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Abstract. Semiconductor charge transfer (CT) cocrystals are an emerging class of molecular 

materials which combines the characteristics of the constituent molecules in order to tune 

physical properties. Cocrystals can exhibit polymorphism, but different stoichiometries of the 

donor-acceptor (DA) pair can also give different structures. In addition, the structures of the 

donor and acceptor as pristine compounds can influence the resulting cocrystal forms. We 

report a structural study on several CT cocrystals obtained by combining the polyaromatic 

hydrocarbon perylene with 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its fluorinated 

derivatives having increasing electronegativity. This is achieved by varying the amount of 

fluorine substitution on the aromatic ring, with TCNQ-F2 and TCNQ-F4. We find structures 

with different stoichiometries. Namely, the system perylene:TCNQ-F0 is found with ratios 1:1 

and 3:1, while the systems perylene:TCNQ-Fx (x=2,4) are found with ratios 1:1 and 3:2. We 

discuss the structures on the basis of the polymorphism of perylene as pure compound, and 

show that by a judicious choice of growth temperature the crystal structure can be in principle 

designed a priori. We also analyse the structural motifs taking into account the degree of charge 

transfer between the perylene donor and the TCNQ-Fx acceptors and the optical gap determined 

from infrared (IR) spectroscopy. This family of materials exhibits tuneable optical gaps in the 

near-IR (NIR), promising applications in organic optoelectronics. 
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INTRODUCTION 

Organic molecular materials for electronic applications are typically based on pi-conjugated 

systems. The extension of the pi-conjugation and the presence of heteroatoms determines the 

electronic structure and many of the resulting properties, although the molecular packing in the 

solid state plays a crucial role when transport of excitons or charges are of interest.1, 2 A more 

drastic approach in changing the properties of what are known as organic semiconductors is to 

combine materials in blends or cocrystals.3 Recently, donor-acceptor (DA) CT crystals 

attracted substantial attention as candidates for ambipolar charge carrier mobility organic 

semiconductor materials.4 This prediction, however, heavily relies on their crystal structure, 

because the supramolecular arrangement determines the bandwidth of the valence and 

conduction bands involved in the charge carrier transfer. Ideally, the bandgap, the bandwidth, 

and as a consequence the carrier transport characteristics could be tuned by performing small 

modifications to the donor or acceptor molecules in order to change their electronegativity. The 

issues in pursuing such an approach are intrinsically related to the crystal structure, since small 

variations in the chemical structure could promote novel unforeseen crystalline arrangements 

and polymorphs. In addition, if the DA pair of choice exhibits already polymorphism as pure 

compounds, i.e. exhibits different crystal structures, it is not immediately clear if 

polymorphism will be also encountered in the mixed crystal. In recent years the combination 

of aromatic hydrocarbons and halogenated acceptors attracted considerable attention for 

functional materials in electronics and photonics.4-7 It is also well known that some aromatic 

hydrocarbons exhibit polymorphism8, 9 and that the structure of halogenated compounds shows 

remarkable structural changes when more halogen atoms are inserted in the acceptor chemical 

skeleton. This is also one of the important aspects within the research focus of halogen 

bonding.10 

Polymorphism developed as a massive research field, due to the opportunities that it offers for 

crystal engineering,11 but also the challenges for structural purity in organic electronics 

applications.12-14 The study of polymorphs, that was initially concentrated on pharmaceuticals, 

dyes and pigments, has nowadays expanded towards other types of molecular materials such 

as semiconductors,15 superconductors,16 and also conjugated polymers.17, 18 The nature of 

polymorphism is intrinsically linked to the intermolecular interactions which hold together the 

molecules in the solid and their directionality.19 Polymorphism becomes more complex when 
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the molecules constituting the crystal have different chemical identities and, together with the 

dispersive intermolecular interactions, other forces are at play. Two interesting examples are 

CT or mixed-valence crystals and solvates,20 where orbital hybridization may occur.  

Strictly speaking, the term polymorphism is historically linked to different crystalline 

structures of the same single component material. However, polymorphism in cocrystals exists 

and has been found in several CT crystals.3, 21, 22 When studying cocrystals, different structures 

may arise just as a consequence of different stoichiometry of the two compounds, therefore, 

we name the phenomenon of different structures from different stoichiometry, 

stoichiomorphism. This name is also used in the science studying networks for a different 

purpose, which is network mapping.23  

In this paper we have chosen to work with DA couples based on perylene and TCNQ-Fx, where 

x= 0 (TCNQ), 2, 4. We performed single crystal growth from solution and by physical vapour 

transport (PVT). The mixed crystals obtained combining perylene and TCNQ have already 

demonstrated promising semiconductor characteristics in single crystal field effect transistors 

(FET) and their ambipolar behaviour opens interesting possibilities for optoelectronic 

devices.24, 25 Besides reviewing the crystal structures of perylene:TCNQ, we also present three 

new crystals forms obtained by combining perylene with TCNQ-F2 and TCNQ-F4. These three 

crystal structures are classified by stoichiometry exhibiting a 1:1 or 3:2 perylene:TCNQ-Fx 

ratio. Interestingly, while the 1:1 structures exhibit a typical alternating DA stack, the 3:1 and 

3:2 stoichiomorphs are different and exhibit a common structural motif, i.e. two perylene 

molecules in a sandwich configuration with the TCNQ based acceptor in between. This quasi-

1D trimeric arrangements are also accompanied by orthogonally oriented molecular units. In 

3:1 perylene:TCNQ these orthogonal units are just perylene molecules, whereas in the 3:2 

structures of perylene:TCNQ-F2 and :TCNQ-F4 the units are alternating DA stacks. By 

performing a series of optical spectroscopy experiments in the middle IR and NIR we 

determine: i) the degree of ionicity, , between donor and acceptor analysing the charge 

sensitive vibrations of TCNQ-Fx and ii) the optical bandgap from the onset of CT exciton 

absorption band. The room temperature degree of charge transfer varies from a minimum of 

almost 0 for perylene:TCNQ (1:1) to a maximum of ~0.3 for perylene:TCNQ-F4 cocrystals. 

For the same compounds the optical gap, from the absorption onset, varies from ~1.06 to 0.68 

eV, respectively. We discuss the structures of cocrystals on the basis of and the 

polymorphism in pure perylene. The possibility that the polymorphism of perylene could 
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influence cocrystal structures is suggested by the different growth temperatures of the 

stoichiomorphs above and below the phase transition temperature of perylene phases.  

 

EXPERIMENTAL SECTION 

Perylene (purity 99%) and TCNQ (98%) were purchased from Aldrich, whereas TCNQ-F2 

(98%) and TCNQ-F4 were obtained from TCI (98%). The materials were used as received. 

Solvents of spectroscopic grade were purchased from Aldrich. For PVT growth, the materials 

were mixed in a glass ampoule which was sealed after 3 cycles of vacuum and nitrogen purging, 

with the last step of vacuum pumping overnight. The ampoule was then placed horizontally in 

a two zone furnace with some of the typical temperature profiles used for growth illustrated in 

Figure 1. Single co-crystals of perylene with TCNQ-F2 and with TCNQ-F4 were also obtained 

from solution growth. Equimolar solutions of perylene and TCNQ-F2 or –F4 were dissolved 

in a solvent mixture of toluene/acetonitrile (5/1) heated at 324 K. The solutions were left to 

cool at room temperature in sealed bottles in the laboratory environment. The single crystals 

were gathered from the solutions.  

Single crystal diffraction intensity data for all structures were collected at 150 K on an Agilent 

SuperNova-E Dual diffractometer equipped with an Oxford Cryosystem, using CuKα radiation 

(λ= 1.5418 Å). Data were processed using the CrysAlisPro software (CrysAlisPro, Agilent 

Technologies, Version 1.171.37.35, release 13-08-2014 CrysAlis171.NET). For all structures 

a symmetry-related (multi-scan) absorption correction was applied. Crystal parameters are 

provided in Table S1. Structure solution, followed by full-matrix least squares refinement was 

performed using the WINGX-v2014.1 suite of programs throughout.26 

Infrared spectra of the CT crystals were recorded with a Bruker ifs66 Fourier transform IR (FT-

IR) spectrometer coupled to an IR microscope Hyperion 1000. The spectrometer is equipped 

with a liquid nitrogen cooled Mercury Cadmium Telluride (MCT) detector. The instrument 

setup allows for reflection and transmission measurements with polarized light. The parameter 

was obtained from the shift of  charge sensitive modes of TCNQ-Fx specified below and by 

benchmarking with respect to the neutral acceptor and fully ionized salts of TCNQ-Fx with 

potassium.27 We have preferred to use this method in contrast to TCNQ-Fx bond lengths from 

X-ray measurements, since the vibrational frequencies will provide the ionicity of the 

cocrystals at room temperature and thus are more relevant for optoelectronic device 

applications. 
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RESULTS 

We start the presentation of our results by reviewing the crystal structure of the pure 

compounds perylene and TCNQ-Fx. This will help in discussing the stoichiomorphism in the 

mixed cocrystals. 

Perylene. The donor, perylene, shows enantiotropic polymorphism, i.e. the Gibbs free energy 

of the two polymorphs,  and , plotted as a function of temperature shows a crossing point 

before the respective melting points have been reached.28 This is an important aspect, since 

above a certain temperature, 420 K for perylene, only the phase is stable. Figure 2 (a,b) shows 

the molecular packing of the two known polymorphs of perylene. The  polymorph in Fig.2(a) 

exhibits a herringbone arrangement, also known as  structure according to the classification 

of polyaromatic hydrocarbons (PAH) by Desiraju and Gavezzotti,29 while the  is a sandwich 

herringbone. This different packing most remarkably results in different number of molecules 

per unit cell, Z, which is 2 and 4 for  and  respectively. The symmetry space group and 

crystal system are instead the same, P21/c and monoclinic. The polymorph  can be obtained 

through a phase transition by heating the  phase above 420 K,9 but can also be prepared as 

pure phase by different methods and is stable at room temperature.30, 31 The  polymorph melts 

at about 551 K. From a molecular point of view in the -phase perylene molecules are not 

exactly planar and an angle of 1.6° can be measured between planes identified by the two 

condensed biphenyls. In the intermolecular interactions are due to  dimer interactions in 

the sandwich, which accounts for 21% of the total contribution, the other main contribution is 

from molecules constituting a nonparallel dimer within the same sandwich herringbone plane.32 

TCNQ-Fx. Acceptors based on TCNQ are well known in the literature and as pure materials 

form different crystalline structures depending on the number of fluorine atoms substituting 

the hydrogens on the aromatic core. To the best of our knowledge, we could not find any report 

of polymorphism for these compounds.33 We have re-determined the crystalline structures of 

TCNQ and TCNQ-F4 and examined them all, the one of TCNQ is shown in Figure S1(a). It 

has a monoclinic crystal packing with space group C2/c and four molecules in the unit cell and 

confirms the structure by Long et al.34 and Krupskaya et al.35, CCDC: TCYQME and 

TCYQME03, respectively. The molecules are arranged in herringbone fashion and it is 

possible to identify four different -stacking directions. Figure S1(b) shows the crystal 

structure of TCNQ-F2, characterized by two molecules per unit cell (BERZON02).35 The space 

group is C2/m and the unit cell is monoclinic. TCNQ-F4 has four molecules in an orthorhombic 
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unit cell with space group Pcab and its structure is reported in Figure S1(c) and confirms the 

structures obtained by Emge et al.36 (BAKPAE) and Krupskaya et al.35 (BAKPAE01).  

Perylene:TCNQ cocrystals. The structures of the two stoichiomorphs of perylene:TCNQ are 

reported in Figure 3a,b. These are two of the three structures reported thus far, since Kloc and 

coworkers recently reported a 2:1 stoichiomorph, that we could not observe in our growth 

experiments.25 In the 1:1 stoichiomorph, the unit cell is monoclinic with space group P21/c and 

two inequivalent molecular pairs per cell as already presented in previous investigations 

(CCDC: PERCTQ).37 The molecules are arranged in two alternating stacks with a tilt angle 

between the long axis of perylene molecules belonging to different stacks, see projection on bc 

plane in side figure. There is also a tilt angle of 21.19 between the planes of perylenes from 

different stacks. Interestingly, the molecular planes of perylene and TCNQ in both the DA 

stacks are not parallel, but exhibit an inclination angle of 4.34. This aspect together with a DA 

distance of 3.3 Å (plane to centroid), has important implications for charge transfer and likely 

also transport. The inclinations in these stacking planes could be linked the structure of pure 

TCNQ, where the inclination of planes passing through the inequivalent TCNQ molecules is 

47.23 and the C2 molecular symmetry axes are not aligned, c.f. Fig.S1(a). 

Largely different is the arrangement of perylene in the 3:1 stoichiomorph first reported by 

Hanson (CCDC: TCQPER)38 and then by Truong et al.39 Here, each perylene molecule in the 

stack with TCNQ is paired with a second perylene and further there are perylene molecules 

with their planes parallel to the a axis, thus not directly involved in CT with TCNQ.40 The unit 

cell structure is triclinic with P-1 symmetry, with one molecular trimer per cell and the TCNQ 

molecule on the inversion centre in accordance to previous reports. It is important to underline 

here the similarity in the arrangement of the perylene molecules in the 3:1 complex with respect 

to the polymorph  of pure perylene (Fig. 2b). In comparing the two figures it appears as if 

TCNQ molecules are inserting in between the perylene dimers in the sandwich structure. The 

molecular planes of perylene and TCNQ are not parallel in the DAD stack, but form an angle 

of 2.99. Therefore, it is not possible to quote a distance between the molecular planes, but we 

have calculated the distance between the perylene plane and the centroid on TCNQ, which is 

3.249 Å. Further, perylene molecules in the DAD stack are not exactly planar with an angle of 

0.86 between the biphenyls, in contrast to the perylenes parallel to the a axis, which are fully 

planar. An important aspect that will be further discussed below concerns the growth 

temperatures for the two polymorphs. In order to effectively guide the stoichiomorphic 
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product, the 1:1 structure was obtained only by setting the high temperature side of the two 

zone furnace at 413 K while the cold at 373 K, thus both below the transition temperature for 

the pristine perylene phases of 420 K. For the 3:1 stoichiomorph the settings were instead 443 

K and 383 K, respectively. 

In terms of optical gap and charge transfer, the 1:1 cocrystal is already rather well 

characterized. In early optical reflectance studies the CT transition has been located around 

10800 cm-1 (1.34 eV) and 12000 cm-1 (1.5 eV), with an onset at 8500 cm-1 (~1.05 eV) ref.41, 42. 

From the frequency and the oscillator strength of this transition, Ida et al.41 estimated the degree 

of charge transfer (or ionicity) to be around 0.1, and the hopping integral, tDA, about 0.25 eV. 

Recent estimates of  by Raman spectra and the X-ray bond length of TCNQ give and 

tDA = 0.375 eV by DFT calculations.25 It is known since long time that Raman frequencies do 

not provide a reliable estimate of the ionicity in mixed stack CT crystals due to perturbing 

effect of electron-molecular vibration coupling.43 Therefore, in our work we are using IR 

spectra, by looking at selected charge sensitive modes.  The IR spectra of perylene:TCNQ 1:1 

in Figure 4a are shown together with those of pristine perylene and TCNQ. In Figure S2 we 

also compare the IR spectra of TCNQ and of the ionic compound K:TCNQ, the latter 

representative of (TCNQ)- molecular vibrations. From this last comparison we identify the 

unique asymmetric C=C stretching at 1543 cm-1 which shifts to 1509 cm-1 in charged (TCNQ)-

, as giving a reliable estimate of We have opted for this genuine reporter of  in contrast to 

the quite often used frequencies of CN stretching modes above 2200 cm-1 which are subjected 

to extrinsic effects such as the crystal environment.44 As shown in Fig. 4a, for both light 

polarizations, parallel to the a axis (red curve) and parallel to b (blue curve) the C=C stretching 

coincides with the same mode measured in pristine TCNQ. The spectra of the 1:1 cocrystal is 

indeed the superposition of the spectra of neutral perylene and TCNQ, and we conclude that in 

this complex 0 ≤  0.1. The agreement with the Raman estimations in reference [25] is not 

surprising in this case, as the perturbing effect of the electron-molecular vibration becomes 

evident at intermediate ionicities.43  

The optical reflectivity spectra of the 3:1 cocrystal from literature shows a band at 10500 cm-1 

(1.3 eV) with onset at 9000 cm-1 (1.12 eV), ascribed to a charge transfer exciton, with a 

shoulder at 12000 cm-1 (1.5 eV), whose origin is not clear.40 Figure 4b shows the IR spectrum 

of the 3:1 cocrystal recorded with light impinging perpendicularly to the ab crystal plane and 

polarized parallel and perpendicular to the b axis. For such polarizations the TCNQ 
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antisymmetric C=C stretching has components in both polarizations. The charge sensitive 

mode is at 1535 cm-1, yielding a value of  of about 0.2. With the help of earlier calculations45 

of the frequency of the CT transition as a function of the above estimate of and the transition 

energy of the CT transition40 yield an estimate of tDA = 0.4 eV. This value can be compared 

with the above reported estimate tDA = 0.2 eV for the 1:1 co-crystal,41 obtained from an 

analogous combination of experiment and calculations. We conclude that the mixing between 

D and A states is indeed larger in the DAD trimer of the 3:1 cocrystal than in the regular stack 

of the 1:1 co-crystal, as it can be expected from the shorter D-A distances by 0.051 Å.  

Perylene:TCNQ-F2 cocrystals. We report two new structures from perylene combined with 

TCNQ-F2, whose unit cells are shown in Figure 3c,d. The structure of the 1:1 cocrystal exhibits 

two alternating stacks along the a axis. The unit cell is monoclinic with symmetry P21/n and 

two inequivalent pairs of molecules. In comparing this 1:1 structure with the one formed by 

perylene and TCNQ (Fig.3a) it can be noticed that the stacks with TCNQ-F2 are slipped one 

respect to the other by one molecular unit. In addition, the relative orientation of the perylene 

in the two stacks is different from the one observed for perylene:TCNQ shown above. This can 

be clearly noticed in the two projections on the side of Fig.3a and c. The stack is regular 

(molecules on inversion centers), with 3.28 Å distance between D and A. The F atoms are 

disordered as a result of the rotational disorder and the average occupation of the position pairs 

(2,5) and (3,6) is 70:30. The molecular planes of perylene and TCNQ-F2 form an angle of 2.37 

in both stacks. The perylene molecule is planar. 

Figure 3d shows the structure of the 3:2 stoichiomorph which is isostructural to the one of 

perylene:TCNQ-F4 presented below. The crystal structure is triclinic, with P-1 symmetry and 

two pairs of inequivalent molecules in the unit cell. The structure is characterized by DAD 

trimers arranged in a quasi-one dimensional stack parallel to the c axis. There are two types of 

trimers characterized by different inclination angles between perylenes and TCNQ-F2 of 1.75 

and 1.89. In addition, the two types of trimers are tilted by about 48, a value measured for 

the planes passing through the TCNQ-F2 of the two trimers. This latter inclination angle is 

reminiscent of the herringbone angle between sandwiches in  perylene. A slightly dimerized 

perylene-TCNQ-F2 stack (distance between D and A is d = 3.28(1) Å) is found along the a 

axis, approximately perpendicular to the trimers' layer.  In this dimerized DA stack the 

molecules are almost parallel with an angle of 0.52. There are two equivalent DA stacks in 

the unit cell, slipped with respect to the other. This slipping is reminiscent of the 1:1 
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stoichiomorph from the same DA pair. In terms of intramolecular planarity the perylene 

molecules are planar in the DA stacks, while they exhibit an angle of ~1.2 between the 

byphenyls in the DAD stacks. Like the 1:1 stoichiomorph, the 3:2 shows orientational disorder 

in the position of the fluorines. We notice that a good yield of the 1:1 structure was reached by 

performing the growth with the cold end of the ampoule at 387 K, while for the 3:2 

stoichiomorph the temperature was increased to 413 K. 

In the 1:1 stoichiomorph we are able to observe the onset of the CT absorption band at 7000 

cm-1 (0.88 eV) from IR spectroscopy (Figure S3(a)). Although we are not able to measure the 

frequency of the peak, it is clear that the CT frequency is well below the CT excitons of both 

perylene:TCNQ cocrystals presented above. The polarized IR spectra of the ab plane are 

compared in Figure 5a with those of neutral perylene and TCNQ-F2. The IR spectra of TCNQ-

F2 and K:TCNQ-F2 are reported in Fig. S4, where we can identify three charge sensitive modes 

at 1575, 1550 and 1395 cm-1, with ionization frequency shifts of 50, 63 and 44 cm-1, 

respectively. The frequencies of these three bands in the 1:1 cocrystal yield an estimation of  

of 0.13, 0.15 and 0.1, respectively. The two polarizations explored give very similar results and 

show mainly a difference in intensity correlated to the orientation of the TCNQ-F2 molecules 

in the unit cell. On the basis of these results we estimate that  is ~0.14, considerably higher 

than in the 1:1 cocrystal of perylene:TCNQ.  

For the 3:2 cocrystal, similarly to the 1:1, the onset of CT transition is about 7000 cm-1 (Figure 

S3(b)), but, at variance with the 1:1, does not show a detectable dichroism in our measurements, 

which are performed with light polarized along the a or c axis. From the structural data of Fig. 

3d, we associate the band polarized along a to the CT exciton along the DA stack, and the band 

polarized along c to a CT exciton in the DAD trimer.  In order to estimate the degree of charge 

transfer we have focused on the same spectral region as for the 1:1 cocrystal. However, the 

more complex structure of the unit cell requires a more detailed spectral analysis. Figure 5b 

compares the polarized IR spectra of the ac plane with the spectra of neutral TCNQ-F2, 

evidencing the frequency shifts of the three charge sensitive bands. The vibrational bands at 

1541 and 1383 cm-1, are sensitive to polarization, while the band at 1570 cm-1 exhibits weak 

dichroism. A more detailed analysis of the cm band and comparison with the Raman 

spectra (Figure S5) reveals the presence of a vibronic band46 superimposed to the charge 

sensitive mode in the spectrum polarized along the c axis. We note also that the bands at 

and cm-1 have a doublet structure. While it is difficult to interpret this last 



10 
 

observation without calculations of vibrational modes, we suggest that this is due to a slightly 

different ionicity of TCNQ-F2 in the DA stack and in the DAD trimer. The spectral shifts of 

these modes result in an estimated ionicity, dependent on which peak of the doublet is 

considered, ranging from 0.10 to 0.22. However, on the basis of the data collected so far it is 

not possible to clearly distinguish between the ionicity of TCNQ-F2 in the DAD trimers from 

the one in DA stacks. 

Perylene:TCNQ-F4 cocrystals. Figure 3e,f shows the two stoichiomorphs that we have 

obtained. While the 1:1 stoichiomorph shown here is not reported thus far, the 3:2 structure in 

Fig3f confirms the structural data by Tsutsumi and coworkers (CCDC: NUSZUY).47 The 1:1 

structure was obtained only from solution growth and is characterized by a row of molecules 

with DA stacking. Initially we characterized a 1:1:1 solvated structure where the third 

component was a toluene molecule from the solvent, as reported in Figure S6 and Table S1. 

Note that the toluene molecule in the unit cell shows orientational disorder. A full desolvation 

of this system could be obtained after a few days in the atmosphere, resulting in the structure 

shown in Fig.3e. Several attempts to grow the perylene:TCNQ-F4 by vapour transport did not 

produce crystals large enough for a detailed crystallographic analysis. In fact, the growth by 

vapour transport with the cold end of the ampoule held at 403 K leads to the formation of the 

3:2 stoichiomorph or very small crystals with undetermined structure.  

The 1:1 Perylene:TCNQ-F4 crystal has a triclinic unit cell with P-1 symmetry and one pair of 

molecules per unit cell. The DA regular stack is along the a axis with the perylene and TCNQ-

F4 molecular planes tilted by 1.68. The perylene molecule is planar and the DA distance 

between the perylene molecular plane and the TCNQ-F4 centroid is one of the shortest among 

all compounds, 3.235 Å. 

The 3:2 stoichiomorph is shown in Fig.3f and exhibits a structure similar to the one reported in 

Fig.3d for the 3:2 co-crystal with TCNQ-F2, as the two crystals are isostructural. The unit cell 

is triclinic with space group P-1 and two pairs of inequivalent molecules. A detailed analysis 

of the inclination between the perylene and TCNQ-F4 molecular planes reveals that in the two 

DAD trimer stacks there are angles of 2.17 and 1.95, respectively. In the perpendicularly 

oriented DA stacks the molecular planes are instead parallel. The distances between perylene 

and TCNQ-F4 are 3.269 and 3.210 Å in the two DAD trimers, respectively, and 3.284 Å in the 

DA stack. The perylene in the DA stack is not planar with an angle of 0.72 between the 

biphenyls. 
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The lowest electronic transition in the 1:1 structure has an onset at 5700 cm-1 (0.71 eV) which 

is mainly polarized parallel to the crystal growth direction, likely the a axis of the unit cell (Fig. 

S7(a)). This is the lowest optical gap among the materials presented in this study and 

corresponds to an onset for light absorption of wavelength close to 1.82 m. In Figure 6a we 

report the vibrational spectra for polarizations parallel to the a (red curve) and b (blue curve) 

axes. Those are compared with the spectrum of neutral perylene and TCNQ-F4. The spectra of 

neutral and fully ionized TCNQ-F4 are reported in Fig. S8, have been extensively described in 

the literature and we focus here on the charge sensitive modes at 1396, 1550, and 1599 cm-1 

(ref. 27). In the cocrystal the mode at 1599 cm-1 shifts down to  cm
 showing a weak 

dependence on polarization, which is mainly due to the orientation of its transition dipole 

moment, not perfectly aligned with the a crystallographic axis (Figure 3e). The ionicity from 

the three modes is 0.30, 0.25, and 0.32, respectively, suggesting a substantial transfer of charge 

from the perylene to TCNQ-F4.    

In the 3:2 stoichiomorph the optical absorption from charge transfer excitons shows an onset 

at 5500 cm-1 (0.68 eV) when the light is polarized along the main direction of crystal growth. 

This onset is shifted to 6200 cm-1 (0.77 eV) when the light polarization is turned by 90º (Fig. 

S7(b)). From these observations, we can extrapolate that the long axis of the crystal 

corresponds to the a axis of the unit cell, where the coupling with the transition dipole moment 

of CT excitons in the DA stack is optimal. When the light polarization is rotated we are instead 

probing in a direction almost parallel to the crystallographyc axis c, and therefore this band is 

associated to the CT excitons within the trimer. This assignment allows us to clearly distinguish 

the degree of charge transfer from the dichroism of the charge sensitive vibrations of TCNQ-

F4. Figure 6b shows the spectra for the two polarizations in the range 1300 to 1650 cm-1. The 

investigated modes are the same as for the 1:1 cocrystal and small shifts can be noticed for the 

two polarizations, with the exception of the 1580 cm-1 band, in which the polarization parallel 

to a results in a weak intensity signal at the noise level. From the peaks and their polarizations, 

values of  of 0.29, 0.22 and 0.28 are found in the DA stack, whereas the values in the DAD 

trimers are 0.30 and 0.28. These are on average larger when compared to the interval of (0.1-

0.22) estimated for the isostructural stoichiomorph perylene:TCNQ-F2. Considering that the 

structural differences between these 3:2 stoichiomorphs are minimal, the larger and low 

optical bandgap for the TCNQ-F4 based cocrystals arise from the larger electronegativity of 

this acceptor molecule.48 
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DISCUSSION 

There is a similarity between the polymorphs of perylene and the stoichiomorphs that we have 

observed combining perylene with TCNQ-Fx in cocrystals. The sandwich structural motif of  

perylene seems to be maintained with the insertion of a TCNQ acceptor in between the 

perylenes in all the stoichiomorphs with imbalanced ratios, i.e. 3:1 and 3:2. These structures 

are all characterized by perylene molecules deviating from perfect planarity, in a way similar 

to  perylene.  In addition, both 3:2 structures have trimers with a herringbone arrangement. 

These structural similarities, together with the evidence that 3:1 and 3:2 stoichiomorphs are 

observed predominantly when the temperatures in the furnace are set above the phase transition 

temperature of  to  perylene (~420 K), indicate that the polymorphism of perylene could 

guide the stoichiomorphism in cocrystals. This rationale is also supported by the observation 

that 1:1 stoichiomorphs can be obtained only by setting below 420 K the low temperature part 

of the ampoule, where nucleation and growth occur, or by growing the crystals from solution 

at room temperature (perylene:TCNQ-F4). However, the recent preparation of DA 

stoichiomorphs from other compounds, coronene:TCNQ,49 where pure coronene is not known 

to have room temperature stable polymorphs, indicates that stoichiomorphism in cocrystals can 

be encountered independently of the D aromatic hydrocarbon structures. Therefore, this 

guiding effect cannot be generalized and a more in depth analysis of the intermolecular 

interactions is required to understand the structural motifs guiding cocrystal formation. In the 

1:1 stoichiomorphs there seems to be a more pronounced role of TCNQ-Fx in driving the details 

of the molecular arrangement in the cocrystals. For example, the increasing fluorine 

substitution leads to slipped stacks in perylene:TCNQ-F2 and perylene:TCNQ-F4. These 

slipped stacks are also encountered when looking along the a axis of the dimerized DA rows 

in the two almost identical 3:2 stoichiomorphs.  

In general, the ionicity reported in Table 1 for all compounds, shows an increasing trend with 

the electronegativity of TCNQ-Fx in 1:1 cocrystals, but not a monotonic trend in the other 

stoichiomorphs and it is strongly correlated with the structure of the cocrystals. A common 

aspect that we want to discuss here is how the ionicity changes from the DAD trimers to the 

DA dimer structures. We observe that, when considering the same starting perylene:TCNQ-Fx 

couple, trimers, ie DAD, exhibit larger values of  in all the cocrystals. This could have a 

simple explanation connected to the availability of nearest neighbor perylene donors in the 

structure. In other words, in a simple picture a TCNQ-Fx molecule in a dimer stack has only 
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one perylene molecule with which can undergo a charge transfer interaction, whereas in a 

trimer more perylene donors can transfer charge density. 

We now shortly comment on the perspective of charge transport and optoelectronic 

applications for the cocrystals reported here. Transport and optoelectronic properties of 

perylene-TCNQ 1:1 and 3:1 have been already characterized, 24, 25 whereas the generation of 

photocarrier has been investigated in perylene:TCNQ-F4 3:2. 47 The transport properties along 

the mixed stack chain are connected to the superexchange or effective integral teff (tDAD for 

holes and tADA for electrons), which in 1:1 perylene:TCNQ has been calculated in the range 50-

70 meV for both holes and electrons.24, 25  In perturbation theory the superexchange integral is 

connected to the direct CT integral tDA and to the gap energy between DA and D+A- states 

in a DA pair:4  

𝑡
𝑒𝑓𝑓

=  
𝑡DA

2

∆
 

For perylene-TCNQ 1:1 tDA ~ 0.3 eV (see above), and from the optical gap we estimate 

eV, so that the above equation gives teff ~ 90 meV, against the calculated 50-70 meV. We 

can then use perturbation theory to predict that the 1:1 co-crystal of perylene:TCNQ-F2 should 

have a greater teff  , since preliminary calculations show that tDA is more or less the same, 

whereas  is certainly lower than the perylene:TCNQ homologue. According to the 

experiments by Tsutsumi et al.47, the TCNQ-F2 should exhibit good photocarrier generation 

and transport. We finally remark that for the three 1:1  co-crystals  of  perylene  with TCNQ-

Fx the optical gap, i.e. the energy of  the CT transition, follows the well know linear  relationship 

with EREDOX, ie the difference between the oxidation potential of D and the reduction potential 

of A.50 Indeed, the reduction potential of TCNQ-F2   (0.41 V vs. SCE) is about half-way 

between that of TCNQ (0.22 V) and TCNQ-F4 (0.60 V),51 as does the optical gap (Table 1). 

The 1:1 cocrystal with TCNQ-F4 is the closest to the Neutral-Ionic transition boundary, like 

for the CT cocrystal Tetrathiafulvalene-Chloranil, and indeed it exhibits the Neutral-Ionic 

transition under pressure50. This characteristic may lead to interesting ferroelectric and 

ferromagnetic phenomena. Since crystals of this compound have been obtained from solution, 

it would be interesting to explore the possibility to finely control their yield by using different 

solvents as it was recently done for perylene:TCNQ.52 The structure of 3:2 stoichiomorphs is 

particularly interesting, since they could show anisotropic exciton and charge carrier transport 

in two orthogonal directions. In addition, we note that very similar CT cocrystals are known to 
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have a large third order optical nonlinearity and could be exploited in photonic applications for 

frequency conversion or light modulation.53 Future work will be focusing on the nature of CT 

excitons and charge carrier photogeneration phenomena as well as nonlinear optical processes 

by time resolved spectroscopy in the NIR.54 

CONCLUSION 

We have reported the growth and design of some novel crystal structures based on perylene 

and TCNQ-Fx DA compounds. Interestingly, we have found that the cocrystals differ in 

stoichiometry and crystal structure, giving rise to the phenomenon of stoichiomorphism, can 

be guided by choosing growth temperatures above and below the phase transition temperature 

between perylene polymorphs. We notice a correlation between electronegativity and degree 

of charge transfer in the DA couples, but also an important role of structure in which trimeric 

assemblies result in a higher ionicity of the TCNQ-Fx molecules. The 3:2 stoichiomorphs of 

perylene with TCNQ-F2 and TCNQ-F4 exhibit optical gaps in the NIR part of the spectrum and 

a structure that is ideal for transport of charge and excitations in two perpendicular directions. 

This unique features promise a great potential for applications in organic optoelectronics. The 

results are also of importance for understanding CT interfaces between laminated pairs of 

single crystals.55-57  
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Figure 1. Scheme of the PVT crystal growth technique. The position of the quartz ampoule 

with respect to the two heating zones of the furnace is shown together with some of the 

temperature profiles used for the crystal growth reported in this work. 
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Figure 2. The two known polymorphs of perylene. (a)  perylene unit cell with two 

inequivalent molecules per cell. (b)  perylene with four molecules per unit cell.   
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Figure 3. Crystal structures of (a) perylene:TCNQ 1:1, (b) perylene:TCNQ 3:1, (c) 

perylene:TCNQ-F2 1:1, (d) perylene:TCNQ-F2 3:2, (e) perylene:TCNQ-F4 1:1, and (f) 

perylene:TCNQ-F4 3:2. 
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Figure 4. (a) Vibrational spectra of TCNQ (black solid line) and perylene (orange dashed line). 

The vibration at 1543 cm-1 for the neutral molecule is shifted to 1509 cm-1 when it is negatively 

charged in K:TCNQ (Fig. S2).  Perylene:TCNQ (1:1) for polarizations parallel to the b axis 

(blue) and parallel to the a axis (red). (b) Vibrational spectra of perylene:TCNQ 3:1 for 

polarizations parallel (blue) and perpendicular (red) to the b axis.  
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Figure 5. (a) Vibrational spectra of TCNQ-F2 (black solid line) and perylene (orange dashed 

line) together with perylene:TCNQ-F2 1:1 for polarizations parallel to the a axis (red) and 

parallel to the b axis (blue). The spectrum of K:TCNQ-F2 is reported in (Fig. S4) (b) Vibrational 

spectra for perylene:TCNQ-F2 3:2 for polarizations parallel to the a axis (red) and to the c axis 

(blue).  
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Figure 6. (a) Vibrational spectra of TCNQ-F4 (black solid line) and perylene (orange dashed 

line) together with perylene:TCNQ-F4 1:1 for polarizations parallel to the a axis (red) and 

parallel to the b axis (blue). (b) Vibrational spectra of perylene:TCNQ-F4 3:2 for polarizations 

parallel to the a axis (red) and to the c axis (blue).  
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Compound  CT (eV) 

Perylene:TCNQ (1:1) ~ 0.0 
1.34a 

onset 1.05 eVa  

Perylene:TCNQ-F2 

(1:1) 
0.13 onset 0.88 

Perylene:TCNQ-F4 

(1:1) 
0.29 

1 eVb 

onset 0.71 

Perylene:TCNQ (3:1) 0.20 
1.3c 

onset 1.12 eVc  

Perylene:TCNQ-F2 

(3:2) 
0.13/0.15 onset  0.88 

Perylene:TCNQ-F4 

(3:2) 

0.26 (dimer) 

0.29 (trimer) 
onset 0.68 

afrom ref. 40; bfrom Ref. 50; cfrom Ref. 40 

Table 1. Degree of CT  and peak/onset of CT exciton absorption in perylene:TCNQ-Fx 

cocrystals. 
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