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ABSTRACT 
Summary: Accurate prediction of amyloid-forming amino acid se-
quences remains an important challenge. We here present an online 
database that provides open access to the largest set of experimen-
tally characterised amyloid forming hexapeptides. To this end, we 
expanded our previous set of 280 hexapeptides used to develop the 
Waltz algorithm with 89 peptides from literature review and by sys-
tematic experimental characterisation of the aggregation of 720 
hexapeptides by transmission electron microscopy (TEM), dye bind-
ing and Fourier transform infrared spectroscopy (FTIR). This brings 
the total number of experimentally characterized hexapeptides in the 
WALTZ-DB database to 1089, of which 244 are annotated as posi-
tive for amyloid formation. 
Availability and implementation: The WALTZ-DB database is 
freely available without any registration requirement at  
http://waltzdb.switchlab.org. 
Contact: frederic.rousseau@switch.vib-kuleuven.be;	
joost.schymkowitz@switch.vib-kuleuven.be; 

1 INTRODUCTION  
Amyloid formation by proteins is widely recognized as a patho-
genic mechanism in diverse diseases such as Alzheimer Disease 
and type II diabetes, but also as a functional mechanism of biologi-
cal nanostructure formation, such as the chorion protein that stabi-
lizes insect eggshell (Fowler, et al., 2006). It has been generally 
established that the formation of amyloid fibrils by proteins is nu-
cleated by short aggregation prone segments (APR) of the poly-
peptide chain, which are a necessary and sufficient requirement to 
allow amyloid conversion of a folded protein (De Baets, et al., 
2014). In amyloid, these short stretches form an intermolecular 
beta-sheet that runs parallel to the fiber axis, indicated as the cross-
beta structure (Eisenberg and Jucker, 2012; Sunde, et al., 1997). 
The sequence that constitute APRs are usually characterized by a 
high beta-sheet propensity and hydrophobicity and a low net 
charge (Chiti, et al., 2003). Computational tools have been devel-
oped to predict amylogenic or aggregation propensities of proteins 

  
 

by detecting APRs in polypeptide sequences, reviewed elsewhere 
(De Baets, et al., 2014; Ho, et al., 2006). We earlier developed the 
Waltz amyloid prediction algorithm (Maurer-Stroh, et al., 2010), 
which is a data-based statistical method that uses a position-
specific scoring matrix for its data representation. As the quality of 
statistical methods depends critically on the quantity (number and 
sequence diversity of known positive and negative examples) and 
quality (confidence of the amyloid status) of the available data, we 
decided to increase the available high confidence learning data by 
an order of magnitude. This was achieved by expanding the set of 
280 hexapeptides of known amyloid forming proteins with an ad-
ditional experimentally verified 720 hexapeptides derived from 63 
different proteins, combined with an additional 89 peptides derived 
from literature review, bringing the total number of hexapeptides 
to 1089. 

2 METHODS 
In order to study the amylogenic properties of hexapeptides, 720 uncharac-
terized hexapeptides were synthesized by JPT Technologies GmbH. 
Transmission electron microscopy was applied to gather high contrast 
images of the peptides in triplicate. Morphological differences between the 
peptides were examined with a JEM-2100 microscope (JEOL, Japan) at 80 
keV. If a peptide did not reveal fibrils by TEM after four weeks, the incu-
bation period was prolonged for at least two weeks. ProteoStat dye staining 
was carried out in duplicate on all peptides. Upon interaction with the 
cross-beta sheet structure of protein aggregation, the dye becomes fluores-
cent (lex=515/lem=603 nm). Fourier transform infrared spectroscopy was 
used to determine the secondary structure of the peptide formations. A 
hexapeptide was identified as an amyloid forming fibril when the FTIR 
spectrum showed peaks around 1635 cm-1 and/or 1680 cm-1. FTIR analysis 
was performed on a Bruker Tensor 37 FTIR spectrometer. Additional hex-
apeptide properties such as WALTZ, TANGO (Fernandez-Escamilla, et al., 
2004) and PASTA scores (Trovato, et al., 2007), hydrophobicity, Chou-
Fasman  values for helix and strand propensity (Chou and Fasman, 1974), 
amyloid structural class (Eisenberg, et al., 2009) prediction and predicted 
atomic structure models were obtained through comparative modeling 
using the FoldX force field (Schymkowitz, et al., 2005) on the publically 
available structures of amyloid cores (Eisenberg, et al., 2005; Morris, et al., 
2013). All peptide data is stored in a MySQL database and is available 
through a webserver built with the Drupal content management system to 
provide fast and secure data access.  
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3 RESULTS 

3.1 Datasets 
The database consists of these distinct sets of hexapeptides: (1) 
FUS: 49 peptides from Fused in sarcoma protein, (2) TDP-43: 94 
peptides from TAR-DNA Protein 4, (3) SOD-1: 30 peptides from 
Superoxide Dismutase, (4) Sup35: 205 peptides from the yeast 
Sup35 prion protein, (5) Lindquist: 105 hexapeptides from a bioin-
formatics amyloid prediction study from the Lindquist group, (6) 
Functionals: 140 peptides from bacterial and yeast adhesins, (7) 
Diversity set: collection of 50 wild type and mutant hexapeptides 
from different unrelated disease proteins, (8) Newcores: 47 pep-
tides where the hexapeptides cores positions 3 and 5 were system-
atically explored to eliminate residue bias on these positions, (9) 
Literature: 200 peptides from the Amylhex database (Maurer-
Stroh, et al., 2010) and 169 hexapeptides mined from the literature 
annotating their amylogenic properties.  
 
3.2 Online database content 

3.2.1 Peptide listing and filtering  
The homepage of WALTZ-DB immediately lists a paged table of 
the entire database content. The visible columns are the peptide 
sequence, source (in-house or literature), morphology decision 
(amyloid or non-amyloid), WALTZ and TANGO score. The ex-
tensive filter block on the right serves to fine-tune a peptide search. 
Filtering can be done on sequence, morphology decision, source, 
hydrophobicity, UniProt identifier, PDB identifier, availability of 
TEM image or FTIR spectrum and amyloid- or aggregation-
prediction by WALTZ, TANGO and PASTA. At the bottom of the 
table, two buttons activate a download of the resulting peptide list 
in CSV or Excel format. 

3.2.2 Detailed peptide data   
Clicking on a peptide sequence opens a peptide-centered page with 
detailed annotation and experimental data. When a TEM image 
was positive for fiber formation or even a vague impression of 
fiber formation was present, we show three TEM images, the FTIR 
spectrum and the ProteoStat dye staining values. For non-synthetic 
peptides, the location of the peptide sequence in the parent protein 
is colored red inside the full sequence. On top of the page is a 
summary including FTIR peak values, ProteoStat binding values, 
WALTZ, TANGO and PASTA scores, hydrophobicity and Chou-
Fasman values for helix and strand propensity. WALTZ-DB also 
provides an atomic structure model for the peptide including in-
formation about the preferred amyloid structure class. The model is 
a PDB file and can be downloaded for analysis. At the bottom of 
each peptide-centered page there are links to external sites that 
offer amyloid prediction tools (De Baets, et al., 2014), so the user 
can run the peptide through other predictors and annotation tools.  

4 SUMMARY 
WALTZ-DB contains 1089 hexapeptides and is currently the larg-
est database for amyloid morphology annotation. To this end, we 
experimentally verified the fiber forming potential for 720 hex-

apeptides through TEM, FTIR and ProteoStat dye staining. We 
make available the TEM images and FTIR spectra to allow re-
searchers to reach independent decisions on the amyloid status of 
each peptide. In addition, we provide our own classification based 
on the presence of amyloid aggregates by TEM, supported by at 
least one evidence for beta-sheet structure by FTIR or Proteostat 
dye binding. As the database contains amyloid-positive as well as 
amyloid-negative samples, it serves perfectly as a reference set to 
develop novel prediction tools.  
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