

Alma Mater Studiorum Università di Bologna Archivio istituzionale della ricerca

Effects of different enrichment devices on some welfare indicators of post-weaned undocked piglets

This is the final peer-reviewed author's accepted manuscript (postprint) of the following publication:

Published Version:

Effects of different enrichment devices on some welfare indicators of post-weaned undocked piglets / Nannoni, E.; Sardi, L.; Vitali, M.; Trevisi, E.; Ferrari, A.; Barone, F.; Bacci, M.L.; Barbieri, S.; Martelli, G.. - In: APPLIED ANIMAL BEHAVIOUR SCIENCE. - ISSN 0168-1591. - STAMPA. - 184:1(2016), pp. 25-34. [10.1016/j.applanim.2016.08.004]

Availability:

This version is available at: https://hdl.handle.net/11585/563587 since: 2019-12-21

Published:

DOI: http://doi.org/10.1016/j.applanim.2016.08.004

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/). When citing, please refer to the published version.

(Article begins on next page)

This is the final peer-reviewed accepted manuscript of:

Nannoni E., Sardi L., Vitali M., Trevisi E. Ferrari A., Barone F., Bacci M.L., Barbieri S., Martelli G., 2016. Effects of different enrichment devices on some welfare indicators of post-weaned undocked piglets. Applied Animal Behaviour Science 184: 25-34.

The final published version is available online at: http://dx.doi.org/10.1016/j.applanim.2016.08.004

© 2016. This manuscript version is made available under the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) 4.0 International License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1 Effects of different enrichment devices on some welfare indicators of post-weaned undocked piglets

2 **Running title: Enrichment devices for weaned piglets**

- 3 E Nannoni^a*, L Sardi^a, M Vitali^a, E Trevisi^{b, c}, A Ferrari^b, F. Barone^a; M.L. Bacci^a; S. Barbieri^d, G Martelli^a
- 4 ^a Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano
- 5 Emilia (BO), Italy
- ^b Istituto di Zootecnica, Facoltà di Scienze agrarie, alimentari e ambientali, Università Cattolica del Sacro
- 7 Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy;
- 8 ° PRONUTRIGEN Centro di Ricerca sulla Nutrigenomica e Proteomica, Università Cattolica del Sacro
- 9 Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy;
- 10 ^d Università degli Studi di Milano, Dipartimento di Scienze Veterinarie e Sanità Pubblica, Via G. Celoria 10,
- 11 20133 Milano, Italy.

12

*Contact for correspondence: Eleonora Nannoni, Department of Veterinary Medical Sciences, Via Tolara di
Sopra 50, 40064 Ozzano Emilia (BO), Italy. Tel. +39.051.2097376 - Fax: +39.051.2097373 - E-mail:

- 15 <u>eleonora.nannoni2@unibo.it</u>
- 16

17 Abstract

Two experimental trials were carried out in order to test the effectiveness of different environmental 18 enrichments in improving the welfare of weaned pigs. A total of 120 undocked piglets was used. In trial one, 19 20 group C1 received a metal chain and group WL a wooden log mounted on a frame. In trial two, the enrichments proposed were a hanging chain (group C2), an edible block (group ED) and a wooden briquette 21 22 (group WB) mounted on a frame. The effectiveness of the enrichments was assessed in terms of animal 23 behaviour, cortisol from bristles, hematologic and hematic profiles, cutaneous (skin and tail) lesions. Growth 24 parameters were also recorded. Although some differences were detected in growth parameters in trial 1 25 (with C1 group having better productive outcomes than WL group) and some minor differences were 26 observed in animal behaviour in both trials, the overall welfare status did not differ among the experimental groups. On the other hand, no welfare issues emerged in groups C1 and C2, receiving the enrichment device 27 28 which is generally believed to be scarcely attractive, i.e. the hanging chain. We can therefore conclude that,

29 if no managerial errors are made (floor space availability, feed inadequacy, group stability, microclimate,

30 illumination), under the tested experimental conditions, hanging chains can provide a sufficient

environmental enrichment for undocked piglets, even when compared to more attractive enrichments (*e.g.* an
edible block).

33

34 Keywords animal welfare, blood parameters, environmental enrichment, intensive husbandry, pig, weaners35

36 1. Introduction

The term "environmental enrichment" is used widely in the literature to indicate improvements to captive animal environment. However, from a scientific point of view, it should only be applied to modifications capable of improving the biological functioning of captive animals (Newberry 1995). In the case of pigs, a successful enrichment should decrease the incidence of abnormal patterns of behaviour (stereotypies, belly nosing, ear and tail biting) and increase the frequency of species-specific behaviours such as social interactions, foraging end exploration (Petersen *et al* 1995; van de Weerd & Day 2009; Telkänranta, *et al* 2014a).

44 The provision of manipulable materials to pigs of all ages is mandatory in the European Union since January 45 2013 (Directive 2008/120/EC). However, the use of substrates listed in the directive (straw, hay, wood, sawdust, mushroom compost, peat) is not always feasible for farmers. Although straw indeed has the highest 46 47 potential to be the "gold standard" enrichment material (Bracke et al., 2006), its use, especially in slatted 48 systems, can cause difficulties for slurry management (Scott et al 2007; EFSA 2007). On the other hand, 49 indestructible objects such as metal chains or tyres are considered not sufficient to provide for the exploratory needs of pigs and, according to EFSA (2007) recommendations, they may be used as a 50 51 supplement to destructible and rooting materials but not as a substitute for them. The main reason for such a 52 provision is that such enrichments, according to the literature, can apparently provide only marginal welfare 53 benefits in terms on animal welfare, since they allow pigs to perform manipulatory behaviours, but not actual rooting behaviours (i.e., "to turn up by digging with the snout or nose" - American Heritage® Dictionary of 54 55 the English Language, 2011), therefore the need for exploration may not be met by indestructible objects 56 (EFSA, 2007). However, there is some evidence that it could be possible to design successful point-source

57 enrichment-objects, provided that they are able to sustain interest for a protracted period of time (van de 58 Weerd & Day 2009) and that no competition for access to the enrichment occurs (Jensen et al 2010). 59 According to Bulens et al. (2016), the provision of straw blocks reduced pen mates manipulation (e.g., tail 60 and ear biting, belly-nosing) in finishing pigs. As it has been extensively reviewed by Bracke et al. (2006), various enrichment tools and materials have been proposed for piglets, including: cloth strips, rubber hoses, 61 62 different amounts of straw, ropes, wood blocks, wood beams, straw racks, dog toys, mineral blocks, 63 roughage and substrates (compost, earth, sawdust, peat). Their main conclusions were that metal objects 64 show very few significant welfare benefits; and that rubber, rope, wood, roughage and substrates have more 65 benefits than metal objects, but less than straw and compound objects. However, the review highlights how 66 relatively little has been reported about mineral blocks and wood used as environmental enrichments for 67 piglets. Trickett et al. (2009) compared the use of rope and wood as enrichments for weaned piglets and 68 found that rope had a good attractiveness but, despite object alternation, habituation still occurred reducing 69 the long-term attractiveness of the enrichments. Similar results were found in weaners by Blacksaw et al 70 (1997), who observed a progressive decrease over time in interactions with the toy. However, both studies 71 agreed that suspended or fixed objects are the most hygienic and attractive way to effect enrichment. 72 The aim of the present work is to gain new insights on the effectiveness in improving the welfare level of 73 post-weaned piglets, assessed through behaviour, health, physiology, and performance traits. The 74 investigated enrichment-objects were made with poorly investigated materials (poplar wood, sawdust 75 briquette and edible block), and compared to metal chains which are widely used when animals are raised on 76 slatted floors. To this aim, a wide array of haematological, biochemical and behavioural parameters was 77 measured to assess possible differences depending on the enrichment material used. If effective (*i.e.*, able to reduce stress indicators), the proposed enrichment tool might represent a viable alternative to straw 78 79 especially on slatted floors, where the use of rootable substrates is ruled out by the constraints of manure 80 collection and handling systems (Westin et al., 2013).

81

82 2. Materials and Methods

83 The trials were carried out in the facilities of the Department of Veterinary Medical Sciences (DIMEVET) of
84 the University of Bologna, Italy, in accordance with current Italian legislation implementing European

Council Directive 2008/120 on swine protection. The institutional Ethics Committee of the University of
Bologna approved the experimental protocol (Authorization Prot. n. 2-IX/9 – 27.02.2012). In order to mimic
farm conditions (*i.e.*, to provide environmental enrichment materials to all categories of pigs, according to
the provisions set by the mentioned Directive), the experimental protocol did not include a negative control
(i.e., without enrichment) group.

90

91 2.1 Animals, housing and feeding

92 A total of 120 crossbred (Landrace × Large White) castrated male weapers were used in two separate and 93 independent trials (n=60 per trial). Their tails were left undocked. Animals were weaned at 25 days of age and allowed to adapt to the new environmental conditions for three days. Animals' health status was 94 95 monitored in order to identify possible health problems. At 28 days of age, the experimental groups were formed on the basis of their litter and body weight (BW) and the environmental enrichments were provided. 96 97 Piglets were kept in collective flat-deck cages on a slatted metal floor, with a floor space of 2 m^2 per cage. Each cage was equipped with a nipple drinker (water was available *ad libitum*) and a collective stainless steel 98 99 feeder (0.2 m wide x 1 m long). Piglets were located in temperature- and humidity-controlled rooms 100 equipped with a forced-air ventilation system (RH was kept at 65% during the whole trial; T was kept at 28° at the beginning of the trial and gradually reduced of approximately 0.5°C per week, until the temperature of 101 102 24°C was reached at the end of the trial).

Feed was provided *ad libitum*, in a pelleted form (3887 kcal DE/kg DM, CP 20.4% DM). Lighting was entirely artificial and was supplied by neon tubes (12 hours of light per day, from 7:00 to 19:00). In both trials, each replicate experienced one enrichment device for all the duration of the trial. Pictures of the enrichment devices are given in the Supplementary material (Figure S1).

107 **TRIAL 1:**

Sixty animals were allotted to 2 experimental groups, each comprising 6 replications (*i.e.*, cages) of 5 piglets,
which were subjected to the following experimental treatments

Chain (C1) group: the environment was enriched by providing a steel chain hanging in the middle on
each cage;

112	• Wood Log (WL) group: the environment was enriched by providing a metal frame holding in
113	horizontal position a poplar log (10 cm in diameter, 25 cm long). The frame was attached to the cage
114	structure approximately 10 cm above the piglets' withers, in such a way that piglets could easily
115	access them with their snouts and rotate or bite the wood.
116	The average Body Weight (BW) at the beginning of the trial was 6.76 ± 0.77 kg (average \pm SD).
117	Animals were kept under the experimental conditions for 48 days.
118	TRIAL 2:
119	Sixty animals were allotted to 3 experimental groups, each comprising 5 replications (<i>i.e.</i> , cages) of 4 piglets,
120	which were subjected to the following experimental treatments
121	• Chain (C2) group: see trial 1
122	• Edible Block (ED) group: these cages were enriched by providing a metal frame (the same as in trial
123	1, installed in the same position) holding in horizontal position a cylindrical edible block (10 cm in
124	diameter, 25 cm long). The block was specifically formulated for the experimental trial and its main
125	ingredients were feed, alfalfa meal, sugar beet molasses, and minerals. The frame was mounted in
126	such a way that piglets could easily access them with their snouts and rotate or bite the block;
127	• Wood Briquette (WB) group: in these cages, a cylinder of compressed wood shavings was mounted
128	on the same frames described before. The briquette had the same size as the edible block.
129	The average Body Weight (BW) at the beginning of the trial was 6.35 ± 0.58 kg (average \pm SD).
130	Animals were kept under the experimental conditions for 43 days.
131	
132	2.2 Growth parameters
133	All piglets were individually weighed at the beginning, in the middle (only in trial 1) and at the end of the

trial, and average daily gain (ADG) was calculated for each period. Feed intake of each replication was

recorded to calculate the feed conversion ratio (FCR) for each period. The cage (5 pigs in trial 1, 4 pigs in

trial 2) was taken as the experimental unit for live weight, ADG, feed consumption, FCR.

137

138 *2.3 Tail and skin lesions*

139 In each of the trials, cutaneous and tail lesions were repeatedly evaluated on all piglets according to the Welfare Quality® (2009) assessment protocol. Since the protocol does not give specific indications for the 140 postweaning phase, the method described for growing pigs was applied as suggested by the protocol itself, 141 142 and only slight modifications were made (cutaneous lesions were counted on both sides of each piglet). In particular, tail lesions were visually evaluated by a trained observer and scored as 0 (intact tail, no evidence 143 144 of tail biting); 1 (superficial biting, with no evidence of fresh blood or swelling) or 2 (fresh blood, evidence 145 of swelling or infection; or tissue missing with formation of a crust). Skin lesions were evaluated on both the 146 sides of the body and each body region (ears, front, middle, hindquarters and legs) was scored as "a" (up to 4 lesions), "b" (5 to 10 lesions) or "c" (11 to 15 lesions). The individual piglet was then scored on a 0-to-2 147 scale as described in the protocol, with 0 corresponding to piglets having all body regions classified as "a" 148 149 and 2 to piglets having at least two body regions or more classified as "c", or at least one body region with 150 more than 15 lesions.

151

152 2.4 Behavioural traits

The behaviour of 20 piglets for each experimental group (4 replications for in trial 1 and 5 replications in 153 154 trial 2) was videotaped over the diurnal hours (7:00 to 19:00) by means of a digital closed circuit system 155 (Mesa, Arezzo, Italy). Cameras were mounted on a rail attached to the ceiling above the cage (approximately 3m above the ground). To allow for individual behavioural observations, 4 animal marking sticks of different 156 157 colours were chosen (blue, green, red and purple – RAIDEX GmBH, Dettingenan der Erms, Germany) and 158 assigned to 4 piglets. A spot of the corresponding colour was painted on the back of each piglet on the day 159 before each videotaping session. The fifth piglet was left uncoloured. Piglets were videotaped over the 24 hours once or twice a week, for a total of 6 videotaping sessions in trial 1, and 12 videotaping session in trial 160 2. Videos were examined by a single trained observer and the behavioural patterns were assessed by scan 161 162 sampling technique at 10-min intervals according to predetermined ethogram for heavy pigs (Martelli et al. 163 2014) reporting the following behaviours: standing inactive, sitting inactive (dog-sitting), sternal 164 recumbency, lateral recumbency, walking, eating, drinking, exploring the floor, social interactions. The 165 ethogram was adapted to the specificities in piglets' behaviour and to the trial by adding the following 166 behaviours: tail biting, interaction with the environmental enrichment, interaction with other cage structures,

belly nosing. Results were expressed as proportion of time spent performing each behaviour. A detailed description of the behaviours observed in the ethogram is given in the Supplementary material (see Table S1). To get more insights on the use of the environmental enrichment, 3 days for each trial (one at the beginning, one in the middle and one at the end of the trial) were selected and videos for all the videotaped replicates were watched continuously (all-occurrences sampling), in order to record the number of occurrences and duration of each interaction with the environmental enrichment.

173

174 2.5 Blood and bristle sampling and analysis

175 For each experimental group, a sub-sample of 15 piglets was randomly selected and blood samples were collected from each piglet in concurrence with the weightings. To this aim, piglets were manually restrained 176 177 on their back and 15 ml of blood were drawn from the jugular vein and collected into 2 tubes, one containing 178 lithium heparin and the other one containing EDTA. Blood was refrigerated immediately upon collection. Blood in K-EDTA was immediately sent to the DIMEVET laboratory, where the complete blood count 179 180 (CBC) was performed using the haematology analyser ADVIA 2120 (Siemens Healthcare, Milan, Italy). Blood in Li-heparin was centrifuged at 3,500×g for 15 min at 4 °C to separate plasma. Plasma was frozen 181 182 (-20 °C) until analysis of biochemical and metabolic profiles. The profiles included biomarkers able to 183 assess: energy (glucose, fructosamine, total cholesterol, triglycerides) and protein (urea, creatinine) 184 (i) 185 metabolism; liver functionality (total bilirubin, aspartate aminotransferase = GOT, γ -glutamiltransferase = GGT); 186 (ii) 187 (iii) oxidative stress (total reactive oxygen metabolites = ROM, Oxygen radical absorbance capacity = ORAC); 188

(iv) innate immune response evaluated by myeloperoxidase (index of neutrophil activity) and by indexes

- 190 of acute phase response consequent to inflammatory events (positive acute-phase proteins: serum
- amyloid A, haptoglobin, ceruloplasmin; parameters linked to positive acute phase proteins: globulin,

192 zinc; negative acute phase proteins: albumin, paraoxonase = PON).

193 Alterations of these biomarkers during the experiment was used to assess the welfare status. In particular, an

increase of positive acute phase proteins and of ROM and a reduction in negative acute phase proteins and

195 ORAC can to detect the presence of subclinical conditions of disease (Petersen et al., 2004; Loor et al., 2013;

196 Jacometo et al., 2016). Moreover, the concentration of fructosamine, which reflects the glycemia

197 concentration of the last 1-3 weeks (Armbruster 1987), can be used as indicator of under nutrition (low

198 values), disease status, distress (high values).

199 Glucose, total protein, albumin, total cholesterol, triglycerides, total bilirubin, creatinine, urea, GOT, GGT

200 were detected at 37°C by a clinical auto-analyzer (ILAB 650, Instrumentation Laboratory, Werfen, Bedford,

201 MA) using commercial kits purchased by Instrumentation Laboratory, Werfen (IL Test).

202 Ceruloplasmin, haptoglobin, PON, and MPO were determined with dedicated methods adapted to ILAB 650

203 conditions. Ceruloplasmin was determined following minor modification of the method proposed by

204 Sunderman & Nomoto (1970); haptoglobin (HP) was determined using the method proposed by Skinner et

al. (1991); PON activity was assessed by adapting the method of Ferré et al. (2002), as previously described

by Bionaz et al. (2007) and MPO activity was determined using the colorimetric method of Bradley et al.

207 (1982), in which MPO reacts with hydrogenperoxide, producing H2O and O- and O- reacts with the O-

dianisidinedihydrochloride, an electron donor, releasing H2O and a coloured compound.

209 Zn was determined by a commercial kit (Wako Chemicals GmbH, Neuss, Germany). ROM were measured

using a method patented by Diacron International S.r.l. (Grosseto, Italy) and expressed as mg of hydrogen

211 peroxide per 100 mL of plasma. Serum amyloid A (SAA) concentration was assessed with a commercial

212 ELISA immunoassay kit (Tridelta Development Ltd., Manynooth, Co. Kildare, Ireland). Total antioxidants

213 were assessed through the oxygen radical absorbance capacity (ORAC) assay. This method measures a

fluorescent signal from a probe (fluorescein) that decreases in the presence of radical damage (Cao & Prior,

215 1999). The analysis of ORAC was performed with a multidetection microplate reader equipped with a dual

216 reagent injector (BioTek Synergy2, Winooski, VT). Lastly, globulins were calculated as the difference

217 between total protein and albumin.

Bristles were collected at the beginning and at the end of the trial by shaving the rump region of all piglets.
Samples were handled and analysed as previously described by Bacci *et al.* (2014). In brief, bristles were

220 washed with water and then twice with isopropanol in order to remove any organic residue from the surface.

221 Once fully dried, samples were finely pulverized and incubated overnight with methanol for steroid

extraction. After centrifugation, methanol was collected and air-dried, and the dry extracts were analysedusing a validated radioimmunoassay. Data were reported as pg of cortisol/ mg of bristle.

carried out on a pool of bristles for each cage (i.e., 6 pools per treatment in trial 1 and 5 pools per treatmentin trial 2).

Since it has been possible to collect only a little amount of hair from each piglet, the analysis has been

227

224

228 2.6 Statistical analysis

Data of each trial was separately analysed using the STATISTICA 10 package (StatSoft, 2011) or SAS Inst.
Inc. (Cary, NC, USA; release 8.0, 2014).

For growth parameters, normality of data was assessed by the Kolmogorov–Smirnov test and the data

obtained were submitted to analysis of variance using environmental enrichment as the main effect. The cage

233 (5 pigs in trial 1, 4 pigs in trial 2) was taken as the experimental unit for live weight, ADG, feed

consumption, FCR, behavioural observations and cortisol from bristles; individual data were taken to be the
 experimental unit for cutaneous and skin lesions and blood parameters.

236 For hematic parameters, the normal distribution was checked by using Proc UNIVARIATE (SAS Inst. Inc.,

237 Cary, NC, USA; release 8.0) by NORMAL option. Parameters that were not normally distributed received a

log transformation to satisfy normality and homogeneity of variance assumptions underlying linear models.

239 Through the text, the data are presented in the original scale (mean and s.e.m.). Transformed data were

subjected to ANOVA using the MIXED procedure of SAS. The statistical model applied included the fixed

effect of day from the introduction of the environmental enrichment, type of environmental enrichments and

their interaction. The subject within the type of environmental enrichment was considered as a repeated

243 measure. The pairwise comparison has been done using least significant difference (LSD) test.

For nonparametric data (behavioural traits, blood parameters, lesion and tail score), the Mann-Whitney test

245 (trial A) or the Kruskall-Wallis test (trial B) were used. The chi-squared test was used to evaluate the

distribution of skin and tail lesions in the severity classes. The significance level for all statistical tests was

248

247

249 3. Results

set at P < 0.05.

Growth parameters of both the experimental trials are shown in table 1. In trial 2, no significant differences

were observed between the experimental groups. Conversely, in trial 1 piglets of the C1 group showed

significantly higher intermediate and final body weights (P = 0.01) when compared to the WL group.

253 Consequently, group C1 had a significantly higher ADG during the first period (P = 0.001) and considering

the whole trial (P = 0.01). Feed consumption of WL piglets was significantly lower than in group C1 both

during the second period and during the whole trial (P = 0.001). Significant differences were also observed in

FCR, with significantly lower FCR in C1 group during the first period and in WL group during the second

257 period (P = 0.001). Overall FCR tended to be lower in the WL group (P = 0.07).

251

As concerns cutaneous lesions (skin and tail lesion scores, see Supplementary material, table S3), no significant differences were detected between the experimental groups during the trials. However, it should be highlighted that, in both trials, tail score distribution indicated a numerically lower degree of lesion severity in the "enriched" than in the control (i.e., "chain") groups. In trial 2, tail score distribution showed tendentially (P<0.1) less severe tail wounds in ED when compared with C2 group.

Table 2 shows the behavioural patterns recorded during the two trials. Some statistical differences were

detected between the ethograms of the experimental groups: in trial 1, piglets in the WL group spent more

time standing inactive and rooting/exploring the floor, but less time manipulating cage components than

piglets in the C1 group (P = 0.03, P = 0.02 and P = 0.001, respectively). Overall, the WL group showed a

lower level of activity than the C1 group (P = 0.03). In trial 2, the lowest level of activity was recorded in ED

and the highest in WB group, with C2 being intermediate (P = 0.001). As concerns the individual

behaviours, WB piglets spent significantly more time eating (P = 0.001) and tended to interact more with the environmental enrichment (P = 0.07) than the other two experimental groups, whereas ED piglets spent more

time resting in sternal recumbency (P = 0.03) when compared to the other two experimental groups. Lastly,

piglets in the C2 group spent more time drinking (P = 0.02) and having positive social interactions (P = 0.02)

273 0.001) than the other two experimental groups.

Figure S4 and S5 (given in the Supplementary material) show the number of occurrences and the duration of

the interaction with the environmental enrichment material. In trial 1 (see figure S4), no statistically

significant difference was found in the number or in the duration of the interactions. However, interactions

277 lasted tendentially more (P<0.1) in WL than in C1 (on average 27.3 vs. 17.28 s). In trial 2, no significant

difference was observed in interaction number or duration, but the number of interactions tended to increase as time passed (P<0.1, see figure S5). The increase in interaction duration is more evident for ED and WB groups and is due to the presence of some individuals that continued to be interested in the environmental enrichment during the entire trial, without showing any decreasing trend (data not shown).

282 No significant differences were detected between the experimental groups in cortisol from bristles (table 3),

in the complete blood cell count and in the neutrophil-to-lymphocyte ratio (N/L, see table 4).

284 In the first trial, the presence of different environmental enrichments determined some differences in the

285 metabolic profile (table 5). Twenty-one days after the introduction of WL, the concentration of glucose,

albumin and PON in plasma were lower (P<0.01) in comparison with C1. These variations were transient

and disappeared at third assessment. The concentrations of GOT and GGT increased during the experiment

in both the environment enrichments, but the increase was smaller in WL in comparison with C1 group

289 (P<0.001 and P<0.001 respectively), until the third assessment. Moreover, concentrations of triglycerides

were higher (P<0.01) and concentrations of SAA tended to be lower (P<0.10) at the third assessment in WLin comparison with C1.

In the second trial (table 6) the comparison among the environmental enrichments has been limited at two assessments, separated by 43 days. The differences in comparison to the control group (C2) at the end of the trial were smaller and limited to triglycerides lower in ED (P<0.01) and WB (P<0.05), and total protein

higher in ED (P<0.1). At the beginning of the trial, glucose was higher in ED than in WB (P<0.05), total

antioxidants (ORAC) were tendentially higher in ED than in C2 (P<0.1) and GGT was tendentially lower

297 (P<0.1) in WB than in C2. Such small differences however disappeared at the second assessment.

In both trials, the prevalence of piglets with positive acute phase protein (eg. SAA and HP) concentrations
over the threshold of severe inflammations (>0.1 and >1.5 g/L for SAA and HP, respectively) was quite low:

300 2.2% of piglets in trial 1 and about 13% of piglets in trial 2.

301

302 4. Discussion

303 The aim of the present work was to study the consequences of the use of three point-source, destructible

304 enrichment-objects, which might represent a viable enrichment on slatted floors, on post-weaned piglets'

305 welfare. The point- source enrichment objects tested (poplar wood, sawdust briquette and edible block) were

306 compared to an indestructible object (*i.e.*, the widely used metal chain). Their effectiveness was assessed
307 using a wide range of behavioural, health, physiology, and performance parameters.

308

309 Growth parameters

Overall, growth parameters recorded in the two trials were less favourable (similar or lower ADG, increased 310 feed intake and FCR) than the data available in literature on piglets of similar age (e.g., Trickett et al. 2009; 311 312 Leliveld et al. 2013). This difference was expected and in agreement with the fact that these pigs are 313 intended for the production of Parma Ham, an Italian PDO (protected designation of origin) dry-cured ham 314 whose production rules require the use of raw tights from pigs of at least nine months of age and weighing 315 on average 160kg at slaughter (Consortium for Parma Ham, 1992). Therefore, such production requires the 316 use of genotypes that reach high BW in relatively longer times, *i.e.*, less efficient if compared with other 317 meat types.

318 Growth parameters differed between the experimental groups in trial 1, but not in trial 2. Overall, in trial 1 319 the WL group showed worse production parameters than the C1 group (lower body weight and ADG, reduced feed intake). FCR was higher in the first period, but lower in the second when compared to C1 320 321 group. The improved feed conversion in WL group during the second period may indicate how, in spite of 322 their relatively low daily gain and feed intake, these animals' body size has increased, resulting (because of the low feed consumption) in better FCR in comparison to C1 group. However, the worsening of productive 323 324 parameters in WL group cannot be ascribed to wood chewing or ingestion, since the animals have barely 325 notched it. It has been observed that pig-specific enrichment objects usually do not influence performance 326 parameters negatively, and that negative effects are mainly found when the enrichment provided does not fulfil all the pigs' requirements (Van de Weerd et al. 2009). Within this context, it cannot be ruled out that 327 328 WL may have represented a worse environmental enrichment than hanging chains, being less manipulable 329 or, at least, less easily chewable and movable. In fact, in WL piglets some transient negative changes were observed at the blood profile. WL showed a marked reduction of albumin and PON at 2nd assessment in 330 331 comparison to control, which suggests a slight reduction in liver functionality, likely as consequence of 332 previous inflammatory events (Gruys et al., 1998; Bertoni and Trevisi, 2013). It should however be 333 highlighted that no behavioural or physiological signs of impaired welfare have been detected in the WL

group at the end of the experimental period. For example, the plasma changes were transient and other

plasma indices were more favourable in comparison to piglets of the control group (e.g. the lower

336 concentrations of liver transaminase and the lower concentration of SAA at the third assessment). Thus, the

337 overall metabolic and inflammatory conditions did not differ among groups tested in trial 1.

338 Skin and tail lesions

As concerns skin and tail lesions, the absence of differences in their level (*i.e.*, lesion score) and severity 339 340 (*i.e.*, score distribution) indicates how the environmental enrichment materials proposed have determined no 341 substantial modifications in animal aggressive behaviours. However, it should be highlighted that the level of 342 skin and tail lesions recorded is very low in all the experimental groups if compared to the results obtained by Temple et al. (2011), who applied the Welfare Quality® protocol to intensively reared growing pigs. To 343 344 our knowledge, no literature is available on the application of the Welfare Quality® skin and tail lesion score 345 to post-weaned piglets. Tail lesion distribution across the severity classes was similar among the 346 experimental groups, with the majority of piglets (especially in trial 2) having intact tails, and only a 347 minority showing severe lesions. Such a distribution indicates a considerably lower level and severity of tail 348 biting in all the experimental groups if compared to what has been observed in undocked weaners in other 349 studies (Tellkantra et al. 2014b). Overall, the low number of lesions observed is of further interest if we 350 consider that the post-weaning period is critical for the development of oral behaviour redirection (massaging, tail biting), especially when piglets are reared in barren environments (van de Weerd et al., 351 352 2005; Tellkantra et al. 2014b). Besides, in both trials lesion frequency and severity were reduced in the 353 "enriched" groups. Therefore it cannot be ruled out that the alternative enrichment devices might have, 354 although not significantly, reduced the piglets' exploratory behaviour directed towards the tail of the penmates. The low number of piglets with severe lesions is also confirmed by the low frequency of piglets with 355 356 severe inflammatory conditions, diagnosed in accordance with the low concentrations of positive acute phase 357 proteins (e.g. SAA and HP). Despite the thresholds of these proteins which identify clinical cases are not 358 well defined, their high concentrations represent a systemic response after a severe psychological stress, 359 injuries or infections (Chen et al., 2003; Jacobson et al., 2004; Hansson et al., 2011; Pomorska-Mol et al., 360 2013). In the present experiment, the number of piglets with clear inflammation has been defined utilizing 361 the threshold of 0.1 mg/L for SAA and 1.5 mg/L for HP. In trial 1 less than 3% of piglets showed severe

inflammations; in trial 2, the percentage increased to 13%. In both trials, the introduction of the
environmental enrichments has not affected the frequency of the severe inflammation in the population,
which seems largely dependent to other environmental factors, not easily detectable. Interestingly in the trial
2, the WB showed better results of ED in term of inflammatory conditions. In fact, the higher concentration
of Zinc (which is sequestered in the liver during inflammatory events - Bertoni and Trevisi, 2013-) and the
lower concentration of SAA suggests a lower inflammatory events or a less severe inflammation in WB than
in ED (Jacobson et al., 2004; Hansson et al., 2011).

369 <u>Behavioural observations</u>

370 The differences observed between the experimental groups in trial 1 were mainly due to an overall reduced 371 activity (i.e., higher degree of calmness) of group WL (increase in the percentage of behaviours such as 372 standing inactive and rooting/exploring the floor; decrease in cage components exploration). In trial 2, the 373 higher degree of calmness was observed in ED group (increased sternal recumbency, reduction in positive 374 social interactions) and the lowest in WB (reduced sternal recumbency, increase in time spent eating and 375 interacting with the enrichment), with C2 group being intermediate. The time spent interacting with the 376 environmental enrichment was similar between the experimental groups in trial 1, whereas in trial 2 the 377 enrichment that tended to involve the piglets more was the WB. Overall, in the 2 trials the time spent 378 manipulating the environmental enrichment by all experimental groups was higher if compared to the results 379 described by Trickett et al (2009). Although such a percentage of time is very low if compared with the 380 occupational level provided by straw (Kelly et al., 2000), it has been demonstrated that in rats the 381 behavioural changes observed in the enriched environment were due to the presence of the enrichments 382 themselves in the cages (indirect effects) and not due merely to rats interacting with the enrichment (Abou-Ismail et al., 2010). In the case of rats, environmental enrichment promoted longer bouts of sleep and 383 384 diminished aggressive behaviour, improving welfare. Similarly, in pigs, it cannot be ruled out that the 385 presence of enrichment could have improved welfare even when animals spent little time in direct contact 386 with it, *i.e.*, that the frequency of object use alone may not be indicative of improved/impaired welfare 387 (Tellkantra et al. 2014b). This observation would be in agreement with the higher calmness levels that were 388 observed in groups WL (trial 1) and WB (trial 2). Unexpectedly, piglets did not show an increased interest 389 towards the edible material when compared to the hanging chain. However, such a result can be at least

partially explained by the fact that animals were fed *ad libitum*. The greater use on the wooden briquette by
piglets when compared to the edible block might be due to the fact that the wooden briquette was more
friable (i.e., more destructible and manipulable) than the edible block (Studniz et al., 2007). No alterations
were detected in the harmful social behaviours (aggressive interactions, tail biting, massaging).

394 The observation of videos in continuous showed that in trial 1 piglets tended to carry out longer interactions 395 with the wood log than with the chain, probably due to the fact that the wood log was more manipulable and 396 smelling and might have captured the interest of piglets for longer times if compared with the metal chain. In 397 trial 2, over time piglets tended to increase the amount of time they spent interacting with the enrichment (in 398 particular with the wood briquette and the edible block). However, the increase was not homogeneously due 399 to all piglets, but to the presence of some subjects, which continued to interact with the enrichments for the 400 entire duration of the trial, without showing the decreasing trend that is typically observed when habituation 401 occurs (Trickett et al., 2009). This finding shows that not all piglets find equally attractive the same 402 enrichment, but also confirms that the proposed enrichments may be more capable of capturing the piglets' 403 attention. However, it would be interesting to analyze if such an interest is maintained as the piglets grow up. 404 Hair cortisol and haematologic parameters

405 As concerns hair cortisol levels, no significant differences were detected between the groups at the same 406 sampling time. This shows that the materials used for environmental enrichment did not activate the 407 hypothalamic-pituitary-adrenocortical response in terms of chronic stress. When comparing cortisol values 408 of the same group at the 2 different experimental times, it is noticeable that the first ones are slightly higher. 409 This might be related to the last few days of intrauterine life and lactation since maternal cortisol blood 410 concentration rises before and during delivery, and returns at normal values at weaning (Whitely et al. 1984). As concerns the haematological parameters, the absence of differences in CBC or in N/L ratio between the 411 experimental groups indicates that none of the experimental groups was subjected to sub-chronic stressors. In 412 413 fact, under environmental stressors the N/L ratio tends to increase in pigs (as extensively reviewed by Kick 414 et al. 2011). Overall, parameters fell within the reference intervals for the swine specie (Thorn 2000). From 415 the comparison between trial 1 and trial 2, discrepancies can be observed between the two trials in the 416 differential leukocyte count. In trial 2, total leukocytes at the beginning of the trial were higher than in trial 1, 417 and the difference is due to a higher number of neutrophils that considerably diminished in the second

assessment. Although we did not carry out any specific analysis, the presence of a subclinical viral infection
(probably caused by PCV2 – Porcine Circovirus type 2) in these piglets cannot be ruled out. The presence of
a circovirus infection could explain both the neutrophilia observed at the beginning of trial 2 and the reduced
growth rate of these piglets if compared to the results obtained in trial 1, although no overt clinical signs
were observed. Moreover, neutrophilia (together with lymphopenia) is commonly observed in PCV2
infections (Gauger et al 2011).

The higher number of total leukocytes in the trial 2 in comparison with the trial 1, also agrees with the different inflammatory profile. In fact, in the trial 2 the incidence of piglets with positive acute phase protein (eg. SAA and HP) concentrations over the threshold of severe inflammations was higher in comparison with trial 1 (about 13% vs 2.2% of the piglets).

428

429 5. Conclusion

430 The results obtained from the present research trials did not allow to identify among the materials tested an 431 environmental enrichment material being particularly effective in improving piglet welfare if compared with 432 the metal chain. This observation can be drawn considering the fact that no peculiar difference has been 433 detected in behavioural, physiological or growth parameters of piglets receiving the innovative 434 environmental enrichment materials when compared to piglets receiving the traditionally used hanging chains. Unexpectedly, piglets did not show an increased interest even towards the edible material. Although 435 436 our data refer to animals kept in small groups (4 or 5 piglets/cage), the overall results indicate that under our 437 experimental conditions piglets receiving the metal chain attained a satisfactory welfare level. In fact, in spite 438 of their theoretically low enrichment level and of the intact tails, no tail-biting outbreak occurred and no behavioural or biochemical alteration were observed. Therefore, without devaluing the importance of 439 440 adequate enrichment tools, under practical farming conditions attention should be paid not to allow the use of 441 enrichments as a mean to compensate for poor environmental conditions or to overlook underlying welfare 442 issues.

Overall, the results of the present study highlight a basic issue related to the inner nature and meaning of
environmental enrichment itself. The fact that several enrichment devices (differing in materials and/or
design) had similar effects, urges a reflection on what is an effective enrichment tool, and what only attracts

446	stereotyped behaviours. Besides, there would be possibilities that enrichments considered similar by humans
447	could have different effects on behavior and performance of animals. For these reasons, there is a clear need
448	for further studies on what components of environmental enrichment do actually influence the animal as a
449	whole (e.g., behaviour, physiology etc.) or only in part (lesions, etc.) and how it happens.
450	
451	Acknowledgements
452	Supported by Progetto AGER, grant n°2011-0280.
453	The authors would like to thank the anonymous referees for the careful reading and the valuable comments
454	to improve the quality of the manuscript.
455	
456	References
457	Abou-Ismail, U.A., Burman, O.H.P., Nicol, C.J., Mendl, M., 2010. The effects of enhancing cage complexity
458	on the behaviour and welfare of laboratory rats. Behav. Process. 85, 172-180.
459	http://dx.doi.org/10.1016/j.beproc.2010.07.002.
460	American Heritage® Dictionary of the English Language, Fifth Edition 2011. Retrieved
461	from http://www.thefreedictionary.com/rooting_Last accessed: March 2016.
462	Armbruster, D.A., 1987. Fructosamine: structure, analysis, and clinical usefulness. Clin. Chem. 33/12, 2153-
463	2163.
464	Bacci, M.L., Nannoni, E., Govoni, N., Scorrano, F., Zannoni, A., Forni, M., Martelli, G., Sardi, L., 2014.
465	Hair cortisol determination in sows in two consecutive reproductive cycles. Reprod. Biol. 14: 218-
466	223. http://dx.doi.org/10.1016/j.repbio.2014.06.001
467	Bertoni, G., Trevisi, E., 2012. Use of the liver activity index and other metabolic variables in the assessment
468	of metabolic health in dairy herds. Vet. Clin. N. AmFood A. 29(2), 413-31.
469	http://dx.doi.org/10.1016/j.cvfa.2013.04.004
470	Blackshaw, J.K., Thomas, F.J., Lee, J.A., 1997. The effect of a fixed or free toy on the growth rate and
471	aggressive behaviour of weaned pigs and the influence of hierarchy on initial investigation of the
472	toys. Appl. Anim. Behav. Sci. 53, 203-212. <u>http://dx.doi.org/10.1016/S0168-1591(96)01087-8</u>

- 473 Bionaz, M., Trevisi, E., Calamari, L., Librandi, F., Ferrari, A., Bertoni, G., 2007. Plasma paraoxonase,
- 474 health, inflammatory conditions, and liver function in transition dairy cows. J. Dairy Sci. 90, 1740475 1750. http://dx.doi.org/10.3168/jds.2006-445
- 476 Bracke, M.B.M., Zonderland, J.J., Lenskens, P., Schouten, W.G.P., Vermeer, H., Spoolder, H.A.M.,
- 477 Hendriks, H.J.M., Hopster, H., 2006. Formalised review of environmental enrichment for pigs in
- 478 relation to political decision making. Appl. Anim. Behav. Sci. 98, 165-182
- 479 <u>http://dx.doi.org/10.1016/j.applanim.2005.08.021</u>
- 480 Bradley, P.P., Priebat, D.A., Christensen, R.D., Rothstein, G., 1982. Measurement of cutaneous
- 481 inflammation: Estimation of neutrophil content with an enzyme marker. J. Invest. Dermatol. 78,
- 482 206–209. <u>http://dx.doi.org/10.1111/1523-1747.ep12506462</u>
- Bulens, A., Van Beirendonck, S., Van Thielen, J., Buys, N., Driessen, B., 2016. Long-term effects of straw
 blocks in pens with finishing pigs and the interaction with boar type. Appl. Anim. Behav. Sci. 176,
 6-11. http://dx.doi.org/10.1016/j.applanim.2016.01.008
- 486 Cao, G., Prior, R.L., 1999. Measurement of oxygen radical absorbance capacity in biological samples.

487 Method. Enzymol. 299, 50-62. <u>http://dx.doi.org/10.1016/S0076-6879(99)99008-0</u>

- Chen, H-H., Lin, J-H., Fung, H-P., Ho, L-L., Yang, P-C., Lee, W-C., Lee, Y-P., Chu, R-M., 2003. Serum
 acute phase proteins and swine health status. Can. J. Vet. Res. 67, 283–290.
- 490 Consortium for Parma Ham, 1992. Prosciutto di Parma (Parma Ham) Protected Designation of Origin.
- 491 Specifications and Dossier. <u>http://www.prosciuttodiparma.com/pdf/en_UK/specifications.pdf (Last</u>
 492 accessed March 2016)
- EC, 2008. Council Directive 2008/120/EC of 18 December 2008 laying down minimum standards for the
 protection of pigs. OJEU L47, 5-13
- 495 EFSA, 2007. Scientific Opinion of the Panel on Animal Health and Welfare on a request from the
- 496 Commission on animal health and welfare in fattening pigs in relation to housing and husbandry.
- 497 The EFSA Journal 564, 1-14. <u>http://www.efsa.europa.eu/it/efsajournal/doc/564.pdf</u>
- 498 Ferré, N., Camps, J., Prats, E., Vilella, E., Paul, A., Figuera, L., Joven, J., 2002. Serum paraoxonase activity:
- 499 a new additional test for the improved evaluation of chronic liver damage. Clin. Chem. 48, 261-8.

- 500 Gauger, P.C., Lager, K.M., Vincent, A.L., Opriessnig, T., Cheung, A.K., Butler, J.E., Kehrli, Jr.M.E., 2011.
- Leukogram abnormalities in gnotobiotic pigs infected with porcine circovirus type 2. Vet. Microbiol.
 154, 185-190. http://dx.doi.org/10.1016/j.vetmic.2011.06.016
- 503 Gruys, E., Toussaint, M.J.M., Landman, W.J., Tivapasi. M., Chamanza, R., VanVeen, L., 1998. Infection,
- inflammation and stress inhibit growth. Mechanisms and non-specific assessment of the processes by
 acute phase proteins. In: Wensing, T. editor, Production diseases in farm animals. The Netherland:
 Wageningen Press; 1998. p. 72–87.
- Hansson, M., Lundeheim, N., Nyman, G., Johansson, G., 2011. Effect of local anaesthesia and/or analgesia
 on pain responses induced by piglet castration. Acta Vet. Scand. 53, 34-42.
- 509 <u>http://doi.org/10.1186/1751-0147-53-34</u>
- Jacobson, M., Fellstrom, C., Lindberg, R., Wallgren, P., Jensen-Waern, M., 2004. Experimental swine
 dysentery: comparison between infection models. J. Med. Microbiol. 53, 273–280.
- 512 <u>http://doi.org/10.1099/jmm.0.05323-0</u>
- 513 Jacometo, C., Zhou, Z., Luchini, D., Trevisi, E., Loor, J., 2016. Maternal rumen-protected methionine
- supplementation and its impact on blood and liver biomarkers of energy metabolism, inflammation,
- and oxidative stress in neonatal Holstein calves. J. Dairy Sci. 99,1-11.
- Jensen, M.B., Studniz, M., Pedersen, L.J., 2010. The effect of type of rooting material and space allowance
- 517 on exploration and abnormal behaviour in growing pigs. Appl. Anim. Behav. Sci. 123, 87-92.
- 518 <u>http://dx.doi.org/10.1016/j.applanim.2010.01.002</u>
- 519 Kelly, H.R.C., Bruce, J.M., English, P.R., Fowler, V.R., Edwards, S.A., 2000. Behaviour of 3-week weaned

520 pigs in Straw-Flow®, deep straw and flatdeck housing systems. Appl. Anim. Behav. Sci. 68, 269-

- 521 280. <u>http://dx.doi.org/10.1016/S0168-1591(00)00109-X</u>
- Kick, A.R., Tompkins, M.B., Almond, G.W., 2011. Stress and immunity in the pig, in: D Hamming (Ed.)
 Animal Science Reviews pp 51-66.
- Leliveld, L.M.C., Riemensperger, A.V., Gardiner, G.E., O'Doherty, J.V., Lynch, P.B., Lawlor, P.G., 2013.
- 525 Effect of weaning age and postweaning feeding programme on the growth performance of pigs to 10
- 526 weeks of age, Livest. Sci. 157, 225-233 <u>http://dx.doi.org/10.1016/j.livsci.2013.06.030</u>

- Loor, J.J., Bertoni, G., Hosseini, A., Roche, J.R., Trevisi, E., 2013. Functional welfare using biochemical
 and molecular technologies to understand better the welfare state of peripartal dairy cattle. Anim.
 Prod. Sci. 53(9), 931-953.
- 530 Martelli, G., Sardi, L., Stancampiano, L., Govoni, N., Zannoni, A., Nannoni, E., Forni, M., Bacci, M.L.,
- 2014. A study on some welfare- related parameters of hDAF transgenic pigs when compared to their
 conventional close relatives. Animal 8, 810-816 http://dx.doi.org/10.1017/S1751731114000433
- Newberry, R.C., 1995. Environmental enrichment : Increasing the biological relevance of captive
 environments. Appl. Anim. Behav. Sci. 44, 229–43. http://dx.doi.org/10.1016/0168-1591(95)00616-
- 535

Ζ

- 536 Petersen, V., Simonsen, H.B., Lawson, L.G., 1995. The effect of environmental stimulation on the
- 537 development of behaviour in pigs. Appl. Anim. Behav. Sci. 45, 215–24.
- 538 <u>http://dx.doi.org/10.1016/0168-1591(95)00631-2</u>
- Petersen, H.H., Nielsen, J.P., Heegaard. P.M.H., 2004. Application of acute phase protein measurements in
 veterinary clinical chemistry. Vet Res 35(2), 163–87.
- 541 Pomorska, M.M., Markowska, D.I., Kwit, K., Stępniewska, K., Pejsak, Z., 2013. C-reactive protein,
- haptoglobin, serum amyloid A and pig major acute phase protein response in pigs simultaneously
- 543 infected with H1N1 swine influenza virus and Pasteurella multocida. BMC Vet. Res. 9, 14-22.
- 544 http://dx.doi.org/10.1186/1746-6148-9-14
- Scott, K., Taylor, L., Bhupinder, P.G., Edwards, S.A., 2007. Influence of different types of environmental
 enrichment on the behaviour of finishing pigs in two different housing systems 2. Ratio of pigs to
- 547 enrichment. Appl. Anim. Behav. Sci. 105, 51-58. <u>http://dx.doi.org/10.1016/j.applanim.2006.05.042</u>
- 548 Skinner, J.G., Brown, R.A.L., Roberts, L., 1991 Bovine haptoglobin response in clinically defined field
 549 conditions. Vet. Rec. 128, 147-149. http://dx.doi.org/10.1136/vr.128.7.147
- Studnitz, M., Jensen, M.B., Pedersen, L.J., 2007. Why do pigs root and in what will they root?: A review on
 the exploratory behaviour of pigs in relation to environmental enrichment. Appl. Anim. Behav. Sci.
- 552 107, 183-197, http://dx.doi.org/10.1016/j.applanim.2006.11.013.
- 553 Sunderman, F.W., Nomoto, S., 1970. Measurement of human serum ceruloplasmin by its p-
- phenylenediamine oxidase activity. Clin. Chem. 16, 903 910.

- Telkänranta, H., Bracke, M.B.M., Valros, A., 2014a, Fresh wood reduces tail and ear biting and increases
- exploratory behaviour in finishing pigs. Appl. Anim. Behav. Sci. 161, 51-59.
- 557 <u>http://dx.doi.org/10.1016/j.applanim.2014.09.007</u>
- Telkänranta, H., Swan, K., Hirvonen, H., Valros, A., 2014b, Chewable materials before weaning reduce tail
 biting in growing pigs. Appl. Anim. Behav. Sci. 157, 14-22.
- 560 http://dx.doi.org/10.1016/j.applanim.2014.01.004
- Temple, D., Dalmau, A., Ruiz de la Torre, J.L., Manteca, X., Velarde, A., 2011. Application of the Welfare
 Quality® protocol to assess growing pigs kept under intensive conditions in Spain. J. Vet. Behav. 6,
- 563 138-149. <u>http://dx.doi.org/10.1016/j.jveb.2010.10.003</u>
- Thorn, C.E., 2010. Hematology of the pig, in: Weiss DJ and Wardrop KJ (eds) Schalm's Veterinary
 Hematology, 6th ed. pp 843–851. Blackwell Publishing, Ames, IA.
- Trickett, S.L., Guy, J.H., Edwards, S.A., 2009. The role of novelty in environmental enrichment for the
 weaned pig. Appl. Anim. Behav. Sci. 116, 45-51. http://dx.doi.org/10.1016/j.applanim.2008.07.007
- Van de Weerd, H.A., Day, J.E.L., 2009. A review of environmental enrichment for pigs housed in intensive
 housing systems. Appl. Anim. Behav. Sci. 116, 1–20
- 570 http://dx.doi.org/10.1016/j.applanim.2008.08.001
- 571 Westin, R., Holmgren, N., Mattsson, B., Algers, B., 2013. Throughput capacity of large quantities of
- 572 chopped straw in partly slatted farrowing pens for loose housed sows. Acta Agric Scand A 63,18-27.
- 573 <u>http://dx.doi.org/10.1080/09064702.2013.780633</u>
- Whitely, J.L., Willcox, D.L., Newton, J.A., Bryant-Greenwood, G.D., Hartmann, P.E., 1984. Total and free
 plasma concentrations of progesterone, cortisol and oestradiol-17 beta during pregnancy, parturition
- and early lactation in sows. Aust. J. Biol. Sci. 37, 267-276.

				Trial 1		
		C1	Ţ	WL	RMSE	p-value
Replications (cage)	n	6		6		
Body Weight						
Initial weight (0 d)	kg	6.77	6	5.74	0.79	0.95
Weight at 21 d	kg	14.15	12	2.07	1.20	0.01
Final weight (48 d)	kg	31.99	2	8.67	1.41	0.01
Average Daily Gain (AD	(G)					
ADG 0-21 d	g/day	351	2	275	2.81	0.001
ADG 21-48 d	g/day	660	(524	3.63	0.12
ADG 0-48 d	g/day	526	2	474	2.02	0.01
Feed Consumption						
1-21 d	g/day	762	-	762	-	-
22-48 d	g/day	1203	Ç	943	8.20	0.001
1-48 d	g/day	1010	8	864	4.62	0.001
Feed Conversion Ratio (FCR)					
FCR 1-21d		2.19	2	2.78	0.19	0.001
FCR 22-48 d		1.83	1	.51	0.11	0.001
FCR 1-48 d		1.92	1	.82	0.089	0.07
				Trial 2		
		C2	ED	WB	RMSE	p-valu
Replications (cage)	n	5	5	5		
Body Weight						
Initial weight (0 d)	kg	6.44	6.46	6.36	0.48	0.94
Final weight (43 d)	kg	24.49	24.86	26.19	2.40	0.62
ADG:						
ADG 0-43 d	g/d	429	428	461	4.68	0.47
Feed Consumption						
0-43 d	g/d	837	837	941	4.06	0.37
FCR						
FCR 0-43 d		1.94	1.95	2.05	0.22	0.72

577 Table 1: Live weight and average daily gain (ADG) of piglets receiving different environmental enrichment
578 materials (C1 and C2 = hanging chains; WL = Wood Log; ED = Edible block; WB = Wood Briquette)

Table 2: Diurnal behaviour (7:00 to 19:00) of piglets receiving different environmental enrichments (data are expressed as a percentage of total observed behaviours). (C1 and C2 = hanging chains; WL = Wood Log; ED = Edible block; WB = Wood Briquette)

	Trial 1			Trial 2			
	C1	WL	P-value	C2	ED	WB	P-value
Standing inactive ¹	3.54	4.42	0.03	3.24	2.69	2.69	n.s.
Sitting inactive (dog sitting) ¹	1.22	1.31	n.s.	1.30	1.36	1.29	n.s.
Sternal recumbency ¹	28.50	27.01	n.s.	36.20	38.01	35.32	0.03
Lateral recumbency ¹	36.46	38.92	n.s.	38.04	37.84	38.37	n.s.
Eating ²	14.11	13.93	n.s.	9.94	9.95	11.94	0.001
Drinking ²	2.49	2.20	n.s.	1.99	1.40	1.47	0.02
Walking ²	2.74	3.14	n.s.	1.95	1.54	1.61	n.s.
Rooting/Exploring the floor ²	1.89	2.24	0.02	0.71	0.95	0.86	n.s
Positive interaction ²	3.65	3.33	n.s.	2.01	1.53	1.61	0.001
Aggressive Interaction ²	1.77	1.45	n.s.	0.08	0.09	0.08	n.s.
Tail biting ²	0.69	0.54	n.s.	0.05	0.05	0.05	n.s.
Massaging ²	0.73	1.23	n.s.	2.66	2.61	2.47	n.s.
Interaction with the enrichmen ² t	0.66	0.57	n.s.	0.54	0.50	0.79	n.s
Manipulation of cage components ²	1.64	0.74	0.001	0.49	0.62	0.56	n.s.
Total inactive ¹	69.63	71.66	0.03	78.78	79.85	77.66	0.001
Total active	30.37	28.34	0.03	21.22	20.15	22.34	0.001

¹Inactive behaviours

² Active behaviours

	Trial 1				
	C1	V	VL	RMSE	P-value
Replication	6	6	6		
1st assessment	8.39	9	9.72		0.52
2nd assessment	5.11	9.32		2.34	0.25
	Trial 2				
	C2	ED	WB	RMSE	P-value
Replication	5	5	5		
1st assessment	7.81	7.27	7.52	1.62	0.89
2nd assessment	5.24	4.63	5.81	1.92	0.33

Table 3: Cortisol from bristles of piglets receiving different environmental enrichments (C1 and C2 =
hanging chains; WL = Wood Log; ED = Edible block; WB = Wood Briquette)

Table 4: Complete blood count and N/L ratio of piglets receiving different environmental enrichments (C1and C2 = hanging chains; WL = Wood Log; ED = Edible block; WB = Wood Briquette)

		Trial 1					
	1st ass	essment	2nd ass	2nd assessment		3rd assessment	
	C1	WL	C2	WL	C1	WL	SE
Haematocrit (%)	41.1	39.2	35.8	33.5	39.4	39.8	0.45
Haemoglobin (g/dL)	12.6	12.0	10.5	9.8	11.6	11.5	0.14
Erythrocytes (x10 ⁶ /µL)	7.196	6.956	6.642	6.354	7.264	7.305	0.07
Leukocytes (/µL)	10730	10668	17732	15901	16425	15327	554.24
Neutrophil (/µL)	3747	3645	5885	5544	5013	4965	261.72
Lymphocyte(/µL)	6209	5045	9931	8946	10149	9361	324.73
N/L ratio	0.60	0.66	0.61	0.64	0.53	0.51	0.03
				Trial 2			

	1st assessment			2n	2nd assessment		
	C2	ED	WB	C2	ED	WB	SE
Haematocrit (%)	39.7	39.8	41.1	32.1	31.6	34.2	0.51
Haemoglobin (g/dL)	12.0	11.3	11.5	9.1	9.0	9.8	0.19
Erythrocytes (x10 ⁶ /µL)	6.623	6.930	6.919	7.573	7.689	7.801	0.07
Leukocytes (/µL)	14371	13874	14671	15385	16652	17379	521.56
Neutrophil (/µL)	6275	6262	6192	3977	4424	4709	277.37
Lymphocyte (/µL)	6815	6635	7566	9767	10637	10495	336.57
N/L ratio	0.96	0.98	0.84	0.44	0.42	0.45	0.04

No significant difference was detected at the statistical analysis (P>0.05).

		Т	'rial 1				
Time (days)		1st assessment (day 0)		2nd assessment (day 21)		sessment 1y 48)	SE
Group	C1	WL	C1	WL	C1	WL	
Glucose (mmol/l)	6.64	6.84	7.37	6.53**	6.10	6.28	0.212
Cholesterol (mmol/l)	2.24	2.33	2.29	2.56	2.15	2.27	0.127
Urea (mmol/l)	4.41	4.64	2.91	3.05	4.99	5.17	0.241
Zinc (µmol/l)	16.39	16.78	30.28	28.68	19.77	19.63	0.079
Ceruloplasmin (µmol/l)	13.45	12.21	11.55	11.57	13.26	12.26	0.697
Total Protein (g/l)	53.10	52.58	54.79	52.84+	60.19	60.60	0.778
Albumins (g/l)	32.93	32.96	32.98	29.72**	38.27	38.15	0.77
Globulin (g/l)	20.16	19.63	21.81	23.12	21.92	22.45	0.032
AST/GOT (U/l)	52.44	54.31	92.70	63.04***	64.46	46.14**	0.07
GGT (U/l)	41.93	40.25	120.2	68.21**	121.3	70.96*	0.11
Total bilirubin (µmol/l)	1.60	1.62	1.23	1.79	0.80	0.68	0.13
Haptoglobin (g/l)	0.94	0.97	1.07	1.19	1.02	0.98	0.104
Paraoxonase (U/ml)	35.95	34.34	33.84	23.62**	45.42	48.71	2.21
Triglycerides (mmol/l)	0.389	0.414	0.666	0.700	0.363	0.487**	0.06
Creatinin (µmol/l)	99.2	102.4	69.0	67.4	82.8	86.1	2.16
ROMt (mg H ₂ O ₂ / 100 ml)	33.26	28.72+	22.26	19.12	26.05	22.08	0.05
Myeloperoxidase (U/l)	352	381	635	683	621	625	26.0
Fructosamine (µmol/l)	52.35	51.39	39.58	35.80	42.24	40.85	2.074
ORAC (µmol/l)	8201	8449	8634	9086	9631	9987	314.
Serum amyloid A (µg/ml)	7.06	14.95	7.97	23.04	46.43	5.87 +	14.1

Table 5 –Plasma biomarkers of piglets (mean and Standard Error = SE) receiving different environmental
 enrichments (C1 = hanging chains; WL = Wood Log) during the trial 1.

598 A significant statistical difference at the same assessment is shown by a superscript on the WL value (+ 599 P<0.10; * P<0.05; ** P<0.01).

600

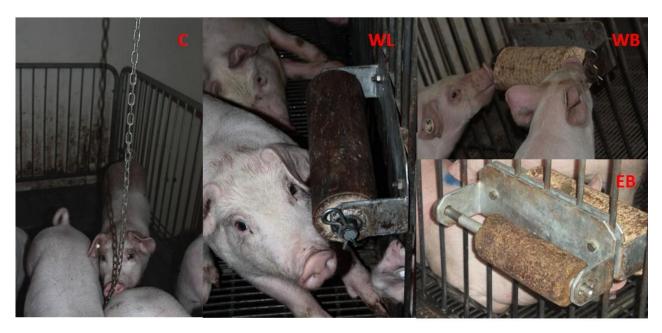

Trial 2								
Time (days)	1st as	ssessment (day 0)	2nd a				
Group	C2	ED	WB	C2	ED	WB	SE	
Glucose (mmol/l)	6.82	7.38	6.59 ⁽¹⁾	5.68	5.54	5.38	0.37	
Cholesterol (mmol/l)	2.03	2.00	2.04	2.71	2.55	2.55	0.17	
Urea (mmol/l)	4.18	3.84	4.29	4.52	4.59	4.63	0.34	
Zinc (µmol/l)	11.47	12.61	12.55	13.76	15.41	15.07	1.16	
Ceruloplasmin (µmol/l)	19.28	19.50	18.89	16.17	14.78	16.57	1.75	
Total Protein (g/l)	54.35	54.12	53.82	60.14	62.90(2)	62.32	1.61	
Albumins (g/l)	34.13	33.66	33.28	35.96	36.73	36.99	0.96	
Globulin (g/l)	20.21	20.45	20.53	24.18	26.17	25.33	1.51	
AST/GOT (U/l)	70.11	77.60	72.19	51.21	51.13	52.00	7.88	
GGT (U/l)	96.32	83.57	58.01 ⁽³⁾	48.77	43.61	45.60	0.21	
Total bilirubin (µmol/l)	1.90	2.00	1.86	2.00	2.50	1.79	0.20	
Haptoglobin (g/l)	0.93	1.05	1.12	1.22	1.21	1.32	0.17	
Paraoxonase (U/ml)	33.95	34.63	33.29	30.54	29.97	33.56	3.35	
Triglycerides (mmol/l)	0.509	0.473	0.413	0.612	0.474 **	0.488 *	0.06	
Creatinin (µmol/l)	100.3	101.5	97.2	93.6	95.6	94.2	3.76	
ROMt (mg H ₂ O ₂ / 100 ml)	30.22	31.83	31.11	28.84	26.89	27.89	1.70	
Myeloperoxidase (U/l)	370	701	410	408	469	438	0.19	
Fructosamine (µmol/l)	44.36	46.55	42.12	28.50	28.95	29.86	4.36	
ORAC (µmol/l)	9105	10344 ⁽²⁾	9923	11173	11198	10751	622.5	
Serum amyloid A (µg/ml)	110.70	34.69	49.94	21.92	65.19	61.03	0.47	

Table 6: Plasma biomarkers of piglets (mean and Standard Error = SE) receiving different environmental
 enrichments (C2 = hanging chains; ED = Edible block; WB = Wood Briquette) during the trial 2.

604 Significant statistical difference with C2 at the same time point is shown by a superscript on the ED and WB

values (* P<0.05; ** P<0.01); (1) P<0.05 between ED and WB group; (2) P<0.1 between C2 and Ed group;
P<0.1 between C2 and WB group.

- **Figure S1:** pictures of the environmental enrichment devices used during the experimental trials. C=metal
- 609 chain; WL=Wood log; WB=Wood briquette; EB=Edible Block.

- 610
- 611
- 612

613	Table S2: Description of the behaviours observed (Martelli et al. 2014, modified)
-----	---

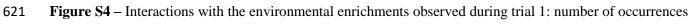

Behaviour	Description
Standing inactive	Standing, neither moving forward or backward
Sitting inactive (dog-sitting)	Sitting on its tail with its foreleg stretched under the body
Sternal recumbency	Lying down on its belly
Lateral recumbency	Lying down on one side
Walking	Walking through the cage
Eating	Eating from the feeder or chewing food
Drinking	Mouth in contact with the drinker and water being ingested
Rooting/Exploring the floor	Aimless rooting, sniffing, touching the cage floor
Positive Interaction	Social, explorative, interactions performed by one pig and directed towards one or more pigs (e.g. nose-to nose, nose-to-body)
Aggressive Interaction	Interactions (bites or head butts) ending with the victim piglet fleeing the performer
Interaction with the environmental enrichment	Any explorative interaction (sniffing, rooting, nosing or chewing) performed towards the enrichment.
Manipulation of cage components	Nosing, rooting, or chewing equipment (feeder or metal bars).
Tail biting	The performer holds the tail of the victim in its mouth
Massaging	Repetitive rooting movement with the snout on another piglet (belly nosing or nosing any other body part).
Others	Other unlisted activities (e.g. running, playing)

Table S3: Skin and tail lesions of piglets receiving different environmental enrichment materials. (C1 and

617	C2 = hanging chains; W	VL = Wood Log; ED =	= Edible block; WB = V	Wood Briquette)
-----	------------------------	---------------------	------------------------	-----------------

		Trial 1			
		C1		WL	
Animals	n°	30		30	
1st assessment (d 14)					
Skin lesions	pt	0.27	0.23		
Tail lesions	pt	0.20	0.03		
2nd assessment (d 36)					
Skin lesions	pt	0.00		0.07	
Tail lesions	pt	0.48	0.67		
3rd assessment (d 48)					
Skin lesions	pt	0.38	0.43		
Tail lesions	pt	1.00	0.76		
Overall skin score distribution	on				
Intact skin	%	78,5		75.6	
Moderate wounds	%	21.5	24.4		
Severe wounds	%	0	0		
Overall tail score distribution	n				
Intact tail	%	56.6	68.9		
Moderate tail lesion	%	30.08	14.4		
Severe tail damage	%	12.6		16.7	
		Trial 2			
		C2	ED	WB	
Animals	n°	20	20	20	
1st assessment (d 15)					
Skin lesions	pt	0.15	0.20	0.25	
Tail lesions	pt	0.11	0.11	0	
2nd assessment (d 29)					
Skin lesions	pt	0.50	0.40	0.53	
Tail lesions	pt	0.45	0.25	0.26	
3rd Assessment (d 42)					
Skin lesions	pt	0.65	0.32	0.43	
Tail lesions	pt	0.32	0.05	0.26	
Overall skin score distribution	on				
Intact skin	%	58.3	68.3	68.3	
Moderate wounds	%	40.0	31.7	31.7	
Severe wounds	%	1.7	0	0	
Overall tail score distribution	n				
Intact tail	%	76.7	86.7	81.7	
Moderate tail lesion	%	18.3	13.3	18.3	
Severe tail damage	%	5.0	0	0	

618 No significant difference was detected at the statistical analysis (P>0.05).

and average duration

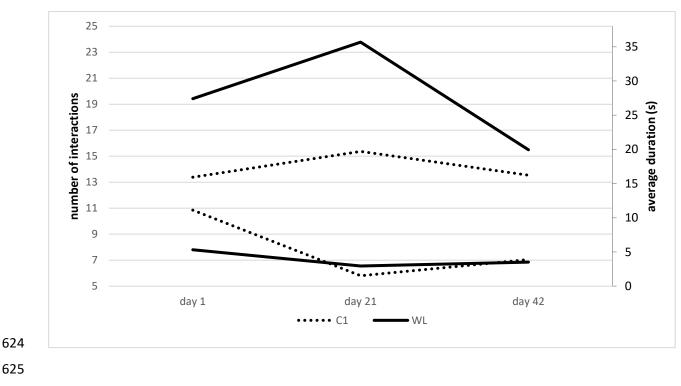
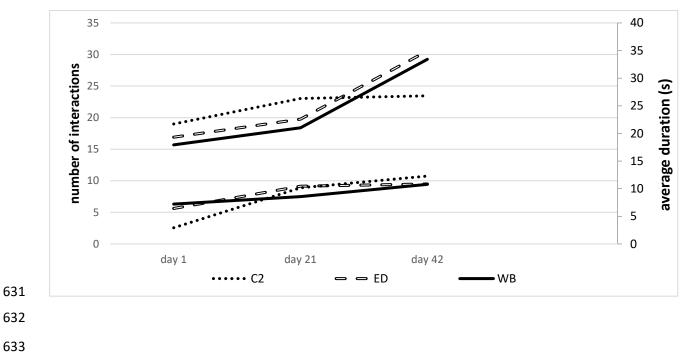



Figure S5 – Interactions with the environmental enrichments observed during trial 2: number of occurrences
 and average duration

