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Lévy random environment

Alessandra Bianchi ∗, Giampaolo Cristadoro †,
Marco Lenci †‡, Marilena Ligabò §
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Abstract

We consider a generalization of a one-dimensional stochastic process known
in the physical literature as Lévy-Lorentz gas. The process describes the mo-
tion of a particle on the real line in the presence of a random array of marked
points, whose nearest-neighbor distances are i.i.d. and long-tailed (with fi-
nite mean but possibly infinite variance). The motion is a continuous-time,
constant-speed interpolation of a symmetric random walk on the marked
points. We first study the quenched random walk on the point process, prov-
ing the CLT and the convergence of all the accordingly rescaled moments.
Then we derive the quenched and annealed CLTs for the continuous-time
process.

Mathematics Subject Classification (2010): 60G50, 60F05 (82C41, 60G55).

1 Introduction

For as long as they have existed, random walks have been used as models for a wide
range of transport processes in fields as diverse as physics, chemistry and biology.

For a homogeneous random walk on a lattice, under the hypothesis of finite vari-
ance of the distribution of jumps, classical results include the central limit theorem
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(CLT), the functional CLT (a.k.a. invariance principle), and normal diffusion, de-
fined as an asymptotically linear time-dependence of the variance of the walker’s
position.

While the success of homogeneous random walks in capturing the main features
of transport in regular media is nowadays apparent, in many interesting situations
the walker moves in a complex and/or disordered environment. In such cases, corre-
lations induced by spatial inhomogeneities can have a strong impact on the transport
properties, which cannot be simulated by a simple homogenous model [17, 26, 27].
This led (already 40 years ago) to the definition of a class of processes called ran-
dom walks in random environment (RWRE), where the transition probabilities are
themselves random functions of space (cf. [31] for a review). This rich class of walks
is typically studied from two different viewpoints: that of the quenched processes,
where one focuses on the dynamics for a typical fixed environment, and that of the
annealed (or averaged) processes, where the interest is on the effect of averaging
over the environments.

On a related note, recent years have witnessed a growing interest around anoma-
lous diffusive processes, where the variance of a moving particle has a super- or
sub-linear growth in time. In the physical literature, such anomalous behavior has
been observed in many systems: Lorentz gases with infinite horizon, rotating flows,
intermittent dynamical systems, etc. [28].

Several models have been put forth to describe such situations. Undoubtedly,
the simplest among them are the homogeneous random walks whose transition prob-
abilities have an infinite second moment (and possibly an infinite first moment too)
[16]. Especially in the physical literature, they are sometimes dubbed Lévy flights.
Though Lévy flights easily break normal diffusion, their defining feature is also their
most serious drawback, in that the variance of the walker’s position is infinite at all
times, failing to reproduce the superlinear time-dependence that is typical of many
systems of interest, such as those mentioned earlier. More realistic models are then
considered, called Lévy walks : here the jumps are still picked from a long-tailed
distribution but the walker needs a certain time to complete a jump (typically a
time proportional to the length of the jump, implying constant speed) [12, 30].

Not much work has been done on systems that combine long-tailed jumps and
disordered media. To the authors’ knowledge, the first such examples are the Lévy
flights perturbed by random drift fields introduced in [15]. In this case the cause of
the anomalous diffusion is the distribution of the jumps. Two more recent models
are those of [3] and [25]; though rather different from one another, both systems are
defined by a “normal” (meaning, simple, standard) dynamics on an “anomalous”
environment, which forces long jumps and is therefore responsible for the anomalous
behavior. In this sense, the models are representative of the many physical situations
(human mobility, epidemics, network routing, etc.) in which anomalous diffusion is
caused by the complexity of an underlying network (such as a small-world network).
The system presented in [3], called by the authors Lévy-Lorentz gas, is the starting
point of our investigation; we will come back to it momentarily. The only examples
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of long-tailed random walks in random environment these authors have found in the
rigorous mathematical literature are the long-range walks on point processes studied
in [5, 11, 22].

A surge of interest in this topic has lately come from the physics of materials,
since a new glassy material has been devised, through which light exhibits anomalous
properties that can be experimentally controlled [4]. The design of this so-called
Lévy glass suggests an interpretation of the motion of light in it by way of a Lévy
walk in a disordered environment, as studied in [1, 2, 7, 6, 8] (with varying degrees
of approximation). These papers focus on the annealed versions of the models, and
no rigorous proof is given.

Inspired by the above models, the system we study here is a generalization of
the Lévy-Lorentz gas mentioned earlier. A random array of points, called targets, is
given on the real line, such that the distances between two neighboring targets are
i.i.d. with finite mean; they are, however, allowed to have infinite variance, which
is the interesting case here. A particle moves with unit speed between the targets,
driven by a random walk that is independent of all the rest. More in detail, we
assume that the origin is always a target and that the particle starts from there. A
random integer ξ is drawn from a given distribution, upon which the particle starts
to travel towards the ξth target. When the target has been reached the procedure
repeats from there.

This is therefore a continuous-time random walk, whose trajectories have long
inertial segments due to a random environment, which is why we speak of a random
walk in a Lévy random environment. These are our results: for the (discrete-time)
random walk on the point process, we prove the quenched CLT and the convergence
of all the normally rescaled moments to those of a suitable Gaussian. Then, by
comparison, we derive the quenched CLT for the continuous-time process. These
results imply the annealed CLT for both the continuous- and discrete-time walks.

The paper is organized as follows. In Section 2.1 we give the precise definitions
of all the processes associated with our random walk. In Section 2.2 we present our
main results, whose proofs are found in Section 3, although some technical results
are gathered in Appendix A. Section 3.2 presents a construction that is also of
independent interest: a dynamical system describing the annealed process from the
point of view of the particle.

2 Model and main results

2.1 Definition of the model

We start by defining the following marked point process on R: let ζ := (ζj, j ∈ Z)
be a sequence of i.i.d. positive random variables with finite mean µ, and define the
variables ωk, k ∈ Z, via

ω0 := 0 , ωk := ωk−1 + ζk . (2.1)
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The process ω := (ωk, k ∈ Z) will be also referred to as the environment, and the
single points ωk as the targets. We denote the set of all possible environments by
Ωen, and the law just defined on it by P .

We are particularly interested in long-tailed ζj, with infinite variance, distributed
for instance in the basin of attraction of an α-stable distribution, with α ∈ (1, 2).
Environments of this type are usually called Lévy environments in the physical
literature [3, 7, 1].

In order to define our continuous-time process, we need to introduce two inter-
mediate random walks (RWs). Let Z± be the positive/negative integers, and N the
non-negative integers. Take ξ := (ξi, i ∈ Z

+) to be a sequence of i.i.d. Z-valued ran-
dom variables, with density p := (pk, k ∈ Z), where pk = p−k (symmetry condition),
pk+1 ≤ pk, ∀k ≥ 0 (half-monotonicity), and such that

vp :=
∑

k

k2pk ∈ (0,∞) . (2.2)

Denote by S := (Sn, n ∈ N) the RW with increments provided by the ξi, that is

S0 := 0 , Sn :=

n
∑

i=1

ξi , for n ≥ 1. (2.3)

This is called the underlying random walk. It is defined on the probability space
(ZN, Q), endowed with the σ-algebra generated by cylinder functions.

The second RW is defined, for each environment ω ∈ Ωen, as

Yn ≡ Y ω
n := ωSn , for n ∈ N . (2.4)

In rough terms, Y := (Yn, n ∈ N) performs the same jumps as S, but on the points of
ω. We call it the random walk on the point process. The associated probability space
is (ωN, Qω), where Qω is the probability induced on ωN by Q via (2.4) (more precisely,
Qω is defined on the σ-algebra generated by cylinder functions). In particular, for
all n ∈ N and k ∈ Z,

Qω(Yn = ωk) = Q(Sn = k) . (2.5)

Once we fix the environment and the realization of the dynamics, that is, for
any given pair (S, ω) ∈ (ZN,Ωen), we can define the sequence of collision times
τ(n) ≡ τ(n;S, ω) via

τ(0) := 0 , τ(n) :=
n
∑

k=1

|ωSk
− ωSk−1

| , for n ≥ 1 . (2.6)

Notice that, since the length of the nth jump of the walk is given by |ωSn − ωSn−1 |,
τ(n) represents the global length of the trajectory up to time n.

Finally, the process we are interested in is the continuous-time process X(t) ≡
Xω(t) defined by

X(t) := Yn + sgn(ξn+1)(t− τ(n)) , for t ∈ [τ(n), τ(n + 1)) , (2.7)
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where sgn is the sign function. In other words, X := (X(t) , t ∈ [0,∞)) is the process
whose trajectories interpolate those of the walk Y and whose speed is 1 (save at
collision times). In light of the discussion made in the introduction, we describe the
above as a continuous-time random walk on a Lévy random environment.

Remark 2.1 Notice that ξn+1 = 0 ⇔ Sn+1 = Sn ⇔ τ(n + 1) = τ(n). Therefore
(2.7) is never used in the case ξn+1 = 0, which makes the definition of sgn(0)
irrelevant there. More importantly, the self-jumps of the underlying RW (namely,
Sn+1 = Sn) are simply not seen by the process X(t). This implies that we can
remove any lazy component of S = (Sn) by redefining

p′0 := 0 , p′j :=
pj

∑

k 6=0 pk
, for j 6= 0. (2.8)

(Notice that
∑

k 6=0 pk > 0, because vp > 0.) In particular, the case where S is a
simple symmetric RW, called Lévy-Lorentz gas in [3], is included in our results.

Indicate with C := C([0,∞);R) the space of all continuous paths from [0,∞) to
R, endowed with the Skorokhod topology. We denote by Pω the quenched law of X ,
which is the probability induced by Q on C by the definitions (2.4)-(2.7).

Finally, we use P for the annealed law of the process, defined on the space C×Ωen

by

P(G× F ) =

∫

F

Pω(G)P (dω) . (2.9)

This is the law that describes the entire randomness of the system.

2.2 Main results

In order to state our main results we need to name a few parameters pertaining to
the underlying RW S. Let

M :=
∑

k∈Z
|k| pk = 2

∞
∑

k=1

k pk (2.10)

be its mean absolute jump, and denote

q̄ := sup

{

q ≥ 0

∣

∣

∣

∣

∣

∑

k

|k|q pk <∞
}

. (2.11)

By our initial assumptions, q̄ ≥ 2. The following is standard:

Proposition 2.2 S verifies the standard CLT, namely,

lim
n→∞

Sn√
n

d
= N (0, vp). (2.12)
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Also, denoting by EQ the expectation w.r.t. Q (the law of S),

mq := lim
n→∞

EQ(|Sn|q)
nq/2

(2.13)

exists at least for all q ≥ 0, q 6= q̄. For q ∈ [0, q̄), it is finite and equals the qth

absolute moment of N (0, vp); for q ∈ (q̄,∞), it is infinite.

For the sake of completeness, we give the proof of Proposition 2.2 at the beginning
of the next section. Observe that, if q̄ > 2, the proposition says that (Sn/

√
n)

converges weakly to a suitable Gaussian, together with all the moments of order
≤ 2. If q̄ = 2, the proposition does not ensure that the second moment converges,
but its proof guarantees that EQ(|Sn|2)/n is bounded above and below (this follows
from (3.1)-(3.2) below and the fact that EQ(|ξ1|2) = vp < ∞ by hypothesis). We
describe this situation by saying that the underlying RW is totally diffusive.

The purpose of this paper is to show that the random walk on the point process Y
is also totally diffusive and its continuous-time interpolationX verifies the CLT, both
in the quenched sense, i.e., in a fixed environment, for almost every environment.
Recalling that µ denotes the mean of the random variables ζi, these are our results:

Theorem 2.3 For P -a.e. ω ∈ Ωen,

lim
n→∞

Yn√
n

d
= N (0, µ2 vp) . (2.14)

The convergence is in distribution, relative to the law Pω on C.

Theorem 2.4 Let Eω denote the expectation w.r.t. the measure Qω. If q ∈ [0, q̄),
then

lim
n→∞

Eω(|Yn|q)
nq/2

= µqmq . (2.15)

If also q ∈ 2N+ 1, then

lim
n→∞

Eω(Y
q
n )

nq/2
= 0 . (2.16)

Both statements hold for P -a.e. ω ∈ Ωen.

Theorem 2.5 For P -a.e. ω ∈ Ωen,

lim
t→∞

X(t)√
t

d
= N

(

0,
µ

M
vp

)

. (2.17)

The convergence is in distribution, relative to the law Pω on C.

Remark 2.6 In view of Remark 2.1, let us observe that Theorem 2.5 must not
depend of the choice of p0, the lazy component of S. However, as per definitions
(2.2) and (2.10), vp and M do. On the other hand, if we define v′p and M ′ by using
(p′k) in lieu of (pk) in (2.2), (2.10), it is immediate to check that v′p/M

′ = vp/M .
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The quenched CLTs easily imply the annealed CLTs:

Corollary 2.7 The limits (2.14) and (2.17) hold for the annealed processes as well,
that is, w.r.t. the measure P on C × Ωen.

Theorems 2.3 and 2.4 provide a complete characterization of the quenched pro-
cess Y . As for the physically more relevant process X , it is an open question whether
a similar scaling for the quenched moments holds. In the annealed case, heuristic ar-
guments and numerical simulations suggest that the second moment does not always
grow linearly in time. In particular [7], if the distribution of the distance between
targets behaves like dP (ζ0 ≤ z)/dz ∼ z−1−α, for z → ∞, the second moment is
expect to scale like

E
(

X(t)2
)

∼
{

t5/2−α , 1 ≤ α ≤ 3/2 ;
t , α > 3/2 .

(2.18)

3 Proofs

In this section we prove our results. The most elaborate proof, that of Theorem 2.5,
requires a representation of the annealed process as a dynamical system ‘from the
point of view of the particle’. We present this system in Section 3.2. The technical
lemmas which offer little insight on the flow of the proofs are given in the Appendix.

We start with the standard results about the underlying RW.

Proof of Proposition 2.2. The CLT is a well-known result for a finite-variance
RW. The convergence of the rescaled moments is in general not so well-known. For
this reason we provide a short proof, though other references may be found in the
literature (e.g., [29]).

Denoting χn := (
∑n

i=1 ξ
2
i )

1/2
, Burkholder’s inequality [9, Thm. 3.2] states that,

for all q > 1, there exist constants Cq > cq > 0 such that

cq‖χn‖q ≤ ‖Sn‖q ≤ Cq‖χn‖q , (3.1)

where ‖ · ‖q denotes the Lq-norm w.r.t. Q. For 1 < q < q̄, EQ(|ξi|q) :=
∑

k |k|q pk <
∞. By (3.1), EQ(|Sn|q) = ‖Sn‖qq is asymptotic to

‖χn‖qq =
∥

∥

∥

∥

∥

n
∑

i=1

ξ2i

∥

∥

∥

∥

∥

q/2

q/2

≤
(

n
∑

i=1

∥

∥ξ2i
∥

∥

q/2

)q/2

= nq/2EQ(|ξ1|q) . (3.2)

This implies that the qth absolute moment of (Sn/
√
n) is bounded above in n. Since

the process converges weakly toN (0, vp), a simple argument [14, Ex. 2.5] shows that,
∀q′ ∈ [0, q), the (q′)th absolute moment of (Sn/

√
n) converges to the (q′)th absolute

moment of N (0, vp). Since q was arbitrary, the conclusion holds for all q ∈ [0, q̄).
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On the other hand, when q ∈ (q̄,∞), EQ(|Sn|q) behaves like
∥

∥

∥

∥

∥

n
∑

i=1

ξ2i

∥

∥

∥

∥

∥

q/2

q/2

≥ EQ

(

n
∑

i=1

|ξi|q
)

= ∞ , (3.3)

having used the inequality (a+ b)q/2 ≥ aq/2+ bq/2 (holding for a, b ≥ 0 and q/2 ≥ 1)
and the fact that EQ(|ξi|q) = ∞. Q.E.D.

3.1 The random walk on the point process

Proof of Theorem 2.3. This proof follows that of Thm. 1.13 of [5]. By the
definition (2.1) of ω, we have

ωn =







∑n
k=1 ζk , n > 0 ;

0 , n = 0 ;

−∑0
k=n+1 ζk , n < 0 .

(3.4)

The strong law of large numbers on (ζk) can be expressed as follows: fixed b ∈ R,
for P -a.e. ω ∈ Ωen,

lim
j→∞

ω[bj]

j
= bµ , (3.5)

where [r] denotes the integer part of r ∈ R.
Since Yn = ωSn, we get that, for a ∈ R, ε > 0 and P -a.e. ω ∈ Ωen,

lim
n→∞

Qω

(

Yn√
n
≤ a

)

≤ lim
n→∞

[

Q

(

ωSn√
n

≤ a ,
Sn√
n
>
a

µ
+ ε

)

+Q

(

Sn√
n
≤ a

µ
+ ε

)]

≤ lim
n→∞

[

Q

(ω[( a
µ
+ε)

√
n]√

n
≤ a

)

+Q

(

Sn√
n
≤ a

µ
+ ε

)]

= Φ

(

a

µ
√
vp

+ ε′
)

, (3.6)

where ε′ := ε/
√
vp, Φ is the distribution function of the standard normal, and we

have used (3.5) and (2.12). Analogously,

lim
n→∞

Qω

(

Yn√
n
≤ a

)

≥ Φ

(

a

µ
√
vp

− ε′
)

, (3.7)

and altogether one gets the desired convergence. Q.E.D.

Proof of Theorem 2.4. The basic ingredients of the proof are the convergence
of the moments of (Sn/

√
n) and the law of large numbers for ωn, cf. (3.5).

By the latter, for every ε > 0 and P -a.e. ω, there exists k0 ≡ k0(ε, ω) such that,
for all |k| ≥ k0,

∣

∣

∣

ωk

k
− µ

∣

∣

∣
< ε . (3.8)
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In particular there exists c ≡ c(ω) > 0 such that |ωk| ≤ c|k|, for all k ∈ Z. Let us
fix a P -typical ω. Recalling that Yn = ωSn , we have:

Eω(|Yn|q)
nq/2

= EQ

( |ωSn|q
|Sn|q

|Sn|q
nq/2

)

= EQ

(

1{|Sn|≥k0}
|ωSn|q
|Sn|q

|Sn|q
nq/2

)

+ EQ

(

1{|Sn|<k0}
|ωSn|q
|Sn|q

|Sn|q
nq/2

)

≤ (µ+ ε)q EQ

( |Sn|q
nq/2

)

+ cq Q(|Sn| < k0)
1/r′EQ

( |Sn|rq
nrq/2

)1/r

,

(3.9)

where in the last step we have used Hölder’s inequality with r > 1 and 1/r′+1/r = 1.
Now choose r so that rq < q̄. By Proposition 2.2,

lim
n→∞

Q (|Sn| < k0) = 0 ; (3.10)

lim
n→∞

EQ

( |Sn|q
nq/2

)

= mq ; (3.11)

lim
n→∞

EQ

( |Sn|rq
nrq/2

)

= mrq <∞ . (3.12)

In conclusion,

lim sup
n→∞

Eω(|Yn|q)
nq/2

≤ (µ+ ε)qmq . (3.13)

Similarly, for the lower bound,

EQ

( |ωSn|q
|Sn|q

|Sn|q
nq/2

)

≥ (µ− ε)q EQ

(

1{|Sn|≥k0}
|Sn|q
nq/2

)

= (µ− ε)q EQ

( |Sn|q
nq/2

)

− (µ− ε)q EQ

(

1{|Sn|<k0}
|Sn|q
nq/2

)

≥ (µ− ε)q EQ

( |Sn|q
nq/2

)

− (µ− ε)q Q(|Sn| < k0)
1/r′EQ

( |Sn|rq
nrq/2

)1/r

,

(3.14)

which, by the same arguments as above, gives

lim inf
n→∞

Eω(|Yn|q)
nq/2

≥ (µ− ε)qmq . (3.15)

Assertion (2.15) follows from (3.13), (3.15) and the arbitrariness of ε. The limit
(2.16) is proved in a similar fashion upon rewriting

Eω(Y
q
n )

nq/2
=
Eω

(

1{Sn≥0} |Yn|q
)

nq/2
− Eω

(

1{Sn<0}| Yn|q
)

nq/2
. (3.16)

Q.E.D.
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3.2 The point-of-view-of-the-particle dynamical system

In this section we introduce a process, or rather a dynamical system, that describes
the point of view of the particle for the RW on the point process.

Keeping in mind the definitions and notation of Section 2.1, let (ZZ
+
, Qo) denote

the probability space of the sequences ξ = (ξi, i ∈ Z
+), namely, Qo is the probability

for Z+ copies of i.i.d. Z-valued variables with density p = (pk, k ∈ Z). Indicate with
σξ the left shift on this space. Evidently, σξ preserves Qo and is ergodic. This
process is isomorphic to the RW (Sn, n ∈ N), by construction of the latter. When
conjugated with the natural isomorphism, σξ acts on (ZN, Q) as: (Sn, n ∈ N) 7→
(Sn+1 − S1, n ∈ N).

Further denote by ((R+)Z, Po) the probability space of the sequences ζ := (ζj, j ∈
Z), where Po is the Bernoulli measure based on the variables ζj defined in Section
2.1. Indicate with σζ the left shift on this space: σζ is an ergodic automorphism of
((R+)Z, Po). Again, there is a natural isomorphism between ((R+)Z, Po) and (Ωen, P ).
Upon conjugation with it, σζ acts on (Ωen, P ) as: (ωk, k ∈ Z) 7→ (ωk+1−ω1, k ∈ Z).
Also, σ−1

ζ acts as: (ωk, k ∈ Z) 7→ (ωk−1 − ω−1, k ∈ Z).

Set Σ := Z
Z
+ × (R+)Z and ν := Qo ⊗ Po, and define T : Σ −→ Σ via

T (ξ, ζ) := (σξ(ξ), σ
ξ1
ζ (ζ)) . (3.17)

We think of (Σ, ν, T ) as a dynamical system. Let us call ξ the dynamical variable and
ζ the environmental variable, or simply the environment. Fix an initial condition
(ξ, ζ). The first component of the dynamical variable, ξ1, determines the jump that
the underlying RW is about to make, namely Y1 = ωξ1. Applying T translates
the environment by the quantity −Y1 (corresponding to |ξ1| discrete shifts in the
direction opposite to the jump), and shifts the dynamical variable, so that the
system is ready for the next jump (determined by ξ2) under the pretense that Y1 is
the origin.

In other words, this dynamical system describes the annealed process from the
point of view of the particle (PVP). This is why we call it the PVP dynamical
system.

Theorem 3.1 (Σ, ν, T ) is measure-preserving and ergodic.

The proof of this theorem is found in Appendix A.1. The isomorphisms ξ ↔ S
and ζ ↔ ω, mentioned earlier, entail that Theorem 3.1 is equivalent to the following:

Corollary 3.2 The mapping

((Sn, ωk), n ∈ N, k ∈ Z) 7→ ((Sn+1 − S1, ωk+S1 − ωS1), n ∈ N, k ∈ Z) (3.18)

on (ZN × Ωen, Q⊗ P ) is measure-preserving and ergodic.

The following technical lemma, needed in the proof of the main result, will also
be proved in Appendix A.1.



11

Lemma 3.3 For ζ ∈ (R+)Z, set Fζ := Z
Z+ × {ζ} (in the remainder, any such set

will be referred to as an horizontal fiber of Σ). Then,

T (Fζ) =
⋃

k∈Z
Fσk

ζ
(ζ) . (3.19)

Furthermore (with a minor abuse of notation) indicate with Qo( · |Fζ) the measure
on Fζ induced by Qo via the identification Fζ

∼= Z
Z+
. T pushes this measure to

T∗Qo( · |Fζ) =
∑

k∈Z
pk Qo( · |Fσk

ζ
(ζ)) . (3.20)

3.3 CLT of the Lévy walk

We will prove Theorem 2.5 by controlling the continuous-time walk (X(t)) through
the discrete-time walk (Yn). To this goal, it is convenient to introduce a quantity
which counts the number of collisions of the process X(t) up to time t. Formally,
for every t ∈ R

+, set

n(t) ≡ n(t;S, ω) := max {m ∈ N | t ≥ τ(m)} . (3.21)

This is a sort of inverse function of the collision time τ(n), defined in (2.6). In
point of fact, when τ(n) is strictly monotonic (which occurs when S has no lazy
component, cf. Remark 2.1), n(t) is a suitable piecewise extension of the inverse of
τ(n).

Lemma 3.4 In view of the definitions (2.6) and (3.21), which depend on (S, ω) ∈
Z
N × Ωen, we have that, (Q⊗ P )-almost surely, equivalently, P-almost surely,

lim
n→∞

τ(n)

n
=Mµ ; (3.22)

lim
t→∞

t

n(t)
=Mµ . (3.23)

Proof. By (2.6) we see that τ(n) is the Birkhoff sum of the function

g(S, ω) := |ωS1 − ωS0 | = |ωS1| = |ωξ1 | , (3.24)

on Z
N ×Ωen, relative to the dynamics (3.18). So (3.22) follows by Corollary 3.2 and

the Birkhoff theorem: for (Q⊗ P )-a.e. choice of (S, ω) ∈ Z
N × Ωen,

lim
n→∞

τ(n)

n
=

∫

ZN×Ωen

g d(Q⊗ P )

=

∫

ZZ+×Ωen

|ωξ1| d(Qo ⊗ P )

=
∑

k∈Z
pk

∫

Ωen

|ωk| dP

=
∑

k∈Z
pk|k|µ =Mµ ,

(3.25)
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having used some of the notation and arguments given in Section 3.2.
Moreover, since by definition n(t) → ∞, almost surely, as t→ ∞, (3.22) implies

that

lim
t→∞

τ(n(t) + 1)

n(t)
= lim

t→∞

τ(n(t))

n(t)
=Mµ . (3.26)

But

lim
t→∞

∣

∣

∣

∣

t

n(t)
− τ(n(t))

n(t)

∣

∣

∣

∣

≤ lim
t→∞

(

τ(n(t) + 1)

n(t)
− τ(n(t))

n(t)

)

= 0 , (3.27)

giving (3.23). Q.E.D.

Lemma 3.5 For P -a.e. ω ∈ Ωen (equivalently, Po-a.e. ζ ∈ (R+)Z) and every ℓ ∈ Z,

lim
n→∞

Eω(ωSn+ℓ − ωSn+ℓ−1) = lim
n→∞

Eω(ζSn+ℓ) = µ . (3.28)

Also, given any positive sequence ψn = o(
√
n), n→ ∞, the above limits are uniform

for |ℓ| ≤ ψn (for a fixed ω, or ζ).

Proof. To start with, the first equality of (3.28) follows trivially by the definitions
of ω and ζ , so we prove the second one.

Again, we use the machinery of Section 3.2. Set h(ξ, ζ) := ζℓ. By (3.17) and
(2.3) we write

h ◦ T n(ξ, ζ) = h(σn
ξ (ξ), σ

Sn

ζ (ζ)) = ζSn+ℓ . (3.29)

Now, recall the definitions given in the statement of Lemma 3.3. Observe that taking
the expectation Eω is tantamount to integrating over the fiber Fζ w.r.t. the measure
Qo( · |Fζ), where ζ corresponds to ω via (2.1). Hence, with the notation

p
(n)
j :=

∑

k1+···+kn=j

pk1 · · · pkn = Q(Sn = j) , (3.30)

we get

Eω(ζSn+ℓ) =

∫

Fζ

(h ◦ T n) dQo( · |Fζ)

=
∑

k1,...,kn

pk1 · · · pkn
∫

h dQo( · |Fσ
k1+···+kn
ζ

(ζ)
)

=
∑

j∈Z
p
(n)
j

∫

h dQo( · |Fσj
ζ(ζ)

)

=
∑

j∈Z
p
(n)
j ζj+ℓ .

(3.31)

In the second equality above, we have applied Lemma 3.3 recursively n times: the
summation is over Zn and each integral is taken over the horizontal fiber specified
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by the integration measure. In the fourth equality we have used that h is constant
along horizontal fibers.

At this point we want to apply Lemma A.4 of the Appendix with aj := ζj+ℓ and
p(n) as above. We need to check the hypotheses of the lemma. First off, p(n) verifies
condition (i) because it is symmetric and half-monotonic (this is, e.g., a consequence
of Lemma A.5, as p is symmetric and half-monotonic by assumption). It also verifies
condition (ii), because the underlying RW satisfies the CLT.

Remark 3.6 This is the only point in the paper where the half-monotonicity of p
is used.

As for the hypothesis on a, we use the ergodicity of the process ζ . Thus, for
Po-a.e. ζ ∈ (R+)Z,

lim
k→∞

1

k

k−1
∑

j=0

aj = lim
k→∞

1

k

−k
∑

j=−1

aj = E(ζ1) = µ . (3.32)

So Lemma A.4 can be applied almost surely in ζ , equivalently in ω. Using the
notation of that lemma, (3.31) becomes

Eω(ζSn+ℓ) =
∑

j∈Z
p
(n)
j aj = En(a) , (3.33)

showing that, for P -a.e. ω ∈ Ωen, (3.33) converges to (3.32), as n→ ∞, which proves
the limit (3.28).

Finally, observe that the underlying random walk is strongly aperiodic by hy-
pothesis: this implies (rather easily) that, as n→ ∞, p

(n)
j−ℓ−p

(n)
j = o(p

(n)
j ), uniformly

in j ∈ Z and |ℓ| ≤ ψn. Since (3.33) can be rewritten as Eω(ζSn+ℓ) =
∑

j p
(n)
j−ℓ ζj, its

limit is the same as for ℓ = 0, uniformly for |ℓ| ≤ ψn. Q.E.D.

We are now ready to prove our main theorem (we will not prove the obvious
Corollary 2.7).

Proof of Theorem 2.5. Let us define n̄(t) := [t/Mµ]. Compare n̄(t) to n(t):
for fixed t, the former is a constant while the latter is a random variable on (ωN, Qω).
For P -a.e. ω ∈ Ωen, we have that, Qω-almost surely,

lim
t→∞

n(t)− n̄(t)

t
= 0 (3.34)

(this follows form Lemma 3.4 and Fubini’s Theorem). Moreover, by Theorem 2.3
and the definition of n̄(t),

lim
t→∞

Yn̄(t)√
t

d
= N

(

0,
µ

M
vp

)

, (3.35)
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for P -a.e. ω. Since X(t) always lies between Yn(t) and Yn(t)+1, it is easy to see that

∣

∣

∣

∣

X(t)√
t

− Yn̄(t)√
t

∣

∣

∣

∣

≤ max

{ |Yn(t) − Yn̄(t)|√
t

,
|Yn(t)+1 − Yn̄(t)|√

t

}

≤ |Yn(t) − Yn̄(t)|√
t

+
|Yn(t)+1 − Yn̄(t)|√

t
.

(3.36)

In light of (3.35), and using Slutzky’s Theorem [18, Thm. 13.18], Theorem 2.5 will
be proved once we prove that, P -almost surely, the two terms in the second line of
(3.36) converge to 0 in distribution, and thus in probability, w.r.t. Qω. We will only
show the convergence of the first term, the second one being completely analogous.

Applying the Portemanteau Theorem [18, Thm. 13.16], it will suffice to prove
that, given an ω for which (3.34) holds, and a bounded Lipschitz function f : R → R,

lim
t→∞

Eω

(

f

( |Yn(t) − Yn̄(t)|√
t

))

= f(0) . (3.37)

So, fix ε > 0. By (3.34), one can find a ‘bad’ set B1 ⊂ ωN, with Qω(B1) ≤ ε/6‖f‖∞,
and a function φ : R+ −→ R

+, with limt→∞ φ(t)/t = 0, such that

|n(t)− n̄(t)| ≤ φ(t) (3.38)

for all realizations of the dynamics in ωN \ B1. Moreover, by (2.12), there exist
another bad set B2 ⊂ ωN, again with Qω(B2) ≤ ε/6‖f‖∞, and a constant C > 0
such that, for all realizations in ωN \B2,

∣

∣Sn(t) − Sn̄(t)

∣

∣ ≤ C
√

|n(t)− n̄(t)|. (3.39)

Altogether, for all realizations in ωN \ (B1 ∪ B2),

∣

∣Sn(t) − Sn̄(t)

∣

∣ ≤ C
√

φ(t). (3.40)

We split the average in the l.h.s. of (3.37) in two parts, restricting it, respectively,
to B1 ∪B2 and its complement G := ωN \ (B1 ∪B2). For the first part, we estimate

Eω

(

1B1∪B2

∣

∣

∣

∣

f

( |Yn(t) − Yn̄(t)|√
t

)

− f(0)

∣

∣

∣

∣

)

≤ 2‖f‖∞Qω(B1 ∪B2) ≤
2

3
ε , (3.41)

where 1A denotes the indicator function of A ⊂ ωN. For the second part, if c is the
Lipschitz constant of f , we write

Eω

(

1G

∣

∣

∣

∣

f

( |Yn(t) − Yn̄(t)|√
t

)

− f(0)

∣

∣

∣

∣

)

≤ c√
t
Eω

(

1G
∣

∣Yn(t) − Yn̄(t)
∣

∣

)

. (3.42)
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By definition of the processes Y , ω, and ζ (cf. Section 2.1),

Yn(t) − Yn̄(t) = ωSn(t)
− ωSn̄(t)

=







































Sn(t)−Sn̄(t)
∑

ℓ=1

ζSn̄(t)+ℓ , if Sn(t) > Sn̄(t) ;

0 , if Sn(t) = Sn̄(t) ;

−
Sn(t)−Sn̄(t)+1

∑

ℓ=0

ζSn̄(t)+ℓ , if Sn(t) < Sn̄(t) .

(3.43)

Therefore, using also (3.40),

Eω

(

1G
∣

∣Yn(t) − Yn̄(t)
∣

∣

)

< Eω



1G

Sn(t)−Sn̄(t)
∑

ℓ=0

ζSn̄(t)+ℓ





≤
(

C
√

φ(t) + 1
)

sup
|ℓ|≤C

√
φ(t)+1

Eω

(

ζSn̄(t)+ℓ

)

.

(3.44)

Since, for t → ∞, n̄(t) ∼ t and φ(t) = o(t), Lemma 3.5 can be applied to the
leftmost term of (3.44). Accordingly, (3.42) and (3.44) imply

Eω

(

1G

∣

∣

∣

∣

f

( |Yn(t) − Yn̄(t)|√
t

)

− f(0)

∣

∣

∣

∣

)

≤ C ′
√

φ(t)

t
≤ ε

3
, (3.45)

for some constant C ′ > 0 and all t large enough. This, together with (3.41), gives
(3.37), and concludes the proof of Theorem 2.5. Q.E.D.

A Appendix: Technical lemmas

A.1 Ergodicity of the PVP dynamical system

In this section we give the prove the ergodicity of the PVP dynamical system intro-
duced in Section 3.2, and another related result.

Proof of Theorem 3.1. We follow the same ideas as in [20, 21, 13]. Let us first
prove that T preserves ν.

Set A := B×C, where B is an elementary cylinder of ZZ
+
and C is a measurable

subset of (R+)Z. It is not hard to see that T−1(A) =
⊔

k∈ZBk × σ−k
ζ (C), where

Bk :=
{

(k, ξ1, ξ2, . . .) ∈ Z
Z
+
∣

∣

∣
(ξ1, ξ2, . . .) ∈ B

}

. (A.1)

By the choice of B and by definition of Qo, Qo(Bk) = pkQo(B). Also, by the
Po-invariance of σζ , Po(σ

−k
ζ (C)) = Po(C). This shows that

ν(T−1(A)) =
∑

k∈Z
ν(Bk × σ−k

ζ (C)) =
∑

k∈Z
pkQo(B)Po(C) = ν(A). (A.2)
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This then extends to all measurable sets A, proving our first assertion. For the
second assertion we need a lemma.

Lemma A.1 Every T -invariant set A ⊆ Σ is of the form A = Z
Z
+ × C mod ν

(meaning that the equality holds up to ν-null sets), where C is a measurable set of
(R+)Z.

Proof of Lemma A.1. We first give some preliminary definitions and results.
Let us endow Z

Z
+
with the distance

d(ξ, ξ′) :=
[

min
{

n ∈ Z
+ | ξn 6= ξ′n

}]−1
. (A.3)

This is an ultrametric distance, namely, ∀ξ, ξ′, ξ′′ ∈ Z
Z
+
,

d(ξ, ξ′′) ≤ max{d(ξ, ξ′), d(ξ′, ξ′′)} , (A.4)

and its (open) balls are the cylinders

Bε(ξ) :=
{

ξ′ ∈ Z
Z+ ∣
∣ ξ′i = ξi, ∀i = 1, 2, . . . , [ε−1]

}

, (A.5)

where, once again, [·] indicates the integer part of a real number. This makes Z
Z+

a Polish ultrametric space, which is an observation that will soon be useful.
Given Bε(ξ), as in (A.5), and an elementary cylinder B ⊆ Bε(ξ), namely B =

{ξ′ | ξ′i = ξi, ∀i = 1, 2, . . . , k}, with k ≥ [ε−1], it is easy to see that

Qo(σξ(B))

Qo(σξ(Bε(ξ)))
=

Qo(B)

Qo(Bε(ξ))
. (A.6)

So this holds for any measurable B ⊆ Bε(ξ). If B is not necessarily a subset of
Bε(ξ), we can only state that

Qo(σξ(B) | σξ(Bε(ξ))) ≥ Qo(B | Bε(ξ)) . (A.7)

(This follows from (A.6), replacing B with B∩Bε(ξ) and using the general inclusion
σξ(B ∩ Bε(ξ)) ⊆ σξ(B) ∩ σξ(Bε(ξ)).)

Now, recall the definitions of Fζ and Qo(· |Fζ) from the statement of Lemma 3.3.
It follows from the above arguments that Fζ is a Polish ultrametric space endowed
with the Borel measure Qo(· |Fζ). By [24, Prop. 2.10], Lebesgue’s Density Theorem
holds. In particular, if Bε(ξ, ζ) denotes the ball of center (ξ, ζ) and radius ε in Fζ

(corresponding to Bε(ξ) ⊂ Z
Z
+
through the identification Fζ

∼= Z
Z
+
), we have the

following:

Lemma A.2 Let A be a measurable subset of Σ and ζ ∈ (R+)Z be such that A∩Fζ

is measurable (this happens for Po-a.e. ζ). Then, a.e. (ξ, ζ) ∈ A ∩ Fζ, relative to
Qo(· |Fζ), is a density point of A ∩ Fζ . This means that

lim
ε→0+

Qo(A | Bε(ξ, ζ)) := lim
ε→0+

Qo(A ∩ Bε(ξ, ζ) |Fζ)

Qo(Bε(ξ, ζ) |Fζ)
= 1 .
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We finally come to the actual proof of the lemma. Let us first assume ν(A) > 0,
otherwise one sets C := ∅ and the proof is finished. Then, by contradiction, we
assume that A is not of the type A = Z

Z+ × C mod ν, that is, it is not a union of
horizontal fibers, modulo null sets. Therefore, for a small enough δ > 0, the set

Cδ :=
{

ζ ∈ (R+)Z
∣

∣ δ ≤ Qo(A |Fζ) ≤ 1− δ
}

(A.8)

has positive Po-measure. Set A′ :=
⊔

ζ∈Cδ
(A ∩ Fζ). By Fubini, ν(A′) > 0.

We claim that we can find a point (ξ, ζ) ∈ A′ which is both a recurrent point to
A′ w.r.t. T (i.e.,

T n(ξ, ζ) ∈ A′ , (A.9)

for countably many values of n), and a density point of A∩Fζ , relative to Qo( · |Fζ).
This is true because, by Poincaré’s Recurrence Theorem, ν-a.a. points in A′ recur
to A′. By Fubini and the definition of A′, this implies that, for Po-a.a. ζ ∈ Cδ,
(ξ, ζ) is a recurrent point (to A′), for Qo-a.e. ξ ∈ A′ ∩ Fζ . Now, consider a typical
ζ in the sense just described and exclude from the recurrent points contained in
A′∩Fζ those that are not density points of A′∩Fζ . By Lemma A.2 this amounts to
excluding a negligible set of points. Any remaining point verifies our claim (in fact,
A′ ∩ Fζ = A ∩ Fζ , by definition of A′).

Therefore, we can find a large enough n that verifies (A.9) and

Qo(A | B1/n(ξ, ζ)) > 1− δ . (A.10)

Notice that, via (3.17) and (2.3), it is easy to find an expression for the iterates of
(ξ, ζ):

T n(ξ, ζ) := (σn
ξ (ξ), σ

Sn

ζ (ζ)) . (A.11)

The above makes it clear that T n acts on Fζ by operating n shifts in the dynamical
variable and mapping the environment to the new environment σSn

ζ (ζ). But, by

(A.5), σn
ξ (B1/n(ξ)) = Z

Z
+
. Therefore, T n(B1/n(ξ, ζ)) = FσSn

ζ (ζ). On the other hand,

using the invariance of A, (A.7) and (A.10), we can write

Qo(A |FσSn
ζ

(ζ)) = Qo(T
n(A) | T n(B1/n(ξ, ζ)))

≥ Qo(A | B1/n(ξ, ζ))

> 1− δ ,

(A.12)

which, in view of (A.8), shows that σSn

ζ (ζ) 6∈ Cδ. But (A.9) and (A.11) imply that

σSn

ζ (ζ) ∈ Cδ, which is the sought contradiction.

Therefore A = Z
Z+ ×C mod ν, for some C ⊆ (R+)Z. We still need to prove that

C is measurable. If not, by [19, Lem. A.1], there exists a measurable C ′ such that
C△C ′ is contained in a null set, implying A = Z

Z+ × C ′ mod ν. Q.E.D.

To end the proof of Theorem 3.1 suppose, again by contradiction, that the system
has an invariant set A, which, by the above lemma, must be of the form A = Z

Z
+×C
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mod ν, with 0 < Po(C) < 1. By the ergodicity of σζ , there must be a subset C ′ ⊆ C,
with

Po(C
′) > 0 , (A.13)

such that σζ(C
′) ⊆ Cc := (R+)Z \ C.

For ζ ∈ C ′, set Bζ,1 := {(ξ, ζ) ∈ Fζ | ξ1 = 1}. Then

Qo (Bζ,1 |Fζ) = Qo

({

ξ ∈ Z
Z
+
∣

∣

∣
ξ1 = 1

})

= p1 > 0 , (A.14)

by the assumptions on (pk) (symmetry, half-monotonocity, and positive variance;
see, however, Remark A.3). Also, T (Bζ,1) = Fσζ(ζ) and σζ(ζ) ∈ Cc. Therefore,

setting Ao :=
⊔

ζ∈C′ Bζ,1, one has that T (Ao) ⊆ Z
Z+ ×Cc, with ν(Ao) > 0 (the latter

inequality coming from (A.13), (A.14) and Fubini’s Theorem). This contradicts the
invariance of A and thus proves the theorem. Q.E.D.

Proof of Lemma 3.3. The proof of Theorem 3.1 (see in particular (A.1)-(A.2)
and the concluding paragraph) shows that T maps Bζ,k := {(ξ, ζ) ∈ Fζ | ξ1 = k}
onto Fσk

ζ
(ζ), pushing the measure Qo( · |Fζ), restricted to Bζ,k, to pkQo( · |Fσk

ζ
(ζ)).

Since Fζ =
⊔

k∈ZBζ,k, both statements of the lemma follow. Q.E.D.

Remark A.3 The proof of Lemma 3.3 helps to show that Theorem 3.1 holds under
much weaker assumptions on the underlying random walk: it suffices to require that
vp > 0. This, in fact, implies that pk > 0, for some k 6= 0. The proof of Theorem
3.1 still functions if, in the last two paragraphs, one substitutes σζ with σk

ζ (also
ergodic) and Bζ,1 with Bζ,k.

A.2 Averaging

The next lemma, which is needed in the proof of the main theorems (cf. Lemma
3.5), proves an assertion that can be roughly described as follows: given a function
a : Z −→ R and an “expanding” sequence of probability densities on Z that are
increasing on Z

− and decreasing on N, the expected value of a relative to these
densities tends to its Cesaro average.

Lemma A.4 Let a := (aj, j ∈ Z) ⊂ R be such that

lim
k→∞

1

k

k−1
∑

j=0

aj = lim
k→∞

1

k

−k
∑

j=−1

aj = ā .

For n ∈ N, let p(n) = (p
(n)
j , j ∈ Z) be the density of a probability distribution on Z,

whose expectation we denote by En, such that:

(i) j 7→ p
(n)
j is increasing on Z

− and decreasing on N;
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(ii) for all r ∈ N, En(1[−r,r]) :=
∑r

j=−r p
(n)
j vanishes as n→ ∞.

Then

lim
n→∞

En(a) := lim
n→∞

∑

j∈Z
p
(n)
j aj = ā .

Proof. For k1, k2 ∈ Z, k1 ≤ k2, set

Uk1,k2(a) :=
1

k2 − k1 + 1

k2
∑

j=k1

aj . (A.15)

Define also

E+
n (a) :=

∞
∑

j=0

p
(n)
j aj , (A.16)

E−
n (a) :=

−∞
∑

j=−1

p
(n)
j aj . (A.17)

Let us approximate (A.16) and (A.17) separately. It is not hard to see (by “slicing”
the density p(n) horizontally) that

E+
n (a) =

∞
∑

j=0

(

p
(n)
j − p

(n)
j+1

)

(j + 1)U0,j(a) . (A.18)

Fix ε > 0. The hypotheses on a imply that ∃r ∈ N so large that, ∀j > r,

|U0,j(a)− ā| ≤ ε/2 ; (A.19)

|U−j,−1(a)− ā| ≤ ε/2 . (A.20)

Set

E+
n,r(a) :=

∞
∑

j=r+1

(

p
(n)
j − p

(n)
j+1

)

(j + 1)U0,j(a) . (A.21)

(A.19) implies that
∣

∣E+
n,r(a)− ā E+

n,r(1)
∣

∣ ≤ ε

2
E+
n,r(1) , (A.22)

with the understandable meaning that 1 also denotes the sequence that is identically
equal to 1.

Analogously, the term (A.17) can be rewritten as

E−
n (a) =

∞
∑

j=1

(

p
(n)
−j − p

(n)
−j−1

)

j U−j,−1(a) , (A.23)
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and, upon defining

E−
n,r(a) :=

∞
∑

j=r+1

(

p
(n)
−j − p

(n)
−j−1

)

j U−j,−1(a), (A.24)

we get through (A.20) that

∣

∣E−
n,r(a)− ā E−

n,r(1)
∣

∣ ≤ ε

2
E−
n,r(1) . (A.25)

If we name En,r(·) := E+
n,r(·) + E−

n,r(·), we obtain from (A.22) and (A.25) that

|En,r(a)− ā En,r(1)| ≤
ε

2
En,r(1) ≤

ε

2
. (A.26)

On the other hand, it is clear from the above arguments that 1 − En,r(1) =
En(1)−En,r(1) is a portion of the mass of p(n) contained in [−r, r], which is measured
by En(1[−r,r]). Therefore, defining A := max|j|≤r |aj | and using (ii), there exists
N = N(ε, ā,A, r) such that, for all n ≥ N ,

1− En,r(1) ≤ En(1[−r,r]) ≤
ε

2(A+ |ā|) . (A.27)

Notice that N can be thought of as a function of ε and the sequence a (for r is also
a function of ε and a). Finally, ∀n ≥ N ,

|En(a)− ā| ≤ |En(a)− En,r(a)|+ |En,r(a)− ā En,r(1)|+ |ā En,r(1)− ā|
≤ (A+ |ā|) (1− En,r(1)) + |En,r(a)− ā En,r(1)|
≤ ε/2 + ε/2 ,

(A.28)

by (A.26) and (A.27). This completes the proof. Q.E.D.

In the main body of the paper, Lemma A.4 is used with p(n) being the probability
density of the underlying random walk at time n. In order to show that such densities
verify condition (i) above, we need another simple lemma.

Lemma A.5 If p and p′ are symmetric and half-monotonic densities on Z (see
definitions in Section 2.1), so is their convolution p ∗ p′.

Proof. Let us first treat the special case p = q(r) and p′ = q(r
′), with r, r′ ∈ N,

where

q
(r)
k =

{

(2r + 1)−1 , −r ≤ k ≤ r ;
0 , |k| > r .

(A.29)

Assume r ≥ r′: this is no loss of generality as the convolution is symmetric. It is
easy to calculate that

(

q(r) ∗ q(r′)
)

j
=

1

2r + 1
·















1 , |j| ≤ r − r′ ;

r + r′ + 1− j

2r′ + 1
, r − r′ < |j| ≤ r + r′ ;

0 , |j| > r + r′ ,

(A.30)
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which is symmetric and half-monotonic. Now, a general p as in the statement of the
lemma can be rewritten as p =

∑∞
r=0(pr − pr+1)(2r + 1)q(r), and analogously for p′.

Hence

p ∗ p′ =
∞
∑

r=0

∞
∑

r′=0

(pr − pr+1)(p
′
r′ − p′r′+1)(2r + 1)(2r′ + 1) q(r) ∗ q(r′), (A.31)

which is symmetric and half-monotonic because it is a countable linear combination
of symmetric and half-monotonic densities, with positive coefficients. Q.E.D.
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for partial support through the Project “Stochastic Processes and Applications to
Complex Systems” (CPDA123182). M. Ligabò acknowledges the Fondazione Cassa
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