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Abstract

Background: Interest in understanding the mechanisms that lead to a particular composition of the Gut Microbiota
is highly increasing, due to the relationship between this ecosystem and the host health state. Particularly relevant is
the study of the Relative Species Abundance (RSA) distribution, that is a component of biodiversity and measures the
number of species having a given number of individuals. It is the universal behaviour of RSA that induced many
ecologists to look for theoretical explanations. In particular, a simple stochastic neutral model was proposed by Volkov
et al. relying on population dynamics and was proved to fit the coral-reefs and rain forests RSA. Our aim is to ascertain
if this model also describes the Microbiota RSA and if it can help in explaining the Microbiota plasticity.

Results: We analyzed 16S rRNA sequencing data sampled from the Microbiota of three different animal species by
Jeraldo et al. Through a clustering procedure (UCLUST), we built the Operational Taxonomic Units. These correspond
to bacterial species considered at a given phylogenetic level defined by the similarity threshold used in the clustering
procedure. The RSAs, plotted in the form of Preston plot, were fitted with Volkov’s model. The model fits well the
Microbiota RSA, except in the tail region, that shows a deviation from the neutrality assumption. Looking at the model
parameters we were able to discriminate between different animal species, giving also a biological explanation.
Moreover, the biodiversity estimator obtained by Volkov’s model also differentiates the animal species and is in good
agreement with the first and second order Hill’s numbers, that are common evenness indexes simply based on the
fraction of individuals per species.

Conclusions: We conclude that the neutrality assumption is a good approximation for the Microbiota dynamics and
the observation that Volkov’s model works for this ecosystem is a further proof of the RSA universality. Moreover, the
ability to separate different animals with the model parameters and biodiversity number are promising results if we
think about future applications on human data, in which the Microbiota composition and biodiversity are in close
relationships with a variety of diseases and life-styles.
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Background
The Gut Microbiota (GM) [1] is found in virtually any
Metazoan, from invertebrates to vertebrates. The human
body, for example, is home to roughly 10 times more
microbial than human cells. The collective genome of
these symbiotic microorganisms (called Microbiome) [2]
constantly interacts with the host genome, forming the so
called Metagenome [3]. As a result of millions of years
of coevolution, the microbial genome stands in dynam-
ical relationship with the host organism and helps it in
crucial functions. These include metabolic processes like
food absorption and short chain fatty Acid (SCFA) and
vitamins production [4], but also the shaping, control
and protection of the immune system development [5]. It
is through the interaction between the different compo-
nents of the Metagenome that the host ‘health phenotype’
is defined [6, 7]. The Microbiome, and especially the
Gut Microbiome (GM) is linked, through an interde-
pendence relationship, to the host immune system [8]
and metabolism [9] and it is crucial for a large num-
ber of physio-pathological conditions and diseases. These
include inflammatory and metabolic diseases [9], such
as Obesity [10], Metabolic Syndrome and Type 2 Dia-
betes [11]. In addition GM composition is influencing
Ageing [12]. Moreover, recent advances in sequencing
methods have led to new knowledge about the role of GM
also on Brain development and neural disorders such as
Autism [13] and Multiple Sclerosis [14]. The bidirectional
cross-talk between host and GM is supported by GM
transplants results (e.g. induction of donor phenotypes
in the host) [10] and by the association of GM compo-
sition with pathological states [6]. Thus, GM is sensitive
to environmental stimuli (particularly to nutrition), hav-
ing an high individual specificity and plasticity and being
modifiable by pharmacological agents such as pre- and
pro-biotics, antibiotics and GM transplants. One of the
main characteristics of Metagenome, that is crucial in the
case of unhealthy people, is the molecular composition of
the intersection between the host and the Microbiome.
This interface is the way by which the host and the Micro-
biota communicate. Such interaction is bidirectional and
history-dependent and can be characterized as a function
of the exchanged metabolic, genetic and immunological
bio-molecules [15].
GM is a complex ecosystem with a complex dynam-

ics, that derives from the interactions with the host
diet, life-style and health state, but also with compo-
nents such as the virome (the set of viruses in the
host body) and the Immune System [16]. Nowadays,
the availability of Next Generation Sequencing Meth-
ods (NGS), for the characterization of bacterial com-
munities, contributed to the creation of a new research
field, called Metagenomics. Metagenomics is the set of
omics measurements that quantify the composition of the

metagenome and the interactions between the host and
the microbiome at multiple levels: DNA (metagenome),
RNA (meta-transcriptome), protein (meta-proteome) and
metabolic network (metabolome). Classical microbiology
largely relied on clonal culture techniques and for this rea-
son turned out to be biased. In the 1990s, it has been
estimated that the currently cultivable microorganisms
represented only a small fraction (less than 1 %) of the
total microbes within a given habitat [7], proving that cul-
ture methods were not able to access the vast majority of
bacterial organisms. The great benefit of Metagenomics is
indeed to overcome such issue. Metagenomics allows to
sample the whole bacterial population, without the need
of culturing and without the need of knowing in advance
which microorganism to look for, as required for exam-
ple by microarrays. This purpose is commonly achieved
by sequencing the 16S rRNA gene. This choice is due to
the fact that the 16S rRNA is highly conserved between
different species of bacteria and, for this reason, deliv-
ers informations about their evolutionary relationships.
Through 16S rRNA sequencing, in particular, one can
sample bacteria in a community obtaining their phyloge-
netic relationships, and this turns out to be particularly
useful if we want to give an ecological description of GM.
The quantification of biodiversity and the modelling of

the dynamics that brings to a certain composition of GM
are important tasks for the assessment of the homeostasis
degree and the ‘carrying capacity’ of ecosystems, as well
as for the prediction of their evolution, and, for this pur-
pose, mathematical models result pretty useful [17]. Here
we propose a new method to describe the GM dynam-
ics from an ecological point of view. We focus on the GM
biodiversity, and in particular on one of its components:
the Relative Species Abundance distribution (RSA). This
is defined within a single phylogenetic level and refers
to how common or rare a species is relative to other
species. Interestingly, ecologists are widely fascinated by
the ecosystems RSA, and the reason for this is that it fol-
lows very similar patterns over a wide range of ecological
communities [18]: in a diverse array of populations, rang-
ing from an open-ocean planktonic copepod community,
to a tropical bats community, but also in a community of
rainforest trees and of British breeding birds, the Relative
Species Abundances are recognizably drawn from a single
family of distributions, ranging from the Log-Series [19]
to a highly skewed and unveiled Log-Normal [20]. Early
attempts to fit observed data with statistical distributions
weremainly inductive approaches. Twomilestones among
these are indeed Fisher’s Log-Series [19]and Preston’s Log-
Normal [20]. Starting from the hypothesis that the num-
ber of collected individuals belonging to a given species
follows a Poisson distribution, Fisher showed that the
number of different organisms observed in a single sam-
ple, if the different species are not equally abundant, can
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be described by a Negative Binomial distribution. Then he
eliminated the zero abundance class (species too rare to
be sampled) and assumed that the total number of species
in a community was infinite. Finally he obtained a Log-
Series distribution that was able to fit different datasets.
A few years later, Preston criticized the Log-Series on
the grounds that it was not a good fit to the data that
he had assembled. Preston argued that RSA distributions
were actually Log-Normal, partly due to the Central Limit
Theorem, and that the Log-Series resulted from under-
sampling. Later, several attempts were made in order
to derive a theory of RSA, that was based on hypothe-
ses about how ecological communities are organized, as
reviewed in [18]. Here we just note that these theories
present many shortcomings, among which a not entirely
exhaustive biological interpretation, the presence of many
parameters, and, besides that, the inability to explain real
data. In this work, we would like to give an explanation for
the GM RSA distribution relying on population dynam-
ics. We would like our model to fit experimental data in
both situations observed by Fisher and Preston (i.e. Log-
Series and Log-Normal like RSA) and we also would like
our model to be simple, without too many parameters and
to have a clear biological interpretation. For this purpose,
we based our work on the ecological neutral theory.
Modern ecological theories can be distinguished in

essentially two main schools of thought: the niche assem-
bly perspective and the dispersal one [18]. The niche
assembly perspective holds that communities are groups
of interacting species whose presence or absence and even
their relative abundance can be deduced from determinis-
tic ‘assembly rules’ that are based on the ecological niches
or functional roles of each species. Here, the concept of
‘ecological niche’ summarizes the interactions between
species and their environment, and is thus defined by two
components: the requirement for an organism of a given
species to live in a given environment (the extent to which
a limiting factor influences the birth and death rate of
that species) and the impact of the species on its envi-
ronment (the extent to which the growth of a population
alters the limiting factor, i.e. the availability of a resource
or the density of a predator or parasite). According to
this view, species coexist in interactive equilibrium and
a stable co-existence among competing species is made
possible by niche partitioning [21]. The other world view
is the dispersal assembly perspective, which asserts that
communities are open, non-equilibrium assemblages of
species largely thrown together by chance, history, and
random dispersal. Species come and go, their presence
or absence is dictated by random dispersal and stochastic
local extinction. Actually we will refer to a particular class
of dispersal theories, those called ‘neutral’, in which eco-
logical communities are structured entirely by ecological
drift (i.e. demographic stochasticity), random migration,

and random speciation. By neutral we mean that the the-
ory treats organisms in a trophically defined community
as essentially identical in their per capita probabilities of
giving birth, dying, migrating, and speciating (ecological
equivalence) [18].
In particular, in this work we show that the GMRSA can

be well described by the simple stochastic neutral model
initially proposed by [22, 23] for the coral-reefs and trop-
ical trees ecosystems. This model neglects species inter-
action and assumes that the number of individuals within
a species could change only because of a birth or a death.
To this birth-death process a further constant influx term
is added. This term includes phenomena such as immi-
gration or speciation but can also be considered as the
mean effect of species interactions.Moreover, the neutral-
ity assumption supposes that all species are described by
the same birth, death and influx parameters, keeping the
model as simple as possible. The stationary distribution
predicted by the model for the RSA is a Negative Bino-
mial distribution. This has the peculiarity of including the
Log-Series as particular case and of being able to fit also
Log-Normal like data, hence is capable to describe both
the common RSA shapes previously observed.
In the following, first we describe the GM data that we

analysed. These include NGS data from [24], that involve
the GM characterization of three different animal species:
chicken, cattle rumen and swine. Starting from NGS data,
we describe how we built empirical RSA distributions for
the GM. In particular, the method includes a clustering
procedure of the data sequences, in which changing the
similarity threshold settings allows to consider the ecosys-
tem at different phylogenetic levels. Then, we deepen the
theoretical model by [22] and we show how the Nega-
tive Binomial distribution is obtained, also introducing
the related biodiversity number, as proposed by Volkov
[18, 22]. Finally, we show our results, according to which
the model well fits the GM RSA and turns out to be
capable to discriminate between the GM coming from
different animal species. This is particularly clear if we
compare the biodiversity numbers obtained for different
animals and for different phylogenetic levels, that results
to be consistent with the second order Hill’s number, a
commonly used biodiversity index.

Methods
We analysed the data from [24], available in the National
Center for Biotechnology Information Sequence Reads
Archive under the accession number [SRA052136.3]. This
study was approved by the Institutional Animal Care and
Use Committee of the University of Illinois and includes
16S rRNA sequencing data (454 Life Sciences pyrose-
quencing) from 5 animals: 1 chicken [SRA:SRR491179]; 2
cattle rumens [SRA:SRR491180, SRA:SRR491181]; and 2
swines [SRA:SRR491182, SRA:SRR491183]. Starting from
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the 16S rRNA sequences, we built the RSA distribution
of the GUT ecological system computing the so called
Operational Taxonomic Units (OTUs) through a clus-
tering procedure based on sequence similarity. This was
performed with four different similarity thresholds (90 %,
93 %, 95 % and 97 %), as explained below. In particular the
RSA was obtained representing the OTUs abundances in
the form of Preston plot [20]. This is the plot of howmany
species (y-axes) have a certain number of individuals (x-
axis), with the x-axis transformed in logarithm to base 2 in
order to compress the information of the otherwise very
long tail of the distribution.
Before deepening the methodology, let us underline that

in order to give an ecological description of the Micro-
biota, it is highly recommended to base the analysis on
de novo OTUs, rather then on some taxonomic classifica-
tion in which sequences are clustered through comparison
with 16S rRNA databases such as RDP [25], Silva [26] or
Greengenes [27]. In fact, although phylotype-based meth-
ods are appealing approaches, since they enable inves-
tigators to place labels onto sequences, indicating their
relationships to previously cultured and characterized
microbes, they are human-made methods and there are
myriad examples of organisms that belong to the same
species that have different phenotypes and organisms with
the same phenotype belonging to different taxonomic lin-
eages, without talking about unclassified organisms or
about the fact that there are at least three different curated
taxonomy outlines that contain significant conflicts with
each other [28]. In order to estimate evolutionary rela-
tionships of organisms, genes, species, etc. the tool to be
used is phylogenetic analysis, that is the analysis of OTUs
[29, 30]. Basing our analysis on OTUs, we will not be able
to give names to species, but we will have the great advan-
tage of avoiding the loss of information due to a taxonomic
classification.
With the aim of building OTUs, we clustered the 16S

rRNA sequences with UCLUST [31]. UCLUST starts
with an empty database in memory and then reads the
sequences in input order. Thus, sequences were previ-
ously sorted by quality, since UCLUST is sequence order
sensitive and needs the highest quality sequences at the
beginning of the input file. The algorithm takes the first
sequence as first seed, and then all other sequences
are processed according to the following statement: if
a sequence is similar to a seed within a fixed similar-
ity threshold, then the query is assigned to its cluster;
if a sequence is instead not similar to any seed, then it
will become the seed for a new cluster. This means that
the between classes distance will be at least (1 - simi-
larity threshold), while the within class distance will be
approximately maximized by such similarity threshold.
Here, the similarity between two sequences is computed
by USEARCH. The sequences are first globally aligned,

then similarity is computed as the fraction of columns
in the alignment that contain identical letters, while the
distance between two sequences is given by (1 - similar-
ity). In this counting, gaps were penalized according to
default settings [31]. UCLUST has the drawback of pro-
ducing clusters that will not have the similarity threshold
as exact maximum distance inside them, but overcomes
two of the main problems of sequencing analysis, that are
time and memory costs. UCLUST is one of the most com-
mon sequences clustering algorithm, and the reason for
that is its great advantage of needing to memorize just the
seeds and to compare the query sequences just with such
seeds.
We applied the UCLUST algorithm using four different

similarity thresholds: 90 %, 93 %, 95 % and 97 %. In this
way, because of the conservative feature of the 16S rRNA
gene previously outlined, we obtained clusters (OTUs),
that can be thought as groups of bacteria of the same taxon
at a particular phylogenetic level [28], for four different
levels. Here, the similarity threshold is what defines the
phylogenetic level at which we compute the RSA, the scale
level at which we study the ecosystem.
Starting from UCLUST results, we estimated the OTUs

abundances, that correspond to species abundances. We
then filtered for singletons (OTUs with just one sequence
inside) in order to minimize the inclusion of sequenc-
ing artefacts [32]. Since the absence of singletons vio-
lates some fundamental assumptions of species richness
analysis, we randomly removed one sequence per OTU,
causing all OTUs with originally two reads (doubletons)
to become singletons, those with three reads to become
doubletons, and so on. The effect of an even more con-
servative interpretation of 454 reads on species richness
analysis was evaluated by consecutively omitting double-
tons and tripletons from the initial data sets. Thus, we
computed the RSA in the form of Preston plot for all
four data sets: singletons retained, singletons excluded,
doubletons excluded and tripletons excluded. The great-
est difference appeared between retaining or removing
singletons from the data set, thus, considering the less
restrictive case, we chose to exclude just singletons, and
to subtract 1 from all the other OTUs abundances. Note
that, even if the singleton removal is supposed to substan-
tially reduce RSA errors due to the sequencing procedure,
the error on the reconstruction of the empirical RSA, due
to all the other experimental steps (starting from the sam-
pling itself ) is not valuable since we have just one GM
sample for animal. However, the fact that we find consis-
tent results for the couples of animals of the same species,
as showed later, suggests that such error can be neglected.
The GM RSA was modelled according to the neu-

tral theory of ecosystems proposed by [22]. Here, the
dynamics of the population of a single species are
governed by generalized birth and death events, that
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include speciation, immigration and emigration. If we
neglect inter-species interactions after the community has
reached a steady state, the number of individuals n of a
given species evolves according to equation

dn
dt

= b · n − d · n + S, (1)

where b and d denote the per-capita density-independent
birth and death rates, while the presence of the con-
stant influx S produces a density dependence effect, which
causes a rare species advantage and which can arise due
to effective rates of immigration, emigration, speciation or
extinction in a local community, but can also be due to
intraspecific interactions. Note that because of the species
equivalence assumption, this equation actually holds for
all the GM species.
In order to take into account stochasticity, Eq. 1 should

be rewritten in a probabilistic form, as accomplished by
the Chemical Master Equation [33, 34]

∂Pn(t)
∂t

= Pn−1(t)bn−1 +Pn+1(t)dn+1 −Pn(t)(bn +dn)

(2)

Here the influx S has been included in the birth term,
setting

bn = b · (n + ϒ), (3)

where ϒ = S/b, while the death rate simply is

dn = d · n. (4)

The stationary solution is easily obtained exploiting
the current probability conservation condition (detailed
balance):

Pn = P0
n−1∏

i=0

bi
di+1

= P0
n−1∏

i=0

b · (i + S/b)
d · (i + 1)

. (5)

Here we consider n > 0 and we can deduce P0 from
the normalization condition

∑
n≥0 Pn = 1. The stationary

solution turns out to be a Negative Binomial distribution

Pn = (1 − b/d)S/b

�(S/b)
(b/d)n

n!
�(n + S/b). (6)

with two parameters: b/d and S/b.
The average number of species with n individuals, given

the total number of species N, is

φn = N · Pn. (7)

Since the zero abundance class can not be observed, the
mean number of observed species is

Nobs = N − φ0 = N − N · (1 − b/d)S/b, (8)

and the average number of species actually in the commu-
nity, that is the RSA normalization factor, is

N = Nobs
1 − (1 − b/d)S/b

, (9)

from which

PRSA(n) = Nobs
1 − (1 − b/d)S/b

(1 − b/d)S/b

�(S/b)
(b/d)n

n!
�(n + S/b),

(10)

where

θ = Nobs(1 − b/d)S/b[
1 − (1 − b/d)S/b

]
�(S/b)

= Nobs[
(1 − b/d)−S/b − 1

]
�(S/b)

(11)

is the Hubbell biodiversity number [18], as illustrated in
Volkov’s work [22].

Results and Discussion
Plotting the Microbiota RSA distribution in the form of
Preston plot revealed a first interesting behaviour of this
ecosystem. In fact, Fig. 1 shows that if we consider differ-
ent phylogenetic levels, that is we build the OTUs using
different similarity thresholds, we obtain RSA distribu-
tions with diverse shapes. More exactly, with a threshold
of 97 %, the RSA almost resembles a Log-Series distribu-
tion, while shifting towards lower similarity percentages,
the RSA looks always more Log-Normal like. Actually, a
similar trend of the RSA have been observed in [22] for
the coral-reef ecosystem, in which the authors firstly con-
sidered many small semi-isolated local communities and
then assembled them into bigger and bigger metacommu-
nities. So, it seems that considering the Gut Microbiota
ecosystem at higher phylogenetic levels somehow corre-
sponds, from a dynamical point of view, to assembling
semi-isolated local communities into metacommunities.
Moreover, in the past the RSA shape has been described
in terms of Log-Series or Log-Normal distribution [18],
but the Log-Series is a special case of the Negative Bino-
mial, that is obtained when S/b → 0 (see Eq. 6) [22], and,
for what concerns the Log-Normal, it has been proved not
to be an appropriate null model for the RSA [35], and its
bell-shaped cases can be well described also by the Neg-
ative Binomial distribution, due to the fact that, dealing
with experimental data, these two distributions can take
on similar shapes and are often hard to distinguish in
practice [36].
Our second analysis was to fit the GM empirical RSA

with the Negative Binomial distribution 10. As already
pointed out, because of its very long tail, the RSA is
represented in the form of Preston plot, i.e. with a log-
arithm to base 2 x-axis. In this way, each bin actually
contains the sum of the number of species with abun-
dance category between its minimum and maximum (e.g.
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Fig. 1 Preston plot of one cattle rumen sample. Empirical RSAs have been built considering four different similarity threshold: 90 %, 93 %, 95 % and
97 %. The RSA tends to become more Log-Series like for higher similarity thresholds, that correspond to finer phylogenetic levels

bin
[
22, 23

)
represents the number of species having

4, 5, 6 or 7 individuals). Thus, the fit was computed con-
sidering the sum of the Negative Binomial distribution
from the minimum to the maximum of each bin, that
can be simply obtained subtracting the Negative Binomial
cumulative in the minimum from the Negative Binomial
cumulative in the maximum of the bin. Figure 2 shows
the result for one swine sample. The model fits well the
Gut Microbiota RSA and we obtained good R-squared
(> 0.89) for all samples at all the similarity thresholds
considered. Let us observe that, in truth, there is dis-
agreement between the model and empirical data in the
RSA tail, that is for high abundance categories. This sug-
gests a deviation from the neutrality assumption. How-
ever, we can state that Volkov’s neutral model [22], that
contemplates the simplest case in which species equiv-
alence holds, is a good approximation of the empirical
GM RSA.
After fitting the data with the Negative Binomial model,

we exploited our result to assess if the model was able to
discriminate between different animal species. We stud-
ied the variation of the parameter S/b with the similarity
threshold, that is with the phylogenetic scale at which we
observe the system, by plotting S/b versus the similarity
threshold for each sample. Figure 3 shows the result. In
general, for all samples S/b tends to diminish as the sim-
ilarity threshold gets higher. This result is consistent with

our qualitative description of the Preston plots, in which
we assessed that the empirical RSA looked more Log-
Series like for higher similarity thresholds (Fig. 1), in fact,
as already pointed out, the Negative Binomial distribution
tends to a Log-Series for S/b → 0. Moreover, S/b results
different for each animal group, especially at low similar-
ity thresholds, and clusters together animals of the same
species. This result is particularly interesting because of
the biological meaning of S/b, or better of S. As exposed in
the model description, this parameter is a constant influx
term that takes into account effects such as immigration
or speciation, but that can also be considered as a mean
field effect of all external factors that influence the micro-
bial community: diet, basal metabolic rate, health state,
and so on.
Finally, we computed the biodiversity number θ

proposed by Volkov [22] through Eq. 11 using the
fit parameters. Figure 4 shows how θ increases at
higher similarity thresholds, pointing out that biodi-
versity increases at lower phylogenetic levels. More-
over, this parameter is capable to distinguish the animal
species, exhibiting similar values and trends for ani-
mal of the same species and separating animal from
different species. In order to compare our result with
other commonly used biodiversity indexes, we com-
puted, for all samples at the four similarity thresh-
olds, the first and second order Hill’s numbers [37, 38]
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Fig. 2 Fit of one swine’s RSA. Empirical RSA (gray histogram) and fit with Eq. 10 (black line and dots) relative to one swine sample for the four similarity
thresholds considered

H1 = e−
∑N

i piln(pi) (12)
and

H2 = 1
∑N

i p2i
(13)

where pi is the fraction of individuals in species i and N is
the total number of species (OTUs). H1 and H2 are biodi-
versity estimators, that reach their maximum when every
species has just one individual and the ecosystem has as

many different species as possible, and shift towards their
minima when all the individuals of the ecosystem belong
to the same species. Figure 5 (left) and (right) show that
also these diversity indexes discriminate between different
animals; H1 separates just the chicken from the mam-
malians, butH2 separates all the three species, confirming
that different animals Microbiota have different ecologies.
Moreover, the biodiversity index θ computed with our
modelling shows the same trend as Hill’s numbers, and in
particular animal species are separated in exactly the same

Fig. 3 S/b versus similarity. Plot of the parameter S/b versus the similarity threshold used in computing the OTUs for all five samples. Note that S/b
differentiate the three animal species considered and that it tends to diminish for high similarity thresholds, indicating that the RSA becomes more
similar to a Log-Series, as attended from Fig. 1
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Fig. 4 θ versus similarity. Hubbell biodiversity number θ [18, 22] computed with Eq. 11 for the five animals GM at the four similarity thresholds
considered. Biodiversity increases with similarity and clusters animals according to their belonging species

order as in H2. Comparing Fig. 4 with Fig. 5 it is clear that
the different animals GM biodiversities estimated with the
two methods have the same behavior.

Conclusion
The Gut Microbiota behaves like an organ in the host
organism and strictly interacts with that, participating to
its homeostatic state, including health status. This is the
reason for the growing interest in the dynamics that yield
a particular GM composition. Here we showed that the
Gut Microbiota can be described within the framework of
ecological system, suggesting that such description could
be helpful in the understanding of this interaction and in
the discrimination of different Gut Microbiota.
We analysed GM sequencing data from [24], that

include 5 different animals (one chicken, two swines and
two cattle rumens). The stochastic neutral model pro-
posed by Volkov for the coral-reefs and tropical trees
ecosystems [22] was applied to the GM RSA and showed
a good agreement with empirical data. An exception is

found in the RSA tail, in which the model does not fit
well the data. Such discrepancy implies a deviation from
the purely neutral model, that anyway can be considered
a good and simple approximation of the GM RSA. More-
over, the fact that this model works for such different
ecosystems (coral-reefs, tropical forests and Gut Micro-
biota) emphasizes the universality of the RSA distribution
and of the mechanisms that cause it, as suspected bymany
authors [18].
We showed that this simple neutral model, in which

species are considered to be equivalent and species inter-
action is neglected, is also able to differentiate between the
different animal species from which the Microbiota was
sampled. In fact, the S/b parameters of animals belonging
to the same species cluster together, while separate from
those belonging to other species. This is evident if we plot
S/b versus the similarity threshold used for OTU compu-
tation. The curves drawn by the S/b of different animals
show different trends, while being alike for animals of the
same species, and this means that different animals can

Fig. 5 H1 and H2 versus similarity. First (left) and second (right) order Hill’s numbers for the five animals GM at the four similarity thresholds considered.
The result is consistent with the biodiversity number θ
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Fig. 6 Human GM RSA and fit with Eq. 10. RSA of one human Gut
Microbiota from [12] and fit with Eq. 10. OTUs were built with UCLUST
with 95 % similarity threshold

be distinguished according to the influx parameter S, that
has also a biological interpretation, being related to den-
sity dependence effects. For all samples S/b decreases at
higher similarity thresholds. This indicates that the RSA
extends from a Log-Series like to a bell-shaped Nega-
tive Binomial distribution when shifting from thinner to
broader levels in the phylogenetic tree, a phenomenon
analogous to the one observed for the coral-reefs and
tropical trees ecosystems when local communities were
assembled into meta-communities.
Finally, we showed that the biodiversity number θ

derived by this neutral model increases with similarity and
again differentiates between animals. This result is con-
sistent with the biodiversity computed through the first
and second order Hill’s numbers, with the difference that,
whileH1 andH2 simply relies on the fraction of individual
per species, θ is based on a dynamical explanation of the
ecosystem.
The study of the animal GM is very useful both for

the animal health and for the industry related to animals,
but of course, as human beings, our main interest could
be more on human health and human GM. We began to
analyse some human data approved by the Cork Clinical
Research Ethics Committee, from [12], following a simi-
lar procedure. Figure 6 shows the result for one human
GM sample clustered with a 95 % similarity threshold.
The model seems to work well also on human samples,
suggesting that it could describe the GM of a wide range
of organisms. In future, we will deepen the study of the
human Microbiota RSA with the aim of building a pre-
dictive model, starting from the RSA distribution, that
could be helpful in facing different inflammatory and
metabolic diseases, that are, as previously outlined, closely
related to the Microbiota composition. We surmise that
the dynamic properties of the GM, caused by its eco-
logical complexity and interactions with the host, can be

modelled within the framework of stochastic population
dynamics, including classical models such as predator-
prey and ecological/microbial growth equations as species
Lotka Volterra and Chemostat growth.
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