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High quality local interpolation by composite parametric surfaces
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Department of Mathematics, University of Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy

Abstract

In CAGD the design of a surface that interpolates an arbitrary quadrilateral mesh is definitely a challenging task. The
basic requirement is to satisfy both criteria concerning the regularity of the surface and aesthetic concepts.

With regard to the aesthetic quality, it is well known that interpolatory methods often produce shape artifacts when
the data points are unevenly spaced. In the univariate setting, this problem can be overcome, or at least mitigated,
by exploiting a proper non-uniform parametrization, that accounts for the geometry of the data. Recently the same
principle has been generalized and proven to be e↵ective in the context of bivariate interpolatory subdivision schemes.

In this paper, we propose a construction for parametric surfaces of good aesthetic quality and high smoothness
interpolating quadrilateral meshes of arbitrary topology. In the classical tensor product setting the same parameter
interval must be shared by an entire row or column of mesh edges. Conversely, in this paper, we assign a di↵erent
parameter interval to each mesh edge. This particular structure, which we call an augmented parametrization, allows
us to interpolate each section polyline at parameters values that prevent wiggling of the resulting curve or other
interpolation artifacts and yields high quality interpolatory surfaces.

The proposed method is generalization of the local univariate spline interpolants introduced in Beccari et al.
(2013) and Antonelli et al. (2014), that have arbitrary continuity and arbitrary order of polynomial reproduction. The
generated surfaces retain the same smoothness of the underlying class of univariate splines in the regular regions of
the mesh (where, locally, all vertices have valence 4). Mesh regions containing vertices of valence other than 4 are
covered with suitably defined surface patches joining the neighboring regular ones with G

1- or G
2-continuity.

Keywords: Quadrilateral mesh, Local interpolation, Non-uniform parametrization, Surface, Arbitrary topology,
Curve network
2010 MSC: 65D05, 65D07, 65D17

1. Introduction

The construction of parametric curves and surfaces interpolating a given set of points is a central topic in computer-
aided geometric design. In 2D, the data points are the vertices of a control polygon, whereas in 3D they are the vertices
of a control polyhedron (also called a mesh). In this context, a “good” interpolant is one that faithfully mimics the
shape suggested by the input data: this means, e.g., that it does not present self intersections, nor it bends to much or
it is too tight in relation to the given control polygon or polyhedron.

Concerning univariate interpolation, it is well known that a proper choice of parametrization is crucial to obtain
good quality curves interpolating unevenly spaced data (basic references are [12, 13]). In particular, a uniform para-
metrization may give rise to noticeable interpolation artifacts, since it does not account for the geometry of the data.
These artifacts often disappear, or are greatly mitigated, when a suitable non-uniform parametrization is used (Figure
1 is an example).

⇤Corresponding author.
Email addresses: antonelm@math.unipd.it (Michele Antonelli), carolina.beccari2@unibo.it (Carolina Vittoria Beccari),

giulio.casciola@unibo.it (Giulio Casciola)

1



(a) Uniform parametrization (b) Centripetal parametrization

Figure 1: Cubic (global) spline interpolation of unevenly spaced data. The uniform parametrization fails whereas a proper non-uniform parametri-
zation yields a good interpolant.

Although there is probably no “best” parametrization, since any method can be defeated by a suitably chosen data
set, some techniques produce good results in the majority of critical cases. One of the most e↵ective [14, 22, 35], and
probably the most used, is the centripetal parametrization. Alongside this, it is worth mentioning the Nielson-Foley
parametization [15] and the recent method proposed in [11], which, in some cases, shows better performance than the
previous ones.

Compared to global interpolation, local techniques are more prone to generating shape artifacts and, as a conse-
quence, they su↵er even more from a poor choice of parametrization. On the other hand, local methods are more
e�cient in that they do not involve solving systems of linear equations, which can readily be of large dimension when
complex surfaces have to be generated. Moreover, editing or addition of data can be handled by updating the model
only locally.

How to construct of local spline interpolants with specific properties and non-uniform parametrization has long
been an open question. This could be one of the reasons why, so far, local interpolation methods have had low uptake
in computer design applications. In the univariate setting, a general approach for solving the problem has been recently
developed in [2, 4]. The method allows for choosing an arbitrary support width and, correspondingly, constructing
various classes of local spline interpolants that di↵er one from another in their degree, continuity and approximation
order. In this way, one can pick the interpolating spline with properties best suited to the context of application. The
popular Catmull-Rom splines [9], as well as other types of previously appeared local interpolants (a non-exhaustive
list includes [6, 7, 10, 17, 33]) are special instances of the construction.

In this paper we generalize the univariate local interpolatory splines in [2, 4] to the bivariate setting. Using these
splines and a new parametrization technique we show how generate parametric surfaces of good aesthetic quality and
high smoothness.

To achieve our goal, the main hurdle is represented by the need for defining a non-uniform parametrization that
preserves the good quality of the local interpolants, when generalizing from the univariate to the bivariate setting. We
shall start by considering the case of a regular mesh, where each vertex has exactly 4 incident edges. In this case, the
standard approach is to construct a tensor product surface from the univariate splines that one wishes to use. Being uv

the parametric domain, the tensor product requires the generation of one set of parameter values for all isoparametric
curves in the u-direction; the same holds for the v-direction. For finding such a parametrization, the most reasonable
way of proceeding is to create a good parametrization for each isoparametric curve using a suitable method, such
as, e.g. the centripetal parametrization, and then average these parameterizations to yield one. This approach will
only produce acceptable results if all the isoparametric curves essentially have the same parametrization. Conversely,
when the data points significantly deviate from a regular grid, it will result in a poor choice in parameters. The
isoparametric curves will unnaturally wiggle, and this defect will will negatively impact the quality of the surface
(see, e.g. [13, §7.5.1]).

The above discussion suggests that the classical idea of averaging the parametrization should be avoided. Hence
we take another avenue. In particular we assign a parameter interval to each mesh edge, without requiring that the
same parameter interval be shared by an entire row or column of mesh edges. We call such a parametrization an
augmented parametrization.

A similar parametrization concept has previously been exploited in the context of subdivision schemes. It was
initially proposed for Catmull-Clark surfaces [8, 26, 27, 32], yielding greater control over the shape of free-form
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objects and special features such as crease edges. In fact, the term “augmented” was firstly used in [27]. More re-
cently, the augmented parametrization has also been used in the context of interpolatory subdivision schemes [5]. The
subdivision method in [5] allows for interpolating each section polyline of the mesh at independent parameter values
and generates surfaces of far superior aesthetic quality compared to their uniform or tensor-product counterparts. Un-
fortunately, it is subject to the typical issues of interpolatory subdivision schemes: the resulting surfaces cannot be
evaluated at arbitrary parameters and are C

1 continuous only.
The construction of the local interpolatory surfaces proposed in this paper proceeds as follows. We start by

assuming that a suitable parametrization has been computed for each section polyline of the mesh. Accordingly,
a di↵erent parameter interval is assigned to each mesh edge, thus yielding an augmented parametrization. Next,
we choose a class of local univariate spline interpolants – based on the desired smoothness, order of polynomial
reproduction and support width – and construct a composite surface that contains all the interpolatory curves of
this class generated from the section polylines with the individual parameterizations. In this way, every section
polyline is interpolated at the parameter values that guarantee the best quality of the resulting section curve and the
generated surface turns out to be aesthetically well-behaved. We prove that, if the underlying univariate splines are
C

k continuous, then the surface is globally G
k (meaning that derivatives agree after suitable reparametrization [28]).

As a consequence, the composite surface retains the good properties of the corresponding univariate splines.
Oppositely to global interpolation techniques, the considered approach does not require to solve large systems

of linear equations and allows for local editing of the generated surfaces. Moreover, unlike other local methods,
it does not require to supply additional input data. Indeed, a typical drawback of local constructions, such as the
popular Coons patches, is the need for prescribing cross-boundary derivatives and twist vectors, which are generally
heuristically estimated. As a result only G

1 or G
2 Coons patches have been used so far, whereas the surfaces proposed

in this paper can have higher continuity.
An important consequence of the locality of the proposed construction is that the method can relatively easily be

extended to meshes containing extraordinary vertices (namely vertices with valence di↵erent than 4). Applying the
above interpolation scheme wherever possible (that is away from the extraordinary vertices) will generate a surface
with “holes” around the extraordinary vertices. Across the boundary of such holes, the tangent field (and higher
order derivative fields) are determined by the surrounding regular patches and, as a consequence of the augmented
parametrization, they change at every boundary point in a peculiar way. The missing part of the surface shall be
defined in such a way to interpolate the existing derivative fields up to reasonable order of continuity.

The general problem of how to fill the hole around an extraordinary vertex is an active research topic even in the
case of uniform parametrization. Recent developments include [30, 31, 34], where transfinite multi-sided patches are
generated by interpolating derivative ribbons. Moreover, a whole branch of research is devoted to the problem of
filling an n-sided hole in a tensor product bi-cubic spline surface. Early constructions, such as [29], produce a G

2

covering of the hole by bi-sextic surface patches, but are not focused on shape quality. To generate aesthetically well-
behaved G

2 splines, a bi-septic construction based on minimizing a suitable energy functional is presented in [23]. In
[21] a G

1 piecewise bi-quintic surface patch is developed to fill the n-sided hole in a piecewise bi-cubic tensor-product
spline surface with optimized curvature distribution.

Our main point here is not to provide a one-stop solution, but to demonstrate how to obtain good quality local
interpolating surfaces by exploiting, in synergy, the augmented parametrization, the regular patches described above
and a local patching scheme for extraordinary vertices. We will address this issue by mans of either G

1 Coons-Gregory
patches [12, 16, 20] and their G

2 version [18, 24]. In both cases, we will see how to suitably tweak the definition of the
patches, in order to interpolate the desired boundary information. This will allow us to generate augmented surfaces
that interpolate a mesh containing extraordinary vertices, have arbitrary smoothness in the regular regions, and are G

1

or G
2 continuous in the extraordinary regions.

We would like to remark that the research reported in this paper was supported by the European Eurostars project
NIIT4CAD, aimed at the development of new technologies for modeling arbitrary topology surfaces within CAD
systems. One of the advanced objectives of the project was to construct local interpolatory surfaces suitable for inte-
gration in a CAD system and this paper is a part of such a study.

The remainder of the paper is organized as follows. In Section 2 we recall the univariate local spline interpolants
presented in [2, 4]. For regular input meshes, in Section 3 we introduce the augmented parametrization and the
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construction of local interpolatory surfaces, also discussing their relevant properties. Section 3.1 presents some appli-
cation examples to demonstrate the e↵ectiveness of the method and its better performance compared to the classical
tensor product approach. In Section 4 we address the problem of patching the extraordinary regions of the mesh by
G

1 and G
2 augmented Coons-Gregory patches. Section 4.3 illustrates a possible approach to generate the boundary

curves and cross-boundary derivative fields needed for the definition of these patches, when this information is not
available. Section 4.4 presents examples of augmented surfaces containing extraordinary vertices and finally Section
5 summarizes the results achieved and suggests some topics for future research.

2. Local, non-uniform, univariate spline interpolation

Given a sequence of points p0, p1, . . . , pN
in Rn, n > 2, where p

j
and p

j+1 are distinct and p
N
= p0, and an

associated sequence of parameter values x0 < x1 < · · · < xN , we consider the periodic spline curve F : [x0, xN]! Rn

defined as
F(x) =

X

i

p
i
 i(x). (1)

In the above formula,  i : [x0, xN] ! R are fundamental spline functions, namely they are piecewise functions on
the partition {x j} such that  i(x j) = �i, j. Since we are interested in local interpolation, we require that every  i has
compact support, namely that it is nonzero in a finite number of parametric intervals. In this way, when the data points
are in Rn, n = 2, 3, formula (1) represents a parametric curve that locally interpolates the given data.

In the remainder of the paper, we suppose that the fundamental functions  i have even support width w, namely

 i(x) = 0, x < [xi� w

2
, xi+ w

2
].

This assumption guarantees that the interpolating splines in (1) preserve possible symmetries in the data and allows
us to consistently simplify the notation that will be introduced later on.

Confining ourselves to polynomial splines, the characterising properties of the fundamental functions are degree,
continuity, maximum degree of polynomials that can be reproduced (this is equal to the approximation order minus
one) and support width. Obviously, these properties of are inherited by the parametric interpolant F.

A general method for constructing local interpolatory splines with specific properties and non-uniform parametri-
zation has recently been developed in the [2, 4]. In that framework, we can choose an arbitrary support width and,
correspondingly, construct various classes of spline interpolants of the form (1) that di↵er one from another in their
degree, continuity and approximation order. Special instances of such splines are Catmull-Rom splines [9], as well
as other types of local interpolants including those in [6, 7, 10, 17, 33]. Adopting the notation in [2, 4], we indicate a
class of splines having Degree g, Continuity order k, Polynomial reproduction degree m and Support width w by the
shorthand notation D

g
C

k
P

m
S

w. Tables 1, 2, and 3 in [4] and Table 2 in [2] summarize the di↵erent classes that we
can construct for the most usual choices of support width, namely 4, 6 and 8. Some examples with w = 4 include the
families D

3
C

0
P

3
S

4, D
3
C

1
P

2
S

4, D
4
C

2
P

1
S

4, D
5
C

2
P

2
S

4 from [4] and D
2
C

1
P

2
S

4 or D
3
C

2
P

2
S

4 from [2]. Even more
families of splines can be found widening the support width to 6 or 8.

We now introduce a convenient notation, emphasizing the local dependence on data and parameters, which will be
useful in generalizing the above framework to the bivariate case. To this aim, we shall observe that in each parametric
interval there are exactly w nonzero fundamental functions, each of which depends on a sequence of w � 1 parameter

intervals of the form
di = xi+1 � xi. (2)

As a consequence, the vector
d =

⇣
ds� w

2 +1, . . . , ds, . . . , ds+ w

2 �1
⌘
, (3)

contains all the information necessary to evaluate F in [xs, xs+1]. We call such a vector the local parameter vector

relative to [xs, xs+1] (or, equivalently, relative to p
s
p

s+1). Mapping the interval [xs, xs+1] to [0, ds], the segment of F

bounded by p
s

and p
s+1 can now be written as

F(x)
���
[0,ds]
=

s+ w

2X

i=s� w

2 +1

p
i
 i(x, d), (4)

4



 i

xi�2 xi�1 xi xi+1 xi+2
0

1

(a)

 s+2

 s+1 s

 s�1

ds�1 ds ds+1

xs�1 xs xs+1 xs+2
0

1

(b)

Figure 2: (a) Fundamental function  i of the class D
3
C

1
P

2
S

4, with the di↵erent pieces represented in di↵erent colors. (b) The fundamental
functions of the class D

3
C

1
P

2
S

4 that are nonzero in the interval [xs, xs+1].

where  i(x, d) is the restriction of  i(x) to [xs, xs+1] expressed in terms of the sequence of parameter intervals (3).
As an example of our setting and notation, we provide in Appendix A the expressions for the well-known Catmull-

Rom splines [9], corresponding to the class D
3
C

1
P

2
S

4 in [4], also represented in Figure 2. To facilitate the reader
in reproducing the examples proposed in the following sections, we also list in appendix the fundamental functions
D

5
C

2
P

2
S

4. The latter are an interesting application of the approach in [4], since they have high continuity, in spite
of a very limited support. Moreover, given our focus on interpolating 3-dimensional data, it may also be useful to
consider splines with continuity C

3, or higher, and some graphical examples will be presented in the forthcoming
sections. As it can reasonably be expected, in this case the explicit expression of the fundamental functions is more
complicated. Nevertheless, the evaluation of a spline interpolant can still be performed in a computationally e�cient
way as discussed in [2, 4].

As recalled in the previous section, the choice of the parameter sequence {x j} has a large influence on the shape of
an interpolating spline curve and various and e↵ective methods to automatically compute the values {x j} exist, such as
[1, 11, 15, 22]. Since the focus of this paper is not on comparing di↵erent parametrization techniques, we will make
use of the centripetal parametrization, which is acknowledged to produce good results for the majority of critical data
sets. According to the centripetal parametrization, fixed x0, the subsequent x j, j = 1, . . . ,N are computed through

xi+1 = xi +
���p

i+1 � p
i

���↵
2 , (5)

with ↵ = 1
2 and k·k2 denoting the Euclidean norm. It is therefore clear that the parameter values depend on the

geometry of the interpolation points. From (5), the chordal and uniform parameterizations can also be obtained by
setting respectively ↵ = 1 and ↵ = 0 [12, 13].

In the following section we generalize the considered interpolants to the bivariate setting. Before proceeding, we
need to remark that our assumption to work with periodic data has the sole purpose of simplifying the presentation.
Open curves can similarly be defined, provided that “special” fundamental functions are used in order to evaluate (1)
in the boundary intervals [2]. These fundamental functions can be determined so as to interpolate the derivatives of
F up to suitable order at x0 and xN . The surface construction developed in the following section can be adapted to
handle open data sets along the same lines of the univariate case.

3. Local interpolation of regular meshes by high quality surfaces with arbitrary continuity

In this section we develop a local method to generate interpolatory surfaces of good quality and high order of con-
tinuity from regular input meshes. In the present context, a surface of “good quality” is one that faithfully resembles
the shape suggested by the input data and does not present undesired interpolation artifacts. The approach is based on
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SS̃

u

v

u

v

p�2,�1 p�1,�1 p0,�1 p1,�1 p2,�1

p�2,0 p�1,0 p0,0 p1,0 p2,0

p�2,1 p�1,1 p0,1 p1,1 p2,1

p�2,2 p�1,2 p0,2 p1,2 p2,2

d�2,�1

d�2,0

d�2,1

d�2,2

d�1,�1

d�1,0

d�1,1

d�1,2

d0,�1

d0,0

d0,1

d0,2

d1,�1

d1,0

d1,1

d1,2

e�2,�1 e�1,�1 e0,�1 e1,�1 e2,�1

e�2,0 e�1,0 e0,0 e1,0 e2,0

e�2,1 e�1,1 e0,1 e1,1 e2,1

Figure 3: Labeling of vertices and parameter intervals for the construction of the augmented surface patch S having the expression (10).

the previously recalled univariate spline interpolants and on a proper technique of parametrization. As will be proved
in the following, the resulting surfaces are G

k-continuous when constructed upon a class of fundamental functions of
type D

g
C

k
P

g
S

w.
A regular mesh is one where every vertex belongs to four edges (and faces) and can thus be seen as a rectangular

grid of 3D points, whose edges are associated with two independent domain directions. We say that two edges are
opposite when they have no vertex in common and they belong to the same face, whereas we say that two edges
are adjacent when they have one vertex in common and do not belong to the same face. We call an edge ribbon

any ordered sequence of pairwise opposite edges and a section polyline a polyline formed by a sequence of pairwise
adjacent edges. Moreover, we call a section curve any curve interpolating the vertices of a section polyline. For
simplicity, the discussion will be limited to meshes without boundary and therefore we can assume that all section
polylines and curves are closed.

In the Introduction, we have drawn the reader’s attention the well-known fact that a tensor-product surface may
easily yield poor-quality interpolants. This is because all isocurves of such a surface must have the same parametri-
zation. As recalled, the latter requirement may result in an unnatural wiggling of the section curves that is very likely
to happen when the data points are unevenly spaced and is even more evident when local interpolation methods are
used.

In contrast to the tensor product technique, we wish to construct a surface where the vertices of each section
polyline are interpolated at the parameter values that allow for the best quality of the resulting section curve.

To this aim, for every section polyline, we derive a non-uniform parameter sequence by exploiting an appropriate
data-dependent technique of parametrization. Then we assign to the section polyline edges the resulting parameter
intervals. For instance, labeled by p

i, j the mesh points, the centripetal parametrization applied to every section polyline
will produce the edge parameter intervals

di, j B
���p

i+1, j � p
i, j

���↵
2 and ei, j B

���p
i, j+1 � p

i, j

���↵
2 , ↵ =

1
2
. (6)

This can easily be seen comparing the above expressions and formulae (2)–(5).
We call the resulting configuration of parameters an augmented parametrization. The augmented parametrization

is featured by the fact that the parameter intervals allocated to the edges of one mesh face will not form, in general,
a rectangle. Conversely, in a tensor product surface, the parameter intervals must be equal for all edges belonging in
the same edge ribbon, or, equivalently, the intervals allocated to the edges of every mesh face must form a rectangle.

We now aim to construct a composite surface, which we call an augmented surface, where every section curve is a
local, univariate, spline of class D

g
C

k
P

m
S

w and has an independent parametrization determined by the edge parameter
intervals of the corresponding section polyline. This means that the section curve piece bounded by p

i, j and p
i+1, j

should have an associated parametric interval of length equal to di, j. Analogously, the parametric interval between
any two vertices, p

i, j and p
i, j+1 of the corresponding section curve should have length ei, j. In this way, each section
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polyline of the mesh can be interpolated at the parameter values that allow the best quality of the resulting section
curve. As a consequence, the surface passing through these curves will most likely be aesthetically well-behaved.

It is su�cient to illustrate the construction for a generic surface patch interpolating the points p
s,t, ps+1,t, ps,t+1,

p
s+1,t+1 and in particular, without loss of generality, we can consider the one which interpolates p0,0, p1,0, p0,1, p1,1,

depicted in Figure 3. (As of now, the neighboring patch S̃ in Figure 3 shall be overlooked. It will be used later in the
proof of Proposition 2.) Any other patch can be analogously derived by proper index shift.

Let [0, 1]2 be the parametric domain associated with the considered patch. The first stage of the construction
is to choose a class of local, univariate, spline interpolants D

g
C

k
P

m
S

w, based on the properties that we seek in the
final surface. Hence, in view of the C

k continuity of the fundamental functions, we consider the polynomials �i, j(v)
i = �w

2 + 1, . . . , w

2 � 1, j = 0 and ✏i, j(u) i = 0, j = �w

2 + 1, . . . , w

2 � 1, of degree 2k + 1, uniquely determined by the
following conditions:

�i, j : [0, 1]! [di, j, di, j+1],

�i, j(0) = di, j, and �i, j(1) = di, j+1,

�(r)
i, j (0) = �(r)

i, j (1) = 0, r = 1, . . . , k,

(7a)

and
✏i, j : [0, 1]! [ei, j, ei+1, j],

✏i, j(0) = ei, j, and ✏i, j(1) = ei+1, j,

✏(r)
i, j (0) = ✏(r)

i, j (1) = 0, r = 1, . . . , k.

(7b)

We call the above polynomials �i, j and ✏i, j the local parametrization functions. Since �i, j(v) and ✏i, j(u) have
vanishing derivatives up to order k at 0 and 1, they are monotonic functions with positive first derivative. Moreover
they interpolate the two parameter intervals corresponding to opposite edges of a mesh face and therefore have the
e↵ect of “blending” the parametrizations. As it will become clear later on, this property is fundamental in guaranteeing
that the section polylines of the surface be interpolated at the initially assigned parameter intervals.

We use the local parametrization functions to associate two local parameter vectors d and e with any (u, v) 2 [0, 1]2.
In particular, let us set:

d = d(v) =
⇣
�� w

2 +1,0(v), . . . , �0,0(v), . . . � w

2 �1,0(v)
⌘
, (8a)

and
e = e(u) =

⇣
✏0,� w

2 +1(u), . . . , ✏0,0(u), . . . , ✏0, w2 �1(u)
⌘
. (8b)

In this way, at the patch boundary described by (u, 0), u 2 [0, 1], d =
�
d�w/2+1,0, . . . , d0,0, . . . , dw/2�1,0

�
is the local

parameter vector relative to p0,0 p1,0 (see its definition in (3)). In addition, at the opposite boundary (u, 1), d is the
local parameter vector relative to p0,1 p1,1. Analogously, for any point (0, v) or (1, v), v 2 [0, 1], e is the local parameter
vector associated respectively with p0,0 p0,1 or p1,0 p1,1.

We also consider the two local variables

x = u �0,0(v), and y = v ✏0,0(u), (9)

such that x and y span the intervals [0, �0,0(v)] and [0, ✏0,0(u)] while respectively u and v vary in [0, 1].
Finally, for any (u, v) 2 [0, 1]2, we define the augmented surface patch S by

S(u, v) =

w

2X

i=� w

2 +1

w

2X

j=� w

2 +1

p
i, j i, j

⇣
x, y, d, e

⌘
, (10)

where
 i, j

⇣
x, y, d, e

⌘
=  i

⇣
x, d

⌘
 j

⇣
y, e

⌘
, (11)

with local parameter vectors d, e given by (8a)–(8b) and x, y computed through (9).
Note that S depends on a grid of mesh vertices of size equal to w⇥w, where w is the support width of the underlying

functions  i and  j. For brevity, we will sometimes say that the patch has support w.
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d�1,0 d0,0 d1,0

d�1,1 d0,1 d1,1

e0,�1

e0,0

e0,1

e1,�1

e1,0

e1,1

��1,0(v̄) �0,0(v̄) �1,0(v̄)

✏0,�1(ū)

✏0,0(ū)

✏0,1(ū)

d0,0

e1,0

d0,1
e0,0

S(ū, v̄)

T(x̄, ȳ) = S(ū, v̄)

✏0,�1(ū)

✏0,0(ū)

✏0,1(ū)

ȳ

��1,0(v̄) �0,0(v̄) �1,0(v̄)x̄

u

v

0 1

1

(ū, v̄)

Figure 4: Construction of an augmented patch in the case of support width w = 4.

Remark 1. For simplicity of presentation we have assumed that the functions  i(x, d) and  j(y, e) in (11) belong to

the same family D
g
C

k
P

m
S

w
. However, the construction can easily be adapted to allow fundamental functions of two

di↵erent classes D
g
C

k
P

m
S

w
.

We remark that the augmented patch S is not a tensor product surface. More precisely, we can interpret the above
construction as follows. For a given (ū, v̄) 2 [0, 1]2, let d̄ and ē be the vectors

d̄ = d(v̄), ē = e(ū),

computed through (8a)–(8b), and let d̄ = �0,0(v̄) and ē = ✏0,0(ū). Then the value of S at (ū, v̄) is obtained by evaluating
the tensor product patch

T(ū,v̄)(x, y) =

w

2X

i=� w

2 +1

w

2X

j=� w

2 +1

p
i, j i

⇣
x, d̄

⌘
 j

⇣
y, ē

⌘
, (x, y) 2 [0, d̄] ⇥ [0, ē],

at the point (x̄, ȳ), namely by setting S(ū, v̄) = T(ū,v̄)(x̄, ȳ). In this view, a di↵erent tensor-product patch T(ū,v̄) determines
the value of S at each domain point (ū, v̄) 2 [0, 1]2.

The construction of the augmented surface patch S is schematized in Figure 4 for a class of fundamental functions
having support width w = 4 and, more generally, can be summarized as follows. Each mesh face gives rise to a surface
patch, parameterized over the domain [0, 1]2. For a given (ū, v̄) 2 [0, 1]2 we locally interpolate the parameter intervals,
separately in the u and v direction, in order to generate two local parameter vectors d̄ = d(v̄) and ē = e(ū). We also
map (ū, v̄) into a couple of values (x̄, ȳ). This mapping is such that, at the boundaries (u, 0) and (u, 1), u 2 [0, 1], x

spans respectively the entire intervals [0, d0,0] and [0, d0,1]. Analogously, at the boundaries (0, v) and (1, v), v 2 [0, 1], y

spans respectively the intervals [0, e0,0] and [0, e1,0]. These are precisely the parameter intervals allocated to the edges
of the given mesh face. Finally, we consider the surface T(ū,v̄)(x, y) defined as tensor product of the local univariate
fundamental functions of class D

g
C

k
P

m
S

w on d̄ and ē and we set S(ū, v̄) = T(ū,v̄)(x̄, ȳ).
The remainder of this section is devoted to showing that the resulting composite surface has all the sought prop-

erties. We start by proving that the surface section curves form a network of univariate spline interpolants of class
D

g
C

k
P

m
S

w, where each curve has an independent non-uniform parametrization determined by the edge parameter
intervals of the corresponding section polyline. In other words, if a network of section curves of class D

g
C

k
P

m
S

wwas
independently determined before constructing the surface, then the surface would precisely be a transfinite interpolant
of these curves.

Proposition 1. The section curves of an augmented surface based on a class of fundamental functions D
g
C

k
P

m
S

w

are local univariate splines in the same class.
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Proof. It su�ces to show that the section curve segment bounded by p0,1 and p1,1 (see Figure 3) belongs to the unique
local, non-uniform spline curve F of class D

g
C

k
P

m
S

winterpolating the section polyline with vertices . . . , p�1,1, p0,1,
p1,1, p2,1 . . . and parameter intervals . . . , d�1,1, d0,1, d1,1, d2,1 . . . . Hence the statement can immediately be extended to
the entire network of section curves.

According to the local representation (4), we have

F(x) =

w

2X

i=� w

2 +1

p
i,1  i(x, d̄), x 2 [0, d0,1], (12)

with local parameter vector
d̄ =

⇣
d� w

2 +1,1, . . . , d0,1, . . . , d w

2 �1,1
⌘
.

The patch boundary with endpoints p0,1 and p1,1 is described by (10) for u 2 [0, 1], v = 1. At any such point (u, v),
the fundamental functions  j of the class D

g
C

k
P

m
S

w, j = �w/2 + 1, . . . ,w/2 � 1, have the values  1(y, e) = 1 and
 j(y, e) = 0, for any j , 1, and, by (9), x = ud0,1. Substituting in (10) we get

S(u, 1) =

w

2X

i=� w

2 +1

p
i,1 i(x, d).

Hence, the statement follows by observing that the local parameter vectors d and d̄ are equal and thus the curve
segments determined by the above formula and by (12) are identical.

We shall now study the continuity of an augmented composite surface. Preliminarily, we observe that each surface
patch is defined as a composition of infinitely di↵erentiable functions (note that the edge parameter intervals are
assumed to be nonzero). Moreover, Proposition 1 guarantees the continuity of the constructed surface and entails
that two neighboring augmented patches have C

k continuous derivatives in the direction of their common boundary.
The following proposition shows that the same smoothness holds in the cross-boundary direction and in particular
allows us to conclude that the constructed surface is globally G

k continuous 1. For ease of notation, we formulate
the statement for the two patches S and S̃ represented in Figure 3. It is immediate to see that the result holds when
considering any two neighboring patches and their common boundary, provided appropriate adjustment of indices.

Proposition 2. Let S and S̃ be the two adjacent augmented surface patches depicted in Figure 3, based on fundamental

functions of class D
g
C

k
P

m
S

w
. Then the derivatives across their common boundary satisfy the relation

@r

@ur
S(u, v)|(0,v) = �

r(v)
@r

@ur
S̃(u, v)|(1,v), r = 0, . . . , k, (13)

where

�(v) =
�0,0(v)
��1,0(v)

, (14)

and �0,0 and ��1,0 are the local parametrization functions defined in (7a).

The above result can be shown by direct verification, and we postpone the proof to the end of this section. For the
moment, it is important to observe that relation (14) provides the scaling �(v) relating the cross-boundary derivatives
of S and S̃. In general, �(v) is di↵erent at each boundary point, but varies smoothly along the boundary, being defined
as the ratio of two positive polynomials. As a consequence of Proposition 2 we obtain the following result.

Proposition 3. Two augmented surface patches built upon a class of fundamental functions D
g
C

k
P

m
S

w
join along

their common boundary with G
k
-continuity.

1
G

k continuity refers to agreement of derivatives after suitable reparametrization [28].
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Proof. Without loss of generality, we can take the two patches S and S̃ in Proposition 2 and consider the map

⇢(u, v) =
 
�(v)u + 1

v

!
,

where �(v) is given by (14). The function ⇢ is a C
k reparametrization between the two domains of S and S̃. Moreover,

exploiting relation (13), it is immediate to verify that

@r

@ur
S(u, v)|(0,v) =

@r

@ur

⇣
S̃ � ⇢

⌘
(u, v)|(0,v), r = 0, . . . , k.

The above observations entail that the two considered patches join along their common boundary with G
k-continuity.

The remainder of this section is devoted to proving Proposition 2. As a premise, the following Lemma is stated as
an independent result, since it will be later recalled in Section 4.

Lemma 1. Let S be an augmented surface patch of the form (10). Then its cross-boundary derivatives satisfy the

following relations

@r

@ur
S(u, v)|(ū,v) =

@r

@xr
S

⇣
x, y, d, e

⌘
|(ū,v)�

r

0,0(v), ū = 0, 1,

@r

@vr
S(u, v)|(u,v̄) =

@r

@yr
S

⇣
x, y, d, e

⌘
|(u,v̄)✏

r

0,0(u), v̄ = 0, 1,
(15)

where �0,0 and ✏0,0 are the local parametrization functions defined in (7a)–(7b).

Proof. The result immediately follows by using the chain rule, relation (9) and the fact that �(r)
i,0(v) = ✏(r)

0, j(u) = 0,
r = 1, . . . , k, u, v = 0, 1 and i, j = �w

2 + 1, . . . , w

2 � 1.

The above result relies on the fact that the local parametrization functions (7a)–(7b) have vanishing derivatives
at the endpoints of their interval of definition. As we will see shortly, this property also plays a prominent role in
proving Proposition 2. An interesting consequence is that, in order to prescribe a correct set of local parametrization
functions, it is not su�cient to require that these functions interpolate the edge parameter intervals values. Indeed, the
aforementioned condition on the derivatives is essential to guarantee that the composite surface be G

k continuous.

Proof of Proposition 2. Without loss of generality, we can assume that the local reference system uv of the two patches
is oriented as illustrated in Figure 3. Therefore, the common boundary of S and S̃ corresponds to (0, v) for S and (1, v)
for S̃. We refer to the same figure for the labeling of all the relevant quantities involved. To prove the statement, we
shall verify that (13)–(14) hold for any arbitrary v 2 [0, 1].

By di↵erentiating formulae (10)–(11) in the cross-boundary direction u, we obtain

@r

@ur
S(u, v) =

w

2X

i=� w

2 +1

w

2X

j=� w

2 +1

p
i, j

rX

q=0

 
r

q

!
@q

@uq
 i

⇣
u�0,0(v), d(v)

⌘ @r�q

@ur�q
 j

⇣
v✏0,0(u), e(u)

⌘
, (16)

where

d(v) =
⇣
�� w

2 +1,0(v), . . . , �0,0(u), . . . , � w

2 �1,0(v)
⌘

and e(u) =
⇣
✏0,� w

2 +1(u), . . . , ✏0,0(u), . . . , ✏0, w2 �1(u)
⌘
. (17)

From the definition of the local parametrization functions in (7a)–(7b), we have ✏0
h,0(0) = 0, h = �w

2 + 1, . . . , w

2 � 1
and therefore

@

@u
 j

⇣
v✏0,0(u), e(u)

⌘�����
(0,v)
=

w

2 �1X

h=� w

2 +1

@ j

@✏h,0

@✏h,0

@u

��������
(0,v)

= 0.
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Moreover, since ✏(r)
h,0(u) vanishes at u = 0, for all r = 1, . . . , k, by iterating the di↵erentiation process (cf. Faà di Bruno’s

law) it can be easily verified that

@r�q

@ur�q
 j

⇣
v✏0,0(u), e(u)

⌘�����
(0,v)
= 0, q = 0, . . . , r � 1, r = 1, . . . , k.

In addition, recalling that the fundamental functions D
g
C

k
P

m
S

whave continuity C
k and support width w, there

holds
@r

@ur
 w

2

⇣
u�0,0(v), d(v)

⌘�����
(0,v)
= 0, r = 1, . . . , k.

Using the last two above identities, at any boundary point equation (16) reduces to

@r

@ur
S(u, v)

�����
(0,v)
=

w

2 �1X

i=� w

2 +1

w

2X

j=� w

2 +1

p
i, j  j

⇣
ve0,0, e(0)

⌘ @r

@ur
 i

⇣
u�0,0(v), d(v)

⌘�����
(0,v)
. (19)

We now turn to considering the neighboring surface patch S̃. Denoted d̃(v) and ẽ(u) the local parameter vectors
for S̃, we have

d̃(v) =
⇣
�� w

2 ,0(v), . . . , ��1,0(u), . . . , � w

2 �2,0(v)
⌘
, ẽ(u) =

⇣
✏�1,� w

2 +1(u), . . . , ✏�1,0(u), . . . , ✏�1, w2 �1(u)
⌘
, (20)

and thus

@r

@ur
S̃(u, v) =

w

2 �1X

i=� w

2

w

2X

j=� w

2 +1

p
i, j

rX

q=0

 
r

q

!
@q

@uq
 i

⇣
u��1,0(v), d̃(v)

⌘ @r�q

@ur�q
 j

⇣
v✏�1,0(u), ẽ(u)

⌘
.

As before, it can easily be verified that

@r�q

@ur�q
 j

⇣
v✏�1,0(u), ẽ(u)

⌘�����
(1,v)
= 0, q = 0, . . . , r � 1, r = 1, . . . , k.

Moreover, from the compact support of the fundamental functions follows that

@r

@ur
 � w

2

⇣
u��1,0(v), d̃(v)

⌘�����
(1,v)
= 0, r = 1, . . . , k,

and, observing that e(0) = ẽ(1), we obtain

@r

@ur
S̃(u, v)

�����
(1,v)
=

w

2 �1X

i=� w

2 +1

w

2X

j=� w

2 +1

p
i, j  j

⇣
ve0,0, e(0)

⌘ @r

@ur
 i

⇣
u��1,0(v), d̃(v)

⌘�����
(1,v)
. (21)

Now, in view of (19) and (21), it only remains to show that the derivatives of order r = 1, . . . , k of the functions  i

agree after the scaling �(v) in (14).
Comparing the expressions in (17) and (20) we can see that the two vectors d(v) and d̃(v) are one a “shifted”

version of the other and therefore “overlap” almost everywhere, with the exception of the first element in d̃ and the
last one in d (Figure 5(a) schematizes the situation for a class of fundamental functions having support width w = 4).
These two di↵erent intervals are uninfluential to the value and derivatives of the fundamental functions at a boundary
point (see Figure 5(b)). As a consequence, at such a point, the fundamental functions defined on d(v) and d̃(v) agree
together with their derivatives up to order k, namely

@r

@xr
 i(x, d(v))

�����
x=0
=

@r

@xr
 i(x, d̃(v))

�����
x=��1,0(v)

, i = �w

2
� 1, . . . ,

w

2
+ 1, r = 0, . . . , k.

The last relation and (15) entail that

@r

@ur
S(u, v)

�����
(0,v)
=

 
�0,0(v)
��1,0(v)

!r
@r

@ur
S̃(u, v)

�����
(1,v)
,

which concludes the proof.
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S̃ S

e0,�1

e0,0

e0,1

��2,0(v̄) ��1,0(v̄) �0,0(v̄) �1,0(v̄)

u

v

u

v

(a)

 �2

 �1  0  1

 2

��2,0(v̄) ��1,0(v̄) �0,0(v̄) �1,0(v̄)
0

1

(b)

Figure 5: A class of fundamental functions with w = 4. (a) Local parameter vectors at the boundary point (0, v̄) and (1, v̄) respectively for the patches
S and S̃ involved in the proof of Proposition 2; (b) Fundamental functions defined on the corresponding parameter intervals in the cross-boundary
direction.

3.1. Examples

This section presents some examples of augmented surfaces, which will allow us to highlight several important
features of the proposed method. In particular:

• Augmented surfaces show significant better quality with respect to tensor product ones. In fact, when the data
points are unevenly distributed, tensor product surfaces show unwanted interpolation artifacts. According to our
experiments, these artifacts are not present in their augmented counterpart.

• For each class D
g
C

k
P

m
S

w of local, univariate, non-uniform splines in [2, 4], we get an augmented surface with the
same smoothness and support width, and where the section curves are univariate splines in the given class. This
yields a large family of surfaces with di↵erent properties. Thanks to the augmented parametrization, each of these
surfaces is aesthetically pleasing and faithfully resembles the input mesh.

• Even in the case where a tensor product surface has no artifacts, its augmented counterpart better approximates the
shape of the input mesh.

In the following we discuss the above points in more detail, also with the help of graphical illustrations.
As a premise, we shall recall that the method for computation of the edge parameter intervals greatly impacts the

surface shape and its quality. Therefore, to allow a fair comparison, all our examples are based on the same technique.
Comparing di↵erent approaches of curve parametrization is not the scope of this paper. The reader may refer to [11]
for a recent study on the topic.

For the augmented surfaces, the edge parameter intervals are computed through the centripetal parametrization as
illustrated in the previous section. Moreover, tensor product surfaces are parameterized by averaging the centripetal
parameter interval values, in such a way that every isocurve can have the same (non-uniform) parameter sequence.
Note that, in this case, a di↵erent parameter sequence is created for each domain direction. For brevity, we call this
approach a mean parametrization.

Figure 6 shows two surfaces obtained by interpolating a “modified” torus mesh with augmented and mean pa-
rameterization. Due to the uneven length of mesh edges, finding a good quality interpolating surface is a challenging
task. In fact, the tensor product surface shows noticeable ripples both in the shaded display and in the mean curvature
graph. In contrast, these artifacts are not encountered in the augmented surface, which is aesthetically pleasing and
exhibits a better curvature graph.

A closer examination of one section polyline (in red in Figure 6(a)) will help us in understanding the di↵erent be-
havior of the two surfaces. Figure 6(e) depicts the section curves obtained when the parameter intervals are generated
by the augmented and mean parametrizations. The averaging step required by the mean parametrization entails that
the parameter intervals assigned to the edges of the considered polyline are very di↵erent than the initial centripetal
parametrization and have little relationship with the geometry of the interpolation data. This is responsible for the
undesired ripple. Oppositely, in the augmented surface, the section polyline vertices are interpolated at centripetal
parameters and the resulting section curve is free of shape artifacts.
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(a) Input mesh (b) Tensor product surface (c) Zoom of 6(b) (d) Mean curvature of 6(b)

(e) Section polyline and corre-
sponding section curves

(f) Augmented surface (g) Zoom of 6(f) (h) Mean curvature of 6(f)

Figure 6: Comparison between tensor product and augmented surfaces built upon univariate splines of class D
5
C

2
P

2
S

4. Figure 6(e) shows the
interpolatory curves of the considered class generated from the red-colored section polyline in 6(a) with augmented and tensor product parameter-
izations.

(a) Initial mesh
−6 −4 −2 0 2 4 6
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−1

0

1
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4

(b) Section polyline and corresponding section curves

(c) Augmented surface (d) Tensor product surface

Figure 7: Comparison between augmented and tensor product surface. (a) Input mesh; (b) The section polyline highlighted in (a) and section curves
of class D

5
C

2
P

2
S

4, with the augmented (centripetal) and mean parametrizations. (c)-(d) Corresponding augmented and tensor product surfaces.
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Figure 8: Local interpolatory surfaces with augmented parametrization built upon di↵erent classes of univariate splines D
g
C

k
P

m
S

w (g, k, m and w

are the degree, order of continuity, maximum degree of polynomials that are reproduced and support width). 1st row: Input mesh depicted from
two di↵erent points of view; 2nd row: Surfaces and curvature combs of section curves superimposed; 3rd row: Mean curvature.

Figure 12 (for now restricted to cases 12(a) and 12(b)) is another example where the mean parametrization fails
compared to the augmented one. The tensor product surface with mean parametrization self intersects, whereas
no artifact is present in the augmented surface. We shall use this example also to recall that local interpolation
easily allows for managing open surfaces. In the considered case, an additional layer of mesh faces is generated by
linear extrapolation across the boundary. With these additional data, the boundary patches can straightforwardly be
computed by formula (10).

The example in Figure 7 emphasizes that an augmented surface may be preferable compared to a tensor product
surface, even when the latter does not present unwanted artifacts. The red-colored section polyline in Figure 7(a) is
a regular square. The symmetry in the data is reflected in the corresponding section curve of the augmented surface
(Figure 7(b)). Conversely, this is not the case with the tensor product surface, as a side e↵ect of the underlying mean
parametrization. Therefore, even if both surfaces are G

2 continuous and free of interpolation artifacts, the augmented
one more faithfully resembles the input data.

Figure 8 shows local interpolatory surfaces with augmented parametrization based upon various classes D
g
C

k
P

m
S

w.
Regardless of the di↵erent properties of the underlying fundamental functions, all the displayed surfaces are aesthet-
ically pleasing and closely resemble the shape of the input mesh. The di↵erence between one surface and another is
made apparent by the curvature comb of the section curves and by the mean curvature graph. In view of Proposition
3, the displayed surfaces are G

k continuous with k = 1, 2, 3, according to the continuity of the class D
g
C

k
P

m
S

w.
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(a) w=4 (b) w=6

Figure 9: Mesh containing several extraordinary vertices. The regular regions are highlighted in grey for support width w = 4 and w = 6.

4. Local interpolation of meshes with extraordinary vertices by augmented surface patches

In this section we discuss how to generate local interpolatory surfaces of high quality when the input mesh contains
extraordinary vertices. To this aim, we shall partition the mesh into regular and extraordinary regions. Regular regions
comprise all the mesh faces where the local method described in Section 3 applies, whereas the remaining faces will
form extraordinary regions. The generation of an augmented surface patch of the form (10) requires that we can
uniquely determine a surrounding rectangular grid of mesh vertices, whose size depends on the support of the patch.
In particular, we need a w ⇥ w vertex grid, when the underlying fundamental functions belong to class D

g
C

k
P

m
S

w.
We say that a patch is regular when it can be generated by formula (10), whereas it is extraordinary otherwise. Figure
9 illustrates the regular and extraordinary regions of a sample mesh for w = 4, 6. As shown in the figure, we do not
require that extraordinary vertices be separated by (a su�cient number of) regular ones. As a consequence, if the
support width is greater than 4, an extraordinary patch may not contain an extraordinary vertex.

After constructing regular augmented patches wherever possible, we obtain a surface with “holes” surrounding the
extraordinary vertices. For example, in the case of support width 4 or 6, around each isolated extraordinary vertex we
will have a hole corresponding to one ring or two rings of mesh faces respectively. Moreover, the boundaries of the
augmented regular patches will form a network of open curves of class D

g
C

k
P

m
S

w. Therefore, the problem to be ad-
dressed is how to patch the extraordinary regions of the mesh with su�cient smoothness and how to properly manage
the join between regular and extraordinary patches, taking into account the underlying augmented parametrization.

Our construction for the extraordinary patches is based on the well-known Coons-Gregory scheme, which we will
tweak in order to conform to the augmented parametrization. To explain the basic idea, we start by considering the G

1

Coons-Gregory patches [16] (see also the classical text books [12, 20]), which can be more familiar to the majority
of readers. Successively, we also address the G

2 form of these patches, initially proposed in [24] and later developed
in [18]. As a result, depending on the method used, an extraordinary patch will join with G

1 or G
2 continuity the

neighboring patches, that can be either regular or extraordinary. At the same time, as we have seen in the previous
section, the regular portion of the surface will have arbitrary smoothness G

k away from the boundary between the
regular and extraordinary regions.

We remark that the entire method is not intended for meshes that are mainly composed of extraordinary vertices
(although applicable also in this case). In fact, the regular portion of the composite surface should serves as a “guide”
for the generation of the extraordinary patches.

The input data for a Coons-Gregory patch are 4 boundary curves and the related cross-boundary derivative fields
(in short cross-derivatives) of the first and, possibly, second order. Each of the 4 boundaries may join either an
extraordinary patch or a regular one. In the former situation, the boundary curve and cross-derivatives need to be
prescribed in an appropriate way and how to do so is an independent issue. Therefore, from now we assume that this
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Figure 10: Schematic representation of the quantities needed for the definition of an augmented Coons-Gregory patch (the second-order cross-
derivative fields ⇠

i
are needed for the biquintically blended patch only).

information is given. We will return on the problem of determining the missing boundary information in Section 4.3,
where we discuss how these data have been generated in our prototype system.

When the boundary joins a regular patch of the form (10), the input data are sampled from such a patch and we
need to take into account that the cross-derivatives vary according to the augmented parametrization. More precisely,
the transversal derivatives of an augmented patch depend on the local parametrization functions and, according to
Lemma 2, the mapping from the uv domain to the local variables x, y is di↵erent at each boundary point. The two
following subsections are devoted to illustrating how a Coons-Gregory patch needs to be defined in order to correctly
interpolate the data sampled from an augmented regular patch.

Before delving into details, we introduce the setting and notation. As in Section 3, we assume that a parameter
interval value is assigned to every mesh edge, both in the regular regions and in the extraordinary ones. This is reason-
able, since an automatic parametrization method generally yields a parameter interval in both cases. For instance, if
we wish to use the centripetal parametrization, formula (6) applies regardless of whether an edge belongs in a regular
region or not. Consequently, the parameter intervals associated with the edges of an extraordinary face may not form
a rectangle. This yields an augmented parametrization for the extraordinary patches as well. We denote an augmented
extraordinary patch by S

⇤, to distinguish it from the regular patches so far denoted by S.
Figure 10 illustrates the labeling of the relevant quantities needed to construct an augmented Coons-Gregory patch.

We adopt a simplified notation with respect to the preceding part of the paper. The face vertices to be interpolated
are now denoted by p

i
, i = 1, . . . , 4 and sometimes we shall call these points the corners. The boundary curves are

denoted by �
i
, i = 1, . . . , 4 and �

i
, ⇠

i
represent the respective first and second order cross-derivative fields. Moreover,

d0, d1, e0 e1 are the edge parameter intervals.
With an extraordinary patch, we associate the parametric domain [0, 1]2 and two local parametrization functions

�(v) and ✏(u), u, v 2 [0, 1], following the same definition in Section 3. More precisely, with the current notation,
formulae (7a)–(7b) read as follows: �(v) is the polynomial � : [0, 1] ! [d0, d1] of degree 2k + 1 such that �(0) = d0,
�(1) = d1 and �(r)(0) = �(r)(1) = 0, r = 1, . . . , k. Analogously, ✏(u) is the polynomial ✏ : [0, 1] ! [e0, e1] of degree
2k + 1 such that ✏(0) = e0, ✏(1) = e1 and ✏(r)(0) = ✏(r)(1) = 0, r = 1, . . . , k.

We describe the boundary curves in terms of the local variables

x0 = ud0, x1 = ud1, y0 = ve0, y1 = ve1, (22)

in such a way that each boundary segment �
i
, is parameterized on the corresponding edge parameter interval. This

means that �0(x0) = p0 when x0 = 0 and �0(x0) = p1 when x0 = d0, with similar interpolation conditions for the other
three curves �1(y1), �2(x1), �3(y0).

4.1. Augmented bicubically blended Coons patches with Gregory correction

For the construction of a G
1 Coons-Gregory patch, we shall use the cubic Hermite basis on [0, 1], arranged in the

vector
H(u) =

⇣
�1, 2u

3 � 3u
2 + 1,�2u

3 + 3u
2, u3 � 2u

2 + u, u3 � u
2
⌘T

.
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We define the augmented Coons-Gregory patch S
⇤ as

S
⇤(u, v) = �H(u)T

M3(u, v)H(v),

where

M3(u, v) =

0
BBBBBBBBBBBBBBBBB@

0 �0(x0) �2(x1) ✏(u)�0(x0) ✏(u)�2(x1)
�3(y0) p0 p3 e0 �

0
3(0) e0 �

0
3(e0)

�1(y1) p1 p2 e1 �
0
1(0) e1 �

0
1(e1)

�(v)�3(y0) d0 �
0
0(0) d1 �

0
2(0)

⌦1,1�(v)�1(y1) d0 �
0
0(d0) d1 �

0
2(d1)

1
CCCCCCCCCCCCCCCCCA
, (23)

for any (u, v) 2 [0, 1]2, being ✏ and � the related local parametrization functions and x0, x1, y0, y1 determined by (22).
The choice of expressing the cross-derivative fields in terms of the local variables xi and yi, i = 0, 1, facilitates the

construction of the augmented Coons-Gregory patch in the case where the boundary information is not available from
an adjacent regular patch, and thus needs to be heuristically estimated, as, in this case, it is more natural to specify the
missing fields in the local variables.

As a consequence of the augmented parametrization, a suitable scaling factor is associated with the entries of the
patch matrix M3 to guarantee that the correct derivatives are interpolated both in the boundary and cross-boundary
direction. More precisely, the derivatives of the boundary curves, �0

i
, i = 1, . . . , 4, are mapped to the uv domain

multiplying their value by the length of the related parameter interval di or ei, i = 0, 1. In addition, in view of
Proposition 1, the scaling factor needed to express the first derivatives �0(x0),�1(y1),�2(x1),�3(y0) in the uv domain
corresponds to the value of the appropriate local parametrization function at the evaluation point (u, v). Therefore,
whereas the scaling factor is constant for the derivatives of the boundary curves, for the cross-derivatives it changes at
each (u, v). Finally, we shall also take into account that, when �

i
is sampled from a regular augmented patch S, then

its value needs to be divided by the appropriate local parametrization function before being inserted in (23).
To complete the definition of the matrix (23), we need to provide the twist vectors matrix ⌦1,1, possibly with

Gregory correction for twist incompatibility. This is given by

⌦1,1 B

0
BBBBBBBBBBBB@

d0e0
u�03(0) + v�00(0)

u + v
d1e0

u�03(e0) + (1 � v)�02(0)
u + (1 � v)

d0e1
(1 � u)�01(0) + v�00(d0)

(1 � u) + v
d1e1

(1 � u)�01(e1) + (1 � v)�02(d1)
(1 � u) + (1 � v)

1
CCCCCCCCCCCCA
,

where the scaling factors of type die j, i, j = 0, 1 preceding the rational terms are determined by the same argument
used above. It can be shown through direct verification that the patch S

⇤ interpolates the corner points, the boundary
curves and the cross-boundary first derivatives. Therefore the resulting composite surface is G

1 continuous at the
boundaries between regular and extraordinary regions and in the interior of the latter. This type of continuity is
su�cient when the regular regions are constructed from C

1 fundamental functions, like in the case of Catmull-Rom
splines. Otherwise, it may be desirable to use a patching scheme with higher continuity as discussed in the next
subsection.

4.2. Augmented biquintically blended Coons patches with Gregory correction

In order to construct a G
2 Coons-Gregory patch we exploit the quintic Hermite basis, arranged in the vector

H(u) =
⇣
�1,�6u

5 + 15u
4 � 10u

3 + 1, 6u
5 � 15u

4 + 10u
3,�3u

5 + 8u
4 � 6u

3 + u,

�3u
5 + 7u

4 � 4u
3,�1

2
u

5 +
3
2

u
4 � 3

2
u

3 +
1
2

u
2,

1
2

u
5 � u

4 +
1
2

u
3
!T

,

and we compute the value of the augmented patch S
⇤ according to

S
⇤(u, v) = �H(u)T

M5(u, v)H(v).
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The patch matrix is now

M5(u, v) =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

M3(u, v)

✏2(u) ⇠0(x0) ✏2(u) ⇠2(x1)
e

2
0 �
00
3 (0) e

2
0 �
00
3 (e0)

e
2
1 �
00
1 (0) e

2
1 �
00
1 (e1)

⌦1,2

�2(v) ⇠3(y0) d
2
0 �
00
0 (0) d

2
1 �
00
2 (0)

⌦2,1 ⌦2,2�2(v) ⇠1(y1) d
2
0 �
00
0 (d0) d

2
1 �
00
2 (d1)

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

where M3 is given by (23) and ⇠0(x0), ⇠1(y1), ⇠2(x1), ⇠3(y0) are the cross-boundary second derivatives. The mixed
derivatives matrices, possibly with Gregory correction for twist incompatibility, are defined as follows:

⌦1,1 =

0
BBBBBBBBBBBBB@

d0e0
u

2�03(0) + v
2�00(0)

u2 + v2 d1e0
u

2�03(e0) + (1 � v)2�02(0)
u2 + (1 � v)2

d0e1
(1 � u)2�01(0) + v

2�00(d0)
(1 � u)2 + v2 d1e1

(1 � u)2�01(e1) + (1 � v)2�02(d1)
(1 � u)2 + (1 � v)2

1
CCCCCCCCCCCCCA
,

⌦1,2 =

0
BBBBBBBBBBBBB@

d0e
2
0

u
2�003 (0) + v

2⇠00(0)
u2 + v2 d1e

2
0

u
2�003 (e0) + (1 � v)2⇠02(0)

u2 + (1 � v)2

d0e
2
1

(1 � u)2�001 (0) + v
2⇠00(d0)

(1 � u)2 + v2 d1e
2
1

(1 � u)2�001 (e1) + (1 � v)2⇠02(d1)
(1 � u)2 + (1 � v)2

1
CCCCCCCCCCCCCA
,

⌦2,1 =

0
BBBBBBBBBBBBB@

d
2
0e0

u
2⇠03(0) + v

2�000 (0)
u2 + v2 d

2
1e0

u
2⇠03(e0) + (1 � v)2�002 (0)

u2 + (1 � v)2

d
2
0e1

(1 � u)2⇠01(0) + v
2�000 (d0)

(1 � u)2 + v2 d
2
1e1

(1 � u)2⇠01(e1) + (1 � v)2�002 (d1)
(1 � u)2 + (1 � v)2

1
CCCCCCCCCCCCCA
,

⌦2,2 =

0
BBBBBBBBBBBBB@

d
2
0e

2
0

u
2⇠003 (0) + v

2⇠000 (0)
u2 + v2 d

2
1e

2
0

u
2⇠003 (e0) + (1 � v)2⇠002 (0)

u2 + (1 � v)2

d
2
0e

2
1

(1 � u)2⇠001 (0) + v
2⇠000 (d0)

(1 � u)2 + v2 d
2
1e

2
1

(1 � u)2⇠001 (e1) + (1 � v)2⇠002 (d1)
(1 � u)2 + (1 � v)2

1
CCCCCCCCCCCCCA
.

The interpretation of the construction and of the scaling factors that appear in M5 is conceptually similar to what
we have seen in the preceding subsection and therefore no additional comment is needed. As before, the terms
involving second order derivatives require appropriate scaling to map the local variables x, y to the uv domain and
again the proper scaling factor can be determined from relation (15). It can be shown through direct verification that
the patch S

⇤ interpolates the corner points, the boundary curves and the cross-boundary first and second derivatives.
Therefore it guarantees that the resulting composite surface is G

2 continuous at the boundaries between regular and
extraordinary regions and in the interior of the latter.

4.3. Mesh regions with extraordinary vertices and G
1/G2

compatibility conditions

The construction of a Coons-Gregory patch requires boundary curves and cross-derivative fields. When this infor-
mation cannot be sampled from an existing regular patch, then it shall be drawn from the mesh itself, which represents
the only available data. In this section we will focus on how to specify the boundary curves. Being these computed,
the cross-derivative fields can be constructed by suitable interpolation of the boundary curves values and derivatives
at the corners according to standard procedures (see [12] and [18] for the G

1 and G
2 case respectively).

Methods to create fair curve networks from arbitrary meshes were suggested in [25], and, to the best of our
knowledge, this is the only available reference on the subject. Our case is di↵erent, however, since much of the curve
network is created using the local interpolating univariate splines D

g
C

k
P

m
S

wand there only remains to define isolated
segments of the network.

For meshes that contain extraordinary vertices, we extend the definition of a section polyline given is Section 3. A
section polyline is now a sequence of adjacent edges characterized in one of the following ways: i) it is closed and all
its vertices are regular or ii) it is open, the first and last points are extraordinary vertices and all the remaining vertices
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are regular. Accordingly, a section curve is one that interpolates the vertices of a section polyline. The section curves
starting or ending at the extraordinary vertices can be thought o↵ as open curves.

Wherever possible, we wish to construct the patch boundary segments in such a way that, globally, the related
section curve belongs to class D

g
C

k
P

m
S

w. Using this condition, if w > 4, some of the missing curve segments can
directly be determined by locally interpolating the corresponding section polyline. For example, with reference to
Figure 9, only the red-colored edges cannot be computed in this way.

When they can not be otherwise determined, we construct the boundary segments by polynomial interpolation of
endpoints and endpoint derivatives. The latter shall be sampled from existing curve segments when available, in such
a way that the corresponding section curve has globally the correct continuity. Otherwise they need to be heuristically
estimated. In doing so, we shall take into account that the derivatives at one vertex need to satisfy G

k, k = 1, 2
compatibility conditions (depending on the continuity of the Coons-Gregory patch), meaning that locally the resulting
network of section curves can be embedded into a C

k surface. In particular, G
1 compatibility entails that all the curve

tangents lie on the same plane, which is the tangent plane. Conditions for G
2 compatibility are more complex and do

not have a direct geometric interpretation [18, 19].
Our approach for generating G

1 and G
2 compatible derivatives is based on least squares polynomial approxima-

tion. This idea is not new, as was already used, for example, to tweak the derivatives of Catmull-Clark subdivision
surfaces in the neighborhood of extraordinary vertices [3]. The outline of the procedure is as follows. First, a proper
set of points in the vicinity of the extraordinary vertex is generated. These points should serve as a “guide” for the
shape of the surface that we want to fit. Then a least squares polynomial approximating these points is computed and
its derivatives are sampled along proper directions. To make the numerical examples reproducible, the details of our
implementation are provided in Appendix B. The described method guarantees G

2 compatibility and, in our tests, has
always generated visually pleasing surfaces in the vicinity of the extraordinary vertices. One can reasonably expect
that even better results can be produced by more elaborate techniques and further investigation is a possible topic for
future research.

4.4. Examples

In this section we present some examples of augmented surfaces interpolating meshes with extraordinary ver-
tices. The displayed surfaces are based upon the class of univariate splines D

5
C

2
P

2
S

4, which o↵ers a good tradeo↵
between high continuity (the corresponding surfaces are G

2 continuous) and small support width (and thus higher
computational e�ciency).

Following the same outline of the regular case examples discussed in Section 3.1, we start by comparing surfaces
generated through the augmented and mean parameterizations. For meshes with extraordinary vertices, the mean
parametrization can be generalized as suggested in [8]. In particular, one parameter interval is assigned to every edge
belonging in the same edge ribbon and it is defined as the average of all parameter intervals in the ribbon. This strategy
results in the configuration illustrated in Figure 11(d) and obviously generalizes the setting of parameters used in the
regular case.

Figure 12 emphasizes that, also for surfaces containing extraordinary vertices, the mean parametrization may give
rise to noticeable artifacts, which can be overcome by the use of the augmented parametrization. The di↵erent result
of the two parameterizations is readily apparent from the shaded display and is further emphasized by the curvature
graph.

Figure 13 presents more complex examples of G
2-continuous surfaces of high quality with augmented parametri-

zation. Figures 13(b) and 13(f) show the regular patches and the constructed network of section curves. As discussed
in the previous section, the section curves passing through the extraordinary vertices can be thought o↵ as open curves.
The curve segments emanating from the extraordinary vertices are determined as a degree 5 polynomials, interpolating
endpoint values and derivatives up to second order. As a result, the entire section curves belong to class D

5
C

2
P

2
S

4.
The augmented Coons-Gregory patches are illustrated in Figures 13(c) and 13(g), whereas Figures 13(d) and 13(h)
show the entire composite surface. For the open surface depicted in Figure 13, the boundary patches are regular
augmented patches of the form (10). Their construction is performed by suitably extrapolating the mesh across the
boundary in order to obtain an additional layer of faces and vertices.

Figure 14 compares the results of the augmented and mean parameterizations for the meshes in Figure 13 and em-
phasizes the better quality of the augmented surfaces. In particular, in the extraordinary region, the surface curvature
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Figure 11: (a) A regular mesh and (b) a mesh with an extraordinary vertex of valence 5. (c)–(d) Corresponding mean parametrization in the
neighborhood of the central vertex: each letter indicates a di↵erent edge parameter interval value.

produced by the mean parametrization wiggles several times between positive and negative values, while this does not
happen when the augmented parametrization is used.

Finally, Figure 15 comprises some challenging data sets and the corresponding augmented interpolatory surfaces,
which are globally G

2, free of unwanted artifacts and overall approximate in a reasonable way the shape of the input
mesh. We consider this result highly nontrivial for a local interpolation method.

5. Conclusion

We have presented a local construction for interpolatory composite surfaces, which is based on the use of univariate
spline interpolants having degree g, continuity C

k, polynomial reproduction degree m and support width w. Thanks
to the augmented parametrization, each section curve is parameterized independently of the others and in the most
appropriate way. Away from the extraordinary vertices the generated surfaces retain the same smoothness of the
underlying class of univariate splines. Surface regions surrounding extraordinary vertices have been generated by
means of a modified form of Coons-Gregory patches, joining with G

1 or G
2 continuity the regular portion of the

surface. The obtained surfaces are aesthetically well-behaved, as we have demonstrated by several numerical examples
concerning both regular and extraordinary meshes.

We postpone to a future work a more thorough investigation of other possible methods for patching extraordinary
vertices. Using the augmented parametrization in di↵erent contexts is another topic worthy of consideration. For
example, there is no problem (in principle) in applying the augmented parametrization with standard B-splines, and
its extension to more general techniques of surface generation may also be of interest.
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Appendix A. Some classes of fundamental functions

The following fundamental spline functions are obtained following the approach reported in [4].
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(a) Mean parametrization (b) Augmented parametrization (c) Mean parametrization (d) Augmented parametrization

(e) Mean curvature of 14(a) (f) Mean curvature of 14(b) (g) Mean curvature of 14(c) (h) Mean curvature of 14(d)

Figure 14: Zoom of the surfaces obtained from the meshes in Figure 13 with augmented and mean parametrization.

Appendix A.1. Fundamental functions of the class D
3
C

1
P

2
S

4

Recalling our notation di = xi+1 � xi, in the interval [�di�2 � di�1, di + di+1] the expression of the fundamental
function  i is given by

 i(x) =

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

(di�1 + x) (di�2 + di�1 + x)2

di�2di�1 (di�2 + di�1)
, �di�2 � di�1 6 x < �di�1,

(di�1 + x)
⇣
di

⇣
�x

2 + di�1di�2 + d
2
i�1

⌘
� x (di�2 + di�1) (di�1 + x)

⌘

d
2
i�1di (di�2 + di�1)

, �di�1 6 x < 0,

(di � x)
⇣
�x

2(di�1 + di + di+1) + xdi (di + di+1) + di�1di (di + di+1)
⌘

di�1d
2
i

(di + di+1)
, 0 6 x < di,

(di � x) (di + di+1 � x)2

didi+1 (di + di+1)
, di 6 x 6 di + di+1.

The local parameter vector associated with [xs, xs+1] is d = (ds�1, ds, ds+1) and for any x 2 [0, ds] the four nonzero
fundamental functions  i, i = s � 1, . . . , s + 2 have the expression

 s�1(x; d) = � x (x � ds)2

ds�1ds (ds�1 + ds)
,

 s(x; d) =
1
d2

s

(x � ds)
 

x
2

ds + ds+1
+

x (x � ds)
ds�1

� ds

!
,

 s+1(x; d) =
1
d2

s

x

 
ds (ds�1 + 2x) � x

2

ds�1 + ds

� x (x � ds)
ds+1

!
,

 s+2(x; d) =
x

2 (x � ds)
dsds+1 (ds + ds+1)

.
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(a) Input mesh (b) Local interpolatory surface (c) Mean curvature (d) Isophotes

(e) Input mesh (f) Local interpolatory surface (g) Mean curvature (h) Isophotes

Figure 15: Surfaces from the class D
5
C

2
P

2
S

4 with augmented parameterization.

Appendix A.2. Fundamental functions of the class D
5
C

2
P

2
S

4

Recalling our notation di = xi+1 � xi, in the interval [�di�2 � di�1, di + di+1] the expression of the fundamental
function  i is given by

 i(x) =

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

� (di�1+x)(di�2+di�1+x)3(�di�2+2di�1+2x)
d

3
i�2di�1(di�2+di�1) , �di�2 � di�1 6 x < �di�1,

di(di�1+x)(3x
3
di�1+d

3
i�1(di�2+di�1)+2x

4)�x(di�2+di�1)(di�1�2x)(di�1+x)3
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4
i�1di(di�2+di�1) , �di�1 6 x < 0,
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3
di)+xd

3
i
(di+di+1)+di�1d

3
i
(di+di+1))

di�1d
4
i
(di+di+1) , 0 6 x < di,

� (x�di)(�2di+di+1+2x)(di+di+1�x)3

did
3
i+1(di+di+1) , di 6 x 6 di + di+1.

The local parameter vector associated with [xs, xs+1] is d = (ds�1, ds, ds+1) and for any x 2 [0, ds] the four nonzero
fundamental functions  i, i = s � 1, . . . , s + 2 have the expression

 s�1(x; d) =
x (x � ds)3 (ds + 2x)
ds�1d

3
s (ds�1 + ds)
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Appendix B. Derivatives generation

Let p0 be a vertex of valence n where we want to compute a set of G
1 or G

2 compatible derivatives. In this section,
we denote by p

i
, i = 1, . . . , n, the endpoints of the edges emanating from p0, by di the parameter intervals of the edges

p0 p
i
and by f

i
the vectors p

i
� p0.

With each edge p0 p
i
we associate a vector T p0,pi

defined as

T p0,pi
=
↵i

di

f
i
� 1 � ↵i

d̄i

f
i
, (B.1)

where

↵i =
d̄i

di + d̄i

, d̄i = �
nX

j=1
j,i

cos
 

2⇡( j � i)
n

!
d j, f

i
=

nX

j=1
j,i

������cos
 

2⇡( j � i)
n

!������ f
j
. (B.2)

When n = 4, equation (B.1) reduces to the well-known Bessel estimate for computing an approximation of the first
derivative of a parametric curve [12, Section 9.8]. For a general valence n , 4, T p0,pi

represents a heuristic estimate
of the first derivative at p0 of the curve segment between p0 and p

i
. In particular, we can observe that, when n is even

and the points p
i
have rotational symmetry with respect to p0, then T p0,pi

corresponds to the Bessel formula applied to
the three points p

i+ n

2
, p0, pi

, which are intuitively associated with a curve passing through p0.
At this point, if only G

1 compatibility is required, we can simply get an appropriate set of derivatives at p0 by
projecting the vectors T p0,pi

, i = 1, . . . , n on a common plane.
We will now proceed to determine a G

2 compatible set of derivatives. In particular, let ⌧(1)
p0,pi

and ⌧(2)
p0,pi

be respec-
tively the first and second derivative of the curve segment associated with the edge p0 p

i
. Our strategy is to construct

a polynomial P that interpolates p0 and approximates in a least-squares sense a suitable set of points q
j
, j = 1, . . . , 2n

around p0 and set ⌧(1)
p0,pi

and ⌧(2)
p0,pi

as the derivatives of such polynomial along proper directions. The approximation
points q

j
are chosen so that the polynomial P will have a reasonable shape in a small neighborhood of p0. In partic-

ular, for each i = 1, . . . , n, q
i

and q
n+i

are respectively the values at parameters di

4 and di

2 of the cubic polynomial �
such that �(0) = p0, �0(0) = T p0,pi

, �(di) = p
i
, �0(di) = T p

i
,p0 . Note that the vector T p

i
,p0 represents a derivative at p

i
,

and thus it shall be sampled from the adjacent segment of the section curve passing through p
i

and p0, when this is
available, or otherwise computed from formulae (B.1)–(B.2).

We exploit a bivariate polynomial P of degree 3 or 2 respectively in the case n > 5 or n = 3, 4. The coe�cients of
P are determined componentwise by minimizing the expression

2nX

j=1

⇣
P(x j, y j) � q

j

⌘2
,

where the parametric coordinates (x j, y j) associated with the point q
j
are given by

(x j, y j) = r j (cos ⌘i, sin ⌘i), j = i, n + i, (B.3)

and the angles ⌘i, i = 1, . . . , n are obtained by mapping onto the xy plane the spatial configuration formed by the
angles ⇣i B \T p0,pi

,T p0,pi+1 , i = 1, . . . , n, namely

⌘1 = 0, ⌘i = ⌘i�1 + ⇣i

2⇡
P

n

j=1 ⇣ j

, i = 2, . . . , n.

The value of r j in (B.3) is a free parameter and can be exploited to locally tune the shape of the surface. When the
edge parameter intervals di are computed according to (6), then a possible choice (which we have used in the proposed
examples) is

r j =
���q

j
� p0

���↵
2 .

Finally, we can set ⌧(1)
p0,pi

and ⌧(2)
p0,pi

, i = 1, . . . , n, to be the first and the second derivatives of P at p0 in the direction
determined by ⌘i.
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