proportion of land occupied by firms at spatial point r, and 1� �ðrÞ
is the proportion of land occupied by households at r. The function hðr; sÞ ¼ e��ðr�sÞ

2

is

externalities for firms located in the neighborhood of the boundaries disappears. The final outcome of
this approach is, therefore, unclear and further research is needed. Mossay and Picard (2011) show how
the geography of the spatial economy affects the final spatial patterns. More specifically, using a model
of social interactions they show that different results are obtained under the assumptions (i) and (iii)
above.

9 A similar assumption is used by Rossi-Hansberg (2004).



called normal dispersal kernel and it shows that the positive effect of labor employed in

nearby areas decays exponentially at rate � between r and s.10

As explained above, this kind of production externality relates the production at each

spatial point with the employment density in nearby areas. In this context, in order to

capture the importance of proximity among co-located firms, we assume that higher

employment densities in a specific site imply higher benefits for the firms that decide to

locate closer to this site. This assumption has been used extensively in urban models of

spatial interactions and comprises one of the driving forces of business agglomeration.
Let us now analyze the pollution externality effect. The production process generates

emissions that diffuse in space and increase the total concentration of pollution in the city.

This is reinforced in areas with a high concentration of economic activity, where a lot of

firms operate and pollute the environment. The use of emissions in the production and the

negative consequences that follow require an enforcement of environmental regulation.

Since emissions, as well as the concentration of pollution, differ throughout the spatial

domain, environmental regulations will be site-specific. In particular, environmental

policy is stricter in areas with high concentrations of pollution and is laxer elsewhere. This

means that it is more costly for firms to locate at spatial points with high levels of

pollution. However, apart from the cost of pollution in terms of environmental policy,

firms avoid locating in polluted sites since pollution negatively affects the productivity of

labor. As a result, pollution works as a centrifugal force among firms.
As stated above, the generation of emissions during the production of the output

damages the environment. The damage function per unit of land is given by:

DðrÞ ¼ XðrÞ�; ð2Þ

where D is the damage per unit of land and � � 1; D0ðXÞ > 0; D00ðXÞ � 0.11 Aggregate

pollution, X, at each spatial point r is a weighted average of the emissions generated in

nearby industrial locations and is given by:

lnXðrÞ ¼

Z S

0

e��ðr�sÞ
2

�ðsÞlnEðsÞds;

with the normal dispersal kernel equal to hðr; sÞ ¼ e��ðr�sÞ
2

: Using a similar interpret-

ation with the kernel describing the production externality, emissions in nearby areas

affect the total concentration of pollution at the spatial point r, while this effect declines

as the distance between the different spatial points r and s increases.12 � is a parameter

10 Similar theoretical modeling has been applied in Lucas (2001), Lucas and Rossi-Hansberg (2002) and
Kyriakopoulou and Xepapadeas (2013). More examples of similar functions presenting positive and
negative spatial externalities which explain pattern formation can be found in Brock et al. (2014).

11 In order to model the damage function, we follow Kolstad (1986), who defines damages at a specific
location as a function of the aggregate emissions of the location. We do not directly relate damages to
the number of people living in that location, so as to avoid the potential contradiction of assigning very
low damages to a heavily polluted area that lacks high residential density.

12 The conclusions of the analysis do not change if we use another formulation of the normal dispersal kernel
function in order to describe the effect of the production and the environmental externalities in nearby
locations. More specifically, we can alternatively use the kernel function hðr; sÞ ¼ e��jr�sj; where � ¼ �; �;
which is similar with the formulation of the commuting cost function used in this model. However, we use
this function—where the contributions fall off exponentially in the square of the distance between the
generator and the receiver—for analytical convenience. This allows us to use the numerical method of the
Taylor-series expansion, which as shown below, provides accurate solutions to our model.



that depends on weather conditions and the natural landscape to indicate how far
pollution can travel.13

Finally, the negative effect of pollution on the productivity of labor is given by
AðrÞ ¼ XðrÞ��; where � 2 ½0; �� determines the strength of the negative pollution effect.
�¼ 0 implies that there is no connection between aggregate pollution and labor
productivity, while a large value of � means that workers become unproductive due to
the presence of pollution and � sets an upper bound to this effect.
The negative effects of pollution on the productivity of labor are usually explained

through their connection with health effects.14 The air pollution in China is an example
of this. In 2012, the Chinese Medical Association warned that air pollution was
becoming the greatest threat to health in the country, since lung cancer and
cardiovascular disease were increasing due to factory- and vehicle-generated air
pollution. More precisely, a wide range of airborne particles and pollutants from
combustion (e.g., woodfires, cars and factories), biomass burning and industrial
processes with incomplete burning create the so-called ‘Asian brown cloud’, which is
increasingly being renamed the ‘Atmospheric Brown Cloud’ since it can be spotted in
more areas than just Asia. The major impact of this brown cloud is on health, which
explains the need for a positive � parameter above.

2.3. Households

A large number of households are free to choose a location in the interior of the given
region. The endogenous formation of residential clusters is determined by two forces
that affect households’ location decisions: commuting costs and aggregate pollution.
Consumers are assumed to derive positive utility from the consumption of the good
produced by the industrial sector and the quantity of residential land, while they receive
negative utility from pollution. Thus, a household located at the spatial point r receives
utility UðCðrÞ; lðrÞ;XðrÞÞ;where C is the consumption of the produced good and l is
residential land.

To obtain a closed-form solution, we assume that the utility U is expressed as:

UðrÞ ¼ CðrÞalðrÞ1�a � XðrÞ�; ð3Þ

where 0 < a < 1 and � � 1:
As explained above, the residential location decisions are determined by two

opposing forces. The first is a force that promotes the concentration in residential
clusters and comes from the fact that consumers receive negative utility from

13 Our modeling of emission dispersion by symmetric kernels is compatible with the atmospheric dispersion
modeling of air pollutants based on the Gaussian plume. The Gaussian plume has been applied to
models of emissions from large industrial operations or other applications such as ash release from
volcanic eruptions. It corresponds to a continuous point source that emits contaminants into a spatial
domain and is described by advection–diffusion. The spatial patterns of emissions emerging from the
Gaussian plume modeling are compatible with the patterns suggested by the symmetric kernels used in
this article [see Stockie (2011), Figure 2.1; Camacho and Pérez-Barahona (2015)]. See also Arnott et al.
(2008), Kyriakopoulou and Xepapadeas (2013), Brock et al. (2014).

14 See, e.g., Williams (2002) and Bruvoll et al. (1999).



pollution. Accordingly, they tend to locate far from the industrial firms to avoid
polluted sites. The pollution levels at each spatial point, which are determined by the
location and production decisions of industrial firms, are considered as given for
consumers.

The second force is related to commuting costs, which are modeled below. This is a
force that impedes the formation of pure residential areas since workers have an
incentive to locate close to their workplace so as to spend less money commuting. As a
result, commuting costs promote the formation of mixed areas where people live near to
their workplaces.

In order to model the commuting costs, we assume that all consumers devote one unit
of time working in the industrial sector. Costly commuting implies that agents who
work in spatial point r, but live in spatial point s, will finally receive wðsÞ ¼ wðrÞe�kjr�sj

< wðrÞ: In other words, the further they locate from their working place, the higher the
commuting cost (or the lower their net wage) will be. This equation corresponds to a
spatially discounted accessibility, which has been used extensively in spatial models of
interaction. Now, if a consumer lives at r and works at s; the wage function becomes
wðsÞ ¼ wðrÞekjr�sj: If r is a mixed area, people who live there work there as well, and w(r)
denotes both a wage rate paid by firms and the net wage earned by workers. With
regard to the money spent on commuting, we assume that the transport services are
imported in the city.

2.4. Agglomeration forces

The centripetal and centrifugal forces explained above are summarized in the following
table.

To summarize the effect of the agglomeration forces assumed in this article, industrial

firms concentrate in clusters in order to benefit from the higher concentrations of

workers, while high pollution levels work in the opposite direction since they imply a

double negative effect for the same firms. Moreover, the higher concentration of firms,

which implies high pollution levels, promotes the formation of residential clusters, since

residents try to avoid the polluted industrial areas. However, this tendency is moderated

in the case where these agents have to pay high commuting costs. The use of land for

industrial and residential purposes prevents the two parts from locating around a

unique spatial point.
The objective of this article is to examine the optimal and equilibrium patterns of

land use under the above agglomeration and dispersion forces and to design optimal

policies. The trade-off between the above forces will define residential, industrial or

mixed areas in the interior of the region under study.

Forces promoting: Industrial firms Households

Concentration in clusters High concentrations of workers High concentration of firms

Dispersion High pollution levels High commuting costs



2.5. The endogenous formation of optimal land use

We assume the existence of a regulator who makes all the industrial and residential

location decisions across the spatial interval ½0;S�: The objective of the regulator is

to maximize the value of land in the city. This is obtained in two stages. In the first

stage, the optimal industrial land rent is derived. Thus, the regulator’s problem

becomes:

max
L;E

Z S

0

pqðrÞ � wðrÞLðrÞ �DðrÞ½ �dr:

That is, the regulator maximizes net profits minus environmental damages in the

whole region. The first-order necessary conditions (FONC) for the optimum are:

p
@qðrÞ

@LðrÞ
¼ wðrÞ

p
@qðrÞ

@EðrÞ
¼
@DðrÞ

@EðrÞ

or

pbe�zðrÞXðrÞ�b�LðrÞb�1EðrÞc þ

Z S

0

pe�zðsÞXðsÞ�b�LðsÞbEðsÞc�
@zðsÞ

@LðrÞ
ds|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�1

¼ wðrÞ ð4Þ

pce�zðrÞXðrÞ�b�LðrÞbEðrÞc�1 �

Z S

0

pb�e�zðsÞXðsÞ�b��1LðsÞbEðsÞc þ �XðsÞ��1
� � @XðsÞ

@EðrÞ
ds|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�2

¼ 0:

ð5Þ

The terms �1 and �2 above describe the full internalization of the externalities at the

optimum, as well as the difference between the optimal and the equilibrium location

decisions, which are analyzed in Section 4 below. After making some transformations

that are described in Appendix A (and in detail in the Online Appendix), we get the

following system of second kind Fredholm linear integral equations with symmetric

kernels:

�

Z S

0

e��ðr�sÞ
2

"ðsÞdsþ g�1ðrÞ ¼ yðrÞ ð6Þ

�
��

c

Z S

0

e��ðr�sÞ
2

yðsÞdsþ
ð1� bÞ�þ b�

c

Z S

0

e��ðr�sÞ
2

"ðsÞdsþ g�2ðrÞ ¼ "ðrÞ; ð7Þ

where yðrÞ ¼ lnLðrÞ and "ðrÞ ¼ lnEðrÞ; while g�1ðrÞ and g�2ðrÞ are some known functions.

In order to determine the solution of the system (6)–(7), we use a Taylor-series

expansion method (Maleknejad et al., 2006), which provides accurate, approximate



solutions of systems of second kind Fredholm integral equations.15 Following this

technique, we obtain the optimal amount of inputs L�ðrÞ and E�ðrÞ; which will

determine the optimal level of production at each spatial point, q�ðrÞ: The optimal

emission level will finally define the total concentration of pollution at each spatial

point r, X�ðrÞ; as well as the damage, D�ðrÞ: Using the above optimal values, we can

define the optimal industrial land rent as follows:

R�I ðrÞ ¼ pq�ðrÞ � wðrÞL�ðrÞ �D�ðrÞ: ð8Þ

Note that in Equation (8) there is a direct effect of pollution through the damage

function and an indirect pollution effect in the productivity of labor. More

specifically, higher pollution levels at r imply higher environmental damages D at

the same point and lower labor productivity A, which negatively affects the

production of output q and reduces firms’ revenues (pqÞ: As a result, higher pollution

levels at r decrease the optimal land rent at the same spatial point, since both the

direct and the indirect effect work in the same direction.
In the second stage, we derive the optimal residential land-rent function, i.e., the

maximum amount of money that agents are willing to spend in order to locate at a

specific spatial point. Thus, total revenues, wðrÞ; are spent on the land they rent at a

price RHðrÞ per unit of land and on the consumption of the good,CðrÞ; which can be

bought at a world price p:Note that wðrÞ ¼ wðsÞe�kjr�sj is the net wage of a worker living

at r and working at s.
Consumers minimize their expenditures:

wðrÞ ¼ RHðrÞlðrÞ þ pCðrÞ ¼ min
l;C
½RHðrÞlðrÞ þ pCðrÞ� ð9Þ

subject to

UðCðrÞ; lðrÞ;XðrÞÞ � u ð10Þ

so that no household will have an incentive to move to another spatial point inside or

outside the region. To determine the residential location decisions, we assume that a

consumer living at site r considers the amount of aggregate pollution X(r) at the same

spatial point as given. This is actually derived above, so here we use the optimal value

X�ðrÞ:
Using Equation (3), we form the Lagrangian of the problem as follows,

L ¼ RHðrÞlðrÞ þ pCðrÞ þ$½u � CðrÞalðrÞ1�a þD�ðrÞ�; ð11Þ

and obtain the following FONC:

RHðrÞ ¼ ð1� aÞ$lðrÞ�aCðrÞa ð12Þ

p ¼ a$CðrÞa�1lðrÞ1�a: ð13Þ

15 Fredholm’s theorem can be used to prove that if the system (6)–(7) is solvable for arbitrary g�1ðrÞ; g
�
2ðrÞ,

then this solution is unique (Kolmogorov and Fomin, 1999). We formally show in Proposition 1 the
conditions under which there exists a unique solution of a system of second kind Fredholm integral
equations (see also Moiseiwitsch, 2005).



Solving the FONC and making some substitutions, we get the optimal residential
land rent at each spatial point:

R�HðrÞ ¼
wðrÞ

ðu þD�ðrÞÞð1�aa Þ
a 1
1�a

" # 1
1�a

: ð14Þ

R�HðrÞ is the rent per unit of land that a worker bids at location r while working at s and
enjoying the utility level u: We observe that

@R�HðrÞ

@D�ðrÞ < 0: This means that residential land

rents are lower in areas with high pollution concentrations. In other words, people are

willing to spend more money on areas with better environmental amenities. This is in
line with the hedonic valuation literature according to which nonmarket assets such as

air quality and environmental amenities in general are capitalized in property values. As

an example of this literature, Bayer et al. (2009) estimate the elasticity of willingness to
pay with respect to air quality to be 0.34–0.42.

Finally, assuming that the land density is 1, we can define the optimal population

density N at each spatial point r,

N ðrÞlðrÞ ¼ 1) NðrÞ ¼
1

lðrÞ�

N�ðrÞ ¼
wðrÞð Þ

a
1�a

ðu þD�ðrÞÞ
1

1�að1aÞ
a

1�a

:

It is obvious that the population distribution moves upward when the net wage

increases and when the concentration of pollution at the same spatial point decreases.

The comparison between the R�I ðrÞ and the R�HðrÞ at each spatial point provides the
optimal land uses.

2.6. The endogenous formation of the equilibrium land use

Equilibrium and optimal land uses will differ because of the existence of externalities.

On the one hand, the decisions about the amount of emissions generated by each firm

affect the total concentration of pollution in the interior of our region. However, in
equilibrium, when firms choose the amount of emissions that will be used in the

production process, they do not realize or do not take into account that their own

decisions affect aggregate pollution, which actually describes their myopic behavior.
When, for instance, a firm increases the amount of generated emissions at site r,

aggregate pollution is increased not only at r, but also in nearby places through the

diffusion of pollution. These higher levels of aggregate pollution affect firms in two
ways: first, they increase the cost of environmental policy, and second, they make the

negative pollution effect on the productivity of labor stronger. Finally, firms in

equilibrium do not consider the fact that their own location decisions affect the
productivity of the rest of the co-located firms. For instance, they do not realize that

employing one extra worker will not only increase their productivity but will also

increase the productivity of nearby firms. Therefore, equilibrium location decisions do
not fully internalize the above effects, which distort the optimal land uses studied above

and make them differ from the equilibrium ones.



To derive the equilibrium solution, we assume that a firm located at spatial point r
chooses labor and emissions to maximize profits:

RIðrÞ ¼ max
L;E
fpe�zðrÞðAðrÞLðrÞÞbEðrÞc � wðrÞLðrÞ � 	ðrÞEðrÞ;

where 	ðrÞ is the environmental tax enforced by the government. The tax here is
assumed to be a site-specific environmental policy instrument which is equal to the
marginal damage of emissions, i.e., 	ðrÞ ¼MD�ðrÞ: The solution will be a function of
ðz;A; 	; p;wÞ: L ¼ L̂ðz;A; 	; p;wÞ and E ¼ Êðz;A; 	; p;wÞ: The maximized profits at
each spatial point R̂Iðz;A; 	; p;wÞ can also be interpreted as the business land rent,
which is the land rent that a firm is willing to pay so as to operate at this spatial point.

Following the discussion at the beginning of this section, a firm located at site r treats
the concentration of pollution XðrÞ; the negative pollution effect on the productivity of
labor AðrÞ; and the positive productivity spillover effect z(r) as exogenous parameter Xe;
Ae; and ze respectively. This assumption implies that the tax 	ðrÞ is also treated as a
parameter at each spatial point.

The FONC for profit maximization are:

pbe�zðrÞXðrÞ�b�LðrÞb�1EðrÞc ¼ wðrÞ ð15Þ

pce�zðrÞXðrÞ�b�LðrÞbEðrÞc�1 ¼ 	ðrÞ: ð16Þ

So, we explicitly solve for:

L̂ðz;w; 	Þ ¼
ccb1�cAðrÞe�zðrÞ

	ðrÞcwðrÞ1�c

� � 1
1�b�c

ð17Þ

Êðz;w; 	Þ ¼
c1�bbbAðrÞe�zðrÞ

	ðrÞ1�bwðrÞb

� � 1
1�b�c

: ð18Þ

Substituting Equations (17) and (18) into the maximized profit function, we explicitly
solve for the industrial land rents:

R̂Iðz;w; 	Þ ¼
e�zðrÞAðrÞbbcc

	ðrÞcwðrÞb

� � 1
1�b�c

ð1� b� cÞ: ð19Þ

In the explicit solution for L, E and RI presented above, there are two integral
equations: one describing the benefits from the higher employment densities and the
other describing the concentration of pollution at each spatial point.16 Most authors
who have studied the effect of spillovers of this form use simplifying assumptions about
the values that the kernels take at each spatial point. However, this approach forces
firms to locate around the sites that correspond to the highest assumed arbitrary values,
and hence we do not take into account that L(s) and E(s), s 2 S, appear in the right-
hand side of Equations (17)–(18) and therefore these equations have to be solved as a

16 There are kernels in the right-hand side of Equations (17)–(19) (see the definition of zðrÞ;AðrÞ; and 	ðrÞ
above).



system of simultaneous integral equations. Instead of following this approach, we
choose to use a novel method of solving systems of integral equations, which was also
implemented in Kyriakopoulou and Xepapadeas (2013). More specifically, if we take
logs on both sides of Equations (15)–(16) and do some transformations (Appendix B),
the FONC result in a system of second kind Fredholm integral equations with
symmetric kernels:

��

1� b� c

Z S

0

e��ðr�sÞ
2

yðsÞdsþ
cð1� �Þ � b�

1� b� c

Z S

0

e��ðr�sÞ
2

"ðsÞdsþ g1ðrÞ ¼ yðrÞ ð20Þ

��

1� b� c

Z S

0

e��ðr�sÞ
2

yðsÞdsþ
ð1� bÞð1� �Þ � b�

1� b� c

Z S

0

e��ðr�sÞ
2

"ðsÞdsþ g2ðrÞ ¼ "ðrÞ; ð21Þ

where yðrÞ ¼ lnLðrÞ; "ðrÞ ¼ lnEðrÞ and g1ðrÞ; g2ðrÞ are some known functions.

Proposition 1: Assume that: (i) the kernel h(r, s) defined on ½0;S� � ½0;S� is an L2-kernel
that generates the compact operator W, defined as W�ð Þ rð Þ ¼

R S
0 h r; sð Þ� sð Þds; 0 � s � S;

(ii) 1� b� c is not an eigenvalue of W; and (iii) G is a square integrable function. Then a
unique solution determining the optimal and equilibrium distributions of inputs, (L, E) and
output (q) exists.

The proof of existence and uniqueness of both the optimum and the equilibrium is
presented in five steps which are described in Appendix C.17 To solve systems (6)–(7)
and (20)–(21) numerically, we use a modified Taylor-series expansion method
(Maleknejad et al., 2006). A short version of the analytical solution of the optimal
model is provided in Appendix A, while a full derivation including all steps can be
found online.

3. Land use patterns

Having studied the optimal and equilibrium problems, we are able to define the
different land uses in each case. The region under study is strictly defined in the spatial
domain ½0;S� and firms and households cannot locate anywhere else. Thus, a spatial
equilibrium is reached when all firms receive zero profits, all households receive the
same utility level u; land is allocated to its highest values and rents and wages clear the
land and labor markets.

Consumers dislike pollution, which means that they have an incentive to locate far
from industrial areas. On the other hand, consumers work at the firms and if they locate
far from them they will suffer higher commuting costs, which promotes the formation
of mixed areas. The trade-off between these two forces defines the residential location
decisions.

Firms have a strong incentive to locate close to each other in order to benefit from
higher employment densities. However, if all firms locate around a specific site, this site
will become very polluted, which will increase both the cost of environmental policy and
the negative productivity effect. Thus, if all firms decide to locate in one spatial interval
then they will be obliged to pay a higher environmental tax and suffer from the negative

17 See Moiseiwitsch (2005), and Kolmogorov and Fomin (1999) for more detailed definitions.



pollution effects. In other words, high pollution levels impede the concentration of

economic activity. The trade-off between these forces will define the size of the

industrial areas.
The conditions determining the land use at each spatial point are described in the

following steps:
1. Firms receive zero profits.18

2. Households receive the same level of utility Uðc; l;XÞ ¼ u:
3. Land rents equilibrium: at each spatial point r 2 S;

RðrÞ ¼ max fRIðrÞ;RHðrÞ; 0g ð22Þ

RIðrÞ ¼ RðrÞ if �ðrÞ > 0 andRIðrÞ > RHðrÞ ð23Þ

RHðrÞ ¼ RðrÞ if �ðrÞ < 1 andRHðrÞ > RIðrÞ: ð24Þ

4. Commuting equilibrium: at each spatial point r 2 S;

wðrÞ ¼ wðsÞe�kjr�sj ¼ max
s2S
½wðsÞe�kjr�sj�: ð25Þ

As people choose s to maximize their net wage, this means that in equilibrium

wðsÞe�kjr�sj � wðrÞ � wðsÞekjr�sj ð26Þ

This is the wage arbitrage condition that implies that no one can gain by changing her

job location.
5. Industries’ and households’ population constraints:Z S

0

ð1� �ðsÞÞNðsÞds ¼ N ð27Þ

Z S

0

�ðsÞLðsÞds ¼ L; ð28Þ

where N is the total number of residents and L the total number of workers.
6. Labor market equilibrium:Z S

0

ð1� �ðsÞÞNðsÞds ¼

Z S

0

�ðsÞLðsÞds: ð29Þ

7. Land use equilibrium: at each spatial point r 2 S;

0 � �ðrÞ � 1 ð30Þ

18 In this model, the total value of the product is paid either as wages, rents or commuting costs. So
consumption in the city is not equal to output since we have assumed the existence of land and transport
service owners. If we wanted to formally determine the total imports or exports of the output, we would
need to know where these landlords or transport service owners consume. The important part though is
that since all output is paid out as rents, wages or commuting costs, there is nothing left as profits.



�ðrÞ ¼ 1 if r is a pure industrial area;

�ðrÞ ¼ 0 if r is a pure residential area; and

0 < �ðrÞ < 1 if r is amixed area:

Equations (22)–(24) mean that each location is occupied by the agents who offer the
highest bid rent. If neither firms nor workers are willing to pay positive rents in a
specific interval, then we observe the formation of ‘dead zones’. These could be some
zones surrounding highly dense industrial areas where pollution is so high that
discourages workers from locating close to their working place. Condition (25) implies
that a worker living at r will choose her working location s so as to maximize her net
wage. Conditions (27)–(28) mean that the sum of residents in all residential areas is
equal to the total number of residents in the city and that aggregate labor in all
industrial areas equals the total number of workers in the city. Finally, condition (29)
guarantees the city-wide market clearing. By ensuring the equality of labor supply and
demand in the whole spatial domain, this condition will determine the equilibrium wage
rate at each spatial point, w�ðrÞ:

4. Optimal policies: labor subsidies and environmental taxation

Using the optimal values for L�;E�; z�;A�;X�;N�; and ��; we can determine the wages
and the level of the tax that would make firms and households in the equilibrium to lead
the same decisions as in the optimum. Thus, we would be able to implement the
optimum as an equilibrium outcome.

From the first-order conditions (4)–(5) for the optimum (for ��ðrÞ ¼ 1Þ;

wðrÞ ¼ pbe�zðrÞXðrÞ�b�LðrÞb�1EðrÞc þ�1 ð31Þ

and

pce�zðrÞXðrÞ�b�LðrÞbEðrÞc�1 ¼ �2: ð32Þ

If the environmental tax enforced by the government is a site-specific environmental
policy equal to the marginal damage of emissions, 	ðrÞ ¼MD�ðrÞ ¼ �X�ðrÞ��1 then the
differences between the optimum and the equilibrium are shown by the terms �1 and
�2 above. More specifically, �1 represents the positive productivity spillover effect, while
�2 captures the two effects of pollution, i.e.,

�2 ¼

Z S

0|{z} pb�e�zðsÞXðsÞ�b��1LðsÞbEðsÞc|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
labor productivity effect

þ �XðsÞ��1|fflfflfflfflffl{zfflfflfflfflffl}
equilibrium tax

2
64

3
75 @XðsÞ

@EðrÞ
ds|fflfflfflffl{zfflfflfflffl}

spatial pollution effect

:

Let us analyze the first-order condition with respect to labor input. Here, firms
internalize the externality that is related to the positive productivity spillover effect,
taking into account the positive effect of their own decisions on the productivity of the
rest of the firms located in nearby areas. Since the difference between the optimal and



equilibrium FOC comes from the positive productivity spillover effect (�1Þ in Equation

(31), the policy instrument that would partly lead the equilibrium to reproduce the

optimal distributions would be a subsidy of the form v�ðrÞ ¼ �1: Thus, firms would

have to pay a lower labor cost, wðrÞ � v�ðrÞ; employ more workers, benefit from the

stronger positive spillovers and produce more output.
As far as the second FOC wrt emissions is concerned, given that firms in equilibrium

pay a tax (	ðrÞ) equal to the marginal damage, as stated above, the difference between

the two cases is presented by the labor productivity effect and the spatial pollution effect.

Thus, an optimal tax, instead of imposing 	ðrÞ ¼MD�ðrÞ ¼ �X�ðrÞ��1; should be of the

form 	�ðrÞ ¼ �2: It is obvious that the optimal taxation, 	�ðrÞ; is higher than the

equilibrium one, 	ðrÞ; at each spatial point in the interior of our city or region. The

reason is that, first, the optimal taxation takes into account the extra damage caused in

the whole region by emissions generated at r (spatial pollution effect). However, apart

from this effect, the optimal taxation captures the fact that increased emissions in r

mean lower productivity for firms locating in r and in nearby areas (labor productivity

effect � spatial pollution effect). This negative productivity effect is now added to the

cost of taxation and the full damage caused by the generation of emissions during the

production process is internalized.

Proposition 2: A labor subsidy of the form v�ðrÞ ¼ �1 and an environmental tax of the

form 	�ðrÞ ¼ �2 will implement the optimal distributions as equilibrium ones.

Proof: In equilibrium, firms will maximize their profits, households will minimize

their expenditures given a reservation utility, land is allocated to its highest value, the

wage arbitrage condition is satisfied, and all workers are housed in the interior of the

region. Since all the above are also in line with the optimal problem, the only thing we

need to do in order to impose the optimal allocation as an equilibrium one is to use the

optimal policy instrument described in Proposition 2. Thus, the joint enforcement of a

labor subsidy, which will decrease the labor cost for firms, and a higher environmental

tax will close the gap between the equilibrium and optimal allocations.

Proposition 3: Efficiency in a market economy can be achieved by using the site-specific

policy instruments described in Proposition 2. Uniform taxes or subsidies, which produce

the same revenues or expenses, do not lead to optimal allocations.

Proof: An industry paying 	�ðrÞ for generating E�ðrÞ emissions, receiving v�ðrÞ for

employing L�ðrÞ workers, and paying w(r) wages for the same number of workers and

R�I ðrÞ as land rents, will receive zero profits in equilibrium. Having proved the

uniqueness of the equilibrium, any other level of taxes or subsidies will not satisfy the

zero-profit condition for the same amount of emissions and labor, and will not

constitute an equilibrium outcome. g

Site-specific taxes should be enforced in every industrial location and must equal the

added damages caused by the emissions generated from this unit of land. Site-specific

subsidies should be given in every industrial location and must equal the positive

productivity effects caused by the concentration of workers in nearby locations.



5. Numerical experiments

Numerical simulations will help us obtain different maps explaining the residential and

the industrial clusters formed in our city. Put differently, the optimal and equilibrium

spatial distributions of residential and industrial land rents will determine the location

of firms and households in our domain. The numerical method of the Taylor-series

expansion, described above, will give us the optimal and equilibrium values of land

rents. We solve the system of integral equations using Mathematica.
The numerical algorithm to characterize the optimal and equilibrium land use

patterns consists of the following steps:
Step 1. We give numerical values to the parameters of the model.
Step 2. We solve for the optimal (and equilibrium) distributions L�;E�; q�;N�; c�; z�;

X� (L̂; Ê; q̂; N̂; ĉ; ẑ; X̂Þ at every spatial point as a function of �:
Step 3. We derive the optimal (and equilibrium) distributions of residential and

industrial land rents R�I ;R
�
H ðR̂I; R̂HÞ and plot them in graphs so as to characterize the

areas as residential, industrial or mixed. Then, we determine the � value (see below).
Step 4. We calculate the total number of residents and workers in the region. The aim

is to have equal numbers of residents and workers, which will satisfy the condition that

all workers should be housed inside the region.
Step 5. If the number of residents does not equal the number of workers, then the

level of the wage changes and we start solving the problem again (back to Step 2). We

follow this process until we obtain equal numbers of residents and workers.19 An

iterative approach is used since a change in the wage level will also change the demand

for the second input (emissions), which will in turn affect the aggregate pollution.

However, aggregate levels of pollution change the level of environmental tax and affect

both the productivity of labor and the residential location decisions.
Step 6. The � value for each spatial point is finally determined. If an interval is purely

residential or industrial, which means that one of the land rents is always higher than

the other, then � is either 0 or 1, respectively. When land rents are equal in a specific

interval, we calculate a value of 0 < � < 1 such that the total number of residents in the

city equals the total number of workers. This equality will determine the percentage of

the mixed area that will be used for industrial purposes and the corresponding

percentage used for residential purposes.
The ex-post calculation of � allows the explicit endogenous solution of the

externalities of the model, and we consider this to be an advantage of this approach

over previous solutions where the spatial kernels were arbitrarily chosen.
The results of this numerical algorithm are presented below. Figure 1 shows the

optimal distributions of labor, emissions, output and land rents, assuming the following

values for the parameters: � ¼ 2; � ¼ 0:01; � ¼ 0:5; � ¼ 0:01 and k ¼ 0:001.20 The

19 In our numerical approach, we use a simplifying assumption according to which firms offer the same
wage which is determined at the level where the number of residents equals the number of workers. This
does not influence the effect of the commuting-cost force, since workers are interested in the net wage. In
our model, workers may still decide to live far from their working place receiving a lower net wage but
enjoying a cleaner environment.

20 The results presented here are fairly robust in parameter changes. For a discussion of these parameter
values, see Kyriakopoulou and Xepapadeas (2013) and Lucas and Rossi-Hansberg (2002). The rest of
the parameters are set as follows: The production elasticity of labor and emissions is set at b ¼ 0:85 and
c ¼ 0:05 respectively, while the share of the consumption is a ¼ 0:6: The length of the spatial domain is



distribution of workers, emissions and output is higher around two spatial points

(r ¼ 1:6; 8:4Þ: This happens because at the optimum, all the externality effects are

internalized by the regulator. Thus, high levels of pollution that come from the

production process increase the per-unit damage of emissions at polluted sites as well as

the negative effect on the productivity of labor. This prevents industrial concentration

around one spatial point, as is predicted by models which consider only the ‘positive

productivity spillovers—commuting cost’ trade-off. In other words, the first reason

industrial activity at the optimum concentrates around two spatial points is that it

captures benefits from the positive productivity spillovers, which are higher in areas

with high employment density. The second one is that by avoiding the creation of a

single highly polluted area, it keeps the productivity loss associated with aggregate

pollution at a lower level.
Studying households’ location decisions, we can observe in the last part of Figure

1(d) that residents are willing to pay higher land rents in less polluted areas, i.e., in the

center of our region and close to the two boundaries. It is also very obvious that in the

spatial intervals preferred by the industries, the residential land rents are very low. Note

that the gap between the levels of the two land rents is represented by the black areas.

As a result, we could argue that the optimal land use structure includes two industrial

areas with three residential areas in-between.
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Figure 1. Optimal densities.

S ¼ 10: We also set � ¼ 1:5, which implies an increasing and convex damage function. Finally, the
reservation utility is u ¼ 0:15.



At this point it is of great interest to study the market allocations using the same
parameter values. In Figure 2, we can see the same plots, i.e., labor, emissions, output
and land rents distribution. Without the assumption of pollution diffusion, which
implies the enforcement of environmental policy, firms would concentrate around a
central location in order to benefit from positive spillovers that boost productivity (see
Lucas and Rossi-Hansberg, 2002 and Kyriakopoulou and Xepapadeas, 2013).
However, the trade-off between these spillovers and the ones associated with the
environmental externalities make firms move further from the central area, which
results in higher distributions of labor, emissions, and output close to the boundaries.
The opposite is true for households, which prefer to locate in the rest of the region in
order to avoid the polluted industrial sites. The comparison between residential and
industrial land rents, under the condition that all agents should work and be housed in
the region under study, leads to a mixed area at the city center surrounded by two
residential areas, which are followed by two industrial areas close to the boundaries.
There are two peaks in the residential areas, which can be explained as follows: In these
areas workers are willing to pay higher land rents to avoid the high commuting costs
that would result from locating further away, yet as we move close to the boundary, i.e.,
to industrial areas, the pollution discourages workers from paying high land rents. In
the mixed areas, we also need to specify the � value so that the total number of residents
in the city equals the total number of workers. In this numerical example, � ¼ 0:35; i.e.,
the 35% of the interval where agents and industries coexist is covered by the industrial
sector and the remaining 65% by the residential sector.

The most apparent difference between the optimal and the equilibrium land use
patterns is that while mixed areas can emerge as an equilibrium outcome, a similar
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Figure 2. Equilibrium densities.



emergence of mixed areas at the optimum does not seem possible within our parameter
range. This result is in line with previous literature studying optimal city patterns, such
as Rossi-Hansberg (2004), who proves that the optimal land use structure has no mixed
areas. What we can also observe is the fact that industries operate in a much smaller
interval covering 25% of the region in this numerical example, while in the market
outcome firms operate in 40% of the given area. The full endogenization of the external
effects at the optimum impedes firms from locating in central areas, which would be the
‘expected’ result and seems to be the case in the market allocation. Contrary to this, the
optimal solution seems to be a concentration of firms in small, spatial intervals, creating
pure industrial clusters and hence restricting the diffusion of pollution across the region,
which reduces the damage to the residential areas. In our numerical example, this
results in a duocentric configuration, while by depending on the strength of the
externalities we may end up with more than two industrial centers.

Some comparative analysis will help us understand which allocation is the most
efficient in terms of the amount of generated emissions per unit of output calculated in
the whole region. In the numerical experiment presented above, the optimal emissions
per output equals 0.99 while the equilibrium rate is 1.36. Implementing the optimal
policy instruments and deriving the optimum as an equilibrium outcome will
significantly improve the generated emissions per unit of output by decreasing this
rate by 27%.

6. Conclusion

This article studies the optimal and market allocations in a spatial economy with
pollution coming from stationary sources. It contributes to the literature by combining
the assumption of pollution diffusion with two other forces that have been proven to
significantly affect spatial patterns: commuting costs and externalities in production.
The second difference compared with previous literature lies in the use of a recently
introduced methodological approach of solving spatial models, which allows the full
endogenization of the assumed external effects, i.e., the pollution and production
externalities.

In order to model the above agglomeration and dispersion forces, we use a linear
region where households and firms are free to choose where to locate. Firms produce by
using land, labor and emissions; enjoy positive productivity spillovers; and pay an extra
cost in the form of environmental taxation. Households work in the industrial sector,
commute to work, consume the produced good and housing services and derive
negative utility from pollution. The optimal and the equilibrium spatial patterns are
derived when considering the trade-off between the externalities in production, workers’
commuting cost and the consequences of aggregate pollution in terms of environmental
policy and pollution damages.

The incorporation of environmental issues in the urban model under study allows us
to show that both in the optimal and in the equilibrium land use, we observe the
formation of more than one city center. Thus, contrary to the monocentric city result
derived by models that study the ‘agglomeration economies—commuting cost’ trade-
off, we show that firms have an incentive to create clusters in more than one location so
as to not increase the cost of environmental policy even further by making a site very
polluted. Also workers’ incentive to locate close to firms to avoid high commuting costs



has now partly changed, since pollution works to encourage them to locate in pure
residential areas. The result is the formation of more complex city patterns compared to
the case where environmental damages are ignored.

We also note that, not surprisingly, under the existence of pollution and production
externalities, the optimal and equilibrium land uses differ a great deal. This model
allows us to identify the different allocations and suggest spatial policies that will close
the gap between efficient and equilibrium outcomes. More specifically, we show that the
joint implementation of a site-specific labor subsidy and a site-specific environmental
tax can reproduce the optimum as an equilibrium outcome.

The numerical approach employed in this article can be used to further investigate the
role of pollution in spatial models of land use and provide insights into optimal spatial
policies. The idea of two kinds of industries—polluting and nonpolluting ones—could
be studied using the numerical tools presented here. Another possible extension of this
model is to assume that pollution comes from nonstationary sources, like the transport
sector, which is actually the case in modern cities. We leave these issues for future
research.

Supplementary material

Supplementary data for this paper are available at Journal of Economic Geography
online.
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Camacho, C., Pérez-Barahona, A. (2015) Land use dynamics and the environment. Journal of
Economic Dynamics and Control, 52: 96–118.

Duranton, G., Puga, D. (2004) Micro-foundations of urban agglomeration economies. In J.
V. Henderson and J. F. Thisse (ed.) Handbook of Regional and Urban Economics, 1st edn.
vol. 4, chapter 48, pp. 2063–2117. North Holland: Elsevier.

Fujita, M. (1989) Urban Economic Theory: Land Use and City Patterns, 1st edn. Cambridge:
Cambridge University Press.

Fujita, M., Ogawa, H. (1982) Multiple equilibria and structural transition of non-monocentric
urban configurations. Regional Science and Urban Economics, 12: 161–196.

Fujita, M., Thisse, J. -F. (2013) Economics of Agglomeration: Cities, Industrial Location and
Globalization, 2nd edn. edn. Cambridge: Cambridge University Press.

Glaeser, E. L. (1998) Are cities dying? Journal of Economic Perspectives, 12(2): 139–160.
Helsley, R. W., Zenou, Y. (2014) Social networks and interactions in cities. Journal of Economic
Theory, 150: 426–466.

Henderson, J. V. (1977) Externalities in a spatial context: the case of air pollution. Journal of
Public Economics, 7: 89–110.

Jackson, M. O., Zenou, Y. (2014) Games on networks, vol. 4. In P. Young and S. Zamir (ed.)
Handbook of Game Theory. North Holland: Elsevier Science.

Kolmogorov, A. N., Fomin, S. V. (1999) Elements of the Theory of Functions and Functional
Analysis, 1st edn. edn. New York: Dover Publications.

Kolstad, C. D. (1986) Empirical properties of economic incentives and command-and-control
regulations for air pollution control. Land Economics, 62: 250–268.

Kyriakopoulou, E., Xepapadeas, A. (2013) Environmental policy, first nature advantage and the
emergence of economic clusters. Regional Science and Urban Economics, 43: 101–116.

Lucas, R. E. , Jr. (2001) Externalities and cities. Review of Economic Dynamics, 4: 245–274.
Lucas, R. E., Jr., Rossi-Hansberg, E. (2002) On the internal structure of cities. Econometrica, 70:
1445–1476.

Maleknejad, K., Aghazadeh, N., Rabbani, M. (2006) Numerical solution of second kind
Fredholm integral equations system by using a Taylor-series expansion method. Applied
Mathematics and Computation, 175: 1229–1234.

Moiseiwitsch, B. L. (2005) Integral Equations, 1st edn. edn. New York: Dover Publications.
Mossay, P., Picard, P. M. (2011) On spatial equilibria in a social interaction model. Journal of
Economic Theory, 146: 2455–2477.

Mossay, P., Picard, P. M. (2013) Spatial segregation and urban structure. CREA Discussion
Paper Series 13-03, Center for Research in Economic Analysis, University of Luxembourg.

Papageorgiou, Y. Y., Smith, T. R. (1983) Agglomeration as local instability of spatially uniform
steady-states. Econometrica, 51: 1109–1119.

Polyanin, A. D., Manzhirov, A. V. (1998) Handbook of Integral Equations, 1st edn. edn. Boca
Raton: Chapman & Hall/CRC Press.

Rossi-Hansberg, E. (2004) Optimal urban land use and zoning. Review of Economic Dynamics, 7:
69–106.

Stockie, J. (2011) The mathematics of atmospheric dispersion modeling. SIAM Review, 53: 349–
372.

Tietenberg, T. H. (1974) Derived decision rules for pollution control in a general equilibrium
space economy. Journal of Environmental Economics Management, 1: 3–16.

Williams, R., III (2002) Environmental tax interactions when pollution affects health or
productivity. Journal of Environmental Economics Management, 44: 261–270.

World Bank (2007) Cost of Pollution in China: Economic Estimates of Physical Damages.
Washington, DC: World Bank.

Zheng, S., Kahn, E. (2013) Understanding China’s urban pollution dynamics. Journal of
Economic Literature, 51(3): 731–772.



Appendix A

To solve systems (6)–(7) and (20)–(21) numerically, we use a modified Taylor-series

expansion method (Maleknejad et al., 2006). More precisely, a Taylor-series expansion

can be made for the solutions y(s) and "ðsÞ in the integrals of systems (6)–(7) and

(20)–(21). We use the first two terms of the Taylor-series expansion (as an

approximation of y(s) and "ðsÞ) and substitute them into the integrals of (6)–(7) and

(20)–(21). After some substitutions, we end up with a linear system of ordinary

differential equations. In order to solve the linear system, we need an appropriate

number of boundary conditions. We construct them and then obtain a linear system of

two algebraic equations that can be solved numerically.
A short version of the optimal solution is analyzed below while a full derivation

including all steps can be found online.
The FONC for the optimum are given by Equations (4) and (5), where

zðrÞ ¼ �
R S
0 e��ðr�sÞ

2

�ðsÞln ðLðsÞÞds

Differentiating zðsÞwrt LðrÞ;we get :


zðsÞ


LðrÞ
¼ �

1

LðrÞ
½e��ð0�rÞ

2

þ . . .þ 1þ . . .þ e��ðS�rÞ
2

� ¼ �
1

LðrÞ

Z S

0

e��ðr�sÞ
2

ds:

For the numerical analysis, we approximate the value of the integral that expresses

the aggregate impact on all sites from a change in site r, by valuing the aggregate impact

with the marginal valuation at site r. Then the FONC wrt L(r) becomes:

pe�zðrÞXðrÞ�b�LðrÞb�1EðrÞcðbþ ��
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dsÞ ¼ w:

Taking logs,
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2

dsÞ ¼ lnw:

ðA:1Þ

Next, we consider the FONC wrt EðrÞ;(Equation (5)). Aggregate pollution, X(r), is

described by: lnXðrÞ ¼
R S
0 e��ðr�sÞ

2

ln ðEðsÞÞ ds or elnXðrÞ ¼ e

R S
0 e��ðr�sÞ

2
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2
lnEðsÞ

� �
ds
:

Differentiating this expression wrt E(r), we have:


XðsÞ


EðrÞ
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e

R S

0
e��ðr�sÞ

2
lnEðsÞ
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ds
Z S

0

e��ðs�rÞ
2

ds:

For the numerical analysis, we approximate the value of the integral that

expresses the aggregate impact on all sites from a change in site r by valuing the



aggregate impact with the marginal valuation at site r. Then the FONC wrt E(r)

becomes:
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So, the first-order conditions are given by Equations (A.1) and (A.2). Setting lnL¼ y

and lnE¼ "; we obtain the following system:
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Making a transformation that is described in the Online Appendix, we obtain the

following system of second kind Fredholm integral equations:
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We use a modified Taylor-series expansion method for solving Fredholm integral

equations systems of second kind (Maleknejad et al., 2006). So, a Taylor-series

expansion can be made for the solutions y(s) and "ðsÞ :
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2
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2
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Substituting them into Equations (A.3) and (A.4) and rewriting the equations, we

get:
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If the integrals in Equations (A.7)–(A.8) can be solved analytically then the

bracketed quantities are functions of r alone. So (A.7)–(A.8) become a linear system

of ordinary differential equations that can be solved if we use an appropriate

number of boundary conditions.
To construct boundary conditions, we take the first and second derivative of

Equations (A.3)–(A.4) wrt to r and then substitute yðrÞ; "ðrÞ for yðsÞ; "ðsÞ:
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From Equations (A.9)–(A.12), y0ðrÞ; y00ðrÞ; "0ðrÞ; "00ðrÞare functions of yðrÞ; "ðrÞ; g�01 ðrÞ;
g�1ðrÞ; g�02 ðrÞ; g�2ðrÞ: Substituting them into Equations (A.7) and (A.8), we have a linear
system of two algebraic equations that can be solved using Mathematica.

Appendix B

The same method of modified Taylor-series expansion was used in order to solve for the
market allocations. We take the logs of the system (15)–(16) and follow the same
process as the one described in Appendix A and in the Online Appendix in full detail.

Appendix C

Proof of the existence and the uniqueness of the solution:
1. A function h r; sð Þ defined on ½0;S� � ½0;S� is an L2-kernel if it has the property

that
R S
0

R S
0 jh r; sð Þj2drds <1:

The kernels of our model have the formulation e�� ðr�sÞ
2

with � ¼ �; � (positive
numbers) and are defined on 0;S½ � � 0;S½ �: It is easy to show thatR S
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�� ðr�sÞ2 j2drds <1; which implies that the kernels of our system are L2-
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2. If h r; sð Þ is an L2-kernel, the integral operator
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In our model the upper bound of the norm of the operator generated by the L2-

kernel is jjWjj �
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3. If h r; sð Þ is an L2-kernel and W is a bounded operator generated by h, then W is a
compact operator.

4. If h r; sð Þ is an L2-kernel and generates a compact operator W, then the integral
equation

Y�
1

1� a� b� c

� �
WY ¼ G ðC:1Þ

has a unique solution for all square integrable functions G if 1� b� cð Þ is not an
eigenvalue of W (Moiseiwitsch, 2005). If 1� b� cð Þ is not an eigenvalue of W,

then I� 1
1�b�cW

	 

is invertible.



5. Both systems (6)–(7) and (20)–(21) can be transformed into a second kind
Fredholm integral equation of the form (C.1). Thus, a unique optimal and
equilibrium distribution of inputs and output exists.21

In order to transform the system of Equations (6)–(7) to a single Fredholm equation of
second kind (Polyanin and Manzhirov, 1998), we define the functions Y(r) and G(r) on
½0; 2S�, where YðrÞ ¼ yiðr� ði� 1ÞSÞ and GðrÞ ¼ giðr� ði� 1ÞSÞ for ði� 1ÞS � r � iS.22

Next, we define the kernel �ðr; rÞ on the square ½0; 2S� � ½0; 2S� as follows:
�ðr; sÞ ¼ hijðr� ði� 1ÞS; r � ðj� 1ÞSÞ for ði� 1ÞS � r � iS and ðj� 1ÞS � r � jS:

So, the system of Equations (6)–(7) can be rewritten as the single Fredholm equation:
YðrÞ � 1

1�b�c

R 2S
0 �ðr; sÞYðsÞds ¼ GðrÞ, where 0 � r � 2S:

If the kernel hijðr; sÞ is square integrable on the square ½0;S� � ½0;S� and giðrÞ are
square integrable functions on ½0;S� then the kernel �ðr; sÞ is square integrable on the
new square: ½0; 2S� � ½0; 2S� and G(r) is square integrable on ½0; 2S�: Functions giðrÞ; as
described in Appendix A by Equations (A.2)–(A.3) are square integrable.

21 The linear behavior of the unknown functions (y(r) and "ðrÞ) under the integrals of (6)–(7) and (20)–(21)
allows us to show that both systems have a unique solution as systems of linear integral equations if
(1� b� cÞ is not an eigenvalue of W. In that sense, for a given set of parameters (b, c) that satisfies the
non-eigenvalue condition, there exist unique distributions L(r), E(r) that solve the systems (6)–(7) and
(20)–(21) (Moiseiwitsch, 2005). This is in line with Lucas and Rossi-Hansberg’s (2002) results, where they
prove a unique equilibrium allocation while using Cobb–Douglas functional forms and a similar
functional form to describe the production externalties.

22 We assume that y1 ¼ y and y2 ¼ "; so as to follow the notation of our model.




