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Abstract

The present work describes a retrospective
study aiming to verify a possible correlation
between the environmental conditions (tem-
perature, salinity and dissolved oxygen), the
abundance of Vibrio spp., and the prevalence of
V. parahaemolyticus and V. vulnificus in the
Manila clam R. philippinarum harvested in
Sacca di Goro, Emilia-Romagna Region,
Northern Italy. On the whole, 104 samples, col-
lected in the period 2007-2015 and submitted
to microbiological analyses (isolation and
genotyping), have been reconsidered for Vibrio
spp. load, V. parahaemolyticus prevalence
(total, gene marker toxRP; potentially patho-
genic, gene markers tdh and/or trh) and V. vul-
nificus prevalence (total, gene markers vvhA
and hsp) together with environmental data
obtained from the monitoring activity of the
Emilia-Romagna Regional Agency for the
Prevention, the Environment and the Energy.
Environmental data have been processed to
calculate the median of each, assessing the
seasonal range of seawater temperature
(warmer months: April-October, T°C >16.45°C;
cooler months November-March, T°C
<16.45°C), salinity (<or>27 psu), and dis-
solved oxygen (< or >8.2 mg/L). Total V. vul-
nificus, total and potentially pathogenic V.
parahaemolyticus were present respectively in
the 11.5, 29.8 and 6.7% of the samples. The
Vibrio spp. load (mean value of 4.69±0.65 log10
colony forming unit g-1) and the prevalence of
potentially pathogenic V. parahaemolyticus,
were not significantly correlated to the envi-
ronmental conditions (P>0.05), whereas the
prevalence of both total V. vulnificus and total
V. parahaemolyticus was significantly higher
in the warmer period (P<0.05), without corre-
lation with salinity and dissolved oxygen val-
ues (P>0.05).

Introduction

Vibrio parahaemolyticus and Vibrio vulnifi-
cus are ubiquitous Gram-negative bacterial
pathogens found naturally in marine and estu-
arine waters, representing a leading cause of
seafood-associated bacterial illness. The most
important vehicle for these microorganisms
are raw or lightly cooked bivalve shellfish
(Drake et al., 2007), hereafter indicated simply
shellfish. Although both V. vulnificus and V.
parahaemolyticus cases occur sporadically, the
former are almost always sporadic while the
latter can also occur in outbreak settings
(Drake et al., 2007). 

V. parahaemolyticus infection commonly
include abdominal cramps, diarrhea, nausea,
headaches, fever and chills (Baker-Austin et
al., 2010). Most environmental V. para-
haemolyticus strains are considered to be non-
pathogenic due to low detection frequencies of
tdh and trh genes encoding respectively for the
thermostable direct haemolysin (TDH) and the
TDH-related haemolysin (TRH), therefore
these gene markers continues to be the sim-
plest and most frequently used diagnostic indi-
cator of pathogenicity (Gutierrez West et al.,
2013; Raghunath, 2015).

V. vulnificus infection may be acquired via
wound infections or consumption of raw
seafood, particularly shellfish, and may result
highly invasive, causing respectively second-
ary or primary septicemia, particularly in high-
risk populations, including patients with
chronic liver disease, immunodeficiency, iron
storage disorders, end-stage renal disease, and
diabetes mellitus (Horseman and Surani,
2011). The presence/absence of many gene tar-
get have been used to differentiate clinical
from environmental V. vulnificus strains, and
among them vcgC and vcgE (Han et al., 2011);
16S rRNA type A, B or AB and CPS operon
group 1 allele 1 (CPS1) and allele 2 (CPS2),
(Chatzidaki-Livanis et al., 2006). In any case,
unique virulence gene markers that are pres-
ent exclusively in virulent V. vulnificus strains
have not yet been identified (Han et al., 2009),
therefore according to FAO/WHO (2005), all V.
vulnificus strains may be considered virulent.

The abundance and distribution of Vibrio
parahaemolyticus and Vibrio vulnificus have
been linked to environmental factors, most
notably temperature, salinity and dissolved
oxygen (Parveen et al., 2008; Ramirez et al.,
2009), even if predictive relationships may
vary across Regions due to differences in ecol-
ogy. Currently there is scant information on
both the spatial distribution and seasonal
detection of Vibrio spp. in shellfish harvested
in the Emilia-Romagna Region, and other
Italian production areas as well, giving that
only a few data are available, mostly from lim-

ited research activities. Clearly, human expo-
sure to these pathogens cannot be completely
eliminated, but the incidence of illness can be
reduced if environmental conditions that sig-
nificantly elevate risk can be identified and
monitored (Johnson et al., 2012). To our
knowledge, this study represent the first
attempt to determine the relationships
between environmental conditions (seawater
temperature, salinity and dissolved oxygen)
and Vibrio population in the Manila clam
Ruditapes philippinarum, hereafter indicated
simply clam, utilizing a multi years (2007-
2015) retrospective study, where Vibrio spp.
abundance, the total V. parahaemolyticus
(toxRP+), the potentially pathogenic V. para-
haemolyticus (tdh+ and or trh+), and the total
V. vulnificus (vvhA+ and hsp+) have been con-
sidered.
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Materials and Methods
Study area

All clam samples were collected at the Sacca
di Goro, Emilia-Romagna Region, Northern
Italy (Figure 1), a wide sandy-bottomed lagoon
of the Po river delta characterized by particular
features suitable for the shellfish productions,
particularly the Manila clam Ruditapes philip-
pinarum and the mussel Mytilus galloprovin-
cialis. The lagoon extends over 2000 hectares
of shallow water, 60-70 cm on average, with a
maximum depth of 200 cm. 

Microbiological analyses
On the whole, 104 samples of R. philip-

pinarum, were collected in the study area,
approximately on monthly basis, excluding
August, in the period 2007-2015. The analytical
protocols utilized at that time to ascertain the
Vibrio spp. load, the prevalence of total
(toxRP+) and potentially pathogenic V. para-
haemolyticus (tdh+ and or trh+), and the
prevalence of total V. vulnificus (vvhA+ and
hsp+) have been reported elsewhere
(Passalacqua et al., 2016), including a more
detailed genotyping approach for V. vulnificus
isolates, characterized beyond the species
level by means of other gene markers: vcgC,
vcgE, 16S rRNA type A/B/AB, CPS operon group
1 allele 1 (CPS1) and allele 2 (CPS2). 

Environmental parameters
Data of interest on seawater temperature,

salinity and dissolved oxygen, were made
available by the oceanographic vessel Daphne
II (annual reports) of the Regional Agency for
the Prevention, the Environment and the
Energy - Emilia-Romagna (ARPAE). 

Statistical analyses
Preliminarily, environmental parameters

(seawater temperature, salinity and dissolved
oxygen), collected monthly, were arbitrarily

divided into two categories based on the medi-
an (warmer months: April-October,
T°C>16.45°C; cooler months November-
March, T°C<16.45°C); salinity (< or>27 psu),
and dissolved oxygen (< or>8.2 mg/L). The
Vibrio spp. load was log-transformed prior to
the analysis. The Kolmogorov–Smirnov test for
goodness of adaptation was used to verify dis-
tribution normality. On the basis of the results
of this test, Student’s t-test was used to com-
pare the log10 Vibrio spp. load. Qualitative data
[prevalence of V. parahaemolyticus (total, gene
marker toxRP; potentially pathogenic, gene
markers tdh and/or trh) and V. vulnificus
(total, gene markers vvhA and hsp)] were ana-
lyzed using chi-square test. All statistical
analyses were performed using the software
SPSS 23 (SPSS Inc., Chicago, IL, USA).

Results

In order to be concise, detail on the microbi-
ological results of each of the 104 samples of
clams are omitted. The Vibrio spp. load of each
sample, expressed as Colony Forming Units
(CFU g-1) have been log-transformed prior to
calculate the mean value, resulting 4.69±0.65
log10 CFU g-1. With respect to the specific bacte-
rial targets, on the whole 11.5% samples were
positive for total V. vulnificus (vvhA+ and
hsp+), 29.8% were positive for total V. para-
haemolyticus (toxRP+), and 6.7% were posi-
tive for potentially pathogenic V. para-
haemolyticus (tdh+ or trh+), none of the
strains showing the double positivity). A total
of 8 out of 43 positive samples showed the con-
current presence of V. parahaemolyticus and V.
vulnificus, and, overall, 50 strains, respectively
16 V. vulnificus and 34 V. parahaemolyticus,
were isolated. The isolation of strains with dif-
ferent virulence genes profiles in three sam-
ples for V. parahaemolyticus and in three sam-

ples for V. vulnificus should be noted; details
on the number of isolates of both V. para-
haemolyticus and V. vulnificus with different
virulence genes profiles in positive samples
are reported in Table 1.

The environmental parameters considered
in the present study are those collected from
2007 to 2013, being data from 2014 to 2015
unavailable, through 68 sampling campaigns,
by the oceanographic vessel Daphne II
(ARPAE). Most of the samples were collected
from January to December, and none of them
was collected in August; one year (2007)
showed a noticeable lower number of samples.
Summary data of seawater temperature, salin-
ity and dissolved oxygen are reported in Table
2. Considering the different years and the dif-
ferent months of clam sampling from 2007 to
2015, the statistical analyses showed a mean
prevalence of 29.81% for V. parahaemolyticus
(total) and 11.5% of samples positive V. vul-
nificus (total), with a range respectively of 0.0-
50 and 0.0-27.3% in different years, and with a
range respectively of 0.0-100 and 0.0-66.6% in
different months. More details are reported in
Table 3. The majority of V. vulnificus strains
(13 out of 16) were isolated during summer
(June and July) whereas the majority of V.
parahaemolyticus strains (28 out of 34) were
isolated in a longer period, from June to
October. The statistical analysis of the whole
dataset (n=104) showed a significant differ-
ences (P=0.00 and P<0.01) of the prevalence
of samples positive for V. parahaemolyticus
(total) and V. vulnificus (total) between the
warmer months period and the cooler months
period (respectively 49.1 vs 6.3% and 21.4 vs
0%). The same association was not shown
(P>0.05) for potentially pathogenic V. para-
haemolyticus (8.8 vs 4.2%) and for Vibrio spp.
load (4.71±0.10 vs 4.70±0.29 log10 g-1). 

No significant relationships (P>0.05) were
found between the prevalence of V. para-
haemolyticus (total and potentially pathogen-
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Table 1. Virulence genes profiles of Vibrio parahaemolyticus and Vibrio vulnificus isolates detected in 43 out of 104 samples of clams. 

Isolates (n)                                                                           Vibrio vulnificus
                                 vvhA                         hsp                   vcgE              vcgC                 CPS1           CPS2           16SA                   16SB

8                                            +                                      +                              +                       n.d.                          n.d.                     +                      +                               n.d.
2                                            +                                      +                              nd                        +                             +                    n.d.                   n.d.                               +
2                                            +                                      +                              +                       n.d.                           +                    n.d.                     +                               n.d.
2                                            +                                      +                              +                       n.d.                           +                    n.d.                     +                               n.d.
1                                            +                                      +                              +                       n.d.                          n.d.                   n.d.                     +                               n.d.
1                                            +                                      +                             n.d.                        +                             +                      +                      +                               n.d.
                                                                                               Vibrio parahaemolyticus
                                                                toxRP                                                                 tdh                                              trh

5                                                                                      +                                                                                         n.d.                                                              +
4                                                                                      +                                                                                           +                                                              n.d.
25                                                                                    +                                                                                         n.d.                                                            n.d.
n.d., not detected.
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ic), V. vulnificus (total) and Vibrio spp. load
and the others environmental parameters,
namely seawater salinity and dissolved oxy-
gen. 

Discussion 

In the present study, a sizeable number of
samples (104) of R. philippinarum harvested
in the same area has been considered over a
very long period (from 2007 to 2015), therefore
our results may be considered robust and suit-
able for a comparison with other extensive
studies carried out in the Mediterranean area.
Among the few reports, this is the case of the
multiyear study performed on different shell-
fish, including R. philippinarum (120 sam-
ples) harvested in the Ebro Delta, Spain, from
2006 to 2010 (Lopez-Joven et al., 2014, 2015),
but our results are not in agreement, because
we found an higher prevalence of total V. para-
haemolyticus (29.8 vs 14.2%) and potentially
pathogenic V. parahaemolyticus (6.7 vs 3.3%),
but a lower prevalence of total V. vulnificus
(11.5 vs 22.5%).

It is largely recognized that in coastal envi-
ronments, as well as estuaries and coastal
rivers, elevated water temperatures and low
salinity levels are considered promoting fac-
tors for vibrios abundance (Hsieh et al., 2008;
Oberbeckmann et al., 2012; Froelich et al.,
2013; Takemura et al., 2014; Urquhart et al.,
2016). According with these findings, in the
present study the prevalence of total V. para-
haemolyticus and total V. vulnificus resulted
significantly higher in the warmer months
(seawater temperature>16.45°C, P<0.05), but
not at the lower values of salinity (< 27 psu,
P>0.05), according to other studies, where
salinity values resulted only marginally associ-

ated (Parveen et al., 2008) or unrelated
(Deepanjali et al., 2005) with the abundance of
V. parahaemolyticus. 

The correlation with salinity and V. vulnifi-
cus abundance is still unclear, giving that
notwithstanding medium or low salinity
(between 5 and 25 ppt) are largely considered
the optimal environmental conditions
(Mahmud et al., 2008), V. vulnificus has been
isolated from waters with salinities ranging
from 1 to 34 ppt (Parvathi et al., 2004). 

Unlike the total V. parahaemolyticus, in our
study the prevalence of the subpopulation of
potentially pathogenic V. parahaemolyticus,
characterized by the presence of tdh and/or

trh, resulted unrelated to seawater tempera-
ture, but it is important to outline that recently,
a large number of clinical isolates revealed an
unexplained number of strains lacking these
genes, suggesting that V. parahaemolyticus
may harbor other virulence factors (Ottaviani
et al., 2012). Moreover it has been demonstrat-
ed that environmental isolates of V. para-
haemolyticus lacking tdh and/or trh are also
highly cytotoxic to human gastrointestinal
cells (Raghunath, 2015). 

Researches on this topic are ongoing, and
therefore to ascertain the pathogenic potential
of environmental strains, and the potential
risk for consumers, more gene markers other

                             Article

Table 2. Summary data of seawater temperature, salinity and dissolved oxygen from 2007
to 2013.

                       Temperature (°C)              Salinity (psu)           Dissolved oxygen (mg/L)

Mean                                   16.94                                            26.12                                                 8.79
Median                               16.45                                            27.07                                                 8.24
Minimum                             5.3                                               10.74                                                 5.23
Maximun                            28.73                                            37.62                                                14.49

Table 3. Number of clam samples analyzed per month from 2007 to 2015, Vibrio spp. load, number and percentage of samples positive
for Vibrio vulnificus (total), Vibrio parahaemolyticus (total), and potentially pathogenic Vibrio parahaemolyticus.

Month of sampling        Samples (n)              Vibrio spp.*               Vibrio vulnificus,                          Vibrio parahaemolyticus
                                                                          (mean±SD)                     total (%)                      Total (%)               Potentially pathogenic
(%)                                            

Warmer months                                   
    April                                                   7                                   4.87±0.25                                   1 (14.3)                                        0                                                         0
    May                                                    6                                   4.75±0.85                                         0                                        1 (14.3)                                            1 (16.7)
    June                                                 10                                  4.60±0.68                                    5 (50)                                   10 (100)                                             2 (20)
    July                                                    6                                   4.70±0.47                                   4 (66.6)                                    3 (50)                                              1 (16.7)
    September                                     15                                  4.74±0.63                                    1 (6.7)                                   7 (46.7)                                                   0
    October                                           12                                  4.61±0.74                                    1 (8.3)                                   7 (53.8)                                            1 (7.69)
Cooler months                                     
    January                                             6                                   4.61±0.47                                         0                                               0                                                         0
    February                                          10                                  4.98±0.66                                         0                                               0                                                         0
    March                                               9                                   5.04±0.58                                         0                                               0                                                         0
    November                                       16                                  4.46±0.71                                         0                                        3 (17.6)                                            2 (12.5)
    December                                        7                                   4.41±0.83                                         0                                               0                                                         0
Total warmer months                       56                                  4.71±0.10                                  12 (21.4)                                28 (49.1)                                            5 (8.8)
Total cooler months                          48                                  4.70±0.29                                         0                                         3 (6.3)                                              2 (4.2)

Figure 1. Sacca di Goro, Emilia-Romagna Region, Northern Italy. 
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than tdh and/or trh could be investigated. 
With respect to dissolved oxygen, it has

been reported a negative correlation with
Vibrio spp. abundance (Siboni et al., 2016),
and V. vulnificus abundance (Pfeffer et al.,
2003), and a positive correlation with V. para-
haemolyticus abundance (Parveen et al.,
2008). This, notwithstanding, during our study
dissolved oxygen varied from a minimum of
5.23 to a maximum of 14.49 mg/L, neither
Vibrio spp. load nor V. vulnificus (total) and V.
parahaemolyticus (total and potentially patho-
genic) prevalence resulted significantly relat-
ed to this parameter. 

Conclusions 

Outbreaks of shellfish-associated infection
have been reported worldwide, and among
them Vibrio species lead the list of bacterial
pathogens, therefore an understanding of the
spatiotemporal dynamics of Vibrio population
and its potential to cause disease outbreaks
has become increasingly important
(Oberbeckmann et al., 2012; Takemura et al.,
2014). Moreover, this group of organisms is
increasing in abundance as a consequence of
environmental perturbations and climate
change (Siboni et al., 2016). According to the
European Environmental Agency, the rise of
global sea surface temperature is one of the
major physical impacts of climate change, and
in coastal European seas it has increased 4-7
times faster over the past few decades than in
the global oceans (Reid et al., 2011). This local
increase in sea surface temperature has been
linked to outbreaks of Vibrio-associated
human illness caused by V. cholerae non-O1
and non-O139, V. parahaemolyticus, and V. vul-
nificus in several European countries.
However, the lack of mandatory notification
systems for Vibrio-associated illnesses pre-
vents accurate estimates of the number of
Vibrio-infections occurring in Europe (Le Roux
et al., 2015). It is clear that for an appropriate
risk assessment on Vibrio-infections in
Europe, robust data on the prevalence of the
potentially pathogenic species in seawater and
seafood, particularly shellfish, are essential,
and the knowledge of the impact of the envi-
ronmental conditions allowing to their prolifer-
ation is of paramount importance to define
predictive models. 

The assessment of the environmental state
of European surface waters comprises the col-
lection and aggregation of a huge amount of
information, to provide, among others, a basis
for the identification and assessment of envi-
ronmental threats at Regional and global levels
(EEA, 2015). Unfortunately the monitoring of
vibrios in the coastal areas is not considered
among the EEA indicators, and for the control

of the shellfish production areas (Regulation
EC 854/2004; European Commission, 2004a)
as well, consequently, only few data provided
by field researches are currently available. 

In this respect, our retrospective multi-year
study, the first one realized in Italy, suggests
that the prevalence of total V. parahaemolyti-
cus and total V. vulnificus in clams is positively
correlated to the seawater temperature, and
their prevalence may be considered threaten-
ing to human health, also because the purge of
these microorganism, through the purification
process applied according to the European leg-
islation in force (Regulation EC 853/2004;
European Commission, 2004b), may be consid-
ered substantially ineffective (Serratore et al.,
2014). 
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