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RESEARCH PAPER

AN EXTENSION PROBLEM FOR THE FRACTIONAL

DERIVATIVE DEFINED BY MARCHAUD

Claudia Bucur 1, Fausto Ferrari 2

Abstract

We prove that the (nonlocal) Marchaud fractional derivative in R can
be obtained from a parabolic extension problem with an extra (positive)
variable as the operator that maps the heat conduction equation to the
Neumann condition. Some properties of the fractional derivative are de-
duced from those of the local operator. In particular, we prove a Harnack
inequality for Marchaud-stationary functions.
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1. Introduction

In the literature there are several definitions of fractional derivatives
(see, for instance, the monographs [24], [23] or [4] for an historical intro-
duction). In particular, we are interested in the notion given by Marchaud,
see [18], who introduced two types of fractional derivatives. For a fixed
s ∈ (0, 1), the left and the right Marchaud fractional derivative of order s
(see [24], formulas 5.57 and 5.58) are respectively defined as follows:

Ds
±f(t) =

s

Γ(1− s)

∫ ∞

0

f(t)− f(t∓ τ)

τ1+s
dτ. (1.1)

These fractional derivatives are well defined when f is a bounded, locally
Hölder continuous function in R. In particular, we may assume that f ∈
c© 2016 Diogenes Co., Sofia
pp. 867–887 , DOI: 10.1515/fca-2016-0047
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C γ̄(R), for s < γ̄ ≤ 1 and f ∈ L∞(R) (see the Appendix for further details),
even though these hypotheses can be weakened. In addition, we just recall
here that the Marchaud derivative can be defined for s ∈ (0, n) and n ∈ N,
as

Ds
±f(t) =

{s}
Γ(1− {s})

∫ ∞

0

f [s](t)− f [s](t∓ τ)

τ1+{s} dτ,

where [s] and {s} denote, respectively, the integer and the fractional part
of s. Our work focuses on the case n = 1 and, in the first part of the
paper, on the left fractional derivative, that we can write using a change of
variable, neglecting the constant and omitting for simplicity the subscript
symbol +, as:

Dsf(t) :=

∫ ∞

0

f(t)− f(t− τ)

τ s+1
dτ =

∫ t

−∞

f(t)− f(τ)

(t− τ)s+1
dτ. (1.2)

A short remark on the right counterpart of the Marchaud fractional deriv-
ative is given in Section 5. Moreover, we consider (1.2) as the definition of
our fractional derivative without taking care of what happens when s→ 0+

or s→ 1−. Nevertheless, in the Appendix, we briefly discuss this behavior
using the definition given in (1.1), since in those cases, the constant plays
a fundamental role.

The purpose of the present work is to introduce an extension operator
for the fractional derivative (1.2) and to prove a Harnack inequality for
stationary functions (in the sense of Marchaud). The operator Ds naturally
arises when dealing with a family of singular/degenerate parabolic problems
(which, for s = 1/2, reduces to the heat conduction problem) on the positive
half-plane, with a positive space variable and for all times, namely for
(x, t) ∈ [0,∞)× R.

In order to construct this extension operator, we exploit the idea re-
cently revisited in [5]. In that paper, the fractional Laplacian was charac-
terized via an extension procedure, by means of a degenerate second order
elliptic local operator.

Considering the function ϕ of one variable, formally representing the
time variable, our approach relies on constructing a parabolic local operator
by adding an extra variable, say the space variable, on the positive half-line,
and working on the extended plane [0,∞)× R.

The heuristic argument can be described in the simplest case s = 1/2
as follows. Let ϕ : R → R be a “good” function and U be a solution of the
problem ⎧⎨

⎩
∂U

∂t
=
∂2U

∂x2
, (x, t) ∈ (0,∞) × R

U(0, t) = ϕ(t), t ∈ R.
(1.3)



AN EXTENSION PROBLEM FOR THE FRACTIONAL . . . 869

We point out that this is not the usual Cauchy problem for the heat oper-
ator, but a heat conduction problem.

It is known that, without extra assumptions, we can not expect to have
a unique solution of the problem (1.3), see [26], Chapter 3.3. Nevertheless,
if we denote by T1/2 the operator that associates to ϕ the partial derivative
∂U/∂x, whenever U is sufficiently regular, we have that

T1/2T1/2ϕ =
dϕ

dt
.

That is, T1/2 acts like an half derivative, indeed

∂

∂x

∂U

∂x
(x, t) =

∂U

∂t
(x, t) −→

x→0+

dϕ(t)

dt
.

The solution of the problem (1.3) under the reasonable assumptions that ϕ
is bounded and Hölder continuous, is explicitly known (check [26], Chapter
3.3) to be

U(x, t) = cx

∫ t

−∞
e
− x2

4(t−τ) (t− τ)−
3
2ϕ(τ) dτ

= cx

∫ ∞

0
e−

x2

4τ τ−
3
2ϕ(t− τ) dτ,

where the last line is obtained with a change of variables. Using t = x2/(4τ)
and the integral definition of the Gamma function (see formula 6.1.1 in [1])
we have that ∫ ∞

0
xe−

x2

4τ τ−
3
2 dτ = 2

∫ ∞

0
e−tt−

1
2 dt = 2Γ

(
1

2

)
.

Hence,

U(x, t)− U(0, t)

x
= c

∫ ∞

0
e−

x2

4τ τ−
3
2 (ϕ(t− τ)− ϕ(t)) dτ,

choosing c that takes into account the right normalization. This yields, by
passing to the limit, that

− lim
x→0+

U(x, t)− U(0, t)

x
= c

∫ ∞

0

ϕ(t) − ϕ(t− τ)

τ
3
2

dτ.

Hence, with the right choice of the constant, we get exactly D1/2ϕ (see
(1.2)), i.e. the Marchaud derivative of order 1/2 of ϕ.

Now we are in position to state our main result.

Theorem 1.1. Let s ∈ (0, 1) and γ̄ ∈ (s, 1] be fixed. Let ϕ ∈ C γ̄(R)
be a bounded function and let U : [0,∞) × R → R be a solution of the
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problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂U

∂t
(x, t) =

1− 2s

x

∂U

∂x
(x, t) +

∂2U

∂x2
(x, t), (x, t) ∈ (0,∞)× R

U(0, t) = ϕ(t), t ∈ R

lim
x→+∞U(x, t) = 0.

(1.4)

Then U defines the extension operator for ϕ, such that

Dsϕ(t) = − lim
x→0+

csx
−2s(U(x, t) − ϕ(t)), where cs = 4sΓ(s).

We notice that one can write

Dsϕ(t) = − lim
x→0+

csx
1−2s∂U

∂x
(x, t), (1.5)

in analogy with formula (3.1) in [5].

Remark 1.1. The extension operator satisfies, as one would expect,
up to constants that

D1−sDsϕ(t) = ϕ′(t).
Indeed, using (1.5) and thanks to (1.4) we have that

D1−sDsϕ(t) = lim
x→0+

x2s−1 ∂

∂x

(
x1−2s∂U

∂x
(x, t)

)

= lim
x→0+

∂2U

∂x2
(x, t) +

1− 2s

x

∂U

∂x
(x, t)

= lim
x→0+

∂U

∂t
(x, t) =

∂U

∂t
(0, t) = ϕ′(t).

An interesting application that follows from this extension procedure
is a Harnack inequality for Marchaud-stationary functions in an interval
J ⊆ R, namely for functions that satisfy Dsϕ = 0 in J. This fact is not
obvious, indeed the set of functions determined by fractional-stationary
functions (on an interval) is nontrivial, see e.g. [3].

Theorem 1.2. Let s ∈ (0, 1). There exists a positive constant γ such
that, if Dsϕ = 0 in an interval J ⊆ R and ϕ ≥ 0 in R, then

sup
[t0− 3

4
δ,t0− 1

4
δ]

ϕ ≤ γ inf
[t0+

3
4
δ,t0+δ]

ϕ

for every t0 ∈ R and for every δ > 0 such that [t0 − δ, t0 + δ] ⊂ J .

The previous result can be deduced from the Harnack inequality proved
in [6] for some degenerate parabolic operators (see also [9] for the elliptic
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setting). In particular, the constant γ used in Theorem 1.2 is the same that
appears in the parabolic case in [6].

In addition, we remark that Theorem 1.2 does not give the usual Har-
nack inequality for elliptic operators, where the comparison between the
supremum and the infimum is done on the same set, e.g. the same met-
ric ball. This Harnack inequality for the Marchaud-stationary functions
inherits the behavior of its parabolic extension.

We point out at this point the very interesting paper [2]. Indeed, after
we have submitted our paper, we learnt from professor José L. Torrea about
the results contained in his joint paper where an extension procedure for a
class of operators has been studied.

2. The extension parabolic problem

In this section we find a solution of the system (1.4). At first, we in-
troduce a particular kernel, that acts as the Poisson kernel. We then look
for a particular solution of the system by means of the Laplace transform,
and in this way we show how the solution arises. Finally, by a straightfor-
ward check, it yields that indeed the indicated solution satisfies the problem
(1.4).

2.1. Properties of the kernel Ψs. In this section we introduce and study
the properties of a kernel, that acts as the Poisson kernel for the problem
(1.4). The readers can see Section 3 in [11], where this kernel is studied in
a more general framework.

We define for every x ∈ R,

Ψs(x, t) :=

⎧⎨
⎩

1

4sΓ(s)
x2se−

x2

4t t−s−1, if t > 0,

0, if t ≤ 0.
Also, let

ψs(t) :=

⎧⎨
⎩

1

4sΓ(s)
e−

1
4t t−s−1, if t > 0,

0, if t ≤ 0,
and notice that ∫

R

Ψs(x, t) dt =

∫
R

ψs(t) dt. (2.1)

Indeed, by changing the coordinate τ = t/x2 we have that∫
R

Ψs(x, t) dt =
1

4sΓ(s)

∫ ∞

0
x2se−

x2

4t t−s−1 dt

=
1

4sΓ(s)

∫ ∞

0
e−

1
4τ τ−s−1 dτ =

∫
R

ψs(t) dt.

The kernel Ψs satisfies also the following property:
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∫
R

Ψs(x, t) dt = 1. (2.2)

Indeed, by changing the variable t = 1/(4τ) we get that∫
R

ψs(τ) dτ =
1

4sΓ(s)

∫ ∞

0
e−

1
4τ τ−s−1 dτ =

1

Γ(s)

∫ ∞

0
e−tts−1 dt = 1, (2.3)

thanks to the integral definition of the Gamma function (see formula 6.1.1
in [1]). It follows from (2.1) that∫

R

Ψs(x, t) dt = 1.

Taking the Laplace transform of the kernel Ψs (see e.g. [8] for details on
this integral transform), we have the following result involving the modified
Bessel function of the second kind Ks, see [17] and [1], §9.6. We use here
the notation �ω > 0 to denote the real part of a complex number ω.

Lemma 2.1. The Laplace transform of the function ψs ∈ L1(R) is

L(ψs)(ω) =
1

2s−1Γ(s)
ω

s
2 Ks(

√
ω) for �ω > 0. (2.4)

Moreover, the Laplace transform with respect to the variable t of the kernel
Ψs ∈ L1(R, dt) is

L(Ψs)(x, ω) =
1

2s−1Γ(s)
xsω

s
2 Ks(x

√
ω) for �ω > 0. (2.5)

P r o o f. If one proves claim (2.4), the identity (2.5) follows by chang-
ing the variable τ = t/x2. For �a > 0 and ω ∈ C with �ω > 0, as stated
in formula 5.34 in [20], we have that

L
(
tγ−1e−

a
t

)
= 2

( a
ω

) γ
2
Kγ

(
2(aω)

1
2

)
.

Taking γ = −s and a = 1/4, recalling that Ks = K−s, we obtain that

L(ψs)(ω) =
1

4sΓ(s)
L
(
e−

1
4τ τ−s−1

)
=

1

2s−1Γ(s)
ω

s
2Ks(

√
ω)

and thus (2.4). This concludes the proof of the lemma. �

2.2. Existence of the solution. We prove in this section the existence
of a solution of the system (1.4).

We recall at first a useful result (see [10], Proposition 4.1) involving the
modified Bessel function of the second kind.
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Proposition 2.1. If −∞ < α < 1, the boundary value problem⎧⎪⎨
⎪⎩
xαy′′(x) = y(x) in (0,∞),

y(0) = 1,

lim
x→∞ y(x) = 0,

(2.6)

has a solution y ∈ C2−α ([0,∞)) of the form

y(x) = ckx
1
2K 1

2k

(
tk

k

)
,

where ck is the positive constant

ck =
21−

1
2k k−

1
2k

Γ
(

1
2k

) and k :=
2− α

2
.

We show in the next rows how the solution of the problem (1.4) arises,
using the Laplace transform. So, we look for a possible candidate of a
solution in the simplified situation in which U has a sub-exponential growth
in t, and in which the function ϕ is zero on the negative semi-axis (−∞, 0].
Under this additional hypothesis, we take the Laplace transform in t of the
system (1.4). Since the Laplace transform of the derivative of a function
gives

L(f ′)(ω) = ωLf(ω),
we get that⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ωLU(x, ω) =

1− 2s

x

∂LU
∂x

(x, ω) +
∂2LU
∂x2

(x, ω), in (0,∞) × C

LU(0, ω) = Lϕ(ω), in C

lim
x→+∞LU(x, ω) = 0, in C.

We define for any fixed ω ∈ C

f(x) := LU(x, ω), (2.7)

then f must be a solution of the system⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ωf(x) =

1− 2s

x
f ′(x) + f ′′(x) in (0,∞),

f(0) = Lϕ(ω),
lim

x→+∞ f(x) = 0.

(2.8)

We assume here that for any ω ∈ C, Lϕ(ω) = 0.

We take in Proposition 2.1, α = (2s− 1)/s (notice for s ∈ (0, 1) that
α ∈ (−∞, 1)) and y(x) to be the solution there introduced. We claim that
taking
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f(x) = Lϕ(ω)y
(
ωs
( x
2s

)2s)
,

f(x) is a solution of the system (2.8). Indeed, f(0) = Lϕ(ω) and

y′′
(
ωs
( x
2s

)2s)
= f ′′(x)

1

Lϕ(ω)ω
−2s(2s)4s−2x2−4s

+ f ′(x)
1− 2s

Lϕ(ω) (2s)
4s−2ω−2sx1−4s.

Since y(x) satisfies the system (2.6) we have that(
ωs
( x
2s

)2s)2s−1
s

y′′
(
ωs
( x
2s

)2s)
= y

(
ωs
( x
2s

)2s)
.

This implies that

ωf(x) = f ′′(x) + (1− 2s)x−1f ′(x),
which yields that f is a solution of (2.8).

Now, from Proposition 2.1 we have k = 1/(2s) and

y(x) =
21−s(2s)s

Γ(s)
x

1
2Ks

(
2sx

1
2s

)
.

And so we get that

f(x) = Lϕ(ω) 2
1−s

Γ(s)
ω

s
2xsKs(x

√
ω).

We use (2.7), take the inverse Laplace transform, and recall that the point-
wise product is taken into the convolution product to obtain that

U(x, t) =
21−s

Γ(s)
ϕ ∗ L−1

(
ω

s
2xsKs(x

√
ω)
)
(t).

And so, using (2.5), we get the following representation formula for the
system (1.4):

U(x, t) = ϕ ∗Ψs(x, t) =

∫ t

0
Ψ(x, τ)ϕ(t − τ) dτ.

We recall that we obtained the above formula by taking the function
ϕ to be vanishing in (−∞, 0). However, it is reasonable to suppose that
this formula holds true also for a function that is not a signal. Hence, we
take ϕ that does not vanish in (−∞, 0) and claim that ϕ ∗Ψs still defines
a solution of the problem (1.4). Indeed, we show the following existence
theorem:

Theorem 2.1. There exists a continuous solution of the problem (1.4)
given by

U(x, t) = Ψs(x, ·) ∗ ϕ(t) :=
∫
R

Ψs(x, τ)ϕ(t − τ) dτ.
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More precisely (inserting the definition (2.1)) we have that

U(x, t) =
1

4sΓ(s)
x2s
∫ ∞

0
e−

x2

4τ τ−s−1ϕ(t− τ) dτ. (2.9)

P r o o f. We define

Ax,τ :=

{
e−

x2

4τ τ−s−1, if τ > 0

0, if τ ≤ 0

and notice that

∂Ax,τ

∂x
=

{
− x

2τ
Ax,τ , if τ > 0

0, if τ ≤ 0.

Let

V (x, t) := 4sΓ(s)U(x, t) = x2s
∫
R

Ax,τϕ(t− τ) dτ,

where we have introduced the notation Ax,τ in (2.9). Taking the derivative
with respect to x of V (x, t) we have that

∂V

∂x
(x, t) = 2sx2s−1

∫
R

Ax,τϕ(t− τ) dτ − x2s+1

2

∫
R

Ax,τ

τ
ϕ(t− τ) dτ,

and that

∂2V

∂x2
(x, t) = 2s(2s− 1)x2s−2

∫
R

Ax,τϕ(t− τ) dτ

− (4s+ 1)x2s

2

∫
R

Ax,τ

τ
ϕ(t− τ) dτ +

x2s+2

4

∫
R

Ax,τ

τ2
ϕ(t− τ) dτ.

Then, by changing variables, we write

V (x, t) = x2s
∫
R

Ax,t−τϕ(τ) dτ,

and taking the derivative with respect to t, we get that

∂V

∂t
(x, t) = x2s

∫
R

[
x2

Ax,t−τ

4(t− τ)2
ϕ(τ)− (s+ 1)

Ax,t−τ

(t − τ)
ϕ(τ)

]
dτ.

We change back variables to obtain

∂V

∂t
(x, t) = x2s+2

∫
R

Ax,τ

4τ2
ϕ(t− τ) dτ − (s+ 1)x2s

∫
R

Ax,τ

τ
ϕ(t− τ) dτ.

By substituting these computations, we obtain that indeed V , hence U by
the definition of V , satisfies the equation

∂U

∂t
(x, t) =

1− 2s

x

∂U

∂x
(x, t) +

∂2U

∂x2
(x, t).

Moreover, using for x large enough the bound

x2se−
x2

4τ ≤Me−
1
4τ ,
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thanks to the Dominated Convergence Theorem and the limit

lim
x→+∞x2se−

x2

4τ = 0,

it yields that
lim

x→+∞U(x, t) = 0.

Furthermore, in (2.9) by changing the variable τ̃ = τ/x2 (but still writing
τ as the variable of integration), we have that

U(x, t) =
1

4sΓ(s)

∫ ∞

0
e−

1
4τ τ−s−1ϕ(t− τx2) dτ.

Since ϕ is bounded, by the Dominated Convergence Theorem, we have that

lim
x→0+

U(x, t) =
ϕ(t)

4sΓ(s)

∫ ∞

0
e−

1
4τ τ−s−1 dτ = ϕ(t),

according to (2.3). This proves the continuity up to the boundary of the
solution U, concluding the proof of the theorem. �

3. Relation with the Marchaud fractional derivative

We prove here the relation between the parabolic equation studied in
Subsection 2.2 and the Marchaud fractional derivative. Namely, the Mar-
chaud derivative is obtained as the trace operator of the extension given by
the solution of (1.4).

P r o o f o f T h e o r em 1.1. By inserting the expression of U(x, t) from
(2.9), we compute

lim
x→0+

x−2s (U(x, t)− ϕ(t))

= lim
x→0+

x−2s

(
1

4sΓ(s)

∫ ∞

0
x2se−

x2

4τ τ−s−1ϕ(t− τ) dτ − ϕ(t)

)
.

Recalling property (2.1) of the kernel, we have that

lim
x→0+

x−2s (U(x, t)− ϕ(t))

= lim
x→0+

x−2s

4sΓ(s)

∫ ∞

0
x2se−

x2

4τ τ−s−1 (ϕ(t− τ)− ϕ(t)) dτ

= lim
x→0+

1

4sΓ(s)

∫ ∞

0
e−

x2

4τ
ϕ(t− τ)− ϕ(t)

τ s+1
dτ.

Now

e−
x2

4τ ≤ 1

and since ϕ is bounded, we have that

|ϕ(t − τ)− ϕ(t)|
τ s+1

≤ 2Mτ−s−1 ∈ L1 ((1,∞)) .
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On the other hand, recalling that ϕ is C γ̄(R) we have that

|ϕ(t)− ϕ(t− τ)| ≤ cτ γ̄ .

Hence, since γ̄ > s,

|ϕ(t− τ)− ϕ(t)|
τ s+1

≤ cτ γ̄−s−1 ∈ L1 ((0, 1)) .

Using the Dominated Converge Theorem, we obtain

lim
x→0+

x−2s (U(x, t)− ϕ(t)) =
1

4sΓ(s)

∫ ∞

0
lim

x→0+
e−

x2

4τ
ϕ(t− τ)− ϕ(t)

τ s+1
dτ

=
1

4sΓ(s)

∫ ∞

0

ϕ(t− τ)− ϕ(t)

τ s+1
dτ.

(3.1)

And so for cs = 4sΓ(s),

−cs lim
x→0+

x−2s (U(x, t)− ϕ(t)) =

∫ ∞

0

ϕ(t) − ϕ(t− τ)

τ s+1
dτ = Dsϕ(t)

by definition (1.2). This concludes the proof of Theorem 1.1. �

4. Applications: A Harnack inequality
for Marchaud-stationary functions

In this part of the paper we prove a Harnack inequality for functions
that have a vanishing Marchaud derivative in a bounded interval J , namely
we prove here Theorem 1.2. For this purpose, we use a known Harnack
inequality for degenerate parabolic operators, that can be found in [6], see
Theorem 2.1. There, the result is given in its generality, in R

n. For the
reader’s convenience we recall in Proposition 4.1 this result in the case
n = 1.

4.1. Preliminary notions. We would like to point out that the result
given in [6] was proved for n ≥ 3. Nevertheless the same proof works also
for n = 1 with some adjustments. We recall here the hypotheses we need,
adapted in our case n = 1. It is worth to say that this problem has been
studied in a more general fashion in [13] and [14].

The degenerate parabolic equation

w(x)
∂u

∂t
=

∂

∂x

(
w(x)

∂u

∂x

)
, (4.1)

is given in Q = (−R,R) × (0, T ), for R > 0. The weight w has to sat-
isfy an integrability condition (also known as a Muckehoupt, or A2 weight
condition), given by
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sup
J

(
1

|J |
∫
J
w(x) dx

) (
1

|J |
∫
J

1

w(x)
dx

)
= c0 <∞, (4.2)

for any interval J ⊆ (−R,R). The constant c0 is indicated as the A2

constant of w.
In this particular case we give here in (4.1), the conductivity coefficient

(i.e. the coefficient in front of the x derivative) and the specific heat (the
coefficient of the t derivative) coincide. A more general form of the equation
in R can be given in these terms:

w(x)
∂u

∂t
=
∂u

∂x

(
a(x)

∂u

∂x

)
, (4.3)

i.e. when the conductivity and the specific heat are not equal. In that case,
one has to require, besides condition (4.2), that

λ−1w(x) ≤ a(x) ≤ λw(x).

In addition, we consider the functional space

W :=

{
u ∈ L2(0, T ;H1

0 (J,w)) s.t.
∂u

∂t
∈ L2(0, T ;L2(J,w))

}
.

We denote here by L2(J,w), the Banach space of measurable functions u
with finite weighted norm

‖u‖2,w;J =

(∫
J
|u|2w dx

)1/2

<∞,

by H1(J,w) the completion of C∞(J) under the norm

‖u‖1,w;J =

(∫
J
(u2 + |∂xu|2)w dx

)1/2

and by H1
0 (J,w) the completion of C∞

0 (J) under the norm

‖u‖1,w;J =

(∫
J
|∂xu|2w dx

)1/2

.

The time dependent Sobolev space L2
(
0, T ;H1

0 (J,w)
)
is defined as the set

of all measurable functions u such that

‖u‖L2(0,T ;H1
0 (J,w)) :=

(∫∫
J×(0,T )

|u(x, t)|2w(x) dx dt
) 1

2

<∞.

In this setting, we introduce the notion of weak solution of the problem
(4.1).
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Definition 4.1. We say that u ∈ L2(0, T ;H1(J,w)) is a weak solution
of (4.1) in J × (0, T ) if, for every η ∈ W, such that η(x, 0) = η(x, T ) = 0
for any x ∈ J we have that∫∫

J×(0,T )
w(x)

(
∂u

∂x

∂η

∂x
− u

∂η

∂t

)
dx dt = 0.

We have the next proposition (see for the proof Theorem 2.1 in [6]).

Proposition 4.1. Let u be a positive solution in (−R,R)× (0, T ) of
(4.1) and assume that condition (4.2) holds, with constant c0. Then there
exists γ = γ(c0) > 0 such that

sup

(− ρ
2
, ρ
2)×

(
t0− 3ρ2

4
,t0− ρ2

4

) u ≤ γ inf
(− ρ

2
, ρ
2)×

(
t0+

3ρ2

4
,t0+ρ2

)u

holds for t0 ∈ (0, T ) and any ρ such that 0 < ρ < R/2 and [t0−ρ2, t0+ρ2] ⊂
(0, T ).

Remark 4.1. The reader can easily imagine the general situation in
any dimension as explicated in Theorem 2.1 in [6], where the coefficient
a(x) in (4.3) is a matrix and the domains are cylinders. We have stated
the Harnack inequality in (0, T ). Nevertheless with a change of coordinates
in space and time, we can always say that the Harnack inequality holds in
any subset of (R1, R2)× (τ1, τ2), where R1, R2, τ1, τ2 ∈ R.

4.2. Reflection of the solution. We consider here that Dsϕ(t) = 0 in
an interval J . By taking the reflection of the solution of problem (1.4), we
obtain a solution in a weak sense of (1.4) across x = 0.

It is useful to introduce a weak version of the limit lim
x→0+

x1−2s∂xU(x, t).

In this sense, we have:

Definition 4.2. We say that in a weak sense

lim
x→0+

x1−2s∂U

∂x
(x, t) = 0

if and only if, for any η ∈W such that η(x, 0) = η(x, T ) = 0 for any x ∈ J ,
we have that

lim
x→0+

∫ T

0
x1−2s∂U

∂x
η dt = 0. (4.4)
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Lemma 4.1. Let U : R× [0,∞) → R be a solution of the problem (1.4)
such that, in a weak sense, lim

x→0+
x1−2s∂xU(x, t) = 0. Then the extension

Ũ(x, t) :=

{
U(x, t), (x, t) ∈ [0,+∞)× (0, T )

U(−x, t), (x, t) ∈ (−∞, 0)× (0, T )

is a weak solution of

∂(|x|1−2sU)

∂t
(x, t) =

∂

∂x

(
|x|1−2s ∂U

∂x
(x, t)

)
(4.5)

in (−R,R)× (0, T ).

P r o o f. We claim that the extension Ũ is a weak solution of (4.5),
hence that ∫

(−R,R)×(0,T )
|x|1−2s

(
∂Ũ

∂x

∂η

∂x
− Ũ

∂η

∂t

)
dx dt = 0. (4.6)

We compute, integrating by parts

∫ T

0

(∫ R

0
x1−2s∂Ũ

∂x

∂η

∂x
dx

)
dt

=

∫ T

0
R1−2s∂Ũ

∂x
(R, t) η(R, t) dt − lim

x→0

∫ T

0
x1−2s∂U

∂x
η dt

−
∫ T

0

(∫ R

0

∂

∂x

(
x1−2s∂Ũ

∂x

)
η dx

)
dt

=

∫ T

0
R1−2s∂Ũ

∂x
(R, t)η(R, t) dt −

∫ T

0

(∫ R

0
x1−2s∂Ũ

∂t
η dx

)
dt,

where we have used the weak limit in (4.4) and the fact that Ũ solves
equation (4.5). In the same way, one obtains that

∫ T

0

(∫ 0

−R
(−x)1−2s ∂Ũ

∂x

∂η

∂x
dx

)
dt =

∫ T

0
R1−2s∂Ũ

∂x
(−R, t)η(−R, t) dt

−
∫ T

0

(∫ 0

−R
(−x)1−2s ∂Ũ

∂t
η dx

)
dt,

therefore, by summing up,



AN EXTENSION PROBLEM FOR THE FRACTIONAL . . . 881

∫
(−R,R)×(0,T )

|x|1−2s ∂Ũ

∂x

∂η

∂x
dx dt

=

∫ T

0
R1−2s

(
∂Ũ

∂x
(R, t)η(R, t) − ∂Ũ

∂x
(−R, t)η(−R, t)

)
dt

−
∫ T

0

(∫ R

−R
|x|1−2s ∂Ũ

∂t
η dx

)
dt.

Hence∫
(−R,R)×(0,T )

|x|1−2s

(
∂Ũ

∂x

∂η

∂x
− Ũ

∂η

∂t

)
dx dt

=

∫ T

0
R1−2s

(
∂Ũ

∂x
(R, t)η(R, t) − ∂Ũ

∂x
(−R, t)η(−R, t)

)
dt

−
∫ T

0

(∫ R

−R
|x|1−2s

(
∂Ũ

∂t
η − Ũ

∂η

∂t

)
dx

)
dt

=

∫ T

0
R1−2s

(
∂Ũ

∂x
(R, t)η(R, t) − ∂Ũ

∂x
(−R, t)η(−R, t)

)
dt

−
∫ R

−R
|x|1−2s

(
Ũ(x, T )η(x, T ) − Ũ(x, 0)η(x, 0)

)
dx

= 0,

since η(x, T ) = η(x, 0) = 0 and η(R, t) = η(−R, t) = 0. This is the claim in
(4.6), and we conclude the proof of the lemma. �

4.3. The Harnack inequality for Marchaud stationary functions.
We show here that the Harnack inequality for Marchaud stationary func-
tions can be deduced from the Harnack inequality associated with the ex-
tension operator.

The interested reader can also see [5] for the proof (using the extension
operator) of the Harnack inequality for the fractional Laplacian, and [7] for
the inequality for other types of nonlocal operators. In addition, we also
point out [10] for the case of the fractional subelliptic operators in Carnot
groups and [25] for the fractional harmonic oscillator.

P r o o f o f Th e o r em 1.2. We consider U to be the extension of ϕ,
as introduced in Theorem 1.1. Since ϕ is nonnegative, given the explicit
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solution U in Theorem 2.1, the function U is also positive. Now, we reflect
U and obtain Ũ , as we have done in Lemma 4.1.

We prove at first the theorem when J = (0, T ). Since Dsϕ(t) = 0 in
(0, T ), we have by definition that

lim
x→0+

x−2s∂U

∂x
(x, t) = 0,

and thanks to Lemma 4.1, we obtain that Ũ is a weak solution of (4.5) in,
say, (−R,R) × (0, T ) for a fixed arbitrary R > 0. Moreover, the function
|x|1−2s satisfies the condition (4.2), and according to Proposition 4.1, we
have that

sup

(− ρ
2
, ρ
2)×

(
t0− 3ρ2

4
,t0− ρ2

4

) Ũ ≤ γ inf
(− ρ

2
, ρ
2)×

(
t0+

3ρ2

4
,t0+ρ2

) Ũ .

It suffices now to slice the domain at x = 0 to obtain that

sup(
t0− 3ρ2

4
,t0− ρ2

4

)U(0, t) ≤ γ inf(
t0+

3ρ2

4
,t0+ρ2

)U(0, t),

hence

sup(
t0− 3ρ2

4
,t0− ρ2

4

)ϕ(t) ≤ γ inf(
t0+

3ρ2

4
,t0+ρ2

)ϕ(t)

for any ρ such that 0 < ρ < R/2 and [t0 − ρ2, t0 + ρ2] ⊂ (0, T ).

Now, in order to prove that the Harnack inequality holds on any interval
J ⊂ R, one considers a translation of U , namely for any θ ∈ R, the function
Uθ(x, t) := U(x, t + θ), and reflects it as in Lemma 4.1. Then Ũθ is a

weak solution of (4.5), and Ũθ(0, t) = ϕ(t + θ). One obtains then, as a
consequence of the Harnack inequality for the solution Uθ, the following:

sup(
t0− 3ρ2

4
,t0− ρ2

4

)ϕ(t+ θ) ≤ γ inf(
t0+

3ρ2

4
,t0+ρ2

)ϕ(t+ θ)

for any ρ such that 0 < ρ < R/2 and [t0 − ρ2, t0 + ρ2] ⊂ (0, T ). Therefore

sup(
t0− 3ρ2

4
,t0− ρ2

4

)ϕ(t) ≤ γ inf(
t0+

3ρ2

4
,t0+ρ2

)ϕ(t)

for any ρ such that 0 < ρ < R/2 and [t0 − ρ2, t0 + ρ2] ⊂ (θ, T + θ). As θ
and R are arbitrary, one concludes that

sup
(t0− 3δ

4
,t0− δ

4)
ϕ(t) ≤ γ inf

(t0+ 3δ
4
,t0+δ)

ϕ(t)

for any δ > 0 such that [t0 − δ, t0 + δ] ⊂ J . This concludes the proof of
Theorem 1.2. �
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Remark 4.2. We would like to point out that the Harnack type in-
equality obtained in Theorem 1.2 can be equivalently stated as follows. Let
us define for every δ > 0 and for every τ ∈ R the sets:

I(τ, δ) = [τ − 15

8
δ, τ +

1

8
δ],

I+(τ, δ) = [τ − 15

8
δ, τ − 7

4
δ],

I−(τ, δ) = [τ − 1

8
δ, τ +

1

8
δ].

With this notation, the Harnack inequality gives that for every I(τ, δ) ⊂ J

sup
I+(τ,δ)

ϕ ≤ γ inf
I−(τ,δ)

ϕ.

5. Backward equation

We now consider the case of the right Marchaud fractional derivative,
denoted by Ds−ϕ. The following result is true:

Theorem 5.1. Let s ∈ (0, 1) and γ̄ ∈ (s, 1] be fixed. Let ϕ ∈ C γ̄(R)
be a bounded function and let U− : [0,∞) × R → R be a solution of the
problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− ∂U(x, t)

∂t
=

1− 2s

x

∂U(x, t)

∂x
+
∂2U(x, t)

∂x2
, (x, t) ∈ (0,∞) × R

U(0, t) = ϕ(t), t ∈ R

lim
x→+∞U(x, t) = 0.

(5.1)

Then U− defines the extension operator for ϕ, such that

Ds
−ϕ(t) = − lim

x→0+
csx

−2s(U−(x, t) − ϕ(t)), where cs = 4sΓ(s).

We do not repeat all the computations, that are very similar to the case
of the left Marchaud-derivative Ds ≡ Ds

+.

We only point out that if U− is a solution of (5.1), then U−(x, t) =
U(x,−t), where U is the solution of the differential equation in (1.4). As
in Theorem 2.1, we get that

U−(x, t) =
1

4sΓ(s)
x2s
∫ ∞

0
e−

x2

4τ τ−s−1ϕ(t+ τ) dτ.

Recalling the computations in (3.1) and the properties of the kernel Ψs (see
formula (2.2)), we obtain that
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lim
x→0+

x−2s (U−(x, t)− ϕ(t))

= lim
x→0+

x−2s

4sΓ(s)

∫ ∞

0
x2se−

x2

4τ τ−s−1 (ϕ(t+ τ)− ϕ(t)) dτ

= lim
x→0+

1

4sΓ(s)

∫ ∞

0
e−

x2

4τ
ϕ(t+ τ)− ϕ(t)

τ s+1
dτ.

Then, using the same argument as in the proof of Theorem 1.1, we conclude
that

lim
x→0+

x−2s (U−(x, t)− ϕ(t)) =
1

4sΓ(s)

∫ ∞

0

ϕ(t+ τ)− ϕ(t)

τ s+1
dτ,

that is
Ds

−ϕ(t) = −cs lim
x→0+

x−2s (U−(x, t)− ϕ(t)) .

It is worth to say that D1−s
− Ds−ϕ(t) = −dϕ

dt
. Hence, using a different nota-

tion we can write that

Ds
+ϕ(t) =

(
d

dt

)s

ϕ, Ds
−ϕ(t) =

(
− d

dt

)s

ϕ.

6. Appendix

In the Appendix, we provide some details on the Marchaud derivative.

First of all, as stated in the introductory Section 1, the Marchaud frac-
tional operator Dsϕ is well defined for a bounded function ϕ ∈ C γ̄(R), with
γ̄ > s. Indeed, we have that:∫ ∞

0

ϕ(t)− ϕ(t− τ)

τ s+1
dτ =

∫ ∞

1

ϕ(t)− ϕ(t− τ)

τ s+1
dτ +

∫ 1

0

ϕ(t)− ϕ(t− τ)

τ s+1
dτ

= I1 + I2.

Since ϕ is bounded, we have

I1 ≤ 2‖ϕ‖L∞(R)

∫ ∞

1

1

τ s+1
dτ = Cs,ϕ.

Moreover, ϕ is Hölder hence in I2 we may write

|ϕ(t)− ϕ(t− τ)| ≤ cτ γ̄ .

Therefore,

I2 ≤ c

∫ 1

0
τ γ̄−s−1 dτ ≤ Cs,γ̄ ,

recalling that γ̄ > s.
There are in the literature many other definitions of fractional deriva-

tives. The interested reader can consult, for instance, [19] or [24] for further
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details and possibly [21] or [22] for some recent remarks. Here, we recall
only the Riemann-Liouville fractional derivative, defined as

Ds
±f(t) =

±1

Γ(1− s)

d

dt

∫ ∞

0

f(t∓ τ)

τ s
dτ

for s ∈ C, 0 < �s < 1 (see [23], Definition 1.16) and the Caputo derivative
(see formulas 2.4.17 and 2.4.18 in [15]), given by

Ds
±f(t) :=

±1

Γ(1− s)

∫ ∞

0

f ′(t∓ τ)

τ s
dτ.

The definitions of Caputo and Riemann-Liouville are related to the Mar-
chaud definition. Indeed, as one can see in formula (13.2) in the monograph
[24], the Marchaud derivative is an extension of Riemann-Liouville’s, with
weaker conditions on the function f . For a sufficiently smooth f (say
absolutely continuous, for instance), integrating by parts in the Riemann-
Liouville definition, one can deduce the Marchaud derivative (see also The-
orem 1.17 in [23]).

As a further remark, the Marchaud derivative coincides with the notion
of fractional derivative given by Grünwald and Letnikov, see [12], [16], and
Theorem 20.4 in [24] for the proof.

We like also to remark that, just adapting the constant cs given in

Theorem 1.1 by fixing cs =
4sΓ(s)s
Γ(1−s) , in (1.5) we straightforwardly obtain the

definition (1.1). The advantage of this choice is that Ds±ϕ → ϕ as s → 0+

and Ds±ϕ → ϕ′ as s → 1−. Indeed, it is well known that the Marchaud
derivative is not defined for s = 0 and s = 1 because in those cases the
integral term in (1.1) (as in (1.2)) does not converge. However, one is able
to pass to the limit by using the constant term from definition (1.1), that
in this sense plays a fundamental role.

Acknowledgements

F. Ferrari wishes to thank the ERC grant EPSILON (Elliptic PDEs
and Symmetry of Interfaces and Layers for Odd Nonlinearities) 277749 and
the RFO grant of the University of Bologna, Italy, for the support.

References

[1] M. Abramowitz and I.A. Stegun (Eds.), Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. John Wi-
ley & Sons, Inc., New York; National Bureau of Standards, Washington,
DC (1984). Reprint of the 1972 Ed., Selected Government Publs.

[2] A. Bernardis, F.J. Mart́ın-Reyes, P.R. Stinga, and J.L. Torrea, Maxi-
mum principles, extension problem and inversion for nonlocal one-sided
equations. J. of Differential Equations 260, No 7 (2016), 6333–6362;
also arXiv:1505.03075v1 (2015).



886 C. Bucur, F. Ferrari

[3] C. Bucur, Local density of Caputo-stationary functions in the space of
smooth functions. arXiv:1506.07004 (2015).

[4] P.L. Butzer and U. Westphal, An introduction to fractional calculus.
In: Applications of Fractional Calculus in Physics, World Sci. Publ.,
River Edge, NJ (2000), 1–85.

[5] L. Caffarelli and L. Silvestre, An extension problem related to the
fractional Laplacian. Comm. Partial Differential Equations 32, No 8
(2007), 1245–1260.

[6] F. Chiarenza and R. Serapioni, A remark on a Harnack inequality
for degenerate parabolic equations. Rend. Sem. Mat. Univ. Padova 73
(1985), 179–190.

[7] A. Di Castro, T. Kuusi, and G. Palatucci, Nonlocal Harnack inequali-
ties. J. of Functional Analysis 267, No 6 (2014), 1807–1836.

[8] P. Dyke, An Introduction to Laplace Transforms and Fourier Series.
Springer Undergraduate Math. Ser., Springer, London, 2nd Ed. (2014).

[9] E.B. Fabes, C.E. Kenig, and R.P. Serapioni, The local regularity of
solutions of degenerate elliptic equations. Comm. Partial Differential
Equations 7, No 1 (1982), 77–116.

[10] F. Ferrari and B. Franchi, Harnack inequality for fractional sub-
Laplacians in Carnot groups. Math. Z. 279, No 1-2 (2015), 435–458.
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