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ÐÐÐÐÐÐÐÐÐ 
 
Atmospheric non-equilibrium plasma is drawing interest as a promising tool for cancer 

treatment due to its blend of physical and chemical components that can exert anti-tumor 

effects.  

In this work, we investigate the effects of plasma treatment, performed by means of a wand 

electrode DBD driven by nanosecond high voltage pulses, on the viability, proliferation and 

cell-cycle distribution of cells of mouse lymphoma. Results for direct treatment, with cell 

exposed to plasma while suspended in culture medium, and indirect treatment, where cells 

were added to culture medium previously activated by plasma treatment, are compared. A 

qualitative characterization by means of high-speed and iCCD imaging of the plasma 
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discharges produced for the different operating conditions adopted in biological experiments, 

as well as a semi-quantitative study of the reactive species produced by plasma treatment in 

the culture medium, are also presented. 

 
1. Introduction  

Despite improvements in survival rates, cancer is still the second leading cause of death in 

Western countries [1]. While the rapidly expanding knowledge of cancer pathogenesis at the 

molecular level is providing new targets for drug discovery and development, the multiple 

genetic and molecular alterations involving transformation, dysregulation of apoptosis, 

proliferation, invasion, angiogenesis and metastasis [2] make cancer an extremely complex 

disease.  

Currently, the treatment of cancer largely revolves around chemotherapy, with new 

therapeutic approaches under investigation, alone or in combination with conventional 

chemotherapy. Despite the development of multiple new agents, antitumor therapies are 

strongly limited by the low therapeutic index of most of the adopted drugs and by the 

development of chemoresistence. In particular, the onset of chemoresistance frequently 

hampers the successful treatment of cancer either at the initial presentation or following 

primary or subsequent relapses [3], and relapse continues to be the most common cause of 

death [4]. Thus, cancer remains a formidable therapeutic challenge that requires the 

identification and the development of novel agents for the treatment of this disease. 

Atmospheric non-equilibrium plasmas are encountering increasing interest as a novel anti-

tumor agent, since they provide a blend of physical and chemical components (reactive 

species, charged particles and UV radiation) which was demonstrated to exert anti-tumor 

effects by some pioneering work both on in vivo and in vitro models [5,6]. However, the 

mechanism of plasma-cell interaction is still not completely understood, as well as the 

selectivity associated to the various plasma generated species. Different species were 
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demonstrated to mediate either Ôplasma-killing' (for the case of singlet oxygen, O) or Ôplasma-

healing' (for the case of nitrogen oxide, NO) effects [7]. Gweon et al. [8] considered reactive 

oxygen species (ROS) responsible for the dissociation of integrin and the consequent 

detachment of human liver cancer cells (SK-HEP-1). Ishaq et al. [9] demonstrated that plasma 

treatment induced apoptosis in melanoma cells and, differently from the previous works, 

focused their attention on intracellular ROS levels. On the other hand, Volotskova et al. [10] 

demonstrated that plasma treatment enhances the oxidative stress of cells in the S phase of the 

cell cycle. Interestingly, recent studies [11] have reported that plasma not only affects cancer 

cells when they are directly exposed to it or suspended in the culture medium being treated, 

but also when they are subject to indirect treatment, being suspended in a medium that was 

previously treated and activated by plasma. Tanaka et al. [12] demonstrated that, when treated 

by plasma activated medium, glioblastoma human brain tumor cells were induced to undergo 

apoptosis, through AKT down-regulation; moreover, they also demonstrated in vitro and in 

vivo that plasma-activated medium has an anti-tumor effect on chemo-resistant epithelial 

ovarian carcinoma cells [13].  

These observations together with the rapidly expanding knowledge of cancer biology have 

fueled a growing interest in exploiting cold plasma as an interesting strategy in the 

oncological field endowed with the potential of shifting the current paradigm of cancer 

treatment and enabling the transformation of cancer treatment technologies.  

In this work, we focused on the fundamental mechanisms of plasma interaction with cancer 

cells, investigating cell viability, proliferation and cell-cycle distribution of L5178Y 

lymphoma cells treated by a wand electrode dielectric barrier discharge (DBD) [14] driven by 

unipolar nanosecond high voltage pulses [15]. Plasma direct treatment was performed keeping 

constant the electrical parameters (peak voltage and pulse repetition frequency), while 

adopting two different combinations of treatment time and gap width between the tip of the 

plasma source and the liquid; the differences between the plasma discharges generated in the 
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considered operating conditions were highlighted and analyzed through iCCD and high speed 

(HS) imaging, which are often used for qualitative characterization of non-equilibrium 

plasmas [16-25]. Flow cytometry was employed to evaluate cell viability at 6, 24 and 48 h 

after plasma treatment, as well as to analyze cell-cycle distribution after cell culture for 24 

and 48 h. Finally, a comparison of the effects of direct and indirect treatments, where cancer 

cells are exposed to a previously plasma treated culture medium instead of being directly 

exposed to plasma treatment, and the semi-quantitative measurement of nitrites, nitrates and 

peroxides in the plasma treated medium were carried out to support the evaluation of the 

observed cell response to plasma exposure. 

 

2. Experimental Section  

 

2.1 Plasma device  

The wand electrode DBD plasma source used in this work, represented in Figure 1, consists 

of a cylindrical brass electrode, with a 10 mm diameter, having a semispherical tip, with 

curvature radius of approximately 5 mm. The electrode is covered with borosilicate glass 

(relative permittivity !r = 4.7) as dielectric layer with a thickness of 1 mm. The plasma source 

is driven by a commercial pulse generator producing high voltage pulses with a slew rate of 

few kV/ns, a peak voltage (PV) of 7-20 kV into a 100-200 " load impedance and a maximum 

pulse repetition frequency (PRF) of 1000 Hz.  

 
Figure 1. Wand electrode DBD discharge on a grounded plate (left) and on liquid culture 
medium during cell treatment (right). 
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2.2 Plasma device characterization  

A high-speed camera (Memrecam GX-3-NAC Image Technology) has been used to visualize 

the behavior of the plasma discharge in contact with 1 mL of DulbeccoÕs modified EagleÕs 

medium (DMEM) contained in a 24 wells plate, representative of the operating conditions 

adopted for the treatment of cancer cells as later described in Paragraph 2.4; for these tests, 

the 24 wells plate was slightly modified, removing part of the plastic walls to allow an 

optimal visualization of the plasma region. Results will be presented for the camera being 

operated either at 500 fps (frames per second) and 1/500 s shutter time or at 100 fps and 1/100 

s shutter time; as the shutter time was equal or superior to the pulse period, no means of 

synchronization was necessary. The setup adopted for high-speed imaging characterization is 

reported in Figure 2. 

 
Figure 2. Representation of the setup for high speed imaging characterization of the wand 
electrode DBD discharge during the treatment of DMEM.  
 

Temporal evolution of the plasma discharge in contact with DMEM has been investigated by 

means of an iCCD camera (Princeton Instruments PIMAX3). A synchronous pulse generator 
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(BNC 575 digital pulse/delay generator) has been used to synchronize the high voltage 

generator and the oscilloscope (Tektronix DPO 40034) adopted to trigger the iCCD camera, 

as schematically represented in Figure 3; to allow an optimal visualization of the plasma 

region, the same modified 24 wells plate adopted for high speed imaging test was used for 

iCCD experiments. The plasma discharge temporal evolution during an entire pulse was 

reconstructed from sequential frames acquired at time steps of 1 ns and with an exposure time 

of 3 ns. 

 
Figure 3. Representation of the setup for iCCD imaging characterization of the wand 
electrode DBD discharge during the treatment of DMEM. 
 

2.3 Cell cultures 

For the experiments, L5178Y TK+/- clone (3.7.2C) cells of mouse lymphoma (LGC Standard, 

Teddington Middlesex, UK) were grown in suspension and propagated in DMEM (from LGC 

Standard) supplemented with 4 mM L-glutamine, 10% inactivated fetal bovine serum, 1% 

penicillin/streptomycin solution, 0.1% pluronic (all obtained from Sigma, St Louis, MO, 

USA). To maintain the exponential growth, the culture was divided every third day by 

dilution to a final concentration of 1-2 x 105 viable cells/mL. Cells were cultured at 37¡C/5% 

CO2. 
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2.4 Plasma treatment 

Plasma treatment of lymphoma cells was performed either in direct and indirect configuration. 

In direct configuration, 5 x 105 cells in 1 mL complete medium were seeded in a monolayer 

through centrifugation and directly exposed to plasma treatment in a 24 wells plate; two 

different sets of operating conditions have been considered: in the first case (T1), a 60 s 

treatment was performed keeping a 1.25 mm distance between the tip of the plasma source 

and the surface of the liquid medium (gap); in the second case (T2), a 120 s treatment was 

performed setting the gap at 2.50 mm. During the experiments, PV and PRF were kept 

constant at 20 kV and 500 Hz respectively. These two operating conditions were selected after 

a series of preliminary tests; in particular, for each of the two mentioned gaps, preliminary 

treatments were performed for several different treatment times, after which cell viability was 

assayed: we selected the operating conditions that resulted in a significant reduction of cell 

viability, but still higher than 50% (normalised to the cell viability of untreated cells), 

necessary to perform the cell proliferation experiments. 

In indirect configuration, 1 mL of complete medium not containing lymphoma cells was 

exposed to plasma treatment in a 24 wells plate; 500 000 lymphoma cells were added to the 

medium immediately after plasma treatment. A comparison of the effects of direct and 

indirect treatments was carried out for the following operating conditions: PV 20 kV, PRF 

500 Hz, gap 1.25 mm and various treatment times (30 s, 45 s, 60 s, 90 s and 120 s). 

Setups for direct and indirect treatments are schematically reported in Figure 4A and Figure 

4B respectively.  
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Figure 4. DBD plasma treatment of lymphoma cells: A) direct treatment setup; B) indirect 
treatment setup.  
 

Biological assays  

For direct treatment, cell viability and proliferation were determined after 6, 24 and 48 h from 

atmospheric non-equilibrium plasma exposure of cells at the two different experimental 

conditions; for the comparison between direct and indirect treatments, cell viability was 

determined after 6, 24 and 48 h from atmospheric non-equilibrium plasma exposure of cells 

(direct treatment) or 6, 24 and 48 h after cells were added to the plasma treated culture 

medium (indirect treatment). Briefly, 25 #L of cell suspension were mixed with 225 #L of 

Guava ViaCount Reagent (Merck Millipore, Hayward, CA, USA) containing 7-

aminoactinomycin D (7-AAD), a fluorescent intercalator of DNA, and incubated in the dark 

at room temperature for 5 min before the flow cytometric analysis, performed using the guava 

easyCyte 5HT (Merck Millipore). 

To evaluate cell-cycle distribution, cells were treated at the two established experimental 

conditions and cultured for 24 and 48 h, then permeabilized with ice-cold ethanol for 30 min 

and stained with 200 #L of Guava Cell Cycle reagent (Merck Millipore), containing 

propidium iodide (PI), for 30 min in the dark. At the end of the incubation, cells were 

analyzed via flow cytometry. 
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All results are expressed as mean ± SEM (Standard Error of the Mean). Differences among 

exposure conditions at different time point (6, 24, 48 h) were evaluated by One-way ANOVA 

repeated, followed by Bonferroni as post hoc test. For all statistical analysis, GraphPad InStat 

version 5.0 (GraphPad Prism, San Diego, CA, USA) was used and P < 0.05 was considered 

significant. 

Measurement of nitrites, nitrates and peroxides in cell culture medium  

Semi-quantitative analysis of nitrites (NO2
-), nitrates (NO3

-) and peroxides (H2O2) produced 

after exposure to plasma in 1 mL complete medium were performed by means of Quantofix¨ 

analytic strips. All the measurements were effectuated immediately after the end of the 

treatments. 

Results and Discussion 

High Speed imaging and iCCD imaging of the plasma discharge 

A qualitative investigation of the plasma discharge produced during the treatment of 1 ml of 

cell culture medium not containing Lymphoma cells was performed by means of HS and 

iCCD imaging; for the following operating conditions: PV 20 kV, PRF 500 Hz, gap 1.25 mm 

(T1 case) and PV 20 kV, PRF 500 Hz, gap 2.50 mm (T2 case). The described experimental 

setup, as well as the considered operating conditions, were identical to those adopted for 

biological tests. 

Concerning HS imaging, two different frame rates were used, 100 fps and 500 fps; the HS 

camera shutter was kept open and, subsequently, exposure time was imposed by the frame 

rate (Figure 5). Considering the PRF adopted in the experiments, images recoded at 500 

frames/s show the discharge produced during a single pulse of the driving electrical signal, 

while images recoded at 100 frames/s are accumulated over 5 subsequent pulses. 
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Figure 5. HS images of the plasma discharge during the treatment of culture medium (the 
dashed line indicates the culture medium surface) for both selected operating configurations 
(top: T1, bottom: T2). Acquisitions were realized at two different frame rates (left: 100 fps, 
right 500 fps). 
 

The reported HS images immediately highlight the effect of a variation of gap width, and thus 

of electrical field in the gap, on the plasma discharge aspect; for the smallest gap width (T1 

case), the discharge appears characterized by several microdischarges located close to the tip 

of the plasma source. In this case, for the longest exposure time (100 fps image), a faint glow 

appears in the gap region and a larger number of filaments are observed with respect to the 

image taken at 500 fps, as a consequence of the accumulation of 5 subsequent discharges; the 

comparison between images taken at 100 fps and 500 fps highlights also that during 

subsequent pulses, for the selected operating conditions, the microdischarges form in different 

locations, with no significant memory effect observed [26], possibly as a consequence of the 

adopted value of PRF and the unevenness of the liquid surface acting as a second electrode. 

When the gap between the plasma source and the culture medium surface is larger (T2 case), 

the plasma discharge appears completely different from the previous case, being characterized 

by a single filament located at the tip of plasma source, where the gap is the smallest and the 
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electric field is the highest. The single filament has a funnel-like shape, which appears 

broader at the upper electrode, due to charge distribution and electric field distortion at the 

dielectric surface, and more collimated close to the culture medium surface; moreover, in case 

T2 images taken at different exposure times seem to show that filament produced during 

successive pulses are formed always in the same position, along the axis of the plasma source. 

iCCD imaging, being characterized by exposure times of few nanoseconds, allows for the 

investigation of the plasma behavior with greater time resolution than HS images [16-22], and 

was here used to investigate the temporal evolution of a single discharge event. Due to iCCD 

technology limitations, only one acquisition per voltage pulse can be gathered and thus the 

analysis of the discharge evolution along the voltage pulse is based on the assumption of 

repeatability of the plasma discharge characteristics in every high voltage pulse; this 

assumption was verified comparing three different acquisitions and observing that plasma 

evolution during the pulses was similar in all the cases. In our experiments, the exposure time 

was set at 3 ns (gate time) and the voltage pulse was scanned with time steps of 1 ns, obtained 

progressvely increasing the trigger delay time.  

In Figure 6, eight subsequent frames representing the plasma evolution are shown for each 

operating condition (T1 and T2); for clarity purposes, the gate opening of the first (1, colored 

in green) and last acquisitions (8, colored in red) are plotted against the recorded voltage 

waveform in Figure 7. 
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Figure 6. iCCD images depicting the temporal evolution along the voltage pulse of the plasma 
discharge formed in contact with 1 ml of culture medium (the dashed line indicates the culture 
medium surface), for both operating configurations adopted for cancer cell treatment (T1, T2). 
The start of each acquisition (3 ns exposure) is delayed of 1 ns with respect to the previous 
one. 

 
Figure 7. Measured voltage waveform with superimposed exposure gates for the first (1, 
green) and last (8, red) iCCD frames. 
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From iCCD acquisitions, the discharge structures for T1 and T2 cases turn out to be more 

similar to each other than previously observed by means of HS imaging. Indeed, the first 

plasma luminous emission appears almost at the same time, corresponding to the initial part of 

the voltage ramp, in both cases; moreover, the third frame, collected in correspondence of the 

maximum peak voltage, is the most luminous for both T1 and T2 cases. Most interestingly, a 

multi-filamentary structure is observed in both operating conditions; while this behavior was 

already observed by means of HS imaging in T1 conditions, only a single filament along the 

axis of the plasma source could be seen for the T2 case in HS pictures. This is probably 

because in HS imaging acquisition no light signal intensification is applied, therefore the 

signal of short living or low emitting microdischarges could be shadowed by the presence of a 

longer living or higher emitting microdischarge; indeed, almost all iCCD images for T2 case 

show the presence of a microdischarge near the axis of the source, while other shorter living 

microdischarges appear and disappear in subsequent frames. 

Studies of cell viability, proliferation and cell-cycle progression for direct plasma 

treatment 

Plasma induced a decrease in cell viability after 48 h from treatment, as revealed by the 

number of cells permeable to 7-AAD, a fluorescent compound with strong affinity for DNA 

that remains excluded from viable cells with intact membrane. After 60 s of L5178Y plasma 

exposure at the distance of 1.25 mm the percentage of viable cells was 57.3% compared to 

71.2% of untreated cells (Figure 8). The highest cytotoxic effect was induced by cells 

exposure to plasma for 120 s at the distance of 2.50 mm (43% living cells compared to 71.2% 

of untreated cells) (Figure 8). 
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Figure 8. % of living cells after 6, 24 and 48 h from direct atmospheric non-equilibrium 
plasma exposure. 
 
Furthermore, cold plasma affected cells proliferation both after 24 and 48 h from the exposure 

(Figure 9). The highest effect was observed at the exposure condition 2.50 mm for 120 s, 

where it was possible to observe 36.7% proliferating cells after 24 h from the treatment and 

30.0% after 48 h (Figure 9). 

 
Figure 9. % of proliferating cells after 6, 24 and 48 h from direct atmospheric non-
equilibrium  plasma exposure. 
 
In order to investigate non-equilibrium plasma effects on cell-cycle progression, cells were 

treated with a reagent containing PI, a red fluorescent intercalating agent that allows to 

evaluate DNA content. During cell-cycle S phase, cells duplicate their content of DNA that 
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will be double in G2/M phase compared to G0/G1 phase, as well as PI fluorescence. After 24 

h from the treatment, it was possible to observe an accumulation of cells in G2/M phase, as 

showed in Figure 10A, for both exposure conditions (1.25 mm, 60 s 65.3% cells and 2.50 

mm, 120 s 55.9% cells vs 39.6% of untreated cells) (Figure 10B). After 48 h from plasma 

exposure, the accumulation of cells in G2/M phase was statistically significant for the 

exposure condition 2.50 mm, 120 s (52.2% cells vs 42.8% of untreated cells) (Figure 10C). 

 
Figure 10. Fluorescence histograms representing cell-cycle distribution of untreated cells (Aa) 
and of cultures directly treated with plasma, where a plasma-induced G2/M phase 
accumulation is evident (Ab). Cell-cycle distribution after 24 (B) and 48 h (C) from 
atmospheric non-equilibrium plasma exposure. 
 
On the basis of our results, the cell-cycle arrest is reversible for the 60 sec and 1.25 mm 

condition; indeed, in that condition, we observed an accumulation of G2-cells at 24 h post-

treatment but not at 48-h post-treatment. This means that cells can overcome the plasma-

induced cell-cycle arrest and start proliferating. The 120 sec and 2.50 mm condition is able to 

induce a stronger antiproliferative effect, from which cells cannot rescue; in this case, we can 

conclude that the cell-cycle arrest induced by plasma is irreversible. 
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Taken together, these results demonstrate that the growth inhibition of lymphoma cells 

induced by plasma treatment is imputable to cell death and cell-cycle arrest in which G2 

accumulation is a key event. The simultaneous appearance of G2 block and cell death 

suggests that cell death is a primary direct effect due to plasma treatment, and not a secondary 

effect due to the cellsÕ inability to overcome growth arrest and proceed through the cell cycle. 

 
Comparison of direct and indirect plasma treatment 

Results for cell viability after direct and indirect plasma treatment at different treatment times, 

PV 20 kV, PRF 500 Hz and gap 1.25 mm are reported in Figure 11. As revealed by the 

number of cells permeable to 7-AAD, the longer the treatment time (from 30 s to 120 s) and 

the culture time after plasma treatment (6, 24 and 48 h), the higher the reduction in cell 

viability; no relevant difference can be observed between direct and indirect treatment results.  

Similar results were obtained with a gap of 2.50 mm and identical treatment times (data not 

shown). This suggests that the chemistry induced by plasma treatment in the culture medium 

plays the leading role in plasma reduction of cancer cells viability; similar considerations 

were previously reported by Vandamme et al. [27] and Mohades et al. [28], who compared 

the effects of direct and indirect treatment on glioblastoma U87MG and SCaBER bladder 

cancer cells, respectively.  
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Figure 11. % of living cells after direct and indirect plasma treatment for different treatment 
times. Data were collected 6, 24 and 48 h after cells were added to atmospheric non-
equilibrium plasma treated medium (indirect treatment) or 6, 24, 48 h after atmospheric non-
equilibrium plasma exposure of cells (direct treatment). Operating conditions: PV 20 kV, PRF 
500 Hz and gap 1.25 mm. 
 
Measurement of nitrites, nitrates and peroxides in cell culture medium 
 
Results for the concentration of NO2

-, NO3
- and H2O2 produced in 1 mL of complete cell 

culture medium after plasma treatment, semi-quantitatively measured by means of analytic 

strips, are reported in Table 1. In particular, results for treatments carried out in the same 

operating conditions (T1 and T2) adopted for studies of cell viability, proliferation and cell-

cycle progression are presented; moreover, also results for plasma treatment performed with 

gap width 1.25 mm and treatment time 120 s, which was shown in Figure 11 to induce the 

lowest cell viability among the tested treatments, are presented as a means of comparison and 

discussion.  

Table 1. Nitrite, nitrate and peroxide concentrations in the as is and plasma treated cell culture 
medium. All treatments were performed at PV 20 kV and PRF 500. 

Operating conditions NO2
- (mg/L) NO3

- (mg/L) H2O2 (mg/L) 

Untreated 0 0 0 

Gap 1.25 mm,  
treatment time 60 s (T1) 

5 - 10 100 - 250 3 - 10 

Gap 2.5 mm,  
treatment time 120 s (T2) 

5 - 10 100 - 250 3 - 10 

Gap 1.25 mm,  
treatment time 120 s  

10 - 20 100 - 250 3 - 10 

 
For all the tested conditions, a significant increase of NO2

-, NO3
- and H2O2 can be observed 

with respect to the untreated cell culture medium. For the cases T1 and T2, the measured 

concentration of all reactive species fell in the same range; since viability, proliferation and 

cell-cycle progression tests have shown different results for conditions T1 and T2, we would 

have to conclude that the limited sensitivity of the analytic strips prevents us from drawing 

further conclusions on the relative importance of the various reactive species on the 

modulation of cell response to plasma exposure. Despite this limited sensitivity, a 
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significantly higher nitrite concentration with respect to the T1 and T2 treatments was 

measured for the case with a 1.25 mm gap and for 120 s, while nitrate and peroxide 

concentrations were measured in the same range. Nitrites were previously suggested to 

possibly have a significant role in plasma oncology [29] and to be linked to the reduction of 

cell viability after plasma treatment [30-31]; accordingly, we measured the highest 

concentration of nitrites for the case inducing the highest reduction of cell viability: 

considering only the 48 h culture times, the treatment performed with a 1.25 mm gap and for 

120 s resulted in a percentage of viable cell of 26%, while treatment T1 and T2 resulted in 

percentages of 57.3% and 43%, respectively.  

 
Conclusion 

Atmospheric non-equilibrium pressure plasma has encountered a great interest as a novel anti-

tumor agent since it was demonstrated by early works, both on in vitro and in vivo models, 

that the wide blend of chemical and physical reactive components could exert anti-tumor 

effects [32-37]. Beside few pioneering studies [5-6], plasma-cell interaction mechanisms are 

still mostly unsolved and thus are an extremely relevant subject of current cutting edge 

researches [38-39]. With the aim to contribute to garner knowledge on the fundamental 

aspects of plasma interactions with cancers cells, the effects of the plasma treatment on the 

viability, proliferation and cell-cycle distribution of L5178Y TK+/- clone (3.7.2C) cells of 

mouse lymphoma have been presented in this paper.  

Plasma treatments were performed by means of a wand electrode DBD driven by unipolar 

nanosecond high voltage pulses, either in direct configuration, with cells exposed to plasma 

while suspended in DMEM, or indirect configuration, where cells were added to DMEM 

previously activated by plasma treatment. In direct configuration, two different sets of 

operating conditions were considered, varying the distance between the tip of the plasma 

source and the surface of the liquid medium and the treatment time; qualitative differences 
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between the plasma discharges produced in the two operating conditions were highlighted by 

means of HS and iCCD imaging. Plasma treatment was observed to reduce the percentage of 

viable cells in both the evaluated operating conditions, with the highest cytotoxic effect for 

the case with longest exposure time and largest gap width. Moreover, plasma treatment was 

shown to significantly reduce cell proliferation and to induce a statistically significant 

accumulation of cells in G2/M phase.  

Furthermore, results for direct treatment were compared with results for indirect treatment of 

cancer cells: no differences were observed for cell viability in the two cases, suggesting that 

the leading role in plasma treatment of cancer cells is played by the reactive species produced 

in the culture medium. Semi-quantitative measurements of nitrites, nitrates and peroxides 

highlighted the production of significant concentrations of reactive species in the culture 

medium after plasma treatment; despite their sensitivity limitations, the adopted analytic strips 

hinted at a connection between nitrite concentration and the reduction of cell viability, 

supporting data and speculations presented in other works [29-31]. Therefore, future activities 

will be focused on a more detailed identification and quantification of the reactive species 

produced by plasma treatment in the culture medium and in the investigation of their role in 

the mechanisms of plasma interaction with cancer cells. 
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