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We consider a Bilevel Integer Programming model that extends the classic 0–1 knapsack problem in a very

natural way. The model describes a Stackelberg game where the leader’s decision interdicts a subset of the

knapsack items for the follower. As this interdiction of items substantially increases the difficulty of the

problem, it prevents the application of the classical methods for bilevel programming and of the specialized

approaches that are tailored to other bilevel knapsack variants. Motivated by the simple description of the

model, by its complexity, by its economic applications, and by the lack of algorithms to solve it, we design a

novel viable way for computing optimal solutions. Finally, we present extensive computational results that

show the effectiveness of the new algorithm on instances from the literature and on randomly generated

instances.

Key words : Knapsack problem; bilevel programming; min-max problem

1. Introduction

In recent years, research on Mixed-Integer Bilevel Programming (MIBP) has grown sub-

stantially due to its wide applicability in the modeling of real-world problems. Bilevel

programming and (more generally) multilevel programming are generalizations of standard

single-level optimization. In the bilevel case, which is also known as a Stackelberg (1952)

game, there are two non-cooperating players that play two rounds. In the first round the

so-called leader takes action, and in the second round the other player (called the follower)

makes his decision while taking the decision of the leader into account. In the multilevel

case, an entire hierarchy of n players make their decisions during a sequence of n rounds.

In this paper, we investigate a bilevel knapsack problem that was suggested in the PhD

thesis of DeNegre (2011), and hence will be called the DeNegre bilevel knapsack (DNeg).

1
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DNeg is an integer bilevel programming problem describing a situation where both leader

and follower hold their own private knapsacks and choose items from a common item set.

First, the leader picks some of the items up to his own budget, and then the follower chooses

some of the remaining items and packs them into his private knapsack. The objective of

the follower is to maximize the profit of the items in his knapsack, while the objective of

the (hostile) leader is to minimize the follower’s profit by interdicting some items for the

follower.

First, the leader picks some of the items up to his own budget, and then the follower

chooses some of the remaining items and packs them into his private knapsack. The objec-

tive of the follower is to maximize the profit of the items in his knapsack, while the objective

of the (hostile) leader is to minimize the follower’s profit by interdicting some items for

the follower.

One real-world application of DNeg is the so-called Corporate Strategy problem

described in DeNegre (2011): a Company B wishes to determine its marketing strategy

for the upcoming fiscal year. Company B has to decide which demographic or geographic

regions to target, subject to a specified marketing budget. There exists a cost to establish

a marketing campaign for each target region and an associated benefit. Company B’s

goal is to maximize its marketing benefit. The larger Company A has market dominance;

whenever Company A and Company B target the same region, Company B is unable to

establish a worthwhile marketing campaign. In other words, Company A can interdict

regions for the marketing problem to be solved by Company B.

The literature around MIBPs. The optimization literature only contains a handful of

results on the solution of general MIBPs. Moore and Bard (1990) adapt the classical branch-

and-bound scheme for Mixed-Integer Linear Programming (MIP) to MIBPs, and propose

a number of simple heuristics. The approach in Moore and Bard (1990) is fairly basic

and can only handle small instances with up to 20 integer variables. The first significant

advances to the MIBP branch-and-bound scheme are due to the dissertation of DeNegre

(2011), which added a number of interesting ingredients and in particular considered so-

called interdiction constraints. For a comprehensive survey on solution methodologies for

MIBPs, we refer the reader to Saharidis et al. (2013).
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Hemmati et al. (2014) consider a more general bilevel min-max interdiction problem

on networks. An effective cutting plane algorithm in the spirit of the one described in

Section 3.3 is proposed and enhanced with valid inequalities that are specific to the consid-

ered problem on networks. Links to the general interdiction literature, especially from an

homeland security perspective, are provided by Smith (2011) and Smith and Lim (2008).

Brotcorne et al. (2013) have studied a bilevel knapsack variant where the leader’s decision

interferes with the amount of budget available for the follower (but does not interdict items

as in DNeg). This allows the use of the traditional dynamic programming machinery for

the 0–1 Knapsack Problem (KP) in order to compute the follower’s best reactions for every

possible capacity determined by the leader’s strategy. Eventually, this leads to an equivalent

single-level optimization formulation of pseudo-polynomial size. For our problem DNeg,

however, the number of possible scenarios generated by the leader grows exponentially with

the number of items, so that there is no obvious way of enumerating the follower’s best

reactions within a reasonable amount of time. Yet another bilevel knapsack variant occurs

in the work of Chen and Zhang (2011), where the leader’s decision only interferes with

the follower’s objective function, but not with the follower’s feasible region. This variant

is computationally much easier, since the leader wants to maximize the social welfare

(total profit) that leads to a coordination and alignment of the leader’s and the follower’s

interests.

Caprara et al. (2013) show that both the bilevel knapsack variant in Brotcorne et al.

(2013) and the interdiction problem DNeg are Σp
2-complete, and hence are located at the

second level of the polynomial hierarchy. This means that there is no way of formulating

these problems as a single-level integer program of polynomial size unless the polynomial

hierarchy collapses (a highly unlikely event which would cause a revolution in complexity

theory, quite comparable to the revolution that would be caused by a proof that P=NP).

See also Jeroslow (1985) for more information on the polynomial hierarchy. The bilevel

knapsack variant in Chen and Zhang (2011) is NP-complete, and hence can be formulated

as a standard integer program.

Results and organization of the paper. Section 2 provides a clean mathematical pro-

gramming formulation of problem DNeg, and reviews several well-known results on the 0–1

knapsack problem. In Section 3, we review the literature by discussing the applicability
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of existing algorithms to DNeg and describe a straightforward cutting plane approach to

solve the problem exactly. The ideas of this approach will be an ingredient of our algo-

rithm (the central contribution of this paper) that we state in Section 4. Section 5 presents

computational results on new randomly generated instances and on instances from the

literature. Section 6 concludes the paper and suggests future research directions.

2. Definitions and Preliminaries

An instance of the DNeg bilevel knapsack problem looks as follows. There is a set N =

{1,2, . . . , n} of items, and for every item i∈N there is a corresponding profit pi, a leader’s

cost vi, and a follower’s cost wi. Furthermore there is a budget Cu for the leader and a

budget Cl for the follower.

The corresponding Stackelberg game now works as follows. In the first round, the leader

chooses a subset of items that fit into his own knapsack; his goal is to minimize the profit

of the follower. In the second round, the follower chooses a subset of items that fit into his

own knapsack and that have not been used by the leader; his goal is to maximize his own

profit. This game can be modeled through the following bilevel formulation:

(DNeg) min
(x,y)∈Bn×Bn

n∑
i=1

piyi (1a)

subject to
n∑

i=1

vixi ≤Cu (1b)

where y1, . . . , yn solves the follower’s problem

max
y∈Bn

n∑
i=1

piyi s.t.

n∑
i=1

wiyi ≤Cl and (1c)

yi ≤ 1−xi for 1≤ i≤ n, (1d)

where Bn = {0,1}n, and x and y are the binary decision vectors controlled by the leader

and the follower, respectively. Without loss of generality, we will throughout make the

following three assumptions:

pi, vi, wi, Cu and Cl are positive integers (2)

vi <Cu and wi <Cl for all i (3)
n∑

i=1

vi >Cu and

n∑
i=1

wi >Cl. (4)
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As both agents work with the same objective function, the follower’s reply yields the worst

possible result for the leader. Hence there is no need to distinguish between the (usual)

optimistic and pessimistic cases; see for instance Colson et al. (2005).

In the rest of this section, we will recall some standard concepts on the classical knapsack

problem (KP), like critical items; we refer the reader to Martello and Toth (1990) for more

details.

Definition 1. Assume that the items are ordered by decreasing profit-to-weight ratios

as p1
w1
≥ p2

w2
≥ . . .≥ pn

wn
. The item c defined by

c= min{j :

j∑
i=1

wi >Cl},

is called the critical item of the knapsack instance.

The famous algorithm of Dantzig (1957) for the continuous relaxation of KP will play

an important role in our algorithm.

Theorem 1. Suppose that the items are ordered as in Definition 1. The optimal solution

y∗ of the continuous relaxation of problem (1c) is given by:

y∗i = 1 for i= 1, . . . , c− 1

y∗i = 0 for i= c+ 1, . . . , n

y∗c =

(
Cl−

c−1∑
i=1

wi

)
/wc.

The following result will be used to speed up our algorithm for the bilevel knapsack with

interdiction constraints.

Corollary 1. A trivial upper bound to the KP (1c) is given by:

U =

c−1∑
i=1

pi + y∗cpc.

3. On the exact solution of DNeg

In this section, we first review some algorithmic approaches from the literature and then

propose one straightforward scheme for problem DNeg. We start with algorithms for gen-

eral bilevel problems (Section 3.1) and for bilevel knapsack variants (Section 3.2). The
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general linear integer bilevel approaches only solve instances of small size, and the known

algorithms for bilevel knapsack variants are not applicable to our problem DNeg. A natural

cutting plane method to solve DNeg is presented in Section 3.3 by reformulating DNeg as

a single-level optimization problem.

3.1. General mixed integer bilevel algorithms

It is a well-known fact in mixed integer bilevel optimization research that the techniques

that successfully work for (classical, single-level) MIPs are not straightforward to generalize

to the bilevel case; see for instance DeNegre (2011) or Moore and Bard (1990). Indeed,

the Bilevel Linear Problem (BLP) obtained by relaxing the integrality restrictions does

not provide a lower bound on the original problem and even if the solution to the BLP

relaxation is integral, it is not necessarily optimal for the original problem (see DeNegre

(2011) for such examples). Therefore, computing lower bounds with good quality for MIBPs

is a big challenge. The usual approach is to solve the so-called high-point problem (see,

for instance Moore and Bard (1990)), which consists of dropping the follower’s optimality

condition and integrality constraints. This may provide good lower bounds for problems

in which the upper level objective function takes (in some way) into account the follower’s

reaction.

The standard general procedure for MIBPs (see Moore and Bard (1990)) is similar to

the branch-and-bound approaches for single-level optimization problems. In the root, the

high-point problem is solved; through branch-and-bound, fix variables in order to satisfy

the integrality requirement and solve in each promising node the corresponding bilevel

optimization problem; whenever an integer solution is computed, verify its bilevel feasibility

by solving the lower level problem for the fixed leader’s decision, to obtain an upper bound

(in minimization problems). Unfortunately, this approach has a big drawback: the initial

lower bound is in general considerably far from the optimum, so that the branch-and-

bound tree is likely to be extremely big. This is for instance pointed out in the survey by

Ben-Ayed (1993) on BLP problems.

The high-point problem H-DNeg for DNeg is defined as follows:

(H-DNeg) min
(x,y)∈[0,1]n×[0,1]n

n∑
i=1

piyi (5a)

subject to

n∑
i=1

vixi ≤Cu (5b)
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n∑
i=1

wiyi ≤Cl (5c)

yi ≤ 1−xi for 1≤ i≤ n. (5d)

It can be seen that this high-point problem has an optimal value of zero, and hence does

not provide an interesting lower bound for solving DNeg. Under this general approach, we

would continue by standard variable branching, and once a node has an integer solution

verify its bilevel feasibility (which amounts to solving a KP for the follower). A bilevel

feasible solution represents an upper bound and therefore helps to prune some nodes.

Unfortunately, for all possible leader’s decisions H-DNeg may have its optimum equal to

zero if y= 0 (thus, these nodes are not pruned), meaning that the method would enumerate

all the possible leader’s decisions. Note, that the number of feasible leader’s solutions is

Θ (2n), so that this all boils down to a standard brute force approach.

A Mixed-Integer Interdiction Problem (denoted as MIPINT) is defined as a min-max

problem where for each lower level variable there is a corresponding binary upper level

variable and a corresponding interdiction constraint, see for instance Israel (1999). DeNegre

(2011) considers MIPINTs, and constructs a branch-and-cut scheme by adding some new

ingredients to the basic method. (In DeNegre (2011) the disjunction is stated for the

general interdiction problems, but for sake of clarity, we explicitly show it here for the

DNeg problem.) Consider a node t where the optimal solution (xt, yt) is integer but not

bilevel feasible (that is, the best follower’s reaction to xt is ŷ with
∑n

i=1 piŷi >
∑n

i=1 piy
t
i).

In such a node t, the method either adds valid inequalities (cuts) such that xt becomes

infeasible (the so-called nogood cuts), or exploits the interdiction structure of the problems

by branching on the following disjunction: either the leader packs a set of items such that∑
i:xt

i=0 xi ≥ 1 or the leader packs a set of items such that
∑

i:xt
i=0 xi ≤ 0 and the follower has

a profit
∑n

i=1 piyi ≥
∑n

i=1 piŷi. Finally, some heuristics to improve the solutions obtained

through the branch-and-cut method are presented in DeNegre (2011), but these are not

successful in the context of DNeg because of the conflicting structure of leader and follower

goals.

In Section 4, we will build a method that uses this disjunction idea to solve DNeg, but

in a more sophisticated and efficient way.
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3.2. Knapsack bilevel algorithms

Brotcorne et al. (2013) consider a bilevel knapsack problem in which the decision of the

leader only modifies the budget available for the follower. The algorithm in Brotcorne et al.

(2013) may be summarized as follows: compute an upper bound for the follower’s budget,

by ignoring the resources consumed by the leader; solve the follower’s 0–1 KP considering

this budget bound through the standard knapsack dynamic programming approach (see

for instance Martello et al. (1999)). More precisely, the best follower’s reactions for all

his possible budgets from 0 to the bound are computed. (Note that in this case, different

decisions of the leader may yield the same subproblem for the follower.) With this, the

authors are able to define the follower’s best reaction set for any fixed leader’s decision

through linear constraints, reducing the problem to single-level.

If we mimic this procedure for problem DNeg, we would have to consider all the leader’s

interdictions that imply different reactions of the follower. However, in this case for every

possible decision of the leader, the follower’s KP is modified in terms of the (not interdicted)

items available and not in terms of his budget. Since different decisions of the leader always

yield different problems for the follower, the number of lower level subproblems for the

follower grows with the number 2n of item subsets and hence is exponential. In short, this

is the reason why the methods developed in Brotcorne et al. (2013) cannot be applied to

DNeg.

3.3. Cutting plane approach

Problem DNeg is equivalent to the following single-level linear optimization problem:

(BKP ) min
(w,x)∈R×Bn

w (6a)

subject to

n∑
i=1

vixi ≤Cu (6b)

w≥
n∑

i=1

yipi (1−xi) ∀y ∈ S (6c)

Here S is the collection of all feasible packings for the follower. As the size of S is O (2n), the

use of the cutting plane approach is the standard method to apply; see Algorithm 3.3.1.

Note that this type of single-level reformulation works for all MIPINT problems where

the lower level optimization problem can be replaced by a set of constraints explicitly

taking into account all possible reactions to the leader’s strategy. Note furthermore that

this reformulation is exponential in size.
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Algorithm 3.3.1 CP- Cutting Plane Approach.

1: k= 1

2: Initialize S (e.g., with the best follower’s reaction when there is no interdiction)

3: Let
(
wk, xk

)
be an optimal solution to BKP with S

4: y(xk) =BestReaction
(
xk
)

5: while wk <

n∑
i=1

piyi(x
k) do

6: k= k+ 1

7: Add constraint w≥
n∑

i=1

yi(x
k)pi (1−xi) to BKP // update S

8: Solve BKP and let
(
wk, xk

)
be the optimal solution

9: y(xk) =BestReaction
(
xk
)

10: end while

11: return w,
(
xk, y(xk)

)

4. CCLW Algorithm: a novel scheme

Motivated by the previous section, we propose a new approach to tackle DNeg. The algo-

rithm initialization is studied in Section 4.1 by computing an upper bound on DNeg.

Section 4.2 constructs a näıve iterative method for solving DNeg exactly. Then, this basic

scheme is enhanced through a sequence of improvements in the following sections. One

such improvements takes into account the ideas of the cutting plane approach presented

in Section 3.3, thus mixing the advantages of this method with ours.

4.1. An Upper bound for DNeg

The unsuccessful search for lower bounds in bilevel optimization motivated us to try a

completely different approach, which first computes an upper bound. In practice, this

approach is very effective and enabled us to quickly find an optimal solution in almost all

our experiments.

The following theorem formulates the first upper bound for DNeg that our algorithm

computes. The underlying idea is simple: the set of follower’s feasible strategies is extended

(through the relaxation of his variables) and, consequently, the follower’s profit is greater

than or equal to the one obtained with the original set of strategies. This provides an upper

bound to DNeg.
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Theorem 2. The optimal solution value of the following continuous bilevel formulation

provides an upper bound on the optimal solution value of problem DNeg.

(UB) min
(x,y)∈Bn×[0,1]n

n∑
i=1

piyi (7a)

subject to
n∑

i=1

vixi ≤Cu (7b)

where y1, . . . , yn solves the follower’s problem

max
y∈[0,1]n

n∑
i=1

piyi s.t.

n∑
i=1

wiyi ≤Cl and (7c)

yi ≤ 1−xi for 1≤ i≤ n (7d)

Proof. The follower’s problem (7c)-(7d) is a relaxation of problem (1c)-(1d) since the

binary requirement on the y variables is removed. Therefore, given any fixed leader’s inter-

diction x, the optimal value of problem (7c)-(7d) is greater or equal than the optimal value

of problem (1c)-(1d) and thus, provides an upper bound.

To complete the proof note that problems DNeg and UB both are always bilevel feasible,

which implies that UB always provides an upper bound to DNeg. �

From the last proof, it is easy to see that an analogous result holds for any (general)

MIPINT. Our motivation for introducing UB is that it can be written as a single-level MIP,

thus leading to the possibility of applying effective solution methods as well as reliable

software tools.

Theorem 3. The bilevel problem UB is equivalent to the following:

(MIP 1) min
x∈Bn,z∈[0,∞)n+1,u∈[0,∞)n

z0Cl +
n∑

i=1

ui (8a)

subject to
n∑

i=1

vixi ≤Cu (8b)

ui ≥ 0 for 1≤ i≤ n (8c)

ui ≥ zi− pixi for 1≤ i≤ n (8d)

wiz0 + zi ≥ pi for 1≤ i≤ n. (8e)
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Proof. The two main ingredients of our proof are the use of duality theory and the

convex relaxation by McCormick (1976).

The follower’s optimization problem (relaxed KP) is feasible and bounded for any x.

Hence, it always has an optimal solution. In this way, according to the strong duality

principle, we can write the single-level formulation equivalent to UB in the following way:

min
x∈Bn,z∈[0,∞)n+1,y∈[0,1]n

n∑
i=1

piyi (9a)

subject to
n∑

i=1

vixi ≤Cu (9b)

z0Cl +
n∑

i=1

(1−xi)zi =
n∑

i=1

piyi (9c)

n∑
i=1

wiyi ≤Cl (9d)

xi + yi ≤ 1 for 1≤ i≤ n (9e)

wiz0 + zi ≥ pi for 1≤ i≤ n (9f)

where the new variables zi are the dual variables of the follower’s relaxed KP.

Note that we can further simplify the above formulation by removing the decision vector

y:

min
x∈Bn,z∈[0,∞)n+1

z0Cl +
n∑

i=1

(1−xi)zi (10a)

subject to
n∑

i=1

vixi ≤Cu (10b)

wiz0 + zi ≥ pi for 1≤ i≤ n (10c)

Let us clarify this equivalence. Observe that any feasible solution (x∗, z∗, y∗) of (9) implies

that (x∗, z∗) is feasible for (10) and thus, (10) provides a lower bound to (9). On the

other hand, given any optimal solution (x∗, z∗) of (10), we may consider x∗ fixed in the

follower’s relaxed KP and obtain an associated primal optimal solution y∗. This ensures

that (x∗, z∗, y∗) is feasible to (9) and, in particular, optimal.

Finally, the bilinear terms xizi are linearized by adding the extra variables ui = (1−xi)zi
and the associated McCormick constraints (8c) and (8d). �
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Before showing how the solution ofMIP 1 will be used to obtain an algorithm for problem

DNeg, it is worth noting that UB can be alternatively written as

min
(x,y)∈Bn×[0,1]n

n∑
i=1

piyi (1−xi)

subject to
n∑

i=1

vixi ≤Cu

where y1, . . . , yn solves the follower’s problem

max
y∈[0,1]n

n∑
i=1

piyi (1−xi) s.t.

n∑
i=1

wiyi ≤Cl.

It is easy to verify that this is a reformulation of UB (same optimal solution value) and,

that for any fixed vector x we can use strong duality to obtain an equivalent single-

level optimization problem. Indeed, for any fixed vector x, the interdiction constraints are

embedded into the objective function, by setting to 0 the profit of all interdicted items.

The advantage of this reformulation is that no variables of the leader do appear in the

right hand side of the follower’s constraints, which implies that there are no bilinear terms

in its dual. However, in practice the reformulation does not have a significant impact on

the computation times.

So far, we have built a Mixed-Integer Linear Problem MIP 1 to compute an upper bound

on DNeg. The first step of our algorithm is to solve MIP 1 to optimality and to obtain the

leader’s decision vector x1. This then is followed by solving the following KP, which we

denote as follower’s best reaction to x1:

(KP 1) max
y∈Bn

n∑
i=1

piyi (12a)

subject to
n∑

i=1

wiyi ≤Cl (12b)

yi ≤ 1−x1i for 1≤ i≤ n, (12c)

Let y (x1) be an optimal solution of KP 1. Then
∑n

i=1 piyi (x
1) is our new upper bound.

Figure 1 provides a pictorial illustration of the relationships between these solutions.

We will see in Section 5.1 that on our randomly-generated test instances (x1, y (x1)) pro-

vides a very tight approximation of the optimal solution value to DNeg. Before continuing,

we note that if in the optimal solution of UB the follower’s vector y is binary, then that

solution is bilevel feasible but not necessarily optimal for DNeg.
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0
follower’s

profitn∑
i=1

piy
1
i

n∑
i=1

piyi
(
x1
)n∑

i=1

piy
∗
i

Figure 1 Illustration of the upper bounds to DNeg, where (x∗, y∗) is an optimal solution to DNeg,
(
x1, y1

)
is an

optimal solution to MIP 1 and
(
x1, y

(
x1

))
is the corresponding bilevel feasible solution.

Example 1. Consider an instance with 3 items where

p= (4,3,3) , v= (2,1,1) , w= (4,3,2) , Cu = 2 and Cl = 4.

It is easy to check that the optimal solution for UB is binary with x = (0,1,1) and y =

(1,0,0) with value 4. However, the optimal solution for DNeg has x = (1,0,0) and y =

(0,1,0) (or y = (0,0,1)) with value 3. Indeed, when x= (1,0,0) and the follower has the

possibility of packing fractions of items, then the follower’s reply is y=
(
0, 2

3
,1
)

with value

5.

4.2. Iterative method

The basic scheme to solve problem DNeg is given by Algorithm 4.2.1. It consists of itera-

tively computing upper bounds by solving, at each iteration k, the MIP proposed in the

previous section amended by a nogood constraint (NG0) that forbids the leader to repeat

his last strategy xk−1 (see for instance Balas and Jeroslow (1972) or D’Ambrosio et al.

(2010)): ∑
i:xk

i =1

(1−xi) +
∑

i:xk
i =0

xi ≥ 1. (13)

In this way, essentially the leader’s strategies are enumerated until the last MIP is proven

infeasible.

In Algorithm 4.2.1, function BestReaction receives as input the leader’s decision xk from

the optimal solution of a MIP k, and computes a rational reaction y
(
xk
)

for the follower,

that is, the KP optimum to interdiction xk. It is easy to see that Algorithm 4.2.1 finds

an optimal solution to DNeg. However, it is a very inefficient process and a number of

improvements can be applied to make it more effective both in theory and in practice. More

precisely, we will propose several improvements that lead to an enhanced and substantially

faster version of Algorithm 4.2.1; this final version is discussed in Section 4.
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Algorithm 4.2.1 Basic Iterative Method.

1: k= 1; BEST = +∞;

2: Build MIP k

3: while MIP k is feasible do

4: xk = arg min{MIP k}

5: y
(
xk
)

=BestReaction
(
xk
)

// solves the follower’s KP by fixing xk

6: if
∑n

i=1 piyi
(
xk
)
<BEST then

7: BEST =
∑n

i=1 piyi
(
xk
)
;

8:
(
xBEST , yBEST

)
=
(
xk, y

(
xk
))

9: end if

10: MIP k+1← add (NG0) in xk to MIP k

∑
i:xk

i =1

(1−xi) +
∑

i:xk
i =0

xi ≥ 1

11: k= k+ 1

12: end while

13: OPT =BEST ;
(
xOPT , yOPT

)
=
(
xBEST , yBEST

)
;

14: return OPT,
(
xOPT , yOPT

)
Throughout the paper we use the notation of Algorithm 4.2.1. The leader interdiction

computed in iteration k is denoted by xk, the follower’s optimal solution to xk is denoted by

y(xk), BEST and (xBEST , yBEST ) are the minimum value and associated solution among

all bilevel feasible values computed up to iteration k and OPT and (xOPT , yOPT ) are DNeg

optimal value and associated solution. Denote by yk the follower’s optimal relaxed solution

to xk which, although not used from the algorithmic point of view, theoretically, it will

play an important role.

4.3. Strengthening the Nogood Constraints

Let us first concentrate on strengthening the nogood constraints.

Definition 2. A feasible strategy xk for the leader is maximal, if @j ∈ {i : xki = 0} such

that
∑n

i=1 vix
k
i + vj ≤Cu.

A strategy for the leader is maximal, if he does not have enough budget left to pick more

items. A maximal strategy dominates an associated non-maximal strategy, since it leaves
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the follower with a smaller set of options: at least one further item cannot be taken by

the follower due to the interdiction constraints. Algorithm 4.3.1 takes a not necessarily

maximal strategy and turns it into a maximal one.

Algorithm 4.3.1 MakeMaximal - complete xk by adding the available items.

1: Residual=Cu−
∑n

i=1 vix
k
i

2: i= 1

3: while i≤ n and Residual > 0 do

4: if xki == 0 and Residual− vi ≥ 0 then

5: Residual=Residual− vi
6: xki = 1

7: end if

8: i= i+ 1

9: end while

10: return xk

Once a strategy xk for the leader and its corresponding bilevel solution
(
xk, y

(
xk
))

have

been evaluated, there is no need to keep xk feasible, because we want to concentrate in

new bilevel feasible solutions potentially decreasing the follower’s profit.

Definition 3. If xk is a maximal strategy for the leader, then
∑

i:xk
i =0 xi ≥ 1 is called a

strong maximal constraint (NG1).

It is easy to see that a NG1 constraint dominates a NG0 one when both are associated

with the same leader interdiction.

The strong maximal constraints can be strengthened further in the following way. Let(
xk, y

(
xk
))

denote a bilevel feasible solution for DNeg. There is no point in generating new

solutions for the leader where the set of items picked by the follower in y
(
xk
)

is available,

as the follower would have a profit at least as high as the previous one.

Definition 4. If xk is a maximal strategy for the leader, then
∑

i:yi(xk)=1 xi ≥ 1 is called

a nogood constraint for the follower (NG2).

It is easy to see that given a maximal strategy for the leader, the corresponding strong

maximal constraint is dominated by the associated nogood constraint for the follower, as

yi
(
xk
)

= 1 implies xki = 0. If
(
xk, y(xk)

)
is not the optimal solution of DNeg then, under
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the strategy y(xk), the follower is packing an item interdicted in any optimal solution. This

establishes the validity of the nogood constraints for the follower.

Thus, at each iteration k of the algorithm in which the (standard) nogood cuts are

replaced by the follower’s nogood cuts, either an optimal solution has already been obtained

or any optimal strategy for the leader satisfies all the follower’s nogood constraints already

added. This shows the correctness of the substitution of (standard) nogood with follower’s

nogood constraints.

A further strengthening of the follower’s nogood constraints can be achieved by paying

close attention to the cutting plane approach described in Section 3.3.

Theorem 4. Consider an iteration k of Algorithm 4.2.1. If BEST is not the optimal

value of problem DNeg, then there is an optimal admissible interdiction x∗ for the leader

such that

n∑
i=1

piyi (1−x∗i )≤BEST − 1 ∀y ∈Bn such that
n∑

i=1

wiyi ≤Cl. (14)

Proof. Let (x∗, y∗) be an optimal solution of DNeg. Then

n∑
i=1

yipi (1−x∗i )≤
n∑

i=1

piy
∗
i ∀y :

n∑
i=1

wiyi ≤Cl.

Moreover, if BEST at iteration k is not an optimal value of DNeg, then
∑n

i=1 piy
∗
i ≤

BEST − 1. �

With the help of Theorem 4, it is easy to derive the following new type of valid con-

straints, to be introduced in each iteration k to strengthen MIP k:

(NG3) cutting plane constraint
n∑

i=1

yi
(
xk
)
pi (1−xi)≤BEST − 1. (15)

In this way, whenever BEST is updated in the iterative procedure, also the right-hand-

sides of the previous cutting plane constraints are updated.

It is easy to show that a cutting plane constraint dominates a follower’s nogood con-

straint when associated with the same leader interdiction. Indeed, after solving MIP k in

an arbitrary iteration k, a best reaction of the follower to xk is computed and then it
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is checked whether this leads to a better solution for DNeg. At that point, the following

inequality holds:
n∑

i=1

piyi
(
xk
)
≥BEST.

Hence, in order to satisfy the associated cutting plane constraint

n∑
i=1

yi
(
xk
)
pi (1−xi)≤BEST − 1,

the leader must interdict at least one item packed with the strategy y
(
xk
)
.

Next, the general dominance of the cutting plane constraints over the remaining pre-

sented ones is established.

Proposition 1. Consider Algorithm 4.2.1 amended by making the leader’s strategy

maximal (after step 4) (call it Algorithm0) and replacing the nogood constraint (step 10)

by

- Algorithm1: the strong maximal constraint;

- Algorithm2: the follower’s nogood constraint;

- Algorithm3: the cutting plane constraint.

Assume that if in an iteration k, Algorithm2 and Algorithm3 have a common optimal

interdiction xk, then both select xk and the same associated best reaction y(xk). Then, for

i= 1,2,3, Algorithmi returns the optimal solution after a number of iterations less or equal

than Algorithmi−1.

Proof. For Algorithmi denote as MIP k,i and F k,i the optimization problem MIP k and

the associated feasible region for the leader maximal interdictions at iteration k. Define

F k,i as equal to the empty set if Algorithmi had returned the optimal solution in a number

of iterations less or equal to k. Denote xk,i as the leader optimal solution to MIP k,i.

For each Algorithmi note that the purpose of each iteration k is to cut off non optimal

leader’s maximal interdictions, therefore it is enough to concentrate on the set F k,i. In other

words, it is sufficient to show that F k,i ⊆ F k,i−1 holds for any iteration k since it directly

implies that Algorithmi enumerates a less or equal number of bilevel feasible solutions

in comparison with Algorithmi. We will prove that this result holds for i = 1,2 through

induction in k.

In the first iteration, k= 1, all algorithms solve the same MIP 1 and thus, F 1,2 = F 1,1 =

F 1,0.
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Next, assume that Fm,i ⊆ Fm,i−1 holds for m= k. The induction hypothesis implies that

the optimal solution value of MIPm,i−1 is a lower bound to MIPm,i.

Recall that we have argued before that for the same leader interdiction: the nogood

constraint is dominated by the strong maximal constraint; the strong maximal constraint

is dominated by the follower’s nogood constraint.

By contradiction, suppose that Fm+1,i 6⊆ Fm+1,i−1. This implies the existence of x ∈

Fm+1,i such that x /∈ Fm+1,i−1. Since Fm+1,i ⊂ Fm,i ⊆ Fm,i−1, then x ∈ Fm,i−1. Therefore,

x only violates the additional constraint of Fm+1,i−1 associated with Fm,i−1. This is only

possible if x is the optimal solution of MIPm,i−1. Because MIPm,i−1 provides a lower

bound to MIPm,i and x∈ Fm,i, x is the optimal solution of MIPm,i. However, this means

that x will be cut off from Fm,i and thus x /∈ Fm+1,i, leading to a contradiction.

It remains to prove that Algorithm3 finishes in a number of iterations less or equal than

Algorithm2. To this end the following assumption is necessary.

As mentioned before, in the first iteration MIP 1,2 =MIP 1,3 and thus, by the proposi-

tion assumption, y(x1,2) = y(x1,3). This fact, implies that MIP 2,2 =MIP 2,3 since BEST =∑n
i=1 piyi(x

1,2) means that the NG3 constraint is equivalent to NG2 with respect to

y(x1,2). Moreover, y(x2,2) = y(x3,2) and, consequently, the associated NG3 constraint dom-

inates NG2. We conclude that F 3,3 ⊆ F 3,2. At this point, Algorithm3 has advantage over

Algorithm2 because the set of interdictions F 3,3 is at most as large as F 2,3. Note that if

there is an iteration k ≥ 3 such that y(xk,3) 6= y(xk,2) then, Algorithm3 is reducing the set

of feasible interdictions through NG3 associated with y(xk,3) and Algorithm3 might end up

computing y(xk,2) latter on in an iteration m>k which shows that Algorithm3 progresses

more or as fast as Algorithm2.

�

We conclude this section with two observations. First, the improvements described above

are purely based on the fact that we are dealing with an interdiction problem. Hence,

any type of interdiction problem for which we can prove an adaptation of Theorem 3 can

be attacked by the basic iterative method with cutting plane constraints. Secondly, all

constraints described so far depend solely on the decision variables of the leader. Therefore,

the statement of Theorem 3 also applies to all improvements, and each MIP k is equivalent

to a bilevel optimization problem in which the follower solves a relaxed knapsack problem.
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4.4. Stopping Criteria

Our next goal is to add a condition for the whole algorithm to stop. Let pmax = max
i=1,...,n

pi.

Proposition 2. At an iteration k of the Basic Iterative Method, BEST cannot be

decreased in the current and forthcoming iterations if

n∑
i=1

piy
BEST
i + pmax ≤

n∑
i=1

piy
k
i .

Proof. Let OPT be the optimal value to DNeg and assume that the condition in the

proposition holds. For any leader’s optimal solution x∗, Corollary 1 implies that the optimal

value of the follower’s continuous knapsack with interdiction x∗ lies within the interval

[OPT,OPT + pmax] . (16)

Because yBEST is the follower’s strategy corresponding to the best solution computed up

to iteration k, obviously,

n∑
i=1

piy
BEST
i + pmax ≥OPT + pmax.

Then
∑n

i=1 piy
k
i is not in the range (16), which implies that xk is not an optimal inter-

diction. Furthermore, since the optimal value of the MIP s is monotonically increasing

with the algorithm iterations, none of the upcoming iterations returns a leader’s optimal

solution. �

In other words, the quantity pmax is an upper bound on the amount by which the

continuous solution value of any follower’s reaction can decrease. If
∑n

i=1 piy
k
i − pmax is

already bigger than the current incumbent solution value, then no further improvement is

possible since (of course)
∑n

i=1 piy
k+1
i ≥

∑n
i=1 piy

k
i .

4.5. Saving some Knapsack Computations

In an iteration k of our algorithm, the leader’s interdiction just built may lead to an

improvement if the following necessary condition holds. The following observation follows

from Corollary 1.

Proposition 3. At an iteration k, the pair
(
xk, y

(
xk
))

does not decrease BEST if

n∑
i=1

piy
k
i − pckykck ≥

n∑
i=1

piy
BEST
i ,

where ck is the critical item for the follower’s continuous knapsack with interdiction xk.
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Thus, whenever the above condition is violated, we do not need to compute the best

reaction by solving the associated 0–1 knapsack. Our next goal is to embed the condition

of Proposition 3 as a constraint inside MIP k. For that purpose, the following lemma and

theorem will be crucial. Lemma 1 follows from Corollary 1.

Lemma 1. Let xk be a leader’s interdiction. Then

n∑
i=1

piy
k−

n∑
i=1

piyi
(
xk
)
≤ pck .

Note that pck provides yet another upper bound on the value of the improvement due to

BestReaction. The following theorem makes the upper bound independent of the critical

item computation. Let wmax = max
i=1,...,n

wi.

Theorem 5. Let xk be a leader’s interdiction. Then, for the corresponding follower’s

relaxed rational reaction to xk there exists a dual solution that satisfies

zk0wmax ≥
n∑

i=1

piy
k
i −

n∑
i=1

piyi
(
xk
)
.

Proof. By Theorem 1, there exists a solution in which at most one entry of yk is not

binary in the relaxed rational reaction to xk; furthermore, if such an entry does exist then

its value equals yk
ck

. By strong duality, there is a corresponding optimal dual solution with

zk
ck

= 0. The ck dual constraint (9f) implies

zk0wck ≥ pck⇒ zk0wmax ≥ zk0wck ≥ pck .

By using Lemma 1, we get

zk0wmax ≥ zk0wck ≥ pck ≥
n∑

i=1

piy
k−

n∑
i=1

piyi
(
xk
)
.

Otherwise, if all follower’s variables are binary

n∑
i=1

piy
k−

n∑
i=1

piyi
(
xk
)

= 0≤ zk0wmax

because zk0 ≥ 0. �

In order to use the upper bound derived above, the following proposition establishes yet

another necessary condition which is similar in spirit to Proposition 3.
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Proposition 4. At an iteration k, BEST will not decrease if

n∑
i=1

pibyki c>BEST − 1.

In other words, if we round down the relaxed rational reaction of the follower to the

leader strategy xk, then the resulting feasible solution for the follower has a profit strictly

smaller than the best bilevel feasible bound known. Because of Theorem 5

n∑
i=1

piy
k−

n∑
i=1

piyi
(
xk
)
≤

n∑
i=1

piy
k−

n∑
i=1

pibyki c ≤ pck ≤ zk0wmax,

and it is easy to see that also the following holds:

zk0Cl +
n∑

i=1

uk
i︷ ︸︸ ︷(

1−xki
)
zki −zk0wmax ≤BEST − 1. (17)

The following theorem turns condition (17) into an inequality that can be added to MIP k.

Theorem 6. In the end of iteration k, the strong cut

z0Cl +
n∑

i=1

ui− z0wmax ≤BEST − 1,

is valid for MIP k+1.

Proof. The dual of the follower’s relaxed problem with the introduction of the strong

cut (and replacing ui) is

(Dual) minz≥0 z0Cl +
n∑

i=1

(
1−xki

)
zi (18a)

subject to wiz0 + zi ≥ pi for 1≤ i≤ n. (18b)

z0Cl +
∑n

i=1

(
1−xki

)
zi− z0wmax ≤BEST − 1 (18c)

and the follower’s relaxed problem is

(Primal) maxy≥0

n∑
i=1

yipi− (BEST − 1)yn+1 (19a)

subject to
∑n

i=1 yiwi− (Cl−wmax)yn+1 ≤Cl (19b)

yi−
(
1−xki

)
yn+1 ≤ 1−xki for 1≤ i≤ n. (19c)
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Essentially, we are dealing with a new item n+ 1 whose profit −(BEST −1) and weight

−(Cl−wmax) are both negative. We will show that no optimal solution will use this new

item: then ykn+1 = 0 holds, and the above primal problem collapses to the previous con-

tinuous KP for which the critical item exists. Hence, let us first ignore the new item and

solve the continuous knapsack as before. Let c be the critical item, and let S be the set of

(indices of) items that are fully taken. Then, clearly∑
i∈S pi∑
i∈S wi

≥ pc
wc

.

Moreover, by Proposition 4 we may assume
∑

i∈S pi ≤BEST − 1. Finally
∑

i∈S wi ≥Cl−

wmax, as otherwise c would not be the critical item. Altogether, this yields

BEST − 1

Cl−wmax

≥
∑

i∈S pi∑
i∈S wi

≥ pc
wc

.

As the profit-to-weight ratio of the new item is at least as large as the profit-to-weight

ratio of the critical item and as profit and weight of the new item are negative, the new

item will not be used in an optimal solution. �

In the next section we will show that this cut is crucial in practice, as it significantly

reduces the number of leader interdictions in the enumeration. This is the reason why the

iterative approach is currently superior to the cutting plane (CP) approach. It is relatively

easy to embed additional conditions to reduce the search space of the iterative approach,

whereas additional cutting planes to enhance CP seem difficult to be developed.

4.6. Pre-processing

For the approach developed so far, it is crucial to compute good upper bounds to the profit

and weight of the items that may act as critical item. We describe a pre-processing routine

that tightens these bounds and hence leads to a stronger approach.

Recall that in this context we are dealing with the relaxed knapsack problem for the

follower. Suppose that the follower could pack all the items from 1 to c−1 as illustrated in

Figure 2. Since the follower has incentive to fully pack the available items from 1 to c− 1,

these items can never be critical. Another interesting observation is that some of the less

valuable items for the follower are never packed by him and hence are not critical: this

occurs because the follower uses all his budget on the most valuable available items. All in
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Figure 2 Illustration of the follower’s preferences when his knapsack is relaxed: items from 1 to c− 1 and from

t+ 1 to n are never critical.

all, we are interested in computing a bound on the maximum follower’s weight interdicted

by the leader. This trivially can be achieved by solving the following relaxed KP:

xint = arg maxx∈[0,1]n

n∑
i=1

wixi (20a)

subject to
n∑

i=1

vixi ≤Cu. (20b)

Therefore, the leader interdicts at most b
∑n

i=1wix
int
i c of the total available weight of the

follower. It is easy to see from Figure 2 that the items from t+ 1 to n are never critical. In

conclusion, with t= min{j :Cl + b
∑n

i=1wix
int
i c ≤

∑j
i=1wi} we have

pmax = max
i=c,...,t

pi and wmax = max
i=c,...,t

wi.

The running time of this pre-processing is O (n logn), and hence slightly more expensive

than the simple O (n) procedure by computing pmax and wmax by taking all n items.

We could improve these bounds even further by adding so-called sensitive intervals for

identifying the critical item candidates; see Brotcorne et al. (2013). However, this comes

at the cost of adding more constraints to our MIPs. For that reason, we will apply this

improvement only to the very hard instances as explained in the last paragraphs of Section

5.1.

4.7. CCLW algorithm

Our main algorithm is summarized in Algorithm 4.7.1. For ease of reference, we call it the

Caprara-Carvalho-Lodi-Woeginger Algorithm (CCLW).
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Algorithm 4.7.1 CCLW

1: Compute pmax,wmax according to the Pre-processing

2: k= 1; BEST = +∞;

3: Build MIP k

4: while MIP k is feasible do

5: xk = arg min{MIP k}

6: if BEST + pmax ≤Optimal value of MIP k
(
=
∑n

i=1 piy
k
i

)
then

7: STOP;

8: else

9: xk =MakeMaximal
(
xk
)

10: y
(
xk
)

=BestReaction
(
xk
)

// solves the follower’s KP by fixing xk

11: if
∑n

i=1 piyi
(
xk
)
<BEST then

12: BEST =
∑n

i=1 piyi
(
xk
)
;

13:
(
xBEST , yBEST

)
=
(
xk, y

(
xk
))

14: MIP k+1← if k= 1 add strong cut

z0Cl +
n∑

i=1

ui− z0wmax ≤BEST − 1,

otherwise update the right hand side of the strong cut and NG3s with BEST -1.

15: end if

16: MIP k+1← add NG3 in y
(
xk
)

to the MIP k :∑
i:yi(xk)=1

pi (1−xi)≤BEST − 1

17: end if

18: k= k+ 1

19: end while

20: OPT =BEST ;
(
xOPT , yOPT

)
=
(
xBEST , yBEST

)
;

21: return OPT ,
(
xOPT , yOPT

)
5. Computational Results

In this section we computationally evaluate the algorithms from the preceding section in

two phases. First, in Section 5.1 we compare CCLW with CP. There we also discuss the
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importance of the main ingredients of algorithm CCLW, as well as the structural difficulty

of bilevel knapsack instances with respect to our algorithms. Secondly, in Section 5.2 we

compare CCLW with the results of DeNegre (2011) and DeNegre and Ralphs (2009).

All algorithms have been coded in Python 2.7.2, and each MIP has been solved with

Gurobi 5.5.0. The experiments were conducted on a Quad-Core Intel Xeon processor at

2.66 GHz and running under Mac OS X 10.8.4.

5.1. Method Comparisons

In this section CP and CCLW are compared against each other. Moreover, we discuss

the structural difficulty of bilevel knapsack instances with respect to the performance of

CCLW.

Generation of instances. For building the follower’s data, we have used the knapsack

generator described in Martello et al. (1999); the profits pi and weights wi are taken

with uncorrelated coefficients from the interval [0,100]. For each value n, 10 instances

were generated; these instances are available upon request from the second author (M.C.).

According to Martello et al. (1999), the budget Cl is set to d INS
11

∑n
i=1wie for the instance

number INS. The leader’s data, vi and Cu all were generated by using Python’s random

module; see Foundation (2012). In particular, vi and Cu were chosen uniformly at random

from [0,100] and [Cl− 10,Cl + 10], respectively.

Note that if the leader’s budget is significantly smaller than the follower’s budget, then

there are fewer feasible solutions for the leader and the instance would be easier. On the

other hand, if the leader’s budget is significantly bigger than the follower’s budget, then

all the items may be packed by leader and follower together and again the instance would

be easier. We will see below that CCLW is very efficient for these cases.

CP versus CCLW. In an attempt of asserting the importance of each ingredient of

algorithm CCLW, we performed some tests with its basic scheme (Algorithm 4.2.1). It

turned out that within one hour of CPU time, the Basic Scheme can only solve instances

with up to 15 items. Although this is comparable to the size of problems reported in

DeNegre (2011), DeNegre and Ralphs (2009) (discussed in detail in Section 5.2), both CP

and CCLW can go much higher in terms of number of items. For this reason, no detailed

results for Algorithm 4.2.1 are reported here.
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Table 1 reports the results of algorithms CP and CCLW. For each instance, the table

shows the number of items (n ∈ {35,40,45,50}), the instance identifier (INS), and the

optimal value (OPT). For algorithm CP, we further report the number of cutting plane

iterations (#It.s), and the CPU time in seconds (time), while for algorithm CCLW we

report the value of MIP 1 (ObjF), the number of iterations (#MIPs), the iteration in

which the optimal solution has been found (OPTIter), and the CPU time in seconds (time).

Finally, for algorithm CCLW we also report some data on the most expensive MIP solved,

namely the CPU time in seconds (WMIP time) and the number of nodes (WMIP nodes).

The algorithms had a limit of one hour to solve each instance. The entries in square brackets

mark the cases where algorithm CP reached the time limit, and in such cases we report

the lower bound value instead of the computing time.

The results in Table 1 clearly illustrate that algorithm CCLW is superior to algorithm

CP. In particular, CCLW usually finds an optimal solution within 2 iterations, which

shows that in practice we will find the optimum very early and the only challenge is to

prove optimality. Looking at the number of MIPs solved and at the computing times, we

observe that for any number of items algorithm CCLW is extremely powerful for instances

with INS ≥ 5. An optimal solution is computed by MIP 1 and optimality is proved by

MIP 2, except in three cases with INS = 5. Considering the way in which the instances are

generated, the next theorem shows that this behavior is structural.

Theorem 7. If for any leader’s maximal interdiction the follower can pack the remain-

ing items, then CCLW solves DNeg in two iterations.

Proof. Given that the follower is able to pack all the items left by any maximal interdic-

tion of the leader, we get that the follower’s budget constraint is not binding. In particular,

the solution of the follower’s relaxed problem to any leader’s maximal interdiction is binary.

Hence, the MIPs’ optimal values are bilevel feasible and the DNeg optimum is consequently

found in the first iteration of CCLW.

In the second iteration, MIP 2 uses the additional strong cut

z0Cl +

n∑
i=1

ui− z0wmax ≤BEST − 1.
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CP CCLW
WMIP WMIP

n INS OPT #It.s time ObjF #MIPs OPTiter time time nodes
35 1 279 16 0.34 288.07 14 2 0.79 0.05 14

2 469 40 1.59 474.00 33 1 2.57 0.09 171
3 448 253 55.61 455.88 203 1 40.39 0.50 1,635
4 370 397 495.50 374.56 11 1 1.48 0.14 363
5 467 918 [451] 472.00 5 2 0.72 0.19 660
6 268 155 71.43 268.00 2 1 0.06 0.03 0
7 207 298 144.46 207.00 2 1 0.06 0.03 0
8 41 11 0.25 41.00 2 1 0.04 0.01 0
9 80 25 0.97 80.00 2 1 0.03 0.00 0

10 31 8 0.12 31.00 2 1 0.03 0.00 0
40 1 314 24 0.66 326.12 21 1 1.06 0.05 60

2 472 77 6.67 483.78 67 2 7.50 0.19 805
3 637 338 324.61 644.78 244 1 162.80 2.52 4,521
4 388 530 1,900.03 396.56 3 1 0.34 0.13 165
5 461 653 [457] 466.18 2 1 0.22 0.15 66
6 399 534 2,111.85 399.00 2 1 0.09 0.04 0
7 150 254 83.59 150.00 2 1 0.05 0.02 0
8 71 33 1.73 71.00 2 1 0.04 0.01 0
9 179 404 137.16 179.00 2 1 0.08 0.03 4

10 0 2 0.03 0.00 2 1 0.03 0.00 0
45 1 427 45 1.81 434.60 33 1 2.37 0.08 74

2 633 97 13.03 642.36 74 1 11.64 0.25 903
3 548 845 [547] 558.69 387 1 344.01 2.86 10,638
4 611 461 [566] 624.84 108 1 38.90 1.01 8,611
5 629 462 [568] 630.00 15 7 3.42 0.30 1,179
6 398 639 3,300.76 398.00 2 1 0.07 0.03 0
7 225 141 60.43 225.00 2 1 0.04 0.01 0
8 157 221 60.88 157.00 2 1 0.05 0.01 0
9 53 23 0.83 53.00 2 1 0.05 0.01 0

10 110 11 0.40 110.00 2 1 0.05 0.01 0
50 1 502 58 2.86 514.12 39 1 4.55 0.12 114

2 788 733 1,529.16 798.0 695 2 1,520.56 7.29 6,352
3 631 467 [612] 638.47 212 1 105.59 2.03 7,909
4 612 310 [586] 621.04 17 1 3.64 0.32 954
5 764 287 [657] 768.88 3 1 0.60 0.27 369
6 303 385 1,046.85 303.00 2 1 0.05 0.01 0
7 310 617 2,037.01 310.00 2 1 0.09 0.04 0
8 63 49 2.79 63.00 2 1 0.05 0.01 0
9 234 717 564.97 234.00 2 1 0.10 0.05 3

10 15 5 0.09 15.00 2 1 0.04 0.01 0

Table 1 Comparison between CP and CCLW.

The dual variable z0 corresponds to the follower’s budget constraint (7c). As initially

noted, constraint (7c) is not binding which together with strong duality implies that the

associated optimal dual solution has z0 = 0. However, with z20 = 0 the strong cut imposes

n∑
i=1

u2i ≤BEST − 1.
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This means that the optimal value of MIP 2 is strictly better then the value obtained

in MIP 1. But this is absurd, as MIP 2 equals MIP 1 plus an additional constraint (the

strong cut). Consequently MIP 2 is infeasible, and CCLW stops in the second iteration.

�

As INS increases its value, larger budget capacities are associated with the leader and

the follower. Therefore, it is likely that these instances fall into the condition of Theorem 7.

Strength of the CCLW Ingredients. In order to evaluate the effectiveness of CCLW

main algorithmic ingredients, we have performed two additional sets of experiments. First,

we considered what happens to the basic enumerative scheme (Algorithm 4.2.1) if it is

strengthened by the nogood cuts described in Section 4.3. The results are reported in

Table 2 for instances with n∈ {30,35}.

WMIP WMIP
n INS OPT ObjF #MIPs OPTiter time time nodes
30 1 272 282.80 13 2 0.27 0.02 9

2 410 423.29 34 1 0.95 0.04 223
3 502 513.63 110 1 10.56 0.28 1,036
4 383 385.00 151 2 36.65 1.06 7,094
5 308 308.00 301 1 121.27 1.85 7,730
6 223 223.00 239 1 44.22 0.81 5,580
7 146 146.00 121 1 8.32 0.15 1,072
8 88 88.00 70 1 2.03 0.05 281
9 113 113.00 83 1 2.71 0.07 674

10 82 82.00 73 1 1.99 0.04 276
35 1 279 288.07 19 2 0.72 0.04 16

2 469 474.00 53 1 3.20 0.08 524
3 448 455.88 303 1 102.23 1.31 2,673
4 370 374.56 474 1 1,203.90 19.49 74,265
5 467 472.00 1,152 2 tl 9.30 26,586
6 268 268.00 234 1 222.66 5.78 35,510
7 207 207.00 471 1 321.08 3.97 28,962
8 41 41.00 42 1 1.24 0.04 49
9 80 80.00 98 1 5.28 0.09 285

10 31 31.00 33 1 0.85 0.03 9

Table 2 Algorithm 4.2.1 with strengthened nogood constraints.

The results in Table 2 show that this (simple) strengthening already allows us to double

the size of the instances that the basic scheme can settle (recall the discussion at the

beginning of the previous section). More precisely, all instances with 30 items can be solved

to optimality in rather short computing times, whereas size 35 becomes troublesome.
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If we compare these results to the corresponding results in Table 1, we note that the

number of MIPs needed to prove optimality is much bigger, in particular for the cases INS≥
3. This behavior becomes dramatic for INS≥ 5 where CCLW generally proves optimality

in 2 iterations (as suggested by Theorem 7), whereas the improved version of the basic

scheme still needs a large number of iterations. The difference in behavior seems to be

mainly caused by the strong cut described in Section 4.5.

This observation is also confirmed by our second set of experiments, in which we removed

the strong cut from algorithm CCLW. The corresponding results are reported in Table 3.

Indeed, the results in Table 3 illustrate that without the strong cut, the number of MIPs

required by CCLW blows up significantly. The algorithm is only slightly better (because

of the stopping criteria, see Section 4.4) than the basic scheme with strengthened nogood

cuts (see Table 2).

WMIP WMIP
n INS OPT ObjF #MIPs OPTiter time time nodes
35 1 279 288.07 14 2 0.89 0.04 16

2 469 474.00 33 1 1.76 0.05 207
3 448 455.88 218 1 43.27 0.50 1,443
4 370 374.56 277 1 216.96 2.40 14,651
5 467 472.00 1,152 2 tl 9.26 26,586
6 268 268.00 59 1 3.76 0.10 756
7 207 207.00 202 1 25.86 0.27 1,667
8 41 41.00 21 1 0.62 0.03 49
9 80 80.00 30 1 1.06 0.04 207

10 31 31.00 2 1 0.03 0.00 0

Table 3 CCLW without the strong cut.

Solving Large(r) Instances. What are the computational limits of Algorithm CCLW? How

does it scale to larger values of n? Table 4 provides some partial answers to these questions

by displaying the results for CCLW on instances with 55 items. Again, we see that MIP 1

is very effective in computing the leader’s strategy, as in most of the cases we obtain

the optimal DNeg solution already at iteration 1. In general, the machinery discussed

in the previous sections seems to be able to keep the enumeration of leader strategies

under control: CCLW succeeds in solving all but two instances. The two exceptions are

the instances with INS∈ {3,4}, on which CCLW exceeded its time limit of 1 hour of CPU

time (the ‘tl’ entries in the table).

For the most challenging instances, we implemented a pre-processing step based on

the idea of computing sensitive intervals (as done in Brotcorne et al. (2013)). Ideally, in
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CCLW
WMIP WMIP

n INS OPT ObjF #MIPs OPTiter time time nodes
55 1 480 489.21 103 2 18.57 0.37 1,090

2 702 706.15 419 1 443.53 4.33 11,097
3 778 783.67 926 1 tl 8.85 21,491
4 889 899.34 787 1 tl 14.67 41,813
5 726 726.00 2 1 0.24 0.13 158
6 462 462.00 2 1 0.09 0.04 0
7 370 370.00 2 1 0.08 0.03 0
8 387 387.00 2 1 0.10 0.04 0
9 104 104.00 2 1 0.06 0.01 0

10 178 178.00 2 1 0.06 0.02 0

Table 4 CCLW computational results on instances with n = 55.

each iteration k of CCLW we would like to know the profit pck of the critical item in the

optimal solution for the follower’s continuous knapsack. (Recall Theorem 5 which shows

that zk0wmax is an upper bound on pck in each iteration k.) To reach this goal, we compute

sensitive intervals with the function

φ(Z+
0 −→Z+

0 ) :
c∑

i=1

wixi −→ max
i=c′,...,t

pi, (21)

where c′ = min{j :
∑c

i=1wixi +Cl ≤
∑j

i=1wi}. In this way, instance INS = 4 in Table 4 was

solved within the time limit. The computation took 2,796.20 CPU seconds (roughly half

an hour), and the speed-up was mainly due to a strong reduction in the number of MIPs

(693 versus at least 787). In principle, sensitivity interval pre-processing could achieve the

same kind of reduction in all considered instances. Note however that this pre-processing

adds 5 constraints and up to n binary variables to every MIP solved by CCLW. Hence,

there is a tradeoff between performing fewer iterations and working with larger MIPs, and

this is also the reason why we decided not to include sensitivity interval pre-processing in

the standard version of CCLW: it slightly slows down the computing time, whereas only

few additional hard instances can be solved with it. (Note that it does not manage to solve

the instance n= 55 and INS = 3 to optimality.)

All in all, we conclude that new algorithmic ideas will be needed to attack the hard

instances with INS≤ 4 for larger values of n. For instance for n= 100, computation times

of 1 hour CPU time (as we reached for the smaller instances in this section) seem currently

out of reach.
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5.2. Literature Comparison

DeNegre (2011) and DeNegre and Ralphs (2009) solved knapsack interdiction instances

by using the branch-and-cut procedure described in Section 3. These authors present two

branching strategies: maximum infeasibility and strong branching. We compare our method

CCLW against these two procedures in Table 5 (the instances have kindly been provided

by the authors of DeNegre (2011), DeNegre and Ralphs (2009)). The data in the table

averages over 20 instances, and the computing times for DeNegre and Ralphs (2009) refer

to an Intel Xeon 2.4GHz processor with 4GB of memory. A ‘-’ indicates that due to memory

requirements, no instance of the corresponding size was solved.

Branch and Cut DeNegre and Ralphs (2009)

Maximum Infeasibility Strong Branching CCLW

n Avg CPU time Avg CPU time Avg CPU time

10 3.17 4.69 0.009

11 6.63 9.13 0.009

12 13.27 17.50 0.009

13 27.54 35.84 0.010

14 60.08 71.90 0.011

15 124.84 145.99 0.011

16 249.19 296.16 0.014

17 516.65 - 0.013

Table 5 Summary of results for instances in DeNegre (2011), DeNegre and Ralphs (2009).

Although it is always difficult to compare different computing codes running on different

computers, we believe that from the results in Table 5 it is safe to conclude that, for

these instances, CCWL outperforms the branch-and-cut method. In particular, the highest

average number of branch-and-bound nodes explored by Gurobi for solving the MIPs is

4.55 for the instances with n= 16, thus the impact of the parallelism associated with our

computing platform to be Quad-Core is negligible. We noticed that in all the instances

introduced in DeNegre (2011), DeNegre and Ralphs (2009), CCLW executes only two

iterations and the optimum is always found in the first iteration. The second iterations are

only needed to prove optimality, due to the fact that both leader and follower have enough
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capacity to pack all the items. Theorem 7 shows that in these cases the strong cut makes

MIP 2 infeasible.

6. Conclusions

We have analyzed a special class of interdiction problems and proposed an exact algo-

rithm for solving it. Our method uses a new way of generating (enumerating) solutions,

which seems to hit the optimal solution at a very early stage and thus allows us to concen-

trate on techniques for proving optimality. This behavior is quite different from classical

branch-and-bound methods, which usually starts from infeasible (super-optimal) solutions

and apply extensive enumerations. Of course, the classical branch-and-bound scheme has

proven very effective for classical MIPs, whereas our results might indicate that this is

not the case for MIBPs. Furthermore, we introduce a new cut for the leader’s variables

which seems to be much stronger than the ones used in the literature and which signif-

icantly decreased the number of enumerated bilevel feasible solutions. Also cuts limiting

the objective function range had a big impact in speeding up the method.

We were able to solve instances with up to 100 binary variables, which is significantly

larger than the size of instances solved in the literature. Our method is very efficient on

instances where both leader and follower have a large budget. Consequently, the challenging

and hard instances are those in which the budget of both leader and follower forces them

to evaluate a large number of strategies.

The comparison of our algorithm CCLW with the best ones from the literature demon-

strates its advantage, and stresses the importance that problem-specific algorithms cur-

rently have in solving bilevel programming. A promising line for future research on general

interdiction problems is to exploit the follower’s integrality relaxation; this is in harsh

contrast to the classical high-point relaxation where the follower is forgotten as a decision

maker.
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