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Summary

Few information is available about the tyraminogenic
potential of the species Enterococcus mundtii. In this
study, two plant-derived strains of E. mundtii were
selected and investigated to better understand the
phenotypic behaviour and the genetic mechanisms
involved in tyramine accumulation. Both the strains
accumulated tyramine from the beginning of exponen-
tial phase of growth, independently on the addition of
tyrosine to the medium. The strains accumulated also
2-phenylethylamine, although with lower efficiency
and in greater extent when tyrosine was not added.
Accordingly, the tyrosine decarboxylase (tyrDC) gene
expression level increased during the exponential
phase with tyrosine added, while it remained constant
and high without precursor. The genetic organization
as well as sequence identity levels of tyrDC and tyro-
sine permease (tyrP) genes indicated a correlation
with those of phylogenetically closer enterococcal
species, such as E. faecium, E. hirae and E. durans;
however, the gene Na+/H+ antiporter (nhaC) that usu-
ally follow tyrP is missing. In addition, BLAST analysis
revealed the presence of additional genes encoding
for decarboxylase and permease in the genome of
several E. mundtii strains. It is speculated the occur-
rence of a duplication event and the acquisition of

different specificity for these enzymes that deserves
further investigations.

Introduction

Tyramine is a biogenic amine (BA) deriving from tyrosine
decarboxylation and can have severe acute effects if
ingested in excessive amounts with food, consisting in
peripheral vasoconstriction, increased cardiac output,
accelerated respiration, elevated blood glucose and
release of norepinephrine, symptoms known also as
‘cheese reaction’ (Shalaby, 1994; McCabe-Sellers et al.,
2006; Marcobal et al., 2012). Tyrosine decarboxylase,
the enzyme responsible for tyramine production, can use
as substrate also phenylalanine, producing 2-phenylethy-
lamine, whose adverse effects are similar to tyramine
(Marcobal et al., 2006).
In general, the amino acid decarboxylation leading to

BA formation provides metabolic energy and/or resistance
against acid stress (Molenaar et al., 1993; Fern�andez and
Z�u~niga, 2006; Pereira et al., 2009). The microorganisms
responsible for tyramine accumulation in foods belong
mainly to the group of lactic acid bacteria (LAB) (Marcobal
et al., 2012). Among LAB, species belonging to the genus
Enterococcus are recognized as the most frequent and
intensive tyramine producers (Leuschner et al., 1999;
Suzzi and Gardini, 2003; Ladero et al., 2012).
Due to their salt and pH tolerance, and to their ability

to grow over a wide temperature range, enterococci are
isolated from different habitats and are often contami-
nants in food of animal origin, such as cheese and sau-
sages (Giraffa, 2003; Franz et al., 2011). In spite of their
homolactic metabolism, their potential role in cheese
ripening and their ability to produce bacteriocins (Besh-
kova and Frengova, 2012; Fontana et al., 2015), entero-
cocci have a controversial status and they are often
considered at the crossroad of food safety (Franz et al.,
1999). In fact, this group is considered as indicator of
the hygienic quality of raw material and food, as well as
marker of faecal contamination (Leclerc et al., 1996). In
addition, virulence factors can be present (Foulqui�e Mor-
eno et al., 2006; Hollenbeck and Rice, 2012) and they
can act as opportunistic human pathogens frequently
associated with nosocomial infections due to their antibi-
otic resistance with a high capacity to disseminate this
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resistance to other microorganisms (Giraffa, 2002; Klein,
2003; Rossi et al., 2014). Furthermore, they are strong
tyramine producers and this ability has been deeply
exploited in Enterococcus faecalis (in which tyramine
production is considered a species trait), Enterococcus
faecium and Enterococcus durans (Linares et al., 2009;
Ladero et al., 2012; Bargossi et al., 2015a,b). For this
reasons, the presence of enterococci has been put in
relation with the presence of tyramine in several fer-
mented foods, such as fermented sausages (Gardini
et al., 2008), cheeses (Linares et al., 2011) and wine
(P�erez-Mart�ın et al., 2014). The enterococcal species
most frequently isolated from fermented foods are E.
faecalis and E. faecium, and also E. durans, Enterococ-
cus gallinarum, Enterococcus casseliflavus, Enterococ-
cus hirae can be found in food matrices (Franz et al.,
2003; Giraffa, 2003; Foulqui�e Moreno et al., 2006; Cor-
setti et al., 2007; Komprda et al., 2008). Recently, also
E. mundtii has been isolated from the food chain; it is a
non-motile, yellow-pigmented enterococcus infrequently
associated to human infection (Collins et al., 1986; Higa-
shide et al., 2005). Strains of E. mundtii have been iso-
lated from soy and cereals (Todorov et al., 2005;
Corsetti et al., 2007), water (Moore et al., 2008; Graves
and Weaver, 2010; Furtula et al., 2013), soil (Collins
et al., 1986; Bigwood et al., 2012) and forage grass or
silage, in which this species is often the predominant
among enterococci (Muller et al., 2001; Ni et al., 2015).
It has also been isolated from animals (Collins et al.,
1986; Espeche et al., 2014) and from food (Vera Pingi-
tore et al., 2012; Sch€obitz et al., 2014). This species has
been deeply studied in relation to the bacteriocin pro-
duced, among which mundticine (De Kwaadsteniet et al.,
2005; Todorov et al., 2005; Corsetti et al., 2007; Feng
et al., 2009; Vera Pingitore et al., 2012; Espeche et al.,
2014).
Recently, the genome of E. mundtii QU 25, an efficient

L-lactic acid-producing bacterium isolated from ovine fae-
ces, has been completely sequenced (Shiwa et al.,
2014), and comparative analysis of the genetic content
of this species with respect to other representative ente-
rococcal species of diverse origins was conducted
(Repizo et al., 2014). Despite to those recent acquisi-
tions, scarce information is available about E. mundtii
tyraminogenic potential. Trivedi et al. (2009) carried out
a study testing the ability to decarboxylate tyrosine in
several enterococci isolated from different foodstuff.
Regarding E. mundtii, four of five strains isolated from
meat products and six of 12 isolated from vegetables
and fruits possessed this ability. Also Kalhotka et al.
(2012) found an E. mundtii strain able to produce tyra-
mine and agmatine. This latter amine derives from the
decarboxylation of arginine and can be transformed in
putrescine by a specific deiminase (Linares et al., 2015).

In this research, the tyramine and 2-phenylethylamine
accumulation by two E. mundtii strains isolated from
grass silage was studied during their growth in a rich
medium. In addition, information on the genetic basis of
the tyraminogenic potential of E. mundtii were obtained
analysing the expression of the tyrosine decarboxylase
(tyrDC) gene, the sequence of tyrDC and tyrosine per-
mease (tyrP) genes, and the genetic organization of the
TDC operon region.

Results and discussion

Tyramine-positive enterococci

In the first part of the research, 35 isolates of coccal
LAB, originating from different agricultural foodstuffs
(Fig. 1) and positive for the production of tyramine
according to the method of Bover-Cid and Holzapfel
medium (Bover-Cid and Holzapfel, 1999) were consid-
ered. These isolates were presumptively identified as
enterococci based on their physiological and morphologi-
cal characteristics (von Wright and Axelsson, 2012).
They were cocci, Gram-positive, catalase-negative, non-
spore-forming and occurring both as single cells and in
chains. They were able to growth at 10°C and 45°C, at
pH 4.4 and 9.6, and in the presence of 6.5% of NaCl.
To confirm the decarboxylase activity revealed by the

Bover-Cid and Holzapfel medium, the occurrence of the
gene tyrDC, coding for tyrosine decarboxylase (TDC),
was examined. A tyrDC gene fragment was amplified
according to Torriani et al. (2008). For all the 35 isolates,
the 336 bp amplicon was obtained, confirming their tyra-
minogenic potential.
Successively, RAPD-PCR fingerprinting technique with

the primer 1254 (Table 1) was applied to investigate the
genetic diversity of the strains. This molecular typing
method has proved to be reliable, discriminative and suit-
able for the study of a large number of strains in short time
(Vancanneyt et al., 2002). The primer 1254 generated
reproducible RAPD-PCR fingerprints thanks to an accurate
standardization of all the PCR and electrophoresis condi-
tions. The reproducibility of PCR assays and running condi-
tions, estimated by analysis of duplicate DNA extracts of
several strains, was higher than 90%. Cluster analysis of
the RAPD-PCR fingerprints grouped the 35 isolates in three
clusters (Fig. 1). Seven strains, all originated from ryegrass
silage except one (C46), were grouped in the cluster I, four
strains from ryegrass and maize grain silages belonged to
the cluster II and, finally, 24 strains from different foodstuffs
were clustered in the group III.
For each cluster, some representative isolates were

chosen to proceed with their identification at the species
level by the pheS gene analysis. Indeed, this gene is
considered a reliable genomic marker for differentiating
the species within the genus Enterococcus, and it was
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demonstrated to be much more discriminatory than 16S
rRNA (Naser et al., 2005). The pheS gene has a high
degree of homogeneity among strains of the same ente-
rococcal species (at least 97% sequence similarity),
whereas distinct species reveal at maximum 86% gene
sequence similarity. The pheS partial gene sequence
data obtained indicated that the strains C46, C53 and
C77, grouped in the cluster I, can be assigned to the
species E. mundtii (99–100% identity), the strain E599
(cluster II) to E. faecalis (100% identity), while the strains
E175, G52 and C5 (cluster III) to E. faecium (100% iden-
tity). After that, the analysis of the pheS gene was
extended to all the isolates of cluster I, thus confirming
their belonging to the E. mundtii species.
These results confirmed the tyrosine decarboxylase

potential of E. faecalis and E. faecium, the stronger tyra-
mine producers (Aymerich et al., 2006; Bonetta et al.,

2008; Gardini et al., 2008; Ladero et al., 2012; Marcobal
et al., 2012). On the other hand, tyramine production is
considered a species characteristic of E. faecalis
(Ladero et al., 2012). In addition, the tyraminogenic
potential of E. durans has been deeply studied (Fern�an-
dez et al., 2007; Linares et al., 2009). Regarding E.
mundtii, scarce are the studies on their capability to
accumulate tyramine and the genetic aspects involved in
its accumulations. Kalhotka et al. (2012) investigated the
decarboxylase activity of enterococci isolated from goat
milk and found that all of the tested strains, identified as
E. mundtii, E. faecium and E. durans, showed significant
tyrosine and arginine decarboxylase activity, in relation
to temperature and duration of cultivation. In addition,
Trivedi et al. (2009) studied the ability to decarboxylate
tyrosine in many enterococcal strains isolated from differ-
ent foodstuffs and found that more than 90% of isolates

C46 LS
C47 RS
C52 RS
C54 RS
C53 RS
C38 RS
C77 RS
C59 RS
E555 GS
E599 GS
C80 RS
E175 GS
E706 SC
E700 SC
E707 SC
E704P SC
E704G SC
C48 RS
S515 LS
G52 G
T394 GS
E570C GS
S165 GS
S9 G
S423 LS
T246 GS
G243 GS
C126 GS
S11 G
S415 LS
S408 GS
G246 GS
G126 GS
C4 R
C5 R

10090807060504030
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*
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Fig. 1. UPGMA dendrogram derived from RAPD-PCR-fingerprinting patterns of all the 35 isolates using the primer 1254. Code and source of
the isolates are indicated on the right-hand side of the figure. The vertical dotted line indicates the 60% similarity level that delineates the spe-
cies E. mundtii (cluster I), E. faecalis (cluster II) and E. faecium (cluster III). Isolates marked with * were identified by phenylalanyl-tRNA syn-
thase a-subunit (pheS) gene sequence analysis. G: maize grain; GS: maize grain silage; LS: lucerne silage; M: whole crop maize; MS: whole
crop maize silage; R: ryegrass; RS: ryegrass silage; SC: starter cultures for silage.
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showed the presence of the gene tyrDC. In particular,
these authors found that 10 of 17 E. mundtii strains were
tyramine producers. These preliminary studies indicated
the occurrence of tyramine-producing E. mundtii strains,
but did not highlight the tyraminogenic potential of this
species. Moreover, the molecular aspects involved in the
tyramine biosynthesis have not yet studied in depth. For
this reason, two of the E. mundtii strains considered here
were chosen as targets for investigating their tyramine
accumulation capability and tyrosine metabolism. In par-
ticular, the two strains C53 and C46 were selected on
the basis of their different origin and genetic diversity.
Indeed, these strains have limited genetic similarity,
belonging to different RAPD-PCR subclusters, as shown
in Fig. 1; in addition, C53 was the sole E. mundtii strain
of the collection that originated from lucerne silage.

Growth parameters and tyramine production of
Enterococcus mundtii strains

The growth of the strains E. mundtii C46 and C53 was
monitored by measuring the OD600 increase in BHI med-
ium added or not with tyrosine. The OD600 changes
were modelled with the Gompertz equation (Zwietering
et al., 1990) and the estimates of the parameters are
reported in Table 2. All the parameters were character-
ized by a high significance (P ≤ 0.05). Both the strains
reached the maximum value of OD600 (A), ranging
between 1.11 and 1.27, after 6–8 h incubation at 37°C.
The curves presented a very short lag phase (k), fol-
lowed by a sharp increase of OD600. As far as A and k,
no marked differences were found among the two
strains, while E. mundtii C53 presented a lower maxi-
mum OD600 increase rate in exponential phase (lmax).

Moreover, the addition of tyrosine generally determined
lower values of A, higher values of lmax and a shorter
lag phase. Table 2 reports also the cell counts detected
at beginning of the stationary phase. The models
obtained are graphically represented in Fig. 2, which
reports the growth curves in the first 24 h of incubation.
As a reference, the same figure shows also the growth
curves obtained under the same conditions by Bargossi
et al. (2015b) for E. faecalis EF37, a strong tyramine
producer (Gardini et al., 2008), which exhibited analo-
gous behaviours.
The production of tyramine by E. mundtii C46 and

C53 during their growth in BHI, added or not with the
precursor, is shown in Table 3, which reports also the
accumulation of 2-phenylethylamine. Also in this case,
the data already available for E. faecalis EF37 (Bargossi
et al., 2015b) are reported. It is well known that entero-
cocci can decarboxylate phenylalanine producing 2-phe-
nylethylamine through the activity of the same
decarboxylase. The characteristics of this BA are very
similar to tyramine, but it is produced with a lower effi-
ciency (Marcobal et al., 2006).
In all the tested conditions, the two E. mundtii strains

were able to accumulate tyramine independently on the
addition of tyrosine. In fact, the decarboxylase activity
was detected also in the medium not supplemented with
tyrosine, because BHI contains amino acid sources (pro-
teins and peptides) among which precursors for TDC.
This observation was previously reported by Bargossi
et al. (2015b) for E. faecalis and E. faecium grown in the
media BHI and Bover-Cid and Holzapfel.
The data showed that the two E. mundtii strains began

to produce tyramine after 2 h from the inoculum, both in
the presence and in the absence of the precursor, and

Table 1. Primers used in this study in RAPD-PCR, RT-qPCR and conventional PCR reactions and expected amplicon size.

PCR type Target Primer code Sequence (50-30) Amplicon (pb) Reference

RAPD-PCR Arbitrary DNA
sequences

1254 CCG CAG CCA A Variable Akopyanz et al. (1992)

RT-qPCR tyrDC TYR3f CGT ACA CAT TCA GTT GCA TGG CAT 171 Torriani et al. (2008)
TYR4r ATG TCC TAC TTC TTC TTC CAT TTG

Conventional tyrDC DEC5 CGT TGT TGG TGT TGT TGG CAC NAC
NGA RGA RG

350

DEC3 CCG CCA GCA GAA TAT GGA AYR TAN CCC AT
pheS pheS-21-F CAY CCN GCH CGY GAY ATG C 455 Naser et al. (2005)

pheS-22-R CCW ARV CCR AAR GCA AAR CC
tyrS/tyrDC TyrS-F1 GGA GCT ATA AGT ATT AAC GGT GA 940 Bargossi et al. (2015a)

Tdc-R1 GAT TT(A/G) ATG TT(A/G) CG(G/C) GCA TAC CA
tyrDC Tdc-F2 CAA ATG GAA GAA GAA GT(A/T) GGA 1340

Tdc-R2 CC(A/G/T) GCA CG(G/T) T(C/T)C CAT TCT TC
tyrDC/tyrP Tdc-F3 CCA GA(C/T) TAT GGC AA(C/T) AGC CCA 788

TyrP-R3 CCT AAA GTA GAA GC(A/G) ACC AT
tyrP TyrP-F4 TGG GTG CAA ATG TTC CCA GG 940

TyrP-R4 ACC (A/G)AT TCG (A/G)TA AGG ACG
tyrP/nhaC-2 TyrP-F5 (A/T)CT GCT TGG GT(A/T) ACT GGA CC na

NhaC-R5 CAT (C/T)GC AT(C/T) (A/G)T(C/T) GAA TCC AAG

na, no amplicon.
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they continued to gradually accumulate tyramine during
their stationary phase. In all the conditions, the maximum
tyramine concentration was reached after 48 h for the
strain C46 and after 72 h for the strain C53. However,
the final amount of tyramine was similar for both the
strains. In fact, it did not exceed 135 mg l�1 in BHI med-
ium, while in the presence of tyrosine, the final amount
of tyramine was about 767 and 797 mg l�1 for the
strains C53 and C46 respectively. As reported in
Table 3, Bargossi et al. (2015b) found that E. faecalis
EF37 under the same conditions after 8 h reached the
maximum tyramine concentration in the presence of tyra-
mine added. The E. mundtii strains showed a slower
tyramine production kinetics, but the final amount was
significantly higher than E. faecalis EF37 (approximately

500 mg l�1). In the absence of tyrosine added, the strain
E. mundtii C46 was characterized by a faster tyramine
accumulation in BHI. The major differences between
E. faecalis EF37 and the E. mundtii strains were in the
ability to accumulate 2-phenylethylamine, which was dra-
matically higher in E. faecalis. These amounts were
higher than those reported by Liu et al. (2013) who, test-
ing the tyraminogenic potential of E. faecalis strains from
water-boiled salted duck, found concentrations of tyra-
mine lower than 330 mg l�1 in MRS broth added with
0.1% tyrosine.
The two E. mundtii strains were also able to decar-

boxylate phenylalanine leading to the production of 2-
phenylethylamine (Table 3). This BA was accumulated
only after 24 h of growth for the strain C53, while C46

Table 2. Gompertz equation parameters for enterococcal growth measured as OD600. R
2 is given as diagnostics of the regression. The maxi-

mum cell concentrations (expressed as log CFU ml�1) at the beginning of the stationary phase is reported. The standard deviation is reported
within parentheses.

Strain Cultural medium

Gompertz equation parametersa

R2 Maximum cell concentrationA lmax k

C46 BHI + tyrb 1.153 (� 0.029) 0.635 (� 0.079) 1.771 (� 0.119) 0.994 9.09 (� 0.04)
BHI 1.269 (� 0.036) 0.615 (� 0.077) 2.556 (� 0.132) 0.994 9.06 (� 0.01)

C53 BHI + tyr 1.113 (� 0.037) 0.594 (� 0.101) 2.024 (� 0.177) 0.990 9.01 (� 0.02)
BHI 1.215 (� 0.028) 0.563 (� 0.060) 2.345 (� 0.121) 0.996 8.97 (� 0.05)

a. A: maximum OD600 value reached; lmax: maximum OD600 increase rate in exponential phase (OD600/h); k: lag phase duration (h).
b. BHI broth plus 1 g l�1 tyrosine.

Fig. 2. Growth curves of E. mundtii C46 (A) and E. mundtii C53 (B) obtained according to the Gompertz parameters reported in Table 2. The
growth was obtained in BHI not added (solid line) or added (dotted line) with tyrosine. As a comparison, also the growth curves obtained under
the same conditions for the strain E. faecalis EF37 (C) are reported, according to the data of Bargossi et al. (2015b).
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began to produce this compound already after 8 h in the
absence of tyrosine. The 2-phenylethylamine accumula-
tion increased during subsequent incubation and
reached its maximum level after 72 h with amended tyro-
sine and after 96 h without this amino acid. Moreover,
the production of 2-phenylethylamine was higher when
tyrosine was not added to the growth medium. Indeed,
in this case, concentrations of about 76 and 109 mg l�1

for E. mundtii C53 and C46, respectively, were reached,
compared with concentrations lower than 45 mg l�1 in
BHI when tyrosine was added to the medium. Interest-
ingly, however, the accumulation of this BA became rele-
vant when the tyramine concentration reached its
maximum level (independently on the addition of the pre-
cursor). In any case, the amount of this BA was lower
than that accumulated by E. faecium FC12 and E. fae-
calis EF37 (more than 400 mg l�1) grown in the same
medium (Bargossi et al., 2015b). These findings could
reflect the lower efficiency of the E. mundtii TDC for
phenylalanine decarboxylation and could indicate that
these amounts of tyramine can lower or inhibit further
decarboxylase activities in the tested strains.
The continue tyramine accumulation until late station-

ary growth phase observed in this research could repre-
sent an advantage for the microorganism against
acidification during the fermentation process and growth.
In fact, the decarboxylation of amino acids has been
indicated as a mechanism through which LAB and
human pathogenic bacteria can resist acidic conditions
(Lund et al., 2014; Romano et al., 2014) and this protec-
tive effect seems to be mediated via the maintenance of
intracellular pH (Perez et al., 2015). The same role in
the maintenance of pH homoeostasis in acidic environ-
ment has been also described in E. durans (Linares
et al., 2009) and E. faecium (Marcobal et al., 2006).

Time-course of tyrDC gene expression

Table 4 reports the tyrDC gene expression data
obtained for E. mundtii C46 and C53 by RT-qPCR dur-
ing 72 h growth in BHI supplemented or not with tyro-
sine. The tyrDC gene expression data previously
obtained for E. faecalis EF37 by Bargossi et al. (2015b)
are also reported as a reference.
In general, the tyrDC gene expression time-course did

not differ considerably between the two E. mundtii strains,
even if the values found for the strain C53 were averagely
lower. These data are in compliance with the phenotypic
behaviour of the two analysed E. mundtii strains, as they
showed similar trends in the accumulation of tyramine and
phenylethylamine, and produced comparable final levels
of these BAs in the different tested conditions.
In the medium without tyrosine, a high value of tran-
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observed after 2 h (early exponential phase), probably
due to the strong residual effect of the precursor present
in the pre-cultivation medium. The amount of tyrDC tran-
script remained rather stable throughout all the period
monitored. The addition of the precursor affected consid-
erably the tyrDC expression level depending on the
growth phase. Indeed, the expression of tyrDC increased
rapidly, peaked (> 4 log copies/lg cDNA) at 4 h during
the exponential phase of growth, when the highest num-
ber of cells for ml was reached. After 8 h, the gene
expression decreased progressively until the end of the
72-h period monitored.
As notice above, the E. mundtii strains were able to

accumulate greater amounts of BAs than that of other
previously studied enterococcal strains E. faecalis EF37
and E. faecium FC12 under the same conditions (Bar-
gossi et al., 2015b). However, the maximum tyrDC gene
copies number of E. mundtii C46 and C53, obtained
after 4 h growth in BHI with tyrosine, did not reach the
value found for E. faecalis EF37 (6.1 log copies/lg
cDNA) in the same conditions. The expression trend of
the E. mundtii strains in BHI without tyrosine was more
similar to that of E. faecium FC12 which presented a
rather constant tyrDC transcript level during the entire
incubation period. However, in BHI added with tyrosine,
the expression profile differed between the E. mundtii
strains and E. faecium FC12 because the tyrDC gene
transcript reached the maximum level in the exponential
(4 h) and in the stationary phase (24 h), respectively,
when the highest cell number of 9 log CFU ml�1 was
detected for all these strains.

Analysis of the TDC operon region

The characteristics of the TDC operon region involved in
tyramine production have been described in several tyra-
minogenic bacterial strains, including enterococci (Connil
et al., 2002; Lucas et al., 2003; Coton et al., 2004;

Fern�andez et al., 2004; Marcobal et al., 2012; Bargossi
et al., 2015a). However, the molecular knowledge of this
region for E. mundtii is extremely scarce. Therefore, an
investigation was carried out to determine the DNA and
amino acid sequences of the E. mundtii C46 tyramine
production-associated genes and the genetic organiza-
tion of the TDC operon region, considering also the
available genome sequencing data. In particular, the
region downstream the gene tyrS including the genes
tyrDC and tyrP, which encode for the tyrosine decar-
boxylase and the tyrosine/tyramine permease, respec-
tively, was amplified and sequenced. Indeed, the gene
Na+/H+ antiporter (nhaC), that usually follow tyrP in the
TDC operon of several tyramine-producing LAB, such as
E. faecalis, E. faecium and L. brevis (Marcobal et al.,
2012; Bargossi et al., 2015a) was not recognized by
PCR performed with the primers covering the intergenic
region between tyrP and nhaC. Such gene organization
was found also in the fully sequenced and assembled
genome of E. mundtii QU 25 (Shiwa et al., 2014)
(GCA_000504125.1) that shows a lacI family transcrip-
tional regulator gene downstream tyrP (Fig. 3A).
BLASTN analysis of the 3677 bp nucleotide sequence

of the E. mundtii C46 TDC operon region showed the
best overall identity of 99% (3673/3677 nt) with that of
E. mundtii QU 25. High levels of DNA sequence identity
(> 80%) were also found for several strains belonging to
other enterococcal species: E. hirae ATCC 9790 (1884/
2282, 83%), E. durans KLDS 6.0930 and KLDS 6.0933
(1876/2285, 82%), and E. faecium Aus0085, NRRL
B-2354, Aus0004, DO, and T110 (1877/2286, 82%). On
the contrary, lower sequence identity (76%) was
achieved for strains belonging to the species E. faecalis
(e.g. ATCC 29212 and V583). Putative promoter and ter-
minator were found upstream the start codon of the
genes tyrDC (Fig. 3A), but not in the short intergenic
sequence before the gene tyrP, suggesting that these
two genes are probably co-transcribed, as already

ty
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Tyrosil-tRNA
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Tyrosine
decarboxylase

Tyrosine/tyramine
permease

lacI family transcriptional
regulator
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TransposaseAmino acid 
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Fig. 3. (A) Organization of the TDC operon in the strain E. mundtii QU 25 (GCA_000504125.1); (B) genome fragment encoding for an addi-
tional PLP-dependent decarboxylase, an APC family amino acid transporter and a cation transporter E1-E2 family ATPase; upstream is recog-
nized as a M protein trans-acting positive regulator and downstream as an ISEfa11 (ISL3 family) transposase, followed by an additional M
trans-acting positive regulator gene.
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showed for other species, such as E. faecalis and
L. brevis (Marcobal et al., 2012).
Surprisingly, BLASTN analysis discovered in the gen-

ome of E. mundtii QU 25 (Shiwa et al., 2014), the pres-
ence of another region constituted by two genes similar
to tyrDC and tyrP. These genes showed lower sequence
identity values, 69% and 64%, respectively, with those
present in the TDC operon. The genetic organization of
the genomic segment that includes these two genes is
shown in Fig. 3B. This additional portion was also recov-
ered in the genome of other enterococcal strains, such
as E. hirae ATCC 9790, E. faecium NRRL B-2354, E.
durans KLDS6.0930 and KLDS6.0930. However, in
these strains a further putative amino acid permease
was annotated between the tyrosine permease and the
cation transporter E1-E2 family ATPase. The presence
of a gene associated to a transposase after the ATPase
encoding gene in E. mundtii QU 25 (Shiwa et al., 2014)
is of particular interest, as it could be involved in sponta-
neous events of gene duplication or horizontal transfer.
BLASTX analysis and comparison of the deduced

amino acid sequences of E. mundtii C46 TDC operon
region were also carried out. The translated nucleotide
sequence generated two proteins in the frame +1 and
+2 respectively. The first one showed the highest
identity with a tyrosine decarboxylase (BAO05941.1) of
E. mundtii QU 25 (624/624 nt, 100%) and E. mundtii
CRL35 (616/624 nt, 99%) and decreasing identity (90%
to 71%) with decarboxylases from other species of the
genus Enterococcus. On the contrary, lower similarity
(61% to 9%) was found with the additional PLP-depen-
dent decarboxylase detected with BLASTN analysis.
The second protein presented a putative conserved
domain associated to a putative glutamate/gamma-ami-
nobutyrate antiporter (TIGR03813). This sequence
showed 100% identity with the amino acid permease
family protein of E. mundtii QU 25 and E. mundtii
ATCC 883, and decreasing identity with the amino acid
permeases of other species of the genus Enterococcus.
Also in this case, lower identity (58–60%) was found
with the additional amino acid permease detected with
BLASTN analysis.
These sequence analysis results taken together indi-

cated the presence in the E. mundtii genome of a TDC
operon with a classical genetic organization (i.e. tyrS,
tyrDC and tyrP) and provided evidences for a new addi-
tional copy consisting of three ORF. According to Lynch
and Conery (2000), duplications of a genome segments
have been thought to be a primary source of material for
the origin of evolutionary novelties, including new gene
functions and expression patterns. Therefore, the addi-
tional copy may acquire a novel, beneficial function and
become preserved by natural selection, with the other
copy retaining the original function. Recently, Bargossi

et al. (2015a) described the compromised tyrosine
decarboxylase activity of the strain E. faecium FC643
due to a codon stop in the translated tyrDC sequence.
However, this strain showed a slow and reduced produc-
tion of tyramine, and not 2-phenylethylamine, probably
due to the presence of the additional enzyme with differ-
ent substrate specificity and regulation mechanism
respect to the decarboxylase encoded by the gene
tyrDC of the TDC operon.
As regards E. mundtii, it can be supposed that all the

genes in the two operon regions detected are expressed
and produce functional products. As BLAST analysis
revealed that the primer pairs DEC5/DEC3 and TYR3f/
TYR4r used in this study were able to match conserved
regions on both the putative tyrDC genes present in the
E. mundtii QU25 genome, new target-specific primers
have to be designed to detect and analyse the contribute
of the additional genes to the overall tyraminogenic
potential of E. mundtii. Therefore, the role of the addi-
tional genes and proteins in the context of BA production
needs further deep investigation.

Conclusions

In this study, the capability of E. mundtii strains to accu-
mulate tyrosine and 2-phenylalanine in cultural media
was assessed, and more information on the genetic
basis of their tyraminogenic potential were obtained for
the first time. The two strains considered here produced
greater amounts of tyramine than those accumulated by
other strains belonging to E. faecium and E. faecalis pre-
viously studied in the same conditions (Bargossi et al.,
2015b). By contrast, their ability to decarboxylate pheny-
lalanine was less enhanced if compared with the same
strains. Likewise the other enterococcal strains, the
expression analysis of the gene tyrDC showed that an
excess of the precursor tyrosine affected the amount of
the transcript during the exponential phase of growth,
and that the amino acids fraction present in the medium
also modulated the level of the transcript. The genetic
organization as well as sequence identity levels of the
genes tyrDC and tyrP indicated that the tyramine-forming
pathway in E. mundtii is similar to those in phylogeneti-
cally closer enterococcal species, such as E. faecium, E.
hirae and E. durans; however, the gene Na+/H+ antipor-
ter (nhaC) that usually follow tyrP is missing. Analysis of
the available data on genome content and organization
of E. mundtii QU 25 (Shiwa et al., 2014) and other Ente-
rococcus strains revealed an unexpectedly presence of
another region that includes two genes encoding for an
additional PLP-dependent decarboxylase and an amino
acid permease. It is tempting to speculate that a duplica-
tion event occurred and the evolution of this redundant
copy induced the acquisition of different specificity
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leading to the maintenance of both the functional copies.
Thus, this discovery uncovers another level of complex-
ity in the enterococcal BAs regulatory network. Further
studies have to be performed to better explain the
genetic and functional characteristics of these further
enzymes and their correlation with tyrosine decarboxylat-
ing potential of enterococci. Moreover, regulation of
decarboxylases and permeases at protein level has to
be evaluated to verify if post-translational mechanisms
could affect and modulate enzymatic activities.

Experimental procedures

Characterization of the strains and screening procedure
for tyramine production

In the present study, we used 35 cocci LAB isolates
(Fig. 1), deposited in the bacterial culture collection of
the Biotechnology Department of the Verona University.
They were previously isolated from different fresh and
ensiled forage crops (namely lucerne, ryegrass, maize),
maize grain silage and starter cultures for silages, as
shown in Fig. 1.
All isolates were maintained as culture stocks in 20%

(w/v) glycerol at �80°C and grown aerobically in BHI
Broth (Oxoid, Basingstoke, UK) at 37°C for 24 h, unless
indicated otherwise.
The isolates were tested for morphological characteris-

tics, Gram test, catalase test, growth in the presence of
6.5% NaCl, growth at 15 and 45°C and at pH 4.4 and
9.6, as well as for their homo or heterolactic fermentation.
The tyrosine decarboxylase activity of the isolates was

evaluated using the screening plate method described
by Bover-Cid and Holzapfel (1999).

TyrDC gene detection

Genomic DNA of tyramine-positive isolates was obtained
from 1 ml of overnight culture by using the Wizard Geno-
mic DNA purification system (Promega Corporation,
Madison, WI, USA), following the manufacturer’s instruc-
tions. Isolates were assayed for the presence of the
gene tyrDC by PCR analysis with the primers DEC5 and
DEC3 (Table 1), following the conditions described pre-
viously (Torriani et al., 2008). PCR product was visual-
ized on a 2% agarose gel.

Randomly amplified polymorphic DNA (RAPD) analysis
and identification of tyramine-positive cocci

In order to genetically typify the 35 tyramine-positive coc-
cal strains, a preliminary RAPD-PCR analysis was per-
formed with the primer 1254 (Table 1). Conversion,
normalization and numerical analysis of the patterns
were performed by GELCOMPAR 4.0 software (Applied

Maths, Kortrijk, Belgium). A dendrogram was produced
and major clusters with a cut-off point of about 60% in
the UMPGA (Unweighted Pair Group Method with Arith-
metic Averages) clustering analysis similarity level was
taken as representing a single cluster. Species identifica-
tion was carried out by phenylalanyl-tRNA synthase
a-subunit (pheS) gene sequence analysis (Naser et al.,
2005). The pheS partial gene amplification was obtained
with the primers pheS-21-F and pheS-22-R (Table 1).
PCR conditions were set according to Naser et al.
(2005) with exception that annealing temperature was
50°C. The expected amplicon (455 bp) was purified with
the Wizard SV gel and PCR clean-up system (Promega
Corporation) and cloned with the cloning kit pGEMT-
easy vector system (Promega Corporation). Recombi-
nant plasmids were sequenced at the GATC Biotech Ltd
(Koln, Germany). Data were analysed with the Basic
Local Alignment Search Tool (BLAST) provided by
National Center for Biotechnology Information (NCBI)
(http://blast.ncbi.nlm.nih.gov/Blast.cgi).

Growth parameters of two Enterococcus mundtii strains
and tyramine production

Two strains (C46 and C53), isolated from grass silage
and identified as Enterococcus mundtii, were used for
deeper investigations. The two considered enterococci
were pre-cultivated for 24 h at 37°C in BHI broth added
with 1000 mg l�1 of tyrosine (Sigma-Aldrich, Gallarate,
Italy). After 24 h of pre-cultivation, the microorganisms
were inoculated, at a concentration of approximately
7 log CFU ml�1, in BHI broth, added or not with 1 g l�1

of tyrosine and incubated at 37°C for 72 h. The evalua-
tion of the strain growth in BHI was performed by mea-
suring the OD600 with a UV-VIS spectrophotometer
(Cary 60 UV-Vis; Agilent Technologies, Santa Clara, CA,
USA) with plastic cuvettes (1.5 ml) at defined times (1,
2, 3, 4, 5, 6, 7, 8, 24, 48, 72 and 96 h). The OD600 data
were fitted with the Gompertz equation as modified by
Zwietering et al. (1990).

y ¼ k þ Ae�e lmaxE

A

� �
ðk� tÞ þ 1

h i

where y is the OD600 at time t, A represent the maximum
OD600 value reached, lmax is the maximum OD600

increase rate in exponential phase and k is the lag time.
The maximum cell concentration reached was deter-

mined at the beginning of the stationary phase by plate
counting enterococci onto BHI agar.
The BAs were determined after 2, 3, 4, 5, 8, 24, 48, 72

and 96 h of incubation. The cultures were centrifuged at
10 000 rpm for 10 min at 10°C, and the supernatants
were used for BAs determination by HPLC after derivati-
zation with dansyl-chloride (Sigma-Aldrich, Gallarate,
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Italy) according to Bargossi et al. (2015b). The quantifica-
tion was performed according to Tabanelli et al. (2012)
and the amount of tyramine and 2-phenylethylamine was
expressed as mg ml�1 by reference to a calibration curve
obtained with standard solutions. The trials were always
analysed in triplicate.

RNA isolation, cDNA synthesis and RT-qPCR assay

Two millilitre aliquots of E. mundtii cultures were cen-
trifuged at 3000 rpm for 10 min and total RNA was iso-
lated from the collected cell pellets according to
Bargossi et al. (2015b). Total cDNA was synthesized
from 1 lg of RNA using the ImProm-IITM Reverse Tran-
scriptase kit (Promega Corporation), following the manu-
facturer’s recommendations.
The expression level of the gene tyrDC was analysed

by a reverse transcription-quantitative real time PCR
(RT-qPCR) assay with the primers TYR3f and TYR4r
(Table 1); thermo cycler, reaction mixture and amplifica-
tion programme were previously described in Torriani
et al. (2008), as well as the procedure of the absolute
quantification of the tyrDC copies number. Two indepen-
dent biological replicates were performed for each trial
and data were obtained from two technical replicates per
sample.

Analysis of the TDC operon region

The TDC operon fragments were obtained for E. mundtii
C46 and C53 by PCR amplification with the partially
degenerate primers reported in Table 1. PCR mixture
was composed of 19 PCR buffer, 1.5 mM MgCl2,
200 nM dNTPs, 0.5 lM each primer and 50 ng DNA.
Amplification programme comprised: 95°C for 5 min, 35
cycles at 94°C, 30 s; 56°C, 45 s; 72°C, 1 min and final
extension at 72°C, 10 min. Amplicons were purified,
cloned and sequenced as reported above. The partial
TDC operon sequences of the strains E. mundtii C46
and C53 were submitted to the GenBank nucleotide
database under the accession numbers KU870523 and
KU870522 respectively.
Promoters prediction was carried out by BPROM, a

bacterial sigma70 promoter recognition program (http://
linux1.softberry.com/berry.phtml?topic=bprom&group=
programs&subgroup=gfindb; Solovyev and Salamov,
2011). Putative Rho-independent transcription termina-
tors were predicted by the Arnold Finding Terminators
(http://rna.igmors.u-psud.fr/toolbox/arnold/index.php).
Similar searches were performed with the BLAST pro-

grams available at the NCBI. Sequence alignments were
carried out with the Clustal Omega analysis Tool Web
Services from the EMBL-EBI (Sievers et al., 2011).

Statistical analysis

The growth model was fitted using the statistical package
Statistica for Windows 6.1 (Statsoft Italia, Vigonza, Italy).
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