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Highlights of
Identification and Geometric Characterization of Lie
Triple Screw Systems and Their Exponential Images

Yuanqing Wu, Marco Carricato

• a geometric characterization of the Lie product and the Lie triple product of a generic
screw system.

• a systematic identification of all Lie triple screw systems of se(3), by an approach based
on both algebraic Lie group theory and descriptive screw theory.

• derivation of the exponential motion manifolds of the Lie triple screw systems in dual
quaternion representation.

Highlights (for review)
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Abstract

The twist space of a plunging constant-velocity (CV) coupling with intersect-
ing shafts consists, in all configurations, of a planar field of zero-pitch screws.
Recently, we reported an important discovery about this screw system: it is
closed under two consecutive Lie bracket operations, thus being referred to as a
Lie triple system; taking the exponential of all its twists generates the motion
manifold of the coupling. In this paper, we first give a geometric characteriza-
tion of the Lie product and the Lie triple product of a generic screw system.
Then, we present a systematic identification of all Lie triple screw systems of
se(3), by an approach based on both algebraic Lie group theory and descriptive
screw theory. We also derive the exponential motion manifolds of the Lie triple
screw systems in dual quaternion representation. Finally, several important
applications of Lie triple screw systems in mechanism and machine theory are
highlighted in the conclusions.
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Nomenclature

R revolute joint
S spherical-joint-equivalent subchain
E planar-joint-equivalent subchain

zero-pitch screw
infinite-pitch screw
finite-non-zero-pitch screw

SE(3) the special Euclidean group
se(3) the Lie algebra of SE(3)

ξ, ξ1, ξ2, . . . twists or screws
S generic screw system with unspecified type
Si,j the jth special i-system (see [2, Ch. 12])
S0
i,j jth special i-system whose finite-pitch screws all have zero pitch

L,Li,j ,L
0
i,j Lie product of S,Si,j and S0

i,j respectively: L = [S, S]
T ,Ti,j ,T

0
i,j triple product of S,Si,j and S0

i,j respectively: T = [[S, S], S]

1. Introduction

Methods for inferring finite motions from infinitesimal ones are of crucial
importance in kinematics of mechanisms and robotics [2, 3]. For example, a5

one degree-of-freedom (1-DoF) finite motion is a parameterized curve in the
displacement group SE(3), which may be integrated from its axode surface, a
parameterized curve in the Lie algebra se(3) of SE(3) [3, 4]. From mechanism
synthesis point of view, it is important to consider multi-DoF finite motions or
parameterized submanifolds of SE(3) that may be generated by the end-effector10

of an open-chain or closed-chain mechanism [5, 6, 7, 8, 9]. Several researchers
characterize the end-effector motion set of mechanisms by the more general
notion of algebraic varieties [10, 11]. In practice, we may always assume that
such varieties are submanifolds by restricting them to an open subset about the
identity element of SE(3).15

Inferring finite end-effector motions of mechanisms from their twist space 1

has been extensively studied in the literature, in particular in type synthesis
of parallel mechanisms [13, 5, 6, 7, 14, 8, 15, 9, 16, 17, 12, 1]. The methods of
inference involved in such works are mainly heuristic and developed on a case-
by-case basis. Hunt pointed out that the full-cycle mobility of a kinematic chain20

may be inferred from its twist space if the latter remains invariant for all con-
figurations [2]. The inferred finite motions are simply the connected subgroups
of SE(3), with their twist spaces being the corresponding Lie subalgebras of
se(3)[18, 5, 19]. For this reason, Lie subalgebras of se(3) are sometimes referred
to as invariant screw system (ISS) [12]. More generally, when the twist space25

of a mechanism remains invariant up to a rigid displacement under arbitrary

1The twist space of a mechanism is the vector space of all possible end-effector twists at
a given configuration. In other words, it is a vector subspace of the Lie algebra se(3) of the
special Euclidean group SE(3).
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(a) (b)

Figure 1: Examples of PSS serial generators [12]: (a) a ES-type serial chain; (b) EE-type serial
chain.

(a) S0
2,1 (b) S0

3,4

Figure 2: Screw systems of a CV coupling with intersecting shafts, where w1 and w2 are
the input and the output twist, respectively: (a) non-plunging coupling; (b) plunging cou-
pling. S0

2,1 comprises a planar pencil of instantaneous rotations converging into a point. S0
3,4

comprises a planar field of instantaneous rotations as well as an instantaneous translation
perpendicular to the plane.

finite motions away from singularities, thus having a constant class [20], the
mechanism is said to have a persistent screw system (PSS) of the end-effector
(see Fig. 1 for examples) [12]. The notion of PSS is important as it allows us
to expand the theoretical framework under which the inference of finite motion30

properties from instantaneous ones is guaranteed. The exhaustive derivation
and classification of all serial chains with an m-dimensional (m-D) PSS of the
end-effector is complete up to m ≤ 4 [21, 22, 23].

However, not all persistent motions are generated by serial chains. In a semi-
nal paper on the analysis and synthesis of CV couplings with parallel-kinematics35

structure [24], Hunt identified the twist space of a CV coupling with intersect-
ing shafts to be either the fourth special three-system (with zero-pitch screws),
denoted S0

3,4, or the first special two-system (with zero-pitch screws), denoted
S0
2,1, depending on whether plunging is allowed or not (see Fig. 2 and also [2,
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(a) (b)

Figure 3: Typical connecting chains of plunging CV coupling with intersecting shafts: (a) a
RSR chain; (b) a RER chain. Each pair of revolute joint twists (ξ+i , ξ

−
i ) remains mirror

symmetric about the bisecting plane.

Ch. 13.5]). Focusing, without loss of generality, on the plunging CV coupling,40

CV transmission is provided for any input and articulation angles if the twist
space always remains a S0

3,4 system, with all its screws lying on the bisecting
plane [24]. The persistence property of the coupling is enforced by a parallel-
kinematics architecture with prescribed types of connecting chains with five (in
some cases four) DoF. All of the latter respect mirror symmetry about the bi-45

secting plane (see Fig. 3 and also [24, 15]). The twist space of a CV coupling
with intersecting shafts, although not fixed at a particular location, remains
congruent to itself under arbitrary configuration changes, thus being persistent.
It is briefly stated in [24] and later proved in [21] that there exists no serial
chain whose twist space remains S0

3,4 for all its configurations. The serial 5-50

DoF connecting chains in a plunging CV coupling are not persistent either. For
example, the twist space of the 5R chain shown in Fig. 3(b) has a reciprocal
screw with zero pitch at a mirror symmetric configuration [24]; however, the
chain may also have configurations where the reciprocal screw has infinite pitch
[25]. This shows that the persistent behavior of S0

3,4 in a CV coupling is not the55

result of the in-parallel connection of higher-dimensional-PSS serial generators.
Bonev et al. [26] studied CV-like generators of S0

3,4 from a finite-motion per-
spective, by the so-called tilt-and-torsion orientation parameters. They pointed
out that the end-effector motion of a 3-RSR reflected tripod, which is a paral-
lel mechanism equivalent to a plunging CV coupling (see [2, 15, pp. 397]), has60

zero torsion for all its configurations. In other words, the reflected tripod has
a zero-torsion motion type2 [27]. It is further shown in [27] that the motion

2The motion type [16] or motion pattern [9] of a mechanism is characterized by a sub-
manifold Q of SE(3), with the twist spaces of the mechanism being tangent spaces of Q at
corresponding configurations. Once the motion type is given, the twist spaces can be derived
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type of a plunging CV coupling is exactly the image exp(S0
3,4) of S0

3,4 under the
exponential map exp 3. The fact that its tangent spaces are all copies of S0

3,4

can be readily verified by the half-angle property [28, 29].65

Through a series of recent studies, we discovered that the many geometric
properties of exp(S0

3,4) are best understood from a symmetric space viewpoint
[28, 29]. A symmetric space is a smooth manifold which has an inversion sym-
metry about every point [30]. The inversion symmetry condition for a screw
system S is [28, 29]:

∀ξ1, ξ2 ∈ S : eξ1eξ2eξ1 ∈ exp(S) (1)

Both S0
2,1 and S0

3,4 satisfy condition (1), turning exp(S0
2,1) and exp(S0

3,4) into
symmetric spaces. We showed in [29] that the inversion symmetry of S leads to
the mirror symmetric arrangement of joint axes in a CV coupling. The necessary
and sufficient condition for a screw system S to satisfy (1) is being closed under
two consecutive Lie bracket or commutator [19] operations, namely [30]

∀ξ1, ξ2, ξ3 ∈ S : [[ξ1, ξ2], ξ3] ∈ S (2)

The double commutator operation [[·, ·], ·] is sometimes referred to as a Lie
triple product [31]. A screw system S that satisfies (2) is called a Lie triple
system (LTS, see [30, pp. 78]). LTSs can be considered a generalization of Lie
subalgebras (or ISSs) of se(3), since taking exponentials of these screw systems
generates the corresponding motion manifolds. However, as shown by Hunt’s70

general theory of CV couplings, LTSs admit distinct and more complex type
synthesis rules compared to ISSs. Hence, it is important to identify all LTSs of
se(3) and investigate their type synthesis.

A full list of the LTSs of se(3), which all share the many geometric properties
of S0

2,1 and S0
3,4, is given in [28, 29] 4. However, details of their identification is

not reported therein. In this paper, accordingly, we provide the full derivation
and classification. Our main contribution here is to offer a more complete view
of the geometry of LTSs from both a Lie algebraic and screw system point of
view. So far, as the authors are aware of, this is the first time that two derived
screw systems of a screw system S, namely the Lie product [S, S]

[S, S] := { [ξ1, ξ2] | ∀ξ1, ξ2 ∈ S}

by differentiation.
3In this paper, we use exp to denote the exponential map from se(3) to SE(3) [19]. The

exponential of a twist ξ is simply denoted by eξ.
4It is worth pointing out that, after our early work in [28] and the presentation of the

preliminary version of this paper in [1], Selig proposed a slightly different classification of
LTSs for addressing optimal motion planning problems [32].
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and the Lie triple product 5 [[S, S], S]

[[S, S], S] := { [[ξ1, ξ2], ξ3] | ∀ξ1, ξ2, ξ3 ∈ S}

are systematically studied from a screw theoretic point of view. In addition,
by using a dual-vector representation for the screws in S, we may study the75

exponential manifolds of the LTSs as sub-varieties of the Study quadric, thus
offering more insight into the geometry of LTSs.

Without loss of generality, we base our identification process on the classi-
fication of screw systems provided in [2]. The classification of screw systems
provided by Hunt in [2] is exhaustive, even though Gibson and Hunt [20, 18]80

later refined such classification by distinguishing several sub cases. While on
the one hand these refinements increase the description complexity, on the other
they are not relevant for the purpose of our work. Accordingly, Hunt’s original
(and simpler) classification is used here.

The paper outline is as follows. In Sec. 2, we review concepts of Lie group85

theory and screw geometry with the help of dual-vector representation. In
Sec. 3, we give a geometric characterization of Lie products and Lie triple
products, and introduce the concept of LTSs. In Sec. 4, we provide a systematic
identification of the LTSs of se(3), by analyzing Hunt’s complete list of screw
systems. Finally, in Sec. 5, we derive the dual quaternion representation of the90

motion manifolds corresponding to the exponentials of the LTSs.

2. Definitions and notations

Denote the scalar and vector product of two vectors u,v ∈ R3 by u · v and
u × v, respectively. The dual-vector representation of the instantaneous twist
of a rigid body motion is given by [34, Ch. 12]:

ξ = µ(w + εv)

= µ(w + ε(q×w + hw))

= µ(1 + εh)(w + εq×w)

{
µ, h ∈ R
w,v ∈ R3

‖w‖ = 1

where the dual number ε satisfies ε2 = 0. ξ corresponds to the instantaneous
twist of a screw motion along the line with Plücker coordinate ξ◦ , w+εq×w,
where q is any point on the line, usually chosen to be w × v. The pitch, mag-95

nitude and dual magnitude are given by h = w ·v, µ and µ(1 + εh) respectively
[34]. We shall refer to ξ◦ as the axis of ξ. For the special case ‖w‖ = 0, ξ
defines an infinite-pitch screw along direction v, namely ξ = εv with ‖v‖ = 1.
The collection of all twists forms the 6-D vector space se(3), i.e. the Lie algebra
of SE(3) [19]. A screw system is a vector subspace of se(3).100

5The Lie product and Lie triple product have the same definition as the second and the
third term in the lower central series of a Lie algebra [33]. However, we find the former
locutions more easily intelligible for a non-specialized audience, since they may be related to
the familiar concepts of vector product u × v and vector triple product (u × v) ×w of 3-D
vectors u,v,w ∈ R3.
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Figure 4: Cylindroid of the general two-system S2,g with basis pitches α and β, α > β. The
length of the cylindroid is given by α− β, with the plane ij of the basis screws located in the
middle. The variation of the pitch along the screws of the cylindroid is illustrated by the solid
curve.

In particular, a two-system is spanned by two linearly independent screws,
and it may either have a general form S2,g or one of five special forms S2,j , j =
1, . . . , 5 [2, pp. 344]. The screw axes of a general two-system S2,g envelope a
cubic surface known as the cylindroid (see Fig. 4). S2,g admits two concurrent
and perpendicular screws with maximal pitch α and minimal pitch β, which105

we may use as basis screws of the system. For the purpose of our exposition,
the basis screws of a screw subspace are chosen, without loss of generality, by
reason of computational convenience.

Similarly, a three-system is spanned by three linearly independent screws,
and it may have either a general form S3,g or one of ten special forms S3,j , j =110

1, . . . , 10 [2, pp. 356]. The screw axes of a general three-system S3,g envelope
a pencil of ∞1 concentric hyperboloids as shown in Fig. 5. S3,g admits three
concurrent and perpendicular screws, which we use as basis screws (one has
maximal pitch α, another has minimal pitch γ, and the last has an intermediate
pitch β).115

The commutator [ξ1, ξ2] := 1
2 (ξ1ξ2−ξ2ξ1) ([19, pp. 212]) of two dual vectors

ξi = wi + εvi, i = 1, 2 is simply equal to the vector product [19, 5]:

[ξ1, ξ2] = ξ1 × ξ2 = −ξ2 × ξ1

= µ1µ2(w1 ×w2 + ε(w1 × v2 −w2 × v1))

= µ1µ2(1 + εh1)(1 + εh2)ξ◦1 × ξ◦2

It is clear that the commutator is a bilinear operator satisfying, respectively,
skew-symmetry and the Jacobi identity [19, 5], i.e.

ξ1 × ξ2 = −ξ2 × ξ1

and
(ξ1 × ξ2)× ξ3 + (ξ2 × ξ3)× ξ1 + (ξ3 × ξ1)× ξ2 = 0 (3)

In particular, [ξ, ξ] = 0,∀ξ ∈ se(3). The scalar product of two dual vectors
ξ1, ξ2 gives

ξ1 · ξ2 = µ1µ2(w1 ·w2 + ε(w1 · v2 + w2 · v1))

Given a unit twist ξ = (1 + εh)ξ◦, the screw motion about ξ with angle θ,
in dual quaternion representation (see [34]-12.4.4), is given by the exponential

7



Figure 5: Left: a general three-system S3,g with basis pitches α, β and γ, α > β > γ; equal-
pitch screws with h 6= β form a family of ∞1 reguli lying on concentric hyperboloids; right:
the screws of pitch β lie on a degenerate regulus consisting of two line pencils.

map
eθξ/2 = cos(θ̂/2) + sin(θ̂/2)ξ◦ (4)

where the dual angle θ̂/2 is defined as θ(1 + εh)/2 and
cos(θ̂/2) = cos(θ/2)− εhθ

2
sin(θ/2)

sin(θ̂/2) = sin(θ/2) + ε
hθ

2
cos(θ/2)

or, for a unit infinite-pitch screw ξ = εξ◦,

eθξ/2 = 1 + ε
θ

2
ξ◦ (5)

Here, we adopt a half dual angle in order to be consistent with the usual matrix
exponential eθξ [34, Ch. 15.2.2]. For simplicity, we shall hereafter denote sin(θ)
and cos(θ) by sθ and cθ, respectively.

Given the canonical basis i, j,k of R3 and a reference point o ∈ R3, we define
the following basis for se(3):

I = i + εo× i

J = j + εo× j

K = k + εo× k


εI = εi

εJ = εj

εK = εk

(6)

with commutator relations given by:
I× J = K

J×K = I

K× I = J


εI× J = I× εJ = εK

εJ×K = J× εK = εI

εK× I = K× εI = εJ


εI× εJ = 0

εJ× εK = 0

εK× εI = 0

8



(a) (b)

Figure 6: (a) Commutator of two zero-pitch screws ξ◦1 and ξ◦2 . N is a unit line along the
common perpendicular. (b): Commutator for two perpendicularly intersecting screws ξ1, ξ2
with pitches h1, h2. In the figures, the commutator operator is denoted by ⊗.

The commutator of two unit twists ξ1, ξ2 with pitch h1, h2 6=∞ is given by

ξ1 × ξ2 = (1 + εh1)(1 + εh2)ξ◦1 × ξ◦2

= (1 + ε(h1 + h2))ξ◦1 × ξ◦2 .

Since the commutator for two lines (see Fig. 6(a)) is given by [34]

ξ◦1 × ξ◦2 = sθ̂N

where θ̂ = θ + εd, and N is the common perpendicular line between ξ◦1 and ξ◦2 ,
we have

ξ1 × ξ2 = (1 + ε(h1 + h2))sθ̂N

= sθ(1 + ε(d cot(θ) + (h1 + h2)))N.
(7)

Hence, ξ1×ξ2 is a screw along N, with pitch d cot(θ)+(h1 +h2) and magnitude
sθ (see also [35]). In particular, when d = 0, θ = π

2 , the above equation simplifies
to ξ1 × ξ2 = (1 + ε(h1 + h2))N (see Fig. 6(b)). When h2 =∞ or h1 =∞, one
has

ξ1 × ξ2 = sθεN

The commutator vanishes if both h1 and h2 are infinite.

3. Lie Product, Lie Triple Product and Lie Triple System120

Definition 1. The Lie product L of a screw system S is the vector space
spanned by the commutator of all twists in S:

L , [S, S] = {ξ1 × ξ2 | ∀ξ1, ξ2 ∈ S} .

By bilinearity of the commutator, if ξ1, . . . , ξk is a basis of S, then the twists
ξi × ξj , i, j ∈ {1, . . . , k} (though not necessarily linearly independent) span L.

9



Definition 2. The Lie triple product T of a screw system S is the vector
space spanned by the triple products of all twists in S:

T , [[S, S], S] = [L, S] = [S,L]

= { (ξ1 × ξ2)× ξ3 | ∀ξ1, ξ2, ξ3 ∈ S} .

By bilinearity of the commutator, if ξ1, . . . , ξk is a basis of S, then the twists
(ξi × ξj) × ξl, i, j, l ∈ {1, . . . , k} (though not necessarily linearly independent)
span T . We say that S is a Lie triple system (LTS) if:

T = [[S, S], S] ⊆ S. (8)

In general, it is shown in [28, 29] that the exponential exp(S) of a screw
system S can be generated as in (1) if and only if S is a LTS. We shall give in
the next section an exhaustive identification of all such screw systems. Note that125

Lie subalgebras are automatically closed under the triple product, and therefore
are trivial LTSs. There are ten classes of Lie subalgebras, which correspond to
ten classes of connected Lie subgroups of SE(3) [19, 5]. The Lie subalgebras are
well known and, therefore, they will not be considered under the LTS framework.
The following theorem concerning LTSs holds [30, 36]. The proof is reported130

here for illustrative purpose.

Theorem 1. If S is a LTS, then L = [S, S] is a Lie subalgebra of se(3), i.e.:

∀ξ1 × ξ2, ξ3 × ξ4 ∈ L ⇒ (ξ1 × ξ2)× (ξ3 × ξ4) ∈ L

Proof. Since S is a LTS, we have T = [[S, S], S] ⊆ S. Given two general elements
ξ1 × ξ2, ξ3 × ξ4 of L, by skew-symmetry (2) and Jacobi identity (3), we have:

(ξ1 × ξ2)× (ξ3 × ξ4) = ((ξ3 × ξ4)× ξ2︸ ︷︷ ︸
∈S

)× ξ1

− ((ξ3 × ξ4)× ξ1︸ ︷︷ ︸
∈S

)× ξ2 ∈ L.

Therefore, L = [S, S] is closed under Lie product and is a Lie subalgebra.

Note that Theorem 1 is relevant for screw systems with dimension three or
higher, since the Lie product of a two-system is, in general, a one-system and,
thus, is automatically a Lie subalgebra. We also emphasize that Theorem 1135

provides a necessary condition for a screw system to be LTS. Hence, it may
be used to simplify the identification process for 3 to 5-D LTSs, by allowing
us to rule out screw systems that are not LTSs without computing their triple
product.

4. Identification of Lie Triple Screw Systems140

In this section, we shall verify the triple product closure condition (2) for all
screw systems of se(3) using Hunt’s classification (up to conjugation) of general
and special screw systems [2], thereby exhaustively identifying all Lie triple
systems.

10



Figure 7: Lie product and triple product of a general two-system S2,g .

Figure 8: Lie product and triple product of the first special two-system S2,1.

4.1. Two-systems145

4.1.1. S2,g and S2,1

In order to investigate whether a general two-system S2,g with basis pitches
α and β, α ≥ β, is a LTS, we choose the reference point o to be the center of
the system, and the basis (6) so that the basis screws lie on I and J (denoted Iα
and Jβ , respectively). It is clear from (7) that the Lie product L2,g is spanned
by a single screw along K with pitch α+ β, namely

Iα × Jβ = (1 + ε(α+ β))K = Kα+β .

The triple product T2,g is the following two-system:

T2,g = span(Iα+2β ,J2α+β)

where
Iα+2β = Jβ ×Kα+β , J2α+β = Kα+β × Iα.

T2,g shares the same center and basis lines as S2,g (see Fig. 7). Accordingly,
the LTS condition (8) , namely the former is contained in the latter, only when
their basis pitches are identical, namely{

α+ 2β = α

2α+ β = β
⇔ α = β = 0

which leads to the first special two-system S0
2,1 with two zero basis pitches (see

Fig. 8).

11



Figure 9: Lie product and triple product of the second special two-system S2,2.

Figure 10: Lie product and triple product of the fourth special two-system S2,4.

The above computation illustrates the efficacy of Hunt’s classification in
comparison to Gibson’s subtypes, which may be collectively verified by the150

same equation. It is interesting to note that the cylindroid of T2,g has the same
length as that of S2,g, but it is rotated 90◦ counter-clockwise about the K axis.
By this geometric reasoning alone, we may see that S2,g is not a LTS.

4.1.2. S2,2 and S2,3

When α =∞, β 6=∞, then S2,2 = span(εI,Jβ), and it is easy to verify that:

L2,2 = span(εK), T2,2 = span(εI) ⊂ S2,2.

Therefore, S2,2 is a LTS (see Fig. 9)6. When α = β = ∞, we end up with155

the third special two-system S2,3 = span(εI, εJ), namely the planar translation
algebra.

4.1.3. S2,4 and S2,5

Let β = −k2α for some positive real number k 6= 1 as α → ∞. Then, shift
the reference point o as shown in [2], and choose an appropriate basis i, j,k so
that S2,4 is given by

S2,4 = span(I, cζεI + sζεJ)

6Note that, here, β can either be 0 or take a finite non-zero real value, thus giving rise to
two classes of LTSs if the Gibson-Hunt classification [20, 18] is adopted.

12



S2,j L2,j T2,j

basis condition basis type basis type
S2,g Iα,Jβ α 6= β Kα+β S1,g Iα+2β ,J2α+β S2,g

S2,1 Iα,Jα α 6= 0 K2α S1,g I3α,J3α S2,1

S0
2,1 I,J K S1,g I,J S0

2,1 LTS

S2,2 εI,Jβ εK S1,s εI S1,s LTS
S2,3 εI, εJ N/A N/A N/A N/A subalg.
S2,4 I, cζεI + sζεJ ζ 6∈ {0, π/2} εI S1,s εK S1,s

S2,5 I, εI N/A N/A N/A N/A subalg.

Table 1: Lie products and Lie triple products of 2-systems. All subalgebras are highlighted
with background shading.

with cot ζ = 2k/(k2− 1), ζ 6∈
{

0, π2
}

. It is straightforward to see that (Fig. 10):

L2,4 = span(εK), T2,4 = span(εJ).

S2,4 is not a LTS since cζεI + sζεJ is the only infinite-pitch screw in S2,4 but is
not aligned with εJ, and therefore T2,4 6⊆ S2,4.160

The fifth special two-system emerges by setting k = 1, namely ζ = 0. In
this case, an appropriate basis (6) may be chosen so that:

S2,5 = span(I, εI).

S2,5 is the cylindrical algebra, and it comprises screws of all pitches along I.
In summary, we have identified two two-systems as nontrivial LTSs, namely

the first special two-system S0
2,1 = span(I,J), comprising a pencil of converg-

ing zero-pitch screws, and the second special two-system S2,2 = span(εI,Jβ),
comprising a planar pencil of parallel equal-pitch screws and an infinite-pitch165

screw perpendicular to the pencil plane. All two-systems, along with their Lie
product and Lie triple product, are listed in Table 1 for further reference.

4.2. Three-systems

4.2.1. Lie subalgebras

It is well known that the following three-systems are Lie subalgebras of se(3):170

• S0
3,2 with three zero-pitch basis screws, i.e. the spherical algebra, com-

prising all zero-pitch screws passing through a point (see Fig. 12 with
α = 0);

• S3,5, i.e. the planar (or helicoidal planar) algebra of all screws of equal
pitch parallel to a common direction, as well as infinite-pitch screws per-175

pendicular to this direction (see Fig. 13(b));

• S3,6, i.e. the spatial translation algebra of infinite-pitch screws along all
directions in space.
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Figure 11: The first special three-system S3,1 and its Lie product L3,1.

Figure 12: The second special three-system S3,2 and its Lie product L3,2.

4.2.2. S3,g, S3,1 and S3,2

Given a general three-system S3,g (see Fig. 5) with finite basis pitches α, β180

and γ, α ≥ β ≥ γ, we choose the reference point o to be the center of the system,
and the basis (6) so that the basis screws lie on K, I,J respectively (denoted
Kα, Iβ ,Jγ respectively).

If α = β or β = γ, S3,g becomes a first special three-system S3,1, as illus-
trated in Fig. 11. Equal-pitch screws with h 6= α form ∞1 reguli lying on a185

pencil of coaxial hyperboloids of revolution. Screws with pitch α form a planar
pencil located at the reference point o in the ki plane. The Lie product L3,1 is
also a S3,1 system, with basis pitches 2α and α + γ. In this case, equal-pitch
screws with h 6= α+ γ lie on the same hyperboloids as those of the original S3,1

system, but on the complementary reguli.190

If α = β = γ, S3,g becomes a second special three-system S3,2, as illustrated
in Fig. 12. S3,2 comprises a bundle of equal-pitch screws. Its Lie product L3,2

is also a S3,2 system with a bundle of equal-pitch screws with pitch twice as
that of the original system.

The Lie product L3,g is also a 3-system sharing the same center and basis
lines with S3,g, but with finite basis pitches β + γ, α+ γ, α+ β:

L3,g = span(Kβ+γ , Iα+γ ,Jα+β).

According to Theorem 1, S3,g is a LTS only if (meaning necessarily but not
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Figure 13: The fourth special three-system S3,4 and its Lie product L3,4.

sufficiently) L3,g is one of the Lie subalgebras listed in Sec. 4.2.1. Since both
S3,5 and S3,6 have one or more infinite basis pitches, the only possible case is
L3,g = S0

3,2 which is true if and only if

β + γ = α+ γ = α+ β = 0 ⇔ α = β = γ = 0

namely, if all basis pitches of the original system S3,g are zero. Therefore, S3,g195

is a LTS only if it coincides with the spherical algebra S0
3,2, thus being a trivial

LTS. The same reasoning applies to S3,1.

4.2.3. S3,3 and S3,4

When one basis pitch is infinite, say α =∞, i.e.

S3,3 = span(εK, Iβ ,Jγ),

we have
L3,3 = span(Kβ+γ , εI, εJ)

which is the Lie subalgebra S3,5. The triple product is given by

T3,3 = span(εK, Iβ+2γ ,J2β+γ).

The three-system is a LTS if and only if:{
β + 2γ = β,

2β + γ = γ.
⇔ β = γ = 0.

Therefore, only S0
3,4 (with β = γ = 0) is a LTS. The fourth special three-

system S3,4 and its Lie product L3,4 are shown in Fig. 13. In particular, S0
3,4200

consists of zero-pitch screws lying on a field of lines and an infinite-pitch screw
perpendicular to the field plane. Its Lie product L0

3,4 is the planar algebra S0
3,5.
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Figure 14: The seventh special three-system S3,7 and its Lie product L3,7.

Figure 15: The eighth special three-system S3,8, its Lie product L3,8 and triple product T3,8.

4.2.4. S3,7 and S3,8

Let γ = −k2α for some positive real number k 6= 1 as α → ∞, while β
remains finite. As with S2,4 and S2,5, conveniently shift the reference point o
and choose a basis i, j,k so that S3,7 is given by (see Fig. 14):

S3,7 = span(K, cζεK + sζεJ, Iβ).

with cot ζ = 2k/(k2 − 1), ζ 6= 0. Equal-pitch screws with h 6= β form ∞1 reguli
lying on a pencil of hyperbolic paraboloids. The screws of pitch β lie on a205

degenerate regulus consisting of two line pencils, one consisting of concurrent
lines and the other consisting of coplanar parallel lines.

The fact that:
L3,7 = span(sζεK− cζεJ, εI,Jβ).

fails to be a Lie subalgebra (it is instead a ninth special three-system S3,9) rules
out the possibility for S3,7 to be a LTS.

The eighth special three-system emerges by setting k = 1, i.e. ζ = 0. We
can choose an appropriate basis (6) so that S3,8 is given by (see Fig. 15):

S3,8 = span(K, εK, Iβ).
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Figure 16: The ninth special three-system S3,9, its Lie product L3,9 and triple product T3,9.

Figure 17: The tenth special three-system S3,10, its Lie product L3,10 and triple product
T3,10.

Equal-pitch screws with h 6= β form ∞1 reguli lying on a pencil of hyperbolic210

paraboloids, which have one line in common. The screws of pitch β lie on a
degenerate regulus consisting of two perpendicular line pencils, one consisting
of concurrent lines and the other consisting of coplanar parallel lines.

In this case, L3,8 and T3,8 are given by{
L3,8 = span(Jβ , εJ) = span(J, εJ)

T3,8 = span(K2β , εK, I, εI) = span(K, εK, I, εI)

T3,8 is the fifth special four-system S4,5, with dimension exceeding that of S3,8.
Thus T3,8 6⊆ S3,8 and S3,8 is not a LTS.215

4.2.5. S3,9 and S3,10

Using the same bases adopted for S3,7 and S3,8, we let β =∞. When ζ 6= 0,
we have S3,9, which is given by (see Fig. 16):

S3,9 = span(K, cζεK + sζεJ, εI)

Aside from a planar pencil of infinite-pitch screws spanned by εI and cζεK +
sζεJ, finite equal-pitch screws of S3,9 form ∞1 parallel planar pencils lying on
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S3,j L3,j T3,j

basis condition basis type basis type
S3,g Kα, Iβ ,Jγ α > β > γ Kβ+γ , Iα+γ ,Jα+β S3,g K, I,J, εK, εI, εJ se(3)
S3,1 Kα, Iα,Jγ α 6= γ Kα+γ , Iα+γ ,J2α S3,1 K, I,J2α+γ , εK, εI S5,g

S3,2 Kα, Iα,Jα α 6= 0 K2α, I2α,J2α S3,1 K3α, I3α,J3α S3,2

S0
3,2 K, I,J K, I,J S0

3,2 K, I,J S0
3,2 subalg.

S3,3 εK, Iβ ,Jγ β 6= γ Kβ+γ , εI, εJ S3,5 εK, Iβ+2γ ,J2β+γ S3,3

S3,4 εK, Iβ ,Jβ K2β , εI, εJ S3,5 εK, I3β ,J3β S3,4

S0
3,4 εK, I,J K, εI, εJ S3,5 εK, I,J S0

3,4 LTS

S3,5 εK, εI,Jγ εK, εI S2,3 εK, εI S2,3 subalg.
S3,6 εK, εI, εJ N/A N/A N/A N/A subalg.
S3,7 K, cζεK + sζεJ, Iβ sζεK− cζεJ, εI,Jβ S3,9 K, I, εK, εI, εJ S5,s

S3,8 K, εK, Iβ J, εJ S2,5 K,I,εK,εI S4,5

S3,9 K, cζεK + sζεJ, εI εI, εJ S2,3 εI, εJ S2,3

S3,10 K, εK, εI εJ S1,s εI S1,s LTS

Table 2: Lie products and Lie triple products of 3-systems. All subalgebras are highlighted
with background shading.

∞1 parallel planes perpendicular to i. It is easy to verify that:

L3,9 = span(εI, εJ), T3,9 = span(εI, εJ) 6⊆ S3,9

so that S3,9 is not a LTS.
The tenth special three-system arises by setting k = 1 (ζ = 0; see Fig. 17):

S3,10 = span(K, εK, εI).

Aside from a planar pencil of infinite-pitch screws spanned by εI and εK, S3,10

comprises screws of arbitrary finite pitch lying on parallel lines of a planar pencil
perpendicular to i. It is easy to verify that:

L3,10 = {εJ}, T3,10 = {εI} ⊂ S3,10.

and therefore S3,10 is a LTS.
In summary, we have identified two three-systems as nontrivial LTSs, namely

the fourth special three-system S0
3,4 = span(εK, I,J), comprising a field of zero-220

pitch screws, and the tenth special three-system S3,10 = span(εK,K, εI), com-
prising a planar pencil of parallel screws with arbitrary pitches. All the three-
systems along with their Lie product and triple product are listed in Table 2.

4.3. Four-systems

4.3.1. Lie subalgebras225

Only one four-system, namely S4,3:

S4,3 = span(εI, εJ,K, εK)

is a Lie subalgebra of se(3), known as the Schönflies algebra [19, 5]. It consists
of all finite-pitch screws along lines parallel to a common direction and infinite-
pitch screws along any direction in space.
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Figure 18: The general four-system S4,g and its Lie product L4,g .

4.3.2. S4,g and S4,1

Any four-system is characterized by a reciprocal two-system, whose recip-
rocal basis screws have pitches −α and −β. In the case of S4,g and S4,1, we
choose the reference point o to be the center point of the corresponding recip-
rocal two-system, and an appropriate basis (6) such that S4,g is given by (see
Fig. 18):

S4,g = span(Iα,Jβ ,K, εK).

As long as α, β are finite, both in the case of α 6= β and in the case α = β, the
Lie product:

L4,g = span(Iβ , εI,Jα, εJ,Kα+β)

= span(I, εI,J, εJ,Kα+β)

is a 5-D vector subspace and cannot be a Lie subalgebra. Therefore, neither230

S4,g nor S4,1 is a LTS.

4.3.3. S4,2

When the basis pitch α = ∞, we have the second special four-system S4,2

(see Fig. 19):
S4,2 = span(εI,Jβ ,K, εK).

The Lie product:

L4,2 = span(Iβ , εI, εJ, εK) = span(I, εI, εJ, εK)

is the Schönflies algebra. However, the triple product

T4,2 = span(εI,J, εJ,Kβ , εK) = span(εI,J, εJ,K, εK)

is a special five-system; then T4,2 6⊆ S4,2. Therefore, S4,2 is not a LTS.

4.3.4. S4,4 and S4,5

Let the basis pitches satisfy β = −k2α for some positive number k 6= 1 as
α→∞. Shift the reference point o and choose an appropriate basis i, j,k such
that S4,4 is given by (see Fig. 20)

S4,4 = span(I, cζεI + sζεJ,K, εK)
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Figure 19: The second special four-system S4,2 and its Lie product L4,2.

Figure 20: The fourth special four-system S4,4 and its Lie product L4,4.

with cot ζ = 2k/(k2 − 1), ζ 6= 0. We have:

L4,4 = span(sζεI− cζεJ,J, εJ, εK)

= span(εI,J, εJ, εK)

which is a Schönflies algebra, and

T4,4 = span(I, εI, εJ,K, εK)

which is a special five-system. Since T4,4 6⊆ S4,4, S4,4 is not a LTS.235

The fifth special four-system arises by letting k = 1 (and therefore ζ = 0;
see Fig. 21)

S4,5 = span(I, εI,J, εJ)

L4,5 = span(K, εK)

and
T4,5 = span(I, εI,J, εJ) = S4,5.

Therefore S4,5 is a LTS.
All four-systems along with their Lie product and triple product are listed

in Table 3.
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Figure 21: The fifth special four-system S4,5 and its Lie product L4,5.

S4,j L4,j T4,j

basis condition basis type basis type
S4,g Iα,Jβ ,K, εK α 6= β I,J,Kα+β , εI, εJ S5,g I,J,K, εI, εJ, εK se(3)
S4,1 Iα,Jα,K, εK I,J,K2α, εI, εJ S5,g I,J,K, εI, εJ, εK se(3)
S4,2 εI,Jβ ,K, εK I, εI, εJ, εK S4,3 J,K, εI, εJ, εK S5,s

S4,3 εI, εJ,K, εK εI, εJ S2,3 εI, εJ S2,3 subalg.
S4,4 I, cζεI + sζεJ,K, εK ζ 6∈ {0, π/2} J, εI, εJ, εK S4,3 I,K, εI, εJ, εK S5,s

S4,5 I,J, εI, εJ K, εK S2,5 I,J, εI, εJ S4,5 LTS

Table 3: Lie products and Lie triple products of 4-systems. All subalgebras are highlighted
with background shading.

4.4. Five-systems

4.4.1. S5,g240

A general five-system S5,g is reciprocal to a one-system with pitch −α.
Choose the reference point o to be a point on the axis of the system, and
an appropriate basis i, j,k such that S5,g is given by:

S5,g = span(I, εI,J, εJ,Kα).

It is straightforward to verify that:

L5,g = span(Iα, εJ,Jα, εI,K, εK) = se(3).

However, T5,g = [[S5,g, S5,g], S5,g] = [se(3), S5,g] = se(3) 6⊆ S5,g. Accordingly,
S5,g is not a LTS.

4.4.2. S5,s

The special five-system S5,s is given by

S5,s = span(I, εI,J, εJ, εK).

It is straightforward to verify that

L5,s = span(εI, εJ,K, εK)

which is a Schönflies algebra, and:

T5,s = S5,s.
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i j Si,j Li,j Ti,j

2
1 I,J K I,J
2 εI,Jβ εK εI

3
4 I,J, εK εI, εJ,K I,J, εK
10 εI,K, εK εJ εI

4 5 I, εI,J, εJ K, εK I, εI,J, εJ

5 1 I, εI,J, εJ, εK εI, εJ,K, εK I, εI,J, εJ, εK

Table 4: Lie triple screw systems of se(3) which are not Lie subalgebras (represented by basis
screws).

Therefore, S5,s is a LTS.
In this section, we have identified all Lie triple systems from Hunt’s complete245

classification of screw systems [2]. Altogether, there are six classes of screw
systems that fall in the category of Lie triple screw systems and, at the same
time, are not Lie subalgebras. Our results are summarized in Table 4.

5. Dual Quaternion Characterization of the Exponential Images of
LTSs250

The exponential images of the LTSs identified in Sec. 4 correspond to sym-
metric subspaces of SE(3) [29]. A full analysis of their geometric properties
and applications is developed in [29]. In this paper, we investigate symmetric
subspaces from a different perspective, namely their characterization by using
dual quaternions.255

Elements of SE(3) can be represented as points inRP7 under the dual quater-
nion representation [19, Ch. 9]:

g = a0 + a1I + a2J + a3K + b0ε+ b1εI + b2εJ + b3εK ∈ SE(3)

where I,J,K, εI, εJ, εK are as defined in (6). The homogeneous coordinate
(a0 : a1 : a2 : a3 : b0 : b1 : b2 : b3) satisfies the homogeneous quadratic constraint
a0b0 + a1b1 + a2b2 + a3b3 = 0, which defines a 6-D quadric in RP7 known as
the Study quadric (denoted Qs; see Fig. 22(a)). In particular, a pure rotation
about an unit vector w = (w1,w2,w3) with magnitude θ is given by:

eθw/2 = cθ/2 + sθ/2w = cθ/2 + sθ/2w1I + sθ/2w2J + sθ/2w3K

and a pure translation along a unit vector v = (v1, v2, v3) with magnitude t is
given by:

eεtv/2 = 1 +
t

2
εv = 1 +

t

2
v1εI +

t

2
v2εJ +

t

2
v3εK

Note that the ideal three-plane defined by:

A∞ := { (a0 : a1 : a2 : a3 : b0 : b1 : b2 : b3) | a0 = a1 = a2 = a3 = 0}

is completely contained in Qs, and it comprises the only elements on Qs that do
not represent elements of SE(3) (see Fig. 22(b)). We shall refer to Qs − A∞ '
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(a) (b)

Figure 22: (a) A 2-D analogue of the 6-D Study quadric Qs in RP7;(b) the subset of Qs that
corresponds to SE(3)

SE(3) as the set of proper dual quaternions. We shall also denote the ideal plane
by ε ∧ εI ∧ εJ ∧ εK, where ∧ is the projective span operator and ε, εI, εJ, εK
are the corresponding basis vectors.260

Closely related to our work is a series of studies on sub-varieties of the
Study quadric conducted by Selig [19, 37, 38]. Such sub-varieties arise either
in motions satisfying natural geometric constraints (such as the point-plane
constraint) [37], or in the dual quaternion representation of Lie subgroups of
SE(3) [38].265

5.1. LTSs containing only zero- or infinite-pitch screws

From (4) and (5), we see that the exponential image of a one-system spanned
by a zero-pitch or infinite-pitch screw ξ is given by:{

eθξ
◦/2

∣∣∣ ∀θ ∈ R} =
{
cθ/2 + sθ/2ξ

∣∣ ∀θ ∈ R} = 1 ∧ ξ◦

or {
eεθξ

◦/2
∣∣∣∀θ ∈ R} =

{
1 + ε

θ

2
ξ◦
∣∣∣∣∀θ ∈ R} = 1 ∧ εξ◦

It is a one-parameter subgroup of SE(3), and corresponds to a line spanned by
1 and ξ◦ (or εξ◦) that lies completely on Qs [19]. More generally, if a k-D screw
system S comprises only zero- or infinite-pitch screws, its exponential image is
given by:

expS = 1 ∧ S

which is a k-plane completely contained in Qs. Based on this observation, we
can immediately deduce that the exponential image of S0

2,1, S0
2,2 and S0

3,4 are
given by: 

exp(S0
2,1) = 1 ∧ S0

2,1 = 1 ∧ I ∧ J

exp(S0
2,2) = 1 ∧ S0

2,2 = 1 ∧ J ∧ εI− εI
exp(S0

3,4) = 1 ∧ S0
3,4 = 1 ∧ I ∧ J ∧ εK− εK
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normal form proper submanifolds general form

A-plane
A0 = 1 ∧ I ∧ J ∧K spatial rotation group cosets of conjugates
A2 = 1 ∧K ∧ εI ∧ εJ planar Euclidean group cosets of conjugates
A∞ = ε ∧ εI ∧ εJ ∧ εK N/A invariant

B-plane
B1 = 1 ∧ I ∧ J ∧ εK exp(S0

3,4) (symmetric subspace) symmetric subspace
B3 = 1 ∧ εI ∧ εJ ∧ εK spatial translation group cosets

Table 5: 3-planes of the Study quadric. Note that left/right transformation of a symmetric
subspace is still a symmetric subspace.

where, in the latter two cases, the ideal point εI or εK (which does not corre-
spond to proper rigid transformations) is excluded. In general, the exponential
image of a one-system spanned by a finite non-zero pitch screw is not an alge-
braic sub-variety under dual quaternion coordinates. Consequently, S2,2 with270

β 6∈ {0,∞} is not an algebraic sub-variety of Qs either.
It is also interesting to note that according to Selig’s earlier study [19, 39],

exp(S0
3,4) (without removing the ideal point) is exactly the B-plane that meets

A∞ at a single point (called B1-plane in [39]), while exp(S0
2,1) and exp(S0

2,2) are
two 2-planes contained in exp(S0

3,4). For convenience, we recall Selig’s complete275

classification of 3-planes of Qs in Table 5 along with their proper submanifolds.
It should be clear that this classification is up to multiplication on the left
and/or right by proper dual quaternions [39]: such proper transformations are
linear transformations sending planes in Qs to planes of the same dimension,
and they leave both A∞ and Qs −A∞ ' SE(3) invariant. This should give rise280

to all 3-planes in Qs from the normal forms listed in Table 5 (see also Fig. 22(a)
for an analogue of the two families of 3-planes in Qs).

5.2. LTSs comprising cylindrical algebras

Consider now the exponential image of the fifth special two-system S2,5 =
span(I, εI) (the cylindrical algebra):

exp(
θ

2
I +

λ

2
εI) = cθ/2 + sθ/2I +

λ

2
ε(−sθ/2 + cθ/2I), ∀θ, λ ∈ R

It is shown in [19] that this is exactly the intersection of Qs with a three-space
1 ∧ I ∧ ε ∧ εI, a quadric prescribed by:{

a0b0 + a1b1 = 0

a2 = a3 = b2 = b3 = 0
(9)

This quadric contains an ideal line ε ∧ εI which does not correspond to proper
rigid transformations. By using this observation, we can deduce the exponential285

image of S3,10, S4,5 and S5,s.
First, it is clear from Fig. 17 that S3,10 comprises a parallel pencil of cylin-

drical algebras:

exp(S3,10) =
⋃
l∈R

exp(span(K + εlI, εK))

24



(a) (b)

Figure 23: (a) A 1-D analogue of an intersection quadric Qs with a subspace in RP7;(b) a 1-D
analogue of a tangential intersection of Qs with a subspace of RP7, resulting in a quadratic
cone with the vertex being the point of tangency (denoted by the blue dot).

where span(K + εlI, εK) is the cylindrical algebra along the line K + εlI =
k + ε(lj) × k. It is easy to verify that the exponential formula for this general
cylindrical algebra is:

exp(span(K + εlI, εK)) = (1 ∧ (K + εlI) ∧ ε ∧ εK) ∩Qs − ε ∧ εK

Consequently, we have:

exp(S3,10) =
⋃
l∈R

exp(span(K + εlI, εK))

=
⋃
l∈R

(1 ∧ (K + εlI) ∧ ε ∧ εK) ∩Qs − ε ∧ εK

= (1 ∧K ∧ ε ∧ εI ∧ εK− εI) ∩Qs − ε ∧ εK
= (1 ∧K ∧ ε ∧ εI ∧ εK) ∩Qs − ε ∧ εI ∧ εK

We have shown that exp(S3,10) corresponds to a quadric prescribed by (see
Fig. 23(a) for a 1-D analogue):{

a0b0 + a3b3 = 0

a1 = a2 = b2 = 0

which is a quadratic cone [40] in a 3-plane, with base quadric{
a0b0 + a3b3 = 0

a1 = a2 = b1 = b2 = 0

which is exactly a conjugate of the cylindrical group prescribed by (9), and
vertex εI (see Fig. 23(b) for a 1-D analogue).

By similar arguments, the exponential image of S4,5 is given by:

exp(S4,5) = (1 ∧ I ∧ J ∧ ε ∧ εI ∧ εJ) ∩Qs − ε ∧ εI ∧ εJ
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which corresponds to a quadric in a 5-plane prescribed by (see Fig. 23(a) for a
1-D analogue) {

a0b0 + a1b1 + a2b2 = 0

a3 = b3 = 0

The exponential image of S5,s is given by:

exp(S5,s) = (1 ∧ I ∧ J ∧ ε ∧ εI ∧ εJ ∧ εK) ∩Qs − ε ∧ εI ∧ εJ ∧ εK

which corresponds to a quadratic cone in a 6-plane, with base quadric exp(S4,5)
and vertex εK (see Fig. 23(b) for a 1-D analogue). Referring to [39], exp(S4,5)290

is exactly the space of all line symmetric motions (with a fixed base line).
In summary, all symmetric subspaces except exp(S2,2) (with β 6= 0) are

either projective subspaces (excluding a subspace of ideal points) that are com-
pletely contained in Qs, or quadrics (including quadratic cones) of Qs (i.e. inter-
section of Qs with a projective subspace of RP7; see [40, Ch. 1] for the concept295

of quadric and quadratic cone). Some of these spaces turn out to be certain
sub-varieties of Qs that have been discovered earlier. However, the connection
to LTSs and symmetric subspaces was never made. Hopefully, such connections
may be useful for analysis and design of over-constrained linkages and special
motion generators [37, 39, 41, 42, 11, 29].300

6. Conclusions

In this paper, we identified all six non-trivial Lie triple systems from Hunt’s
complete classification of screw systems [2], as shown in Table 4. The presented
derivation was based on both algebraic Lie-group theory and screw geometry.
We paid special attention to the geometric features characterizing each Lie triple305

system, as well as its associated Lie product and Lie triple product. Lie triple
screw systems have been playing, unknowingly, an important role in the type
synthesis of constant-velocity couplings and torsion-free parallel manipulators
for many years. We have expanded the known portfolio of screw systems that
have the same special algebraic and geometric properties as the screw systems310

characterizing the latter mechanisms, thus possibly opening the way to new
designs.

For example, we illustrated in [43] that the 2-D LTS S0
2,1 can be used to

provide an elegant kinematic analysis of linkage-based 2-D CV couplings such
as the Thompson CV joint [44] and Kocabas’s CV joint [45]. In [43], we imple-315

mented the same kinematic principles in the design of a novel 2-DoF parallel
wrist with both an ample rotation range and a fixed center of rotation com-
pared to Omni-wrist III [46]. In [29], we developed a systematic type synthesis
method for kinematic chains persistently generating Lie triple screw systems. A
systematic type synthesis for parallel mechanisms generating LTSs is currently320

being developed.
Aside from applications in mechanism analysis and synthesis, the symmetric

spaces corresponding to the Lie triple screw systems that we identified may

26



serve as important motion types for robotic applications. For example, exp(S0
2,1)

serves as the 2-D orientation workspace for robotic wrists (excluding the final325

roll axis, see [47]), quadcopters (row and pitch), and the spindle of a five-axis
machine [48]. The computational advantage of exp(S0

2,1) in comparison to the
traditional unit sphere model [47] may allow one to conduct spline interpolation
on the orientation workspace using the exponential map [49, 50].
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[28] Y. Wu, G. Liu, H. Löwe, Z. Li, Exponential submanifolds: a new kinematic
model for mechanism analysis and synthesis, in: 2013 IEEE International
Conference on Robotics and Automation (ICRA 2013), 2013, pp. 4177–405

4182.
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