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An Event-Driven Ultra-Low-Power
Smart Visual Sensor

Manuele Rusci, Davide Rossi, Michela Lecca, Massimo Gottardi, Elisabetta Farella, and Luca Benini

Abstract—In this paper we present an ultra-low-power smart
visual sensor architecture. A 10.6µW low-resolution contrast-
based imager featuring internal analog pre-processing is coupled
with an energy-efficient quad-core cluster processor that exploits
near-threshold computing within a few mW power envelope. We
demonstrate the capability of the smart camera on a moving ob-
ject detection framework. The computational load is distributed
among mixed-signal pixel and digital parallel processing. Such
local processing reduces the amount of digital data to be sent
out of the node by 91%. Exploiting context aware analog circuits,
the imager only dispatches meaningful post-processed data to the
processing unit, lowering the sensor-to-processor bandwidth by
31x with respect to transmitting a full pixel frame. To extract
high-level features, an event-driven approach is applied to the
sensor data and optimized for parallel runtime execution. A
57.7x system energy saving is reached through the event-driven
approach with respect to frame-based processing, on a low-power
MCU node. The near-threshold parallel processor further reduces
the processing energy cost by 6.64x, achieving an overall system
energy cost of 1.79µJ per frame, which results to be 21.8x and up
to 383x lower than, respectively, an event-based imaging system
based on asynchronous visual sensor and a traditional frame-
based smart visual sensor.

Index Terms—Smart Visual Sensor, Embedded System, Ultra-
Low-Power, Event-Driven.

I. INTRODUCTION

V ISION is considered as one of the richest sources to
explore and understand the surrounding world [1]. Pro-

cessing visual signals is crucial for many applications such as
video surveillance, traffic monitoring, people/object tracking,
life assisted living. All these applications would benefit from
always-on image sensors coupled with processing engines to
extract relevant visual information from raw pixels. Traditional
real-time image and video processing consist of computa-
tionally heavy tasks, typically requiring powerful computing
devices (e.g. GP-GPUs, SIMD-capable high speed processor
cores) and large memory footprint due to the massive amount
of pixels coming from frame-based image sensors.

In the context of wireless sensor nodes, the power con-
sumption of vision systems has to be scaled down according
to the available energy supply resources (i.e., small batteries
or harvesters) [2]. In this scenario, where low-power MCUs
(e.g. ARM Cortex M) replace high-end embedded processors,
wireless transmission becomes a major contributor to the
system energy consumption [3]. To reduce the cost of wireless
transmission, a system design strategy is to bring intelligence
closer to the sensor. Such intelligent systems, referred here
as smart visual sensors, not only acquire an image, but
also perform visual processing on it, generating a high-level
description of the observed scene. Hence, by exploiting local
processing, the node is able to extract high-level features from
the sensed data, and only relevant information are dispatched
through the wireless channel [4]. These intelligent systems
are usually composed of an image sensor with embedded
processing and digital interface that allows the communication

with an host system or with the user [1]. Energy-efficiency is
a key feature to provide the required computational power.

Several low power smart visual sensors have been proposed
in recent years, aiming at executing real-time vision tasks
with reduced energy budget [5]–[8]. The most straightforward
way to do it is to embed sensing and analog processing
into the same chip and to downscale the supply voltage.
However, more careful energy management and processing
strategies can be adopted to further reduce the overall power
consumption. Among others, one of the most critical is to
reduce the chip activity at the IOs. This can be done through
efficient data encoding and compressing and, whenever it is
possible, by forcing the sensor or part of the sensor into low-
power sleep mode. Although in-sensor analog computation
is extremely energy-efficient, it lacks programmability, which
makes such approach not suitable to extract middle- and high-
level features.

In this work, we present an Ultra-Low-Power (ULP) embed-
ded vision system, which is at the same time energy efficient
and highly flexible. The proposed smart visual sensor is
composed of an ULP 128x64 contrast-based imager [9], con-
suming 10.6µW at 10fps and typical pixel activity measured
during benchmarking tests, and a fully programmable 4-cores
ULP platform (PULP [3]), featuring a power consumption of
2.9mW at the frequency of 82MHz, and supply voltage VDD

of 0.56V. In this architecture, we combine the analog imager
processing, aimed to produce visually relevant events, with
the near-threshold, event-triggered and fully programmable
parallel digital processing, to extract high-level features. By
exploiting embedded analog processing, the imager internally
performs pixel-level contrast extraction, binarization and tem-
poral frame-differencing, and produces address-event coded
information, here referred as pixel events. The PULP platform
processes the arrays of visual events produced by the imager
to extract high-level information.

The processing of visual data is event-driven, inspired by
neuromorphic computing [10]. According to the event-driven
model, the digital computation occurs only when relevant
events are detected by the imager. Hence, if no moving objects
appear in the scene, the processing unit can be kept in deep
sleep mode. Moreover, only the relevant events are transferred
to the MCU’s main memory, resulting in significant saving of
communication bandwidth and energy with respect to tradi-
tional frame-based sensors. We demonstrate that, in our case-
study vision application, the overall processing energy cost
per frame can be reduced by a factor 383x with respect to an
embedded vision system which employs Commercial Off-The-
Shelf (COTS) ULP components and a traditional frame-based
computational approach consisting of frame segmentation and
connected components extraction.

Summarizing, the main contributions of this work are:
1) The definition and design of the system architecture, the

interfaces between sensor and digital processing engine
and the power management strategy.
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2) The implementation of event-driven algorithms for mov-
ing objects detection, which are optimized to exploit the
PULP parallel execution features.

3) The detailed quantification of the energy efficiency im-
provements of the proposed system with respect to a
traditional frame-based vision system based on a ULP
COTS sensor and MCU.

In the following, Section II gives an overview of the related
works and in Section III our embedded vision system is
presented. The event-driven approach and its implementation
and optimization are respectively discussed in sections IV and
V. In Section VI we report the performance evaluation of the
proposed system within the considered application framework
and Section VII concludes the paper.

II. RELATED WORK

Traditionally, smart cameras with in-node digital visual
processing capabilities show a power consumption of several
hundreds of mW [11]–[13]. Such systems feature VGA or
higher resolution cameras and can perform complex local
vision tasks (e.g. object detection and tracking). In [13],
authors report a power consumption of 514.8mW for imager
activity, not including MCU, external memory and trans-
mission module. Low-level strategies to reduce power on
visual sensor node are presented in [14]: authors perform
acquisition down-sampling at hardware-level on the MCU and,
after estimating the target location, only the correspondent
region-of-interest is transferred from the imager to the MCU’s
main memory. Alternative solutions have also been presented.
MeshEye [15] is a heterogeneous camera mote, which hosts
up to 8 low power and low resolution cameras (ADNS-3060
optical mouse sensors 30x30 pixel 6-bit grayscale) and a VGA
sensor. The core unit is an Atmel MCU, which incorporates
a 32 bit RISC architecture ARM7TDMI Thumb processor,
clocked at 55 MHz. To save energy, object motion detection is
performed on the low resolution cameras, which, if necessary,
wake up the VGA camera. Cyclops [16] is equipped with
an ATmega128 8-bit RISC microcontroller clocked at 7.3
MHz and a CMOS image sensor delivering RGB images at
CIF resolution. The authors report a consumption of 42mW
during image capturing, 23mW for MCU internal operation
and less than 1mW in sleep state. Because of its limited
computational power, Cyclops was employed for first-level
light video processing in a multi-tier camera network [17].

Technological advances in microelectronics have allowed
the integration of pixel-wise features extraction circuits on the
same die of the image sensor. These smarter vision chips,
such as [4], [5], [18], are able to perform analog early vision
processing and generate post-processed data. A 64x64 imager
with on-chip clustering-based processing has been presented
in [19]. The vision chip embeds an event-driven algorithm
while consuming 0.4mW at 100fps. It can localize up to three
regions in the scene corresponding to moving objects. The
sensor achieves high energy efficiency but it lacks flexibility,
which instead can be achieved by employing a digital signal
processor for data post-processing. On this side, Wi-FLIP
[20] couples a smart vision chip FLIP-Q, which incorporates
pixel-level processing elements with a commercial processing
platform [21], featuring a 32-bit PXA271 XScale processor.
Regarding such architecture, the low-power imager consump-
tion (5.6mW ) represents the 5.2% of the system power budget,
while the rest is due to the digital processor. In [22], authors
present a smart camera incorporating the SCAMP-3 vision

chip [23], an FPGA and an ARM Cortex-M3 MCU. By
exploiting early vision processing, a power consumption of
few tens of mW is measured for object tracking and counting.

In an effort to radically increase energy efficiency, bio-
inspired vision sensors attempt to mimic the extremely effi-
cient visual system of living organisms [24], [25]. Silicon reti-
nas have been implemented as array of pixels where each pixel
handles its own information and dispatches data by means
of an event-based asynchronous protocol, called address-event
representation (AER) [26]. A 120x120 event-based imager
for low-power mobile applications has been shown in [27],
consuming 500µW in normal mode and 250µW in stand-by
mode, which is an order of magnitude higher than the power
consumption of our imager. Event-driven data processing
has been introduced to extract relevant features from visual
signal early-processed by the retina, without any frame timing
reference [10]. This is in contrast with frame-based processing,
where all frames must be entirely processed pixel-by-pixel,
even if they do not contain any significant data, therefore
requiring high computational power and resources. An event-
driven approach for clustering events associated with moving
objects is presented in [28]. Computation on event-based
sensor data becomes extensive considering the random order,
either spatial and temporal, of the high amount of events de-
tected (a fast moving ball generates several thousands of events
per second [29]). Despite several of previous works exploit
desktop PCs for event-based data processing [29], [30], an
interesting embedded event-based system eDVS was presented
in [31] and used within robotic applications [32]. Such system
showed a power consumption as low as 23mW. To the best
of our knowledge, power management opportunities emerging
from the coupling of an ultra-low power processing platform
with an event-based sensors have not been fully explored in
the open literature. One shortcoming of purely asynchronous
sensors is that any processing unit coupled to such a sensor
should be able to handle the peak rate of asynchronous events,
which is generally orders of magnitude larger than the average.
On the contrary, our imager preserves the frame timing and
outputs the addresses of the significant (asserted) pixel-events,
while respecting the raster-scan order. Hence, with respect to
event based systems, the digital processing occurs at fixed-rate
on limited spatially ordered sets of events, allowing to better
fit memory and computational constraints of ultra-low-power
embedded systems and to exploit very energy-efficient power
management strategies.

In the proposed architecture, we combine the ultra-high-
efficiency of the ULP imager with near-threshold digital
parallel computing. Event-driven processing of imager data
is performed on the fully-flexible platform and optimized for
parallel runtime.

III. SYSTEM OVERVIEW

In this section we provide an overview of the system,
describing the main components. The block diagram of the
system is reported in Fig. 3.

A. Imager

The ultra low power imager [9] features analog pixel-level
spatial-contrast extraction and binarization. During the sensor
exposure time, each pixel estimates the spatial contrast (VC)
over a 3 pixel kernel (Fig. 1) and binarizes the value against
a threshold (VT ).
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VC(t1) = (VR − VTH) · (IPO − IPE

IPE
)

Fig. 1. Basic operating principle of contrast extraction.

The pixel detecting a contrast larger than the threshold is
asserted (active pixel). The basic pixel operations are shown in
Fig. 2. The pixel has a 1-bit memory that can be used to store
the binary contrast of the past frame to be compared with the
current one, in order to implement motion detection through
frame difference.

During the imager readout, only the active pixels are de-
livered off-chip, thus reducing the amount of data and the
sensor power consumption as well. Instead of dispatching a
bitmap, only the address of each asserted pixel is provided.
Therefore, in motion detection mode, the imager streams an
array of pixels, referred also as events, when moving objects
appear in the field of view.

B. PULPv3 SoC
PULP (Parallel processing Ultra-Low Power platform) is

a multi-core platform that exploits parallel, near-threshold
operation to satisfy the computational requirements of a
wide range of applications requiring near-sensors processing,
constrained by power budgets of few mW [3]. The third
embodiment of the PULP platform (PULPv3) is described
in the following. The compute engine is a cluster with
4 cores. The ISA and the core micro-architecture feature
optimizations for energy efficient digital signal processing,
supporting zero-overhead hardware loops with L0 I-buffer,
load and store operations embedding pointer arithmetic, SIMD
vector instructions and power management instructions [33].
The cluster features a 48kBytes multi-banked Tighly Coupled
Data Memory (TCDM) working as software-managed L1
scratchpad memory, avoiding memory coherency overhead
of data cache. The TCDM features 8 word-level interleaved
banks connected to the processors through a non-blocking
interconnect to minimize banking conflicts. The cores share
4Kb of instruction cache with support for broadcast to exploit
the Single Instruction Multiple Data (SIMD) behaviour of
several signal processing algorithms, further increasing energy

Fig. 2. Block diagram of the pixel.

Fig. 3. Block diagram of the proposed smart camera node architecture. The
smart vision chip coupled with the PULPv3 multicores processing platform.

efficiency. Off-cluster (64kB) L2 memory and peripheral ac-
cess latency is managed by a tightly coupled DMA optimized
for low power.

Several peripherals are available on the SoC, including SPI
interfaces with streaming support, I2C, I2S, a camera interface,
GPIOs, and a bootup ROM. In the context of this work, we
assume the ULP imager connected to the PULP SoC through
the camera interface. To provide high energy efficiency across
a wide range of workloads, the PULP cluster and the rest of the
SoC are in different power and clock domains. Fine-grained
tuning of the SoC and cluster frequencies is achieved through
two FLLs (Frequency-Locked Loops). A power management
unit (PMU) automatically manages transitions of the cluster
between the active and deep-sleep states. The cluster can be
put in deep-sleep state with a write operation on a memory
mapped control register, while the SoC goes in a low-power
wait-for-event mode. After going in sleep mode, the cluster
remains in idle mode until a configurable event is triggered.
Events can be issued by all IO peripherals, or by a timer.

IV. EVENT-DRIVEN MOVING OBJECT DETECTION

An event-driven approach for object localization and track-
ing using an event-based sensor was originally presented in
[28]: authors refer to ”cluster” as base computation element
to identify a group of pixel with circular bounding box and
the clustering of events is conducted according to distance
criterion. Drawing inspiration from this previous work, we
develop an event-driven clustering approach to be applied to
the array of N asserted pixel addresses, also named events,
dispatched from our imager at frame time k. The developed
algorithm sequentially scans the ordered array to group events
into rectangular-shaped clusters, named blobs. For each frame
k, the detected blobs are stored in a list L(k). Any blob B of
L(k) is described by the following features: the center of mass
xc(B, k), the rectangular-shaped bounding box, expressed
by its boundary coordinates [xmin(B, k), ymin(B, k)] and
[xmax(B, k), ymax(B, k)], and the number of pixels W (B, k)
within the blob (i.e. its area). Similarly to [28], we define a
seek-region, according to the following constraints:

Sx(B, k) = min{RMAX ,
xmax(B, k)− xmin(B, k)

2
+ δ}

Sy(B, k) = min{RMAX ,
ymax(B, k)− ymin(B, k)

2
+ δ}

where RMAX and δ are parameters of the algorithm and
the minimum condition assures that the region is kept within
certain limits. In these equations, Sx and Sy define the
distances of the seek-region limits from the center of mass.
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Fig. 4. Blob detected on an imager scene. The bounding box is depicted in
green while the seek region is represented in blue.

It is introduced to manage the blob formation, as explained
below. An example of seek region is reported in Fig. 4, along
with the bounding box and the center of mass of a detected
blob.

At frame time k + 1 the imager outputs a set of asserted
pixels {pi,k+1 := p(i, k+1)}i=0,..N . The following tasks are
executed on the array of events to extract the blob features:

I Blob Formation
Ia For each event pi,k+1, the system selects, if any, a blob
B of L(k) if pi,k+1 is within the seek-region and such
that the Euclidean distance between the center of mass
xc(B, k), and pi,k+1 is the smallest one.

Ib Pixel not assigned during the previous step, are sequen-
tially scanned to form new blobs. Events are processed
respecting the readout raster-scan order. The first event
not assigned at point (Ia) seeds a new blob. From the
second onward, the procedure tries to assign the pixel
to one of the new formed blobs according to the same
criteria of previous step. Centers of mass, bounding
boxes and seek regions need to be re-computed after
pixel assignment. If an event has not been assigned to
any new blob, it will seed a new one.

II Blob Filtering
The list L(k+1) is filtered by removing blobs with a too
small area. This task is implemented by two steps, that
filter respectively blobs formed based on previous frame
information (point (Ia)) and blobs formed from scratch
(point (Ib)).

III Blob Merging
Blobs whose bounding boxes have a large intersection are
merged together.

V. OPTIMIZATION OF THE EVENT-DRIVEN ALGORITHM
FOR ULP PARALLEL PROCESSING

This section describes the optimization of the algorithm
described in Section IV on the PULP platform. For embed-
ded vision systems, algorithm design and code optimization
are typically addressed to deal with smart camera limited
resources [1]. In this work, to speed-up the execution time
and consequently reduce the processor’s energy consumption,
two main actions are performed:
• Exploitation of PULPv3 instruction set extensions [33] to

improve the execution performance.
• Algorithm flow optimization to allow parallel workload

distribution over multi-core platform (Fig. 5).
The proposed event-driven approach works on events coor-

dinates. Therefore, algorithm implementation greatly benefits

from the PULPv3 SIMD vector operations. By using such
processor extension, the spatial coordinates of either pixel
events and blob features (center of mass, boundary coordinates
of bounding box, seek-region distances) can be efficiently
handled as 2x16 bit vectors.

To exploit the full computational power of PULPv3 4-
cores cluster, the computational load is distributed among
the available cores, by means of thread-level parallelism. Our
parallel strategy is validated against a video dataset described
in section VI-A. Typically, the Blob Formation phase of points
(Ia)-(Ib) of the algorithm represents the heaviest computational
section of the entire procedure. The operations at point (Ia) are
highly parallelizable and only few write operations are coded
in a critical section to handle mutually exclusive access to the
blob list L(k), that is instantiated as a shared variable. If a
pixel cannot be assigned during this step, it will be processed
for the formation of new blobs (point (Ib)). To preserve the
raster-scan order processing, the described operation has to
be executed sequentially on the remaining events by a single
core. This fact represents a critical bottleneck for the parallel
runtime. For instance, if no blobs are found in a frame, the blob
formation phase in the successive frame needs to be entirely
performed on a single core.

On average, 95.5% of the algorithm execution time is spent
on the blob formation phase, but only 36.2% of such time
is spent on the parallelizable block (point Ia). The filtering
(points (II)) of new blobs is executed on multiple cores, by
partitioning the number of blobs among all cores. Instead,
the filtering of blobs formed based on previous information is
performed on a single core because of the low number of items
(refer to Table II). The final merge operation (points (III)) gath-
ers all the remaining blobs and try to merge them, therefore the
code is sequentially executed. Applying Amdahl’s law reveals
a maximum speed-up of 1.4x, which appears to be very limited
with respect to maximum 4x.

To overcome this limitation, we modify the algorithm as
illustrated in fig. 5b. For each frame k, the event array pi,k
is partitioned in 4 array subsets, each of them managed by a
separate thread. Each thread handles the assignment of events
with respect to blob features computed in the previous frame
(point (Ia)) and the formation of blobs from scratch (point

(a)

(b)

Fig. 5. The event-driven algorithm flow is reported in (a) while in (b) the
performed optimization to target PULP 4-cores platform is depicted
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(Ib)). The former operation requires a locked shared memory
space where every thread pushes the assigned events. Each
blob memory space has its own lock to reduce contention. The
formation of blobs from scratch, which represents the major
issue for parallelization of the first algorithm implementation,
is now split into sub-task to be concurrently handled by
multiple cores: every thread builds a private list of new blobs
only processing the events of the sub-array while respecting
the raster-scan order. The new detected blobs can be then
independently filtered before the merging phase. When each
thread runs on one of the four cores of the platform, a
synchronization point is placed after filtering the private blob
list. Once all threads reach the barrier, a final task, executed
on a single core, filters the blobs formed with respect to
previous frame features, gathers all new filtered blobs and tries
to merge together all the extracted blobs. Tests on the video
dataset reveals that 94% of the execution time is spent on the
parallalizable block, which turns into a theoretical maximum
speed-up of 3.39x according to Amdahl’s law.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup
We measure the performance of the event-driven system on

a real-life application that consists in monitoring an indoor
space. The integration time is set to 100msec (correspond-
ing to 10fps), which is considered suitable for monitoring
applications. We collect six video sequences, each composed
by 340 frames. Benchmark videos, along with ground truth
images and post-processing information, are publicly available
at [34]. Some examples are shown in Figure 6. After collecting
camera data, we evaluate the performance of our parallel
implementation in comparison with a single core implementa-
tion. In particular, we run the single-core implementation on
both an ARM Cortex M4 based MCU and on a single core
of the PULPv3 cluster. For each video, the blob detection
starts by assuming that no blobs are previously identified.
The PULPv3 cycle-accurate FPGA emulator is used to gather
runtime statistics about the video processing. In Table I we
report some information about the benchmarking videos. The
videos show one (single-object) or two (multi-objects) people
moving in an indoor environment, with different speed and
direction. In the entire dataset, the 36% of the frames show
one moving person, the 3% show two moving persons, while
the rest of the frames does not contain moving people. The
number of events per frame and consequently the imager
bandwidth and the required memory footprint depend on the
context activity. The values of these features (denoted by ”Avg
Pixel”, ”Imager BW” and ”Memory”, respectively), averaged

(a) (b)

Fig. 6. The pictures on top show two frames as captured by the imager. The
detected blobs and their centers of mass are highlighted respectively in green
and red. The corresponding ground-truth images are displayed on bottom.

TABLE I
EXPERIMENTAL DATASET FEATURES

Benchmark Video vid0 vid1 vid2 vid3 vid4 vid5
Avg Pixels (N/ frame) 99.6 138.6 118.5 176.1 104.3 138.2
Memory [Bytes] 199 277 237 352 209 276
Imager BW [B/sec] 1992 2771 2370 3522 2085 2764
Avg MOPS 0.029 0.041 0.033 0.060 0.031 0.046
Peak MOPS 1.12 1.01 1.54 1.48 1.16 2.13

over the number of frames per video, are reported in Table
I. In addition, we report the number of average and peak
MOPS1 (”Avg MOPS” and ”Peak MOPS”), needed to execute
the algorithm.

B. Performance Evaluation
The event-driven local processing remarkably reduces the

amount of output data from the smart visual sensor. In Table II,
we report the number of detected blobs on each video sample
averaged over the number of frames (”Avg Detected Blobs”).
Since each blob descriptor occupies 32bytes of memory space,
we calculate the embedded system bandwidth to send out the
detected blob information (”System BW”) and the correspon-
dent bandwidth reduction with respect to that of the imager
reported in Table I. On average, the bandwidth is reduced by
91x.

To quantify the accuracy and precision of the event-driven
local processing, we manually crop the bounding boxes of
ground truth objects. Then we compute the following mea-
sures:

accuracy =
1

|M|
∑
i∈M

|GTi ∩BBXi|
|GTi ∪BBXi|

(1)

where M denotes the set of frames which contain moving
objects, |M| is the cardinality of M, GTi and BBXi are the
union sets of the bounding boxes of the ground-truth objects
and of the detected blobs, respectively;

precision =
ntarget

ntarget + nfp
(2)

recall =
ntarget

ntarget + nfn
(3)

where ntarget, nfp and nfn denote respectively the number
of marked ground-truth objects, false positives and false nega-
tives. On our video dataset we obtain an accuracy of 0.70 and
0.71 respectively for the event-driven blob detection algorithm
and its optimized version. The precision achieved is 0.95 for
the baseline low-parallelism algorithm, while the algorithm
optimized for parallelism achieves 0.93. Recall is above 0.98
on both cases. Hence, the even-based approach is effective and
its optimizations for increased efficiency do not compromise
accuracy, precision and recall.

In Table III, the proposed event-driven system is compared
with a traditional frame-based embedded vision system that

1Equivalent OpenRISC operations.

TABLE II
BLOB DETECTION RESULTS

Benchmark Video vid0 vid1 vid2 vid3 vid4 vid5
Avg Detected blob 0.45 0.70 0.68 1.17 0.60 0.77
System BW [B/sec] 144.0 224.0 217.6 374.4 192.0 246.4
BW Reduction 92.8% 91.9% 90.8% 89.4% 90.8% 91.1%
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TABLE III
EVENT-DRIVEN VS FRAME-BASED COMPARISON

Approach Avg Pixels Imager BW (KBps) Avg MOPS
Event Driven 129.2 2.52 0.040
Frame Based 8192 80 1.876
Gain 63.4x 31.7x 46.9x

uses an image sensor running at 10fps with 128x64 8bit
pixels resolution. The data bandwidth generated by the tra-
ditional imager is 80KBps, 31x higher than that of our
sensor thanks to the address coding readout style. Moreover, a
traditional system processes entire frames, hence the number
of operations does not significantly vary frame by frame.
For both the approaches, we report in the table the mean
number of operations per frame averaged over the videos
(”Avg MOPS”) needed to perform the clustering of foreground
pixels associated with moving objects. We note that in the
frame-based approach several filters have to be applied to each
frame (frame difference, binarization, dilation and erosion)
before extracting the connected components.

Figure 7 summarizes the execution time of the event-driven
filter on different platforms, with and without the algorithm
optimization of Section V. We report the number of clock
cycles normalized with respect to those required to run the
video benchmarks on an ARM-Cortex M4 core (exploiting
only 32-bit arithmetic instructions). On PULP single core,
the average execution time is reduced by 4% and a further
reduction of 25% is achieved by exploiting its ISA extensions
(indicated with label HW Ext in the figure). With the first
attempt of parallelization, intrinsically limited by Amdahl’s
law, a speed-up of 1.27 and a consequent execution time
reduction of 21% are obtained. The 4-thread algorithm version
(labelled with OPT in the figure) presents a total speed-up
of 2.5x instead of the ideal value 3.39x. The lower speed-
up is due to the unbalancing of threads concurrently running
on the 4 cores (48% of the overhead) and to the accesses
to critical section, parallelization overhead and contention in
L1 memory. By running the optimized version on the 4-cores
cluster, a further execution time reduction of 60% is obtained
with respect to that of not-optimized parallel implementation.

C. System Power Estimation
In this section we analyse the power consumption of the

presented event-driven system along with a comparison with

Fig. 7. Comparison of software execution time (clock cycles) for different al-
gorithm implementations. Values are normalized with respect to the execution
time of the not-optimized algorithm running on an ARM Cortex-M4 core.

TABLE IV
PULP PERFORMANCE AND POWER ESTIMATIONS

VDD
[V]

Max
Fre-
quency
[MHz]

Dynamic
Power
Density
[µW/MHz]

Leakage
Power
[µW]

Peak
Energy
Efficiency
[GOPS/W]

0.5 55 19 41 301
0.6 119 27 44 218
0.7 238 37 66 159
0.8 366 42 100 141
0.9 480 53 150 110
1.0 498 78 231 76

a COTS embedded vision system, which employs a traditional
frame-based computational model.

PULPv3 cluster power model is applied for the analysis of
processing energy costs. Fine-grained tuning of cluster voltage
allows the selection of the most energy-efficient operating
point. The cluster power densities, along with the maxi-
mum frequencies, are illustrated in table IV for several VDD

voltages. The peak energy-efficiency is evaluated considering
equivalent OpenRISC operations without ISA extension. The
power and frequency figures reported in the table are estimated
with Synopsys PrimeTime on the post-layout database of the
PULP cluster, which is implemented in 28nm UTBB FD-SOI
RVT technology [35]. The 28nm UTBB FD-SOI libraries used
for power and timing analysis are characterized for power
supplies ranging from 0.5V to 1.0V in the typical corner case
at the temperature of 25C. The activity file (.vcd) used for the
power analysis is extracted running a typical high-utilization
workload. In addition to the cluster power consumption, we
assume an active power consumption of 1mW for the SoC,
that includes L2, bus, clock and supply voltage generation and
IOs.

To estimate the processing energy cost per frame within
our vision application, we model the event-driven execution
as running to completion. Periodically, after imager readout,
both SoC and cluster regions are enabled for data processing.
When computation completes, the platform is put in deep sleep
mode. To estimate the average energy consumption within the
frame period we consider power consumptions of both active
mode and deep sleep mode. The number of cycles required
to execute the task, along with a given frequency, determines
the time period of active mode. For application with very low
duty cycle, the deep sleep power becomes relevant, or even
dominant. On PULPv3 platform, by considering the leakage

Fig. 8. PULPv3 processing energy cost per frame on different operating
points
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TABLE V
SYSTEM ENERGY COSTS ESTIMATION AND COMPARISON

Scenario Frame Based Event Driven
Frame-Based
Camera [38] +
STM32 [37]

Event-Based
Sensor [27] +
STM32 [37]

Our Imager [9]
+ STM32 [37]

Our Imager [9]
+ Apollo [36]

Our Imager [9]
+ PULPv3 [3]

Average pixels per Frame 8192 130 130 130 130
Imager Energy [µJ/frame] 62.2 28.4 1.06 1.06 1.06
Processing Clock Frequency [MHz] 26 26 26 24 82
Processing Active Power [mW] 8.6 8.6 8.6 2.7 2.9
Duty Cycle 72.1% 1.21% 1.21% 1.31% 0.11%
Processing Energy [µJ/frame] 623.7 10.82 10.82 3.67 0.73
System Energy [µJ/frame] 685.9 39.22 11.88 4.73 1.79

power of SoC, L2 memory and IO pads required to implement
the protocol with the imager, the deep sleep power amounts to
4.2µW . In this estimation, we consider a 32 kHz clock to drive
the SoC always-on region. Figure 8 illustrates the processing
energy cost per frame on several energy-efficient operating
points. The minimum energy point is found for a cluster
voltage of 0.56V (VBB = 0V ) and a maximum operating
frequency of 82MHz. Given this operating frequency, the
average application duty cycle results to be 0.11%, therefore
the deep sleep power assumes a relevant role for energy budget
requirements.

In table V the overall system energy cost per frame is com-
pared with other ultra low power solutions. Power consump-
tion measurements related to the image sensor are measured
on silicon samples [9]. We scale down the power consumption
according to sensor typical activity observed during the execu-
tion of our benchmarks. For comparison purpose, the memory
requirements of our vision application impose the selection of
alternative processing platforms with at least 32kBs memory
RAM. We refer to the Ambiq Apollo [36], which features an
ARM Cortex-M4F core and up to 64kBs RAM, and to the
off-the-shelf STM32L476 [37], an ULP MCU with an ARM
Cortex M4 core and 128kB SRAM. Among MCUs, Ambiq
Apollo achieves the lowest power in sleep mode, as 0.33µW,
and the highest reported energy efficiency (8.6MOPS/mW).
Its active power amounts to 2.77mW at maximum frequency
24MHz. On the other hand, the STM32L476 is an energy-
efficient COTS MCUs. It consumes 8.64mW in low-power-
run at 26MHs, while achieves 3.54µW in deep sleep mode2.
The processing energy costs for the MCU platforms, as it
was done for PULPv3, are computed according to a run-
until-completion behaviour. For fair comparison, we take into
account the processor clock cycles needed to run the optimized
algorithm on an ARM Cortex M4 core.

Moreover, in Table V our event driven system is compared
with a a traditional frame based vision system and with an
event-based imaging system composed by an STM32L476
MCU as processing unit coupled with, respectively, an ultra-
low-power CMOS imager [38] and an event-based camera
[27]. Both sensor power consumption are linearly scaled to
match the resolution and the frame-rate of our imager. In the
event-based imagining system, we define a time window as
long as our frame period and we assume to retrieve the same
data from the event-based sensor with respect to our imager
within this time window. As a consequence of these optimistic
assumptions, the system is able to exploit an efficient race-
to-halt run model and can be kept in deep sleep mode for

2As deep sleep mode, we refer to STM32L476’s Stop2 Mode

long time. We remark however that this optimized power
management strategy has not been presented yet, to the best
of our knowledge, in the open literature.

For every smart-camera scenario, both the image sensor and
the processing platform unit contribute to the system energy
cost. On the low power STM32 MCU, applying an event-
driven processing approach results in a 57.7x less energy cost
with respect to a frame-based scenario, due to the reduction
of either processing or imager energy cost. Thanks to the
parallel near-threshold operation, PULPv3 processor is much
more energy efficient compared to the others MCUs. Despite
the very low-utilization of the available computation power,
it reduces the processing energy cost per frame by 14.8x and
5x compared with respectively the STM32 and the Apollo.
Figure 9 reports the system energy reduction. By coupling
PULPv3 with the imager, our proposed node architecture
achieves an energy cost per frame of 1.79µJ, providing an
overall energy boost of almost 383x and 21.8x, in terms of
energy saving, compared to, respectively, a frame-based visual
system and an event-based imaging system based on ultra-low-
power asynchronous camera. If powered by a coin cell battery
with a capacity of 250mAh at 3V, the proposed smart sensor
node will ensure a battery-life of about 248 weeks, thanks to
the average power consumption of 17.9µW .

VII. CONCLUSION

In this work, we presented a smart camera sensor archi-
tecture, targeting ultra-low-power vision applications, and its
usage within a case-study of moving objects detection. The
system contains a contrast-based imager and an ultra-low-
power parallel processing platform (PULP). Besides the indi-
vidual low power consumption, the imager features continuous
analog processing to produce significant vision events. The

Fig. 9. System Energy Cost Comparison
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pixel address coding readout behaviour allows to reduce the
data bandwidth by 31x, compared to an imager that continu-
ously sends full pixel frames. High-level features are extracted
by means of event-driven processing on a fully programmable
multi-core platform. We describe the implementation and op-
timization strategies to target multi-cores embedded systems.
Compared to most common approaches, based on image
processing from traditional frame-based cameras, the event-
driven operation applied to an ultra-low-power MCU platform,
allows to reduce by more than 57.7x the system energy
processing per frame. We exploit the energy-efficient parallel
near-threshold processing on PULPv3 platform to further
reduce by 6.64x the energy cost, achieving a system energy
consumption of 1.79µJ per frame. The proposed architecture
leads to an overall energy boost of 383x and 21.8x with respect
to, respectively, a traditional frame-based visual system and
an event-base imaging system based on asynchronous visual
sensor. Powering the system with a coin cell battery will result
in about 248 weeks of battery life.
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