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Abstract

Inspired by recent work on robust and fast computation of 3D Local Reference Frames (LRF), we propose a

novel pipeline for coarse registration of 3D point clouds. Key to the method are: (a) the observation that any two

corresponding points endowed with a LRF provide a hypothesis on the rigid motion between two views, (b) the

intuition that feature points can be matched based solely on cues directly derived from the computation of the

LRF, (c) a feature detection approach relying on a saliency criterion which captures the ability to establish a LRF

repeatably. Unlike related work in literature, we also propose a comprehensive experimental evaluation based

on diverse kinds of data (such as those acquired by laser scanners, Kinect and stereo cameras) as well as on

quantitative comparison with respect to other methods. We also address the issue of setting the many parameters

that characterize coarse registration pipelines fairly and realistically. The experimental evaluation vouches that

our method can handle effectively data acquired by different sensors and is remarkably fast.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems I.4.3 [Image Processing and Computer
Vision]: Enhancement—Registration I.4.6 [Image Processing and Computer Vision]: Segmentation—Edge and
feature detection

1. Introduction

The majority of 3D sensors used to acquire shape informa-
tion, such as laser scanners, stereo and time-of-flight cam-
eras, structured light systems, share the inability to scan the
entire object at once. Indeed, a single acquisition captures
only the portion of the object seen from the viewpoint of the
sensor. This issue can be dealt with by acquiring the object
from different vantage points so to cover the entire surface.
Yet, upon completion of the acquisition session, the partial
views (hereinafter also referred to as scans) are not aligned
coherently but each is represented in its own reference frame
as determined by the vantage point of the sensor. Therefore,
views have to be aligned with respect to a unique reference
to obtain the final reconstruction of the object. This process,
known as 3D Registration, is most desirably accomplished
without assumptions on the relative position and orientation
of the views at hand and it is typically addressed by trying to
determine the rigid motion that aligns any of the two views
at a time. This alignment task, referred to as Pairwise Regis-

tration, is ordinarily faced by a two-step procedure. The aim
of the former is solely to provide a sufficiently correct align-
ment to the latter, which then attends to refine the registration

until it converges. On condition of such good initial guess,
the second step is solved effectively by the ubiquitous Iter-

ative closest points algorithm (ICP) [YM92,BM92], or one
of its variants [RL01, LW09]. While research on fine regis-
tration can be considered to be quite consolidated, new ap-
proaches to the open problem of the initial coarse alignment
are proposed every year in literature.

The coarse registration methods published during the last
two decades can be categorized into global and local ap-
proaches. Prominent methods within the former category
rely on Principal Component Analysis [CYL98], on Ex-

tended Gaussian Images [MPD06], as introduced by Horn in
[Hor84], as well as on Algebraic Surface Models [TCC98].
All these methods try to find the mapping between the two
surfaces by computing descriptions that globally represent
the views. Such criteria find it difficult to deal with nuisances
such as point density variation, noise and missing regions
due to self-occlusions, thereby failing when the overlap be-
tween the two surfaces is limited. To overcome these issues,
local methods have become established. A set of feature
points is extracted from both views and the local neighbour-
hood of each point (hereinafter support) is projected onto a
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2 A. Petrelli & L. Di Stefano / Pairwise registration by local orientation cues

suitable feature space so as to obtain a description invariant
(or covariant) to pose and as robust as possible to the nui-
sances induced by acquisition. Then, correspondences be-
tween local features are established based on similarities of
descriptions, so that, eventually, the rigid motion that best
aligns corresponding feature points is easily computed by a
robust estimator, such as e.g. RANSAC [FB81]. Local meth-
ods have proved to be significantly resilient to nuisances
such as those mentioned above and hence allow registering
view pairs that share just a limited portion of surface.

Indeed, not all the proposed feature descriptors are in-
herently pose-invariant. For example, both [BSL11] and
[FHK∗04] compute multiple descriptions, one for each an-
gular subdivision of the support. This requires the match-
ing stage to perform circular shifts in order to evaluate
the similarity between two descriptors. In other propos-
als, though, the description method is itself endowed with
invariance to pose. Spin Images [JH99], FPFH [RBB09]
and Normal/Integral Hash [ART10] are histograms wherein
the contributions of the points within the support are re-
lated to the normal at the feature point only. [CCFM08]
treats feature points by Hidden Markov Models that intrin-
sically own pose invariance, whereas [LG05] and [Mas09]
take the magnitude of the Fourier Transform of the descrip-
tor, thereby gaining invariance to rotation which is encoded
into the phase. However, the most widespread approach (
[KK12,MBO06,BNSN12,dSFMMH11,SM92,CJ97,SA01,
Zho09,TSD10b,TSD10a,KPW∗10,ZBH12]) to attain pose-
invariance deploys a Local Reference Frame (LRF) cen-
tered on the feature point and attached to the surface re-
gardless of its orientation. Thereby, description can encode
local shape traits with respect to a canonical reference as-
sociated with the feature point. The findings reported in
[TSD10b, PD11, PDS12] highlight clearly how the repeata-
bility† of the computation of the LRF is key to robustness of
the description and, accordingly, to the performance of the
overall feature matching process.

Although effective and fast algorithms per-
taining their computation have been devised
[TSD10b, PD11, dSFMMH11, PDS12], in the field of
registration LRFs have so far only been considered instru-
mental to feature description. Conversely, in this paper
we propose a different and novel registration paradigm,
which stems from the observations that LRFs can indeed
provide basic shape cues and that two corresponding points
equipped with their LRFs allows the rigid motion that aligns
two views to be computed. More precisely, we rely on the
method proposed in [PDS12] to compute highly repeatable
LRFs at feature points and show how such computation

† An LRF algorithm is said to be repeatable when it provides the
same canonical orientation across different views of a surface patch.
Specific figures of merit to quantify this property have been pro-
posed in literature [TSD10b,PD11,PDS12].

provides the core of a coarse registration pipeline which
does not require a costly feature description stage. Thanks to
the minimal feature description, which also implies a light
downstream correspondence process, the ensuing pipeline
turns out remarkably fast without any loss of registration
efficacy.

It is worth pointing out that the idea of using the LRF at-
tached to points to estimate the rototranslation to align two
views can be found also in [MW08], [FA96] and [MBO06].
However, such papers rely on a single correspondence,
whilst we deploy an Hough Voting scheme [TDS10] to ro-
bustly account simultaneously for many correspondences.
More importantly, the pipeline in [MBO06] follows the stan-
dard paradigm whereby LRFs are primarily deployed to es-
tablish a canonical reference for the purpose of feature de-
scription. On the other hand, the work in [FA96] turns out
infeasible unless views consist of quite a small number of
points, as it consists in a RANSAC-based approach bound to
operate with just a small fraction of outliers and it mandates
running as many nearest neighbour searches as the number
of points to determine the consensus set.

Although our registration pipeline can be feed with any
kind of 3D feature points, as a second contribution of this
paper we propose a novel detector specifically conceived to
provide features suited to our method. In particular, we ar-
gue that the underling saliency cue should capture the ori-

entability of features, i.e. the ability to compute the LRF re-
peatably despite feature localization being possibly inaccu-
rate. Accordingly, we develop an efficient algorithm which
conveniently deploys the observed relationship between ori-

entability and flatness to quickly extract features particularly
suitable for our pipeline and uniformly distributed through-
out the views, the latter being a beneficial property for coarse
registration.

The third contribution of this paper concerns the exper-
imental evaluation. Indeed, between all those cited up to
this point, most papers present experiments on data acquired
with a sole type of sensor, while just a few of them consider
more than one modality. Even more questionably, no pa-
per attempts a comparison to other proposals. Usually, only
the assessment between different variants of the proposed
algorithm is presented and, sometimes, no quantitative re-
sults are provided. The only exception concerns [MBO06],
which considers three well-known datasets and compares the
proposed method to a pipeline based on Spin Images. Fur-
thermore, though a significant number of surveys have been
published (see e.g. [TCL∗13]), only one experimental evalu-
ation has been issued ( [SMFF07]). Unfortunately, it consid-
ers proposals that nowadays would be regarded as baseline
methods. Such condition of things might be due to the lack
of an acknowledged benchmark, let alone standard method-
ologies, on which to ground the evaluation process. This is-
sue is worsened by the need to obtain and make proper use of
the author’s original implementation for the sake of fairness
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Feature matching

based on distance D

Outlier removal:

3D Hough voting

Rigid motion estimation:

RANSAC + Abs. Orientation
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feature points
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Figure 1: Outline of the proposed pipeline: LRF computation is key to match feature points based on an elementary shape cue

(D) as well as to prune most outliers by Hough Voting. The final pose estimation is accomplished by RANSAC.

in the evaluation, as well as by that of running lengthy pro-
cesses to tune, on diverse kinds of data, the many parameters
which typically characterize coarse registration algorithms.
As a result, we found it exceedingly difficult, if not impossi-
ble, to shed light on which coarse registration pipelines are
most effective and under which conditions.

In this paper we, therefore, carry out an extensive ex-
perimental evaluation on a large ensemble of datasets ac-
quired with different sensors and show how our method eas-
ily adapts to the different modalities. Moreover, we compare
quantitatively our proposal to a pipeline relying on the popu-
lar Spin Image descriptor as well as to two more recent meth-
ods. The comparison neatly proving that our algorithm is ca-
pable of aligning many views that cannot be handled by the
three other considered methods. Regarding the Spin Image

pipeline (SI), proposed in [JH97], we have used the imple-
mentation available in theMesh Toolbox‡. Concerning more
recent methods, the former is the 4-Points Congruent Set al-
gorithm (4PCS) by Aiger et al. [AMCO08] while the lat-
ter is a recent local approach introduced in [BSL11,BSL12]
(BSL12) which works on range images only.

The paper is structured as follows. Section 2 describes the
proposed coarse registration pipeline based on coherently
aligning the LRFs attached to a set of feature points extracted
from two views. Section 3 addressed the design of a fea-
ture extraction algorithm conceived to detect points suited
to improve the effectiveness of the proposed pipeline with-
out penalizing its computational efficiency. The next sec-
tion concerns the experimental evaluation: we list the con-
sidered datasets, explain the adopted methodology and pro-
vide both quantitative as well as qualitative results. Section 5
concludes the paper by outlining some planned extensions of
this work.

2. Pipeline Description

Given two partial views of an object acquired from different
vantage points, VI and VJ , the aim of a pairwise registration
pipeline is to find the rigid motion that aligns the views so

‡ http://www.cs.cmu.edu/~vmr/software/

meshtoolbox/introduction.html

that the shared surface portions do overlap. Our method, out-
lined in Fig. 1, starts by extracting two sets of feature points,
FI and FJ , from the two views. This can be achieved either
by random selection of a given number of points or by the
feature detection algorithm described in Section 3.

The second step of our pipeline differs significantly from
mainstream literature approaches. As explained in Section 1,
we dismiss the time-consuming description stage carried out
at this level of the pipeline and instead keep only the Local
Reference Frame (LRF) computation ordinarily devoted to
endowing description with invariance to pose. Purposely, we
deploy the method introduced in [PDS12], which requires
the normals§ associated to points and the computation of the
mesh resolution (hereinafter mr, computed as either the av-
erage length of the edges of the meshes or, should the dataset
consist of point clouds, the average distance between neigh-
bouring points). Given a feature point p, the algorithm starts
by robustly estimating the z axis (colored in blue in Fig. 2)
as the normal to the plane, πz, that best fits the points within
a small spherical support of radius Rz centered at p (depicted
in blue in Fig.2). The sign of the z axis is disambiguated so as
to orient it coherently to the average normal computed over
support points. It is worth pointing out that the algorithm is
not critically affected by the stability of the computed nor-
mals as they are used - after having been averaged - only to
disambiguate the sign of the z axis. A different support is
considered for estimation of the x axis, namely the intersec-
tion between the surface and the spherical shell centered at
the feature point and defined by the radii pair [0.85×Rx,Rx]
(depicted in red points in Fig.2). Considering such points,
the signed distance from plane πz is evaluated and the point,
pD, exhibiting the largest distance, D, is selected. The x axis
(represented in red in Fig. 2), is attained by projecting onto
πz the vector from the feature point to pD. The y unit vector
(shown in green in Fig. 2) is then given by the cross-product
z × x.

The method in [PDS12] possesses traits that render it par-

§ The normals are computed by the vtkPolyDataNormals function
of the VTK library, which computes the normal of each triangle and,
then, computes the normal of each point by averaging the normals
of the triangles connected to the point.
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Figure 2: An example helping to describe the computation

of the local reference frames.

ticularly suited to the task of registration. First of all, the
repeatability of the LRFs tends to increase significantly with
the support size Rx. The main nuisance that would hinder re-
peatability along with increasing such a size turning out clut-
ter, which, however, is not present in the registration task.
This vouches that the method is robust to missing surface
portions within the neighbourhood of a point, as it would
happen at features located close to the boundaries of a view.
Indeed, the repeatability of a LRF only depends on whether
point pD ends up or not in a missing region, such “high-
est” points tending to better withstand changes of the van-
tage point as they are less likely to be occluded by other sur-
face patches. This is a quite favorable property in registration
applications, as, when the views in a pair are acquired from
angularly distant viewpoints, and thus are hard to align, most
of the limited overlap is found at boundary regions. Another
benefit of the approach dwells on its robustness to point den-
sity variations, both uniform, as induced by changes of the
acquisition distance, and non-uniform, as determined by out-
of-plane rotations of the sensor. Finally, the algorithm comes
out fast even when applied to wide supports due to the small
fraction of points actually involved in the computation.

Any pair of corresponding feature points equipped with
correctly established LRFs defines the sought rigid mo-
tion. Stemming from this observation, the next stages of our
pipeline aim at sifting out from the set of all the FI × FJ can-
didate pairs a sizable subset of correspondences to estimate
the rototranslation to align the views, i.e. to bring them to
the same reference frame. We found a good cue to be the
distance, D, inherently associated with each feature point
upon computation of the LRF. Indeed, as the LRF algorithm
establishes a canonical reference, D turns out to be a basic
measurement related to the local shape of the surface around
the feature point. Accordingly, assuming LRFs to have been
correctly established, corresponding features should exhibit
similar D values. This property can be exploited to discard
candidate correspondences between feature points showing
significantly different D values. To this purpose, the differ-
ence Dij =

∣∣Di−Dj

∣∣ is computed and normalized with re-
spect to Dmax =maxi,j

(
Dij

)
for each candidate pair. If the

normalized difference, D̃ij =
Dij

Dmax
, is above a threshold, TD,

the pair is discarded. This is vouched by Fig. 4, in which we
consider two very different datasets and show as a blue curve

the pdf of D̃ij, p
(

D̃ij|P
)
, for good correspondences, P. De-

spite the diversity in the data, both curves look very similar
and clearly show that when D̃ij exceeds a certain threshold
(such as e.g. 0.2) a feature correspondence is unlikely to be
correct.

The proposed matching process is really fast, as it boils
down to sorting both the features in FI and FJ with respect
to D and simultaneously scanning the sorted lists to collect
those pairs that do not satisfy the previous pruning condi-
tion. In standard pipelines, instead, the matching stage is
typically expensive as it involves computing distances in a
high-dimensional description space so cyanas to retain pairs
of features appearing close one to another in that space. Fur-
thermore, if either of the two supports around correspond-
ing features gets spoiled due to missing surface regions, the
associated descriptors will be corrupted alike, so that, typ-
ically, the features would result far away one to another in
the description space. This does not happen in our matching
scheme due to the LRF algorithm being resilient to miss-
ing regions: as long as the LRFs have been correctly estab-
lished, the D values related to two corresponding features
turn out similar. The proposed matching approach turns out
also very robust to noise. Indeed, the D value of the “high-
est” point pD is typically large and, as such, it is unlikely
that noise at pD would decrease D as much as to promote
another point far away from pD to become the “highest”
point. More likely, noise may promote another point in the
vicinity of pD, which, however, implies a tolerable error.
Fig. 3 shows the result of an experiment carried out on the
Bunny dataset in order to analyze the behavior of the matcher
while different levels of Gaussian noise are injected into the
data. For each view, 2000 points have been randomly ex-
tracted and matched setting TD = 0.01 (see Table 1) so to
evaluate the mean number of correct (TP) and wrong (FP)
correspondences established across all 45 view pairs. More-
over, the chart reports the number of correctly aligned LRFs
(TP_LRF) according to the figure of merit Ā introduced in
[PDS12]. Hence, Fig. 3 highlights clearly the robustness to
noise of the matching process as the curves remain very sta-
ble as the noise level increases.

On the other hand, our basic shape cue D has a rather
poor discriminative power compared to a high-dimensional
descriptor, so that measuring close (or even identical) val-
ues cannot be treated as a sufficient condition to declare two
features as corresponding. This is shown, again, in Fig. 4,

where the red curves represent p
(

D̃ij|N
)
, i.e. the pdf of

D̃ij concerning wrong correspondences (N). Though choos-
ing a suitable threshold, TD, somehow in the range [0,0.2],
assures the preservation of the majority of inliers, it still
brings in a large percentage of false correspondences. There-
fore, we further prune outliers by enforcing geometric con-
sistency constraints according to the Hough Voting method
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Figure 3: Feature matching on the Bunny dataset with in-

creasing noise. The blue and red solid curves report, re-

spectively, the average number of correct (left vertical axis)

and wrong (right vertical axis) correspondences. The blue

dashed curve highlights the average number of correct cor-

respondences yielding aligned LRFs.

proposed in [TDS10], which, again, relies on the availabil-
ity of repeatable LRFs attached to features. First, for each
feature Fj in VJ , the centroid CJ of VJ is expressed with re-
spect to LRFj , i.e. the canonical reference attached to Fj,

in order to obtain the set of LRF j
J(CJ), where the notation

LRF
j
J(.) expresses the change of basis from the global ref-

erence frame ofVJ to LRFj. Then, for each pair of correspon-
dences

(
Fi,Fj

)
, the change of basis from LRFi to the global

reference of VI , LRF
I
i (.) is computed and applied to the

transformed centroid of VJ : LRF
I
i

(
LRF

j
J (CJ)

)
. In other

words, for each pair of correspondences, a candidate roto-
translation RT i

j (.) is estimated as the transformation that

aligns LRFj to LRFi: RT
i
j (.) = LRF

I
i

(
LRF

j
J (.)

)
. This

is used to move the centroid CJ of VJ to the new position
RT i

j (CJ). Correct correspondences
(
Fi,Fj

)
will vote coher-

ently for the position of CJ in VI , i.e. the estimated motions
will tend to localize RT i

j (CJ) in a unique position within
the 3D volume associated with VI , which is referred to as
Hough Space in [TDS10].
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Figure 4: Probability density functions of normalized dif-

ferences, D̃ij, for feature correspondences dealing with the

high-quality Neptune dataset (left) and low-quality Duck-

Kinect (right) dataset (see sec. 4.1). Blue and red curves

concern correct and wrong correspondences respectively.

To implement the Hough Space, we compute the centroid
and standard deviations of the x,y,z coordinates of the points
inVI . The origin of the Hough Space is given by the centroid

and each dimension is taken as large as 4 times the corre-
sponding standard deviation, so as to consider about 95% of
the points of VI and neglect possible outliers far away from
the centroid. Moreover, the size of each dimension is fur-
ther enlarged by a factor fhough, to allow rotated centroids to
fall outside the tight bounding volume around VI . The thus
defined volume is evenly quantized into cubic bins of side
Sbin. Each of the RT

i
j(CJ) votes for the bin hit by the roto-

translated centroid. Then, bin scores are computed by accu-
mulating the votes falling into the 3× 3× 3 neighbourhood
centered at each bin. Eventually, the bin showing the highest
score is selected in order to sift out the correspondences to
be used to estimate the rigid motion to align the views.

The matching process based on the distance D and the
Hough voting stage contribute synergistically to effective fil-
tering of wrong correspondences. For example, considering
again the experiment of Fig. 3, when exacting 2000 ran-
dom features from each partial view of Bunny, the matching
stage sifts out, on average, 2.66% of all the FI × FJ can-
didate pairs, i.e. 106768 correspondences, whereas the fur-
ther pruning performed by the Hough voting delivers about
0.54% of the pairs provided by the matching process, so to
forward to the final stage of our pipeline only 561 correspon-
dences on average.

Nonetheless, such pairs are not guaranteed to be inlier
correspondences only. Indeed, for the sake of memory ef-
ficiency, the method in [TDS10] relies on a 3-dimensional
(translation only) rather than 6-dimensional (translation plus
rotation) Hough Space, thereby allowing, in principle, differ-
ent rigid motion hypotheses to vote for the same bin. Like-
wise, quantization effects may determine different hypothe-
ses to collapse into a single bin. Therefore, given the cor-
respondences associated with both the highest bin and its
neighboring bins, we carry out the final rigid motion estima-
tion stage robustly by applying the standard Absolute Orien-
tation algorithm proposed in [Hor87] within the RANSAC
framework.

3. Feature Extraction

The registration pipeline described so far is agnostic with re-
spect to the kind of features extracted in the first stage. As
such, one may rely on random extraction of feature points
or use any of the several 3D detectors proposed in literature
(see [STD13] for a recent survey and evaluation of promi-
nent proposals).

Unfortunately, the evaluation in [STD13] highlights that
the computational efficiency of all considered proposals is
by far unsatisfactory, so there is no algorithm that may be
plugged into our pipeline without exceedingly slowing down
the computation. Moreover, existing detectors rely on max-
imizing a specific saliency criterion which inherently privi-
leges certain shape structures so that, generally, features tend
to cluster in some areas rather than scatter uniformly across
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a view. However, for the purpose of accurate estimation of
the rigid motion between two views, it is highly beneficial to
rely on features as uniformly distributed as possible across
the views. Accordingly, we conjecture that a suitable feature
detector for coarse registration should better provide a good
trade-off between saliency and uniformity rather than maxi-
mize saliency.

Based on the above considerations, investigation on suit-
able features to be fed into our pipeline seems to call for
the design of a novel 3D detector that would provide rapidly
salient and uniformly distributed points. First of all, this re-
quires reasoning about the saliency criterion. Unlike main-
stream work on the subject, our coarse registration pipeline
is rooted only on the ability to compute LRFs repeatably
despite nuisances. Accordingly, a suitable saliency criterion
would capture this ability: "good" features for our pipeline
are points where the LRF can be computed repeatably. We
dub orientability such a peculiar saliency criterion¶.

In the LRF algorithm proposed in [PDS12], the repeata-
bility of the x axis is significantly dependent on the stabil-
ity of the z axis, as the latter provides the reference plane
to compute the signed distances that then would define the
former. Thus, as the stability of the z axis is clearly high-
est at points located in flat surface areas, it seems that with
the method in [PDS12] there is an inherent relationship be-
tween flatness and orientability. To validate this intuition, we
performed a qualitative experimental study aimed at com-
paring the flatness and orientability of surface points. Given
a surface point p together with its normal np, the flatness

at p is higher as the normals at the points within a neigh-
bourhood of p are more closely aligned to np. Therefore,
we define the flatness at p as the mean cosine between np

and the normals at the points within a sphere of radius R f

centered at p. As the nuisance inherently associated with
feature extraction is imprecise localization of feature points,
the resilience to be captured by a proper orientability notion
should address this type of nuisance. Thus, given a point p,
the corresponding points p j in the other views of a dataset
are determined by applying ground truth rigid motions be-
tween the views (ground truth information is available for
all the datasets considered in this paper). According to the
above mentioned notion, p would exhibit high orientabil-

ity whenever the LRF computed at p is correctly aligned to
those computed at points p j despite localization of the lat-
ter turning out imprecise. Hence, to capture this property,
we compute the LRF at all the points, pk, j falling within a
neighbourhood centered at each of the p j, so as to then es-
tablish whether the LRF computed at p is correctly aligned
or not to that computed at each pk, j (i.e. aligned or not to
that computed at corresponding though imprecisely local-

¶ Our notion of orientability differs from the use of this term to
denote the property of consistently disambiguating the sign of the
normal at every point of a surface.

ized features). To establish whether any two such LRFs are
correctly aligned or not we rely on the repeatability crite-
rion proposed in [PDS12] and, accordingly, calculate the ori-

entability index at p as the percentage of correctly aligned
LRFs.

Figure 5: Flatness Vs Orientability. On the left the flatness

map of a view, on the right the corresponding orientability

map. The green colour represent flat and highly-orientable

points respectively, red points feature high curvature in the

flatness map and poor LRF repeatability in the orientability

map.

Fig. 5 allows a visual comparison of the flatness and ori-

entability maps of a partial view of the Bunny object of the
Stanford Repository [CL96]. As a first consideration, the left
map shows that our measure of flatness captures the curva-
ture of the shape properly. Besides, as for the orientability
map, it is worth highlighting the high orientability of the ma-
jority of points as a further proof of the effectiveness of the
method adopted to compute LRFs. But more importantly,
the comparison shows clearly that there exists a relationship
between flatness and orientability. In particular, many red
points in the left map turn out red also in the right one: the
repeatability of the LRFs is usually poor at surface areas fea-
turing a pronounced curvature so that the computation of the
z axis turns out to be unstable (e.g. the ears of the Bunny).

As in real registration settings the rigid motions between
views are obviously not available (we indeed seek to esti-
mate them!), the defined orientability index cannot be mea-
sured directly in practice. Hence, the idea stemming from
our analysis is to try to extract flat points instead, as with
respect to our pipeline they are more likely to be salient
(i.e. orientable) than high-curvature ones. As such, whereas
most detectors present in literature are based on extraction
of points exhibiting high curvature, we take, somehow para-
doxically, just the opposite path. This approach provides at
least two additional benefits, though. Firstly, computation
of flatness is fast as it involves only inner products within
a small supporting neighbourhood (as shown in Table 1 a
small R f suffices). Secondly, flat surface areas are less prone
than high-curvature ones to self-occlusions caused by out-
of-plane rotations of the sensor.

The devised feature detector is described with the aid of
Fig. 6. The algorithm repeatedly extracts a random point
pseed (shown in light green in the zoom-in panel on the left
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Figure 6: Exemplar feature extraction by the proposed al-

gorithm. The zoom-in panel on the left shows the detection

process at a glance: for each randomly chosen seed point

(in green), the flattest point (in fuchsia) in its neighbourhood

is extracted. The image on the right highlights the two-step

extraction process: the points selected by the first step are

shown as black smaller dots, while the final features pro-

vided by the second step as larger ones.

side of the Figure). Then, the flatness index is computed at
all the points within a spherical support of radius Rsearch cen-
tered at pseed (highlighted in yellow in the panel), so as to
pick-up as feature the point, pmax, turning out maximally
flat (coloured in fuchsia in the panel). To avoid further de-
tections in the proximity of already selected features, the
points at a distance lesser than Rdiscard from pmax (in pur-
ple in the panel) are pruned from the set of candidate feature
points, and, alike, those around pseed according to Rdiscard

pruned from the set of candidate random seeds (in green in
the panel).

The method continues to iterate until the percentage of
discarded points, either as potential feature, pmax, or ran-
dom seed, pseed , gets higher than a threshold, Tarea, which is
tightly correlated to the fraction of the view that one wishes
to explore during the feature extraction process. As for the
requirement to trade-off between saliency and uniformity,
random extraction of seeds ensures feature points to be scat-
tered throughout the partial view, while the subsequent flat-
ness maximization weighs in favor of saliency. Regarding
efficiency, the critical step of the algorithm consists in gath-
ering the points inside the support of radius Rsearch, which
needs to be large enough in size and thus may slow down
the adopted kd-tree search. To overcome this issue, we de-
vised the two-step approach illustrated in the right image of
Fig. 6. In the first step, the method is applied to the whole
view with a small radius, R1search, to search for maximally
flat points around random seeds. Due to R1search being small,
the first step efficiently subsamples the view so as to provide
a subset of candidate flat points. The second step consists of
running the process with a larger radius, R2search, on the sub-
sampled view made out of the candidate features provided

by the first step only. Accordingly, much fewer instances of
the slower search do take place and efficiency is not penal-
ized. The termination threshold for the first step, T 1area, is set
high enough to explore a large fraction of the input view,
whereas the threshold for the second step, T 2area, represents
the parameter that actually controls the amount of extracted
features points.
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Figure 7: Comparison on the Buste dataset between pro-

posed detector, random extraction, ISS and MeshDOG. In

both charts the figure of merit is plotted as a function of

the mean number of extracted feature points. The top chart

reports the number of view pairs aligned correctly by our

pipeline, whereas the bottom one shows the mean computa-

tion time required to align two views. To better compare our

proposal to the random detector, the working points provid-

ing the highest number of correct alignments are highlighted

by dots in both charts. Sec. 4 explains how the figures of

merit plotted in the two charts are calculated.

We performed comprehensive experiments to validate
the improvement brought in by the proposed feature ex-
traction algorithm. In particular, we compared the perfor-
mance delivered by our pipeline with features provided
by the proposed detector, random extraction (our initial
choice), Intrinsic Shape Signatures (ISS) [Zho09] andMesh-

DOG [ZBH12]. According to the evaluation in [STD13],
ISS and MeshDOG may be regarded as prominent fixed-
scale and adaptive-scale detectors, respectively. Indeed, in
their respective categories, both turn out to be the fastest
and rank quite high in terms of repeatability. We found that
the pipeline deploying the proposed detector delivers the
best performance consistently across datasets: it can align
a higher number of view pairs, and, in the event of similar
registration rates, it comes out, on the whole, the fastest. This
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8 A. Petrelli & L. Di Stefano / Pairwise registration by local orientation cues

Figure 8: LRFs computed at corresponding features found

on a portion of Neptune’s hand. The left image deals with

randomly extracted features, the right image with features

detected by our algorithm. Both images show the LRFs com-

puted in VI together with those computed in VJ and trans-

formed into VI according to the ground truth rigid motion.

Misaligned LRFs are highlighted by the pink circles.

is perhaps surprising, as one might guess that random detec-
tion would deliver the highest efficiency. However, though
our detection scheme is obviously slower than random ex-
traction, it provides better features, that is, according to our
saliency notion, inherently endowed with more repeatable
LRFs, so that a smaller amount of features needs to be for-
warded to the next stages of the pipeline, which makes the
overall computation faster.

The above described behavior is well pictured in Fig. 7,
which shows the results regarding the registration of all the
view pairs composing the Buste dataset (see sec. 4.1). The
charts report the number of correctly aligned view pairs (top)
and the mean CPU time to align two views (bottom) as a
function of the average number of feature points detected
in the partial views, which can be controlled by the user
through a parameter in each of the four considered detec-
tors. The top chart highlights how, regardless of the chosen
number of extracted features, the proposed detector signif-
icantly improves the effectiveness of our pipeline with re-
spect to the other detectors. It is worth highlighting here that,
although any feature detection algorithm is inherently more
repeatable than the random detector, the kind of saliency de-
ployed by ISS and MeshDOG does not seem particularly
suited to our pipeline. Indeed, the improvement provided
by ISS over random extraction is modest on average and
also not consistent across working points, whereas using the
keypoints extracted by MeshDOG leads to lower registra-
tion rates than randomly extracted features. This may be ex-
plained by observing that, as also illustrated in Fig. 2 and
Fig. 5 of [STD13], ISS and MeshDOG tend to fire on high-
curvature structures, like those depicted in red in Fig. 5 of
this paper, than on flattish areas, as instead would be re-
quired by the saliency notion deployed in our pipeline. As
for the bottom chart of Fig. 7, at first sight the computa-

tional efficiency would seem somehow comparable between
our detector and random extraction, with ISS andMeshDOG

definitely turning out to be slower‖. However, a deeper anal-
ysis reveals that our detector can improve the efficiency of
the pipeline. Indeed, as highlighted by the two dots in the
top chart, choosing the feature quantity that yields the high-
est number of correctly aligned pairs for both the random
detector and our detector, we end up requiring 1200 features
(so to align 61 pairs) and 525 features (so to align 75 pairs)
respectively. As pointed out by the dots in the bottom chart,
at these two working points the proposed detector does ren-
der the pipeline faster than random extraction of features.

Finally, in Fig. 8 we show a qualitative experiment aimed
at comparing the repeatability of the LRFs computed at ran-
dom features and feature points detected by our algorithm.
We consider two views, VI and VJ , of the Neptune dataset
(see sec. 4.1), extract feature points by both methods and de-
tect correspondences based on the ground truth alignment
transformation. Then, for the two methods, we compute the
LRFs for each pair of corresponding features and, deploying
again the ground truth rigid motion, draw both the LRFs in
one view (i.e. VI): the two LRFs drawn at each point will
look more aligned as they have been computed more repeat-
ably in the two views. Accordingly, in the right image (our
detector) all LRF pairs look correctly aligned, whilst notable
misalignments can be perceived in the pairs depicted in the
left image (random detector).

4. Experimental Evaluation

In this section we compare the performance of our method,
referred to here as LRF, to those yielded by SI [JH97],
4PCS [AMCO08] and BSL12 [BSL11,BSL12]. The original
implementations of the three algorithms have been kindly
provided by the authors who also helped us a great deal
through personal communications to tune the parameters of
their methods properly. However, as far as SI is concerned,
instead of describing all the points in one view and a subset
in the other, as done in the original code, we have introduced
a slight modification in order to execute random extraction
of keypoints in both views. This has been necessary as oth-
erwise the pipeline would have resulted exceedingly slow,
making it impossible to complete most of the experiments.
Indeed, even with the introduced modification, it turned out
infeasible to follow out the experiments on the datasets com-
prising the largest number of views, i.e. OilPump, Venus and
Shell.

‖ Due to software compatibility issues we could not runMeshDOG

on the machine used to measure the computation times of the other
detectors. Thus, the timings for MeshDOG reported in the bottom
chart of Fig. 7 represent our best estimation of the actual efficiency
of the algorithm.
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Kinect

Mario (13) Squirrel (15) Frog (20) Duck (16) Room (18)

Space time stereo 

Mario (18) Squirrel (18) Frog (21)

AIM@SHAPE

Amphora (14) Children (26) Neptune (15) Fish (10) MasterCylinder (28) OilPump (56) Blade (11) WoodChair (15) Buste (16) Glock (8)

Stanford

Bunny (10) Dragon (20) Armadillo (23)

Open Technologies 

Angels (8) Shell (98) Venus (61)

Figure 9: Thumbnails of the 24 datasets considered in the experimental evaluation. For each dataset the number of views, M,

is reported between brackets.

4.1. Datasets

An essential trait of a registration pipeline is to work suc-
cessfully with different sensing modalities and under vari-
ous real working conditions and nuisances. For this reason,
as mentioned in the introduction, we evaluate the consid-
ered pipelines on the extensive collection of datasets de-
tailed in Figure 9. Each dataset consists of a number of par-
tial views for which normals are computed and the ground
truth rigid motion between each view pair is available. Three
of the datasets are taken from the very popular Stanford
Repository [CL96], namely Bunny, Armadillo and Dragon,
all acquired with a Cyberware 3030 MS laser scanner. Many
other datasets come from the AIM@SHAPE Repository∗∗,
and have been acquired with different scanners such as
the very accurate Minolta VI910 (Amphora, Children, Nep-

tune, Fish, MasterCylinder, OilPump, Blade, WoodChair),
the Roland LPX-250 (Buste), and the low quality Minolta
VI700 (Glock). Then, to extend the evaluation to different
sensing modalities, we acquired four datasets in our labo-
ratory by means of a Kinect device (MarioKinect, Duck-

Kinect, FrogKinect and SquirrelKinect) and three datasets by
a Spacetime Stereo set-up [DNRR05,ZCS03] (MarioStereo,
SquirrelStereo, FrogStereo). All our datasets were acquired
by rotating the objects in the scene whereas the sensors
were kept still. Then, we performed a background subtrac-
tion so as to hold only the partial views of the object. Af-
ter that, we performed a coarse registration and, finally, we
carried out a fine global registration by applying the Scan-

alyze tool. As a coarse registration algorithm should pro-
vide a rototranslation sufficiently correct to let the subse-
quent fine registration converge, such ground truth is suffi-
ciently precise for validating the performance of the com-
pared methods. We will make the datasets acquired in our
Lab and the code of our method available for research pur-

∗∗ http://shapes.aim-at-shape.net

poses through the project web page. Moreover, we consid-
ered the fr1/room sequence from the RGB-D SLAM Bench-

mark [SEE∗12], which deals with the reconstruction of an
indoor scene acquired by a Kinect. In particular, we sam-
pled the sequence every 10 frames so as to obtain a dataset
comprising 18 partial views, referred to as Room in Fig-
ure 9. Finally, we added to the ensemble the three datasets
scanned by an high-precision Open Technologies

R© system
used for the experimental evaluation in [BSL11,BSL12], i.e.
Angels, Venus and Shell. The considered datasets feature dif-
ferent noise levels and point densities. Kinect datasets, and
Glock alike, show the worst quality, with very noisy scans
especially along the line-of-sight direction; Open Technolo-

gies
R© datasets, on the contrary, consist of very detailed and

clean scans; Spacetime Stereo allows scans to be obtained
with good precision and resolution. Moreover, every dataset
comprises a different number of views and different degrees
of overlap between them. OilPump, Venus and Shell respec-
tively consist of, 56, 61 and 98 scans. On the other hand,
Glock, Angels, Bunny and Fish include from 8 to 10 views.
Even the physical objects they represents are quite different.
Open Technologies

R© datasets deal with large objects, which
have been scanned in the context of cultural heritage appli-
cations. Conversely, Stanford objects are extremely small.
Furthermore, together with complex, rich of features objects,
such as Armadillo, Dragon and Mario, we considered a set
of mechanical parts (MasterCylinder, OilPump, Blade) as
well as the WoodChair and Room datasets, so as to also ad-
dress simple shapes and large flat surfaces that, as such, often
turn out to be hard to reconstruct due to the scarcity of fea-
tures. As range images are available only for the Stanford,
Open Technologies

R©, Kinect and MarioStereo datasets, we
have tested BSL12 only on this subset of datasets.
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Table 2: Different values for Open Technologies
R© datasets.

4.2. Methodology

The goal of a coarse registration algorithm is, in practice,
to provide an alignment sufficiently correct to then permit a
successful fine registration by ICP. Furthermore, even if the
task is not subject to real-time constraints, execution time be-
comes relevant, especially when dealing with datasets com-
prising large sets of partial views. Finally, for those view
pairs that have been coarsely registered, the accuracy of the
alignment can be taken as an additional index of the quality

of the algorithm. Given a dataset made out of M views, we

consider all the N =
M(M−1)

2 possible view pairs {VI ,VJ},
and, for each of them, attempt to estimate the rigid mo-
tion RT (VJ) that aligns VJ to VI by means of the coarse
registration algorithm under evaluation. Then, Generalized

ICP [SHT09] is applied to the pair {VI ,RT (VJ)}, and the
resulting view ICP(VJ) is compared to GT (VJ), the latter
being the view obtained by transforming VJ according to the
known ground truth rigid motion which aligns VJ to VI . In
particular, if the Root Mean Square Error (RMSE) between
ICP(VJ) and GT (VJ) is lower than 5×mr, VI and VJ are
judged as correctly registered by the algorithm under eval-
uation, otherwise a registration failure is recorded. In the
event of successful registration, the RMSE betweenRT (VJ)
and GT (VJ) is also recorded for the purpose of estimating
the accuracy of the algorithm. Therefore, for each dataset
and algorithm we collect the following three measurements.
N◦ Registrations, i.e. the number of correctly aligned view
pairs; CPU time, i.e. the average execution time to compute
the rigid motion to align a view pair (regardless the outcome
being either success or failure); RMSE, which represent the
average accuracy (i.e. RMSE) across all correctly registered
view pairs. It is important to point out that N◦ Registrations

is the key performance index that captures the ability of the
algorithm to handle view pairs featuring different degrees of
overlap. The higher is the registration rate, the more effec-
tive in aligning views sharing a limited surface area is the
algorithm.

4.3. Parameters

As outlined in sec. 1, coarse registration algorithms include
many parameters which are hard to set properly. Although
default settings are typically suggested by the authors, more
often than not these guidelines come from insights gained
by running the algorithm on one specific kind of data. Un-
fortunately, it turns out that such "standard" values are un-
likely to make the method equally effective on diverse data.
Thus, running our evaluation using a fixed set of parameters
for each method would be unfair and also useless for shed-
ding light on the real limits and merits of the algorithms.
On the other hand, to sift out the best from a method in real
working conditions, i.e. new data and no ground truth, one
should manually set many parameters on a trial-and-error
basis, which is simply infeasible. Therefore, we believe that
a method capable of working seamlessly on diverse kinds of
data should allow the user to get the desired result by setting
just one or two parameters by trial-and-error.

Based on these considerations we contacted the authors of
the algorithms involved in the evaluation and, following their
indications, defined proper default values for all the param-
eters but the two identified as those most critically affecting
performance, which we then tuned optimally on each dataset
by an exhaustive grid search so as to maximize the number
of correct registrations, N◦ Registrations. In particular, the
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two parameters selected by authors of BSL12 are the Gaus-
sian kernel size, σ, to be varied in the range {0.5,4.0} with
0.25 as step, and the number, L, of angular subdivisions of
the descriptor, with possible values 12, 24 and 36. As for
4PCS, their authors decided to span δ in the range {0.1,0.5}
with increment 0.1 and three possible numbers of extracted
points Npoints (300, 500, 700). Finally, SI has been tested by
spanning the number of extracted keypoints, Npoints, in the
range {1000,4000} with step 500 and trying three values
(1, 2, 3) for the size of the Spin Image bins. Likewise, we
chose suitable defaults for all the parameters of our method
but one, i.e. Rx, which was left free to vary in the range
{10,250} with step 10 so to maximize N◦ Registrations on
each dataset. Rx depends on the mesh resolution as well as
on the extent of the flat areas of the objects, and it turns out
to be the only parameter of our method that varies signifi-
cantly across diverse data. Instead, the tuning we performed
on the other methods has shown that at least two parame-
ters affect their performance critically. Table 1 summarizes
the parameter values adopted for each method, together with
those related to Generalized ICP.

Open Technologies
R© datasets are indeed very different

from all the other datasets considered in our evaluation, and
in particular are characterized by a far higher point density
and size. Moreover, BSL12 has been specifically designed
to deal with this kind of data and therefore the authors al-
ready tuned their parameters optimally for Open Technolo-

gies
R© datasets. On the other hand, we found that the default

settings chosen for LRF, 4PCS and SI are less appropriate
on these datasets. Therefore, for the purpose of comparative
evaluation, we found it fairer to also allow the other three
methods to determine their default settings for these so di-
verse data. The authors of 4PCS kindly determined the pa-
rameter values of their method, and we did so for LRF and
SI. The parameter values that turned out different from Table
1 are listed in Table 2.

4.4. Results

The results of the evaluation are summarized in Table 3,
with the adopted color code (the darker the better for all
the three indexes) helping to catch, at a glance, the rela-
tive performance of the algorithms. Accordingly, our pro-
posal can align a larger number of view pairs with almost all
the datasets (21 out of 24). Moreover, in terms of accuracy,
our algorithm is only equaled by SI, despite the higher regis-
tration rate implying considering more challenging pairs in
the computation of the RMSE index. As for computational
efficiency, BSL12 proves to be the fastest method although
our pipeline fairly competes, with 4PCS and SI on the other
hand turning out to be notably slower.

A more in-depth analysis of the results highlights that
4PCS overtakes our proposal solely on MarioKinect and for
a couple of view pairs. Also, 4PCS obtains results compara-
ble to ours on SquirrelKinect, MarioStereo and Glock, and

gets good performances, in general, on Kinect and Space-

time Stereo datasets. However, 4PCS seems less suited to
high resolution datasets such as those by Open Technolo-

gies
R©. Nonetheless, it is important to recall that, for each

dataset, our evaluation provides the result that maximizes
the registration rate, regardless of the associated computa-
tion time. By comparing the CPU time of LRF and 4PCS
on MarioKinect, SquirrelKinect, MarioStereo and Glock, it
is evident that 4PCS spends too much computational effort
to obtain these high registration rates. Had the tuning pro-
cess taken into account constraints on practically accept-
able execution times, the registration rates of 4PCS would
have turned out notably lower. It is worth observing that,
between all datasets, Neptune is the one featuring the high-
est differences of point density between the views, as these
include both close-ups on the head and wider scans around
the body. The comparison between the performance of 4PCS
and LRF on Neptune proves that significant benefits can be
achieved by the latter, which is designed to handle point den-
sity variations robustly. As for BSL12, it turns out to be the
best method on high resolution and clean data such as Open

Technologies
R© datasets, i.e. the kind of data for which the

method has been designed, tuned and tested. Kinect data lies
exactly on the opposite side: low resolution and very noisy.
Interestingly, Table 3 shows BSL12 to be much less effec-
tive on such diverse kind of data. It is also worth pointing
out that on the Venus dataset LRF obtains a registration rate
higher than BSL12. The peculiar cylindrical shape of the ob-
ject causes acquisitions which involve mainly out-of-plane
rotations of the sensor. On the contrary, the Angels object,
a bas-relief, and Shell, acquired on one side only, permit a
higher number of simpler in-plane rotations of the acquisi-
tion system. BSL12 relies on matching feature descriptors
computed on 2D supports defined on range images: such
kind of supports capture different portions of the physical
space around a feature point due to out-of-plane rotations of
the vantage point, which inevitably renders feature match-
ing less effective. Differently, LRF relies on 3D supports,
which are inherently invariant to any rigid motion of the sen-
sor. Finally, SI provides registration rates similar to 4PCS
on the low-precision Kinect datasets, and it seems to pos-
sess the ability to achieve good performance on the accurate
Open Technologies

R© datasets, although this observation re-
lies on the results pertaining the Angels and Venus datasets
only. Generally speaking, even though SI does not turn out
to be the best method on any dataset, it demonstrates a fair
behavior across all the diverse sensing modalities considered
in the evaluation.

The RMSE values reported in Table 3 vouch that the high-
est accuracies are obtained by our proposal and SI. As for the
SI pipeline, the high accuracy is likely to be due to the ver-
ification stage that refines the final alignment through ICP.
Instead, we ascribe the high accuracy of our proposal to the
large quantity of uniformly distributed correspondences that
survive the filtering stages of the pipeline and jointly partic-

submitted to COMPUTER GRAPHICS Forum (8/2015).



12 A. Petrelli & L. Di Stefano / Pairwise registration by local orientation cues

Amphora (63/91) 39 22 15 0.91 0.96 4.52 0.97 157.68 77.92

Children (152/325) 123 96 81 0.82 1.07 6.25 1.82 65.13 64.69

Neptune (34/105) 23 16 9 1.15 0.84 13.07 2.63 201.77 61.74

Fish (22/45) 16 12 9 1.40 2.38 8.75 1.58 61.53 2.29

MasterCylinder (245/378) 142 90 87 0.99 0.78 3.31 0.15 168.79 110.46

OilPump (941/1540) 719 -- 300 1.49 -- 5.38 1.35 -- 78.28

Blade (29/55) 21 10 14 2.01 1.70 7.29 1.64 34.02 18.48

WoodChair (58/105) 27 13 20 2.63 2.57 5.62 0.75 316.88 44.74

Buste (85/120) 69 43 49 1.90 2.81 9.04 0.18 314.37 46.79

Glock (16/28) 13 6 11 2.19 5.14 6.84 1.51 127.74 13.43

MarioKinect (39/78) 30 26 32 9 2.32 1.56 3.33 8.49 0.08 115.04 951.67 0.01

SquirrelKinect (62/105) 34 33 33 9 2.24 1.33 2.04 5.41 0.03 88.32 1312.83 0.05

FrogKinect (96/190) 72 47 54 29 2.14 1.63 3.48 7.92 0.23 159.06 392.15 0.10

DuckKinect (61/120) 43 39 39 15 2.28 1.98 3.99 9.02 0.21 110.29 25.49 0.10

Room (55/153) 40 24 25 32 5.42 7.04 7.16 13.21 7.02 70.02 118.41 0.34

MarioStereo (61/153) 58 44 57 38 4.10 4.03 6.44 9.66 0.65 136.28 19.94 0.10

SquirrelStereo (68/153) 44 34 33 2.77 3.43 4.74 0.54 112.68 358.96

FrogStereo (83/210) 70 37 63 3.19 3.12 5.73 2.11 252.65 221.57

Angels (18/28) 15 16 5 19 2.09 2.72 20.26 3.64 5.11 1074.31 386.86 0.58

Shell (822/4753) 620 -- 104 646 1.71 -- 22.32 3.24 1.21 -- 258.07 0.48

Venus (256/1830) 207 148 51 160 2.25 2.91 15.94 4.54 0.68 414.2 393.91 0.25

N° Registrations RMSE (mr) CPU time (sec)

LRF SI 4PCS BSL12 LRF SI 4PCS BSL12 LRF SI 4PCS BSL12

Bunny (31/45) 27 20 16 14 1.09 0.74 3.77 2.37 0.74 338.53 1177.54 0.17

Dragon (108/190) 98 65 70 36 1.50 0.80 3.40 3.04 0.39 235.69 780.49 0.11

Armadillo (141/253) 118 72 95 39 0.94 0.95 3.23 2.25 0.20 72.50 453.07 0.12

Table 3: N◦ Registrations, RMSE and CPU time of the four methods on the 24 datasets considered in the evaluation. Darker

colors denote, respectively, a larger number of view pairs correctly registered, more accurate alignments and faster computa-

tions. For each dataset, the number of view pairs that share at least 10% of their surface as well as the number of tested view

pairs, N, are reported between brackets.

ipate in the final estimation of the rigid motion. This helps
keeping the RMSE low across the entire surface acquired by
a partial view.

Concerning computational efficiency, all the experiments
were conducted on a PC equipped with a 3.50 GHz Intel
i7 CPU and 16 GB RAM. The results show that the fastest
method is BSL12, whereas, usually, 4PCS and SI spend con-
spicuously higher times to align views. However, BSL12
is optimized to work on multi-core architectures whilst our
proposal exploits a single core so far. Moreover, a registra-
tion pipeline based on range images is inherently faster than
one working on points clouds, due to the former deploying
the lattice provided by the image to find the neighbours of
a feature, the latter requiring a slower kd-tree search. Thus,
the efficiency of our pipeline, which is comparable to that

of BLS12, is due to the purposely devised feature extraction
and inexpensive feature matching approaches.

Once all the pairwise rigid motions are estimated, it is
possible to align the views in a unique reference frame.
Based on the pairwise registrations provided by our pipeline,
we exploit the framework of [BNSN12] to get a global,
though coarse, reconstruction by determining a spanning
tree where the edges join the view pairs that maximize the
overlap area. We apply this process to the Venus dataset and
two Kinect datasets. The results are depicted in Fig. 10 and
Fig. 11. Due to both the acquisition quality of the Venus

dataset and the accuracy of our pipeline, the views come
out finely aligned, even though no ICP-based fine regis-
tration is run downstream. Conversely, for DuckKinect and
FrogKinect, we then also run the Scanalyze tool to get a
global refinement of the registration and the Poisson Recon-
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struction algorithm [KBH06] to obtain the final 3D models.
Although Kinect acquisitions are noisy and inaccurate, the
results are worthy.

Figure 10: Registration of the Venus de Milo by alignment

of 61 views and about 50 million points.

Figure 11: Reconstructions of DuckKinect and FrogKinect.

Top: initial disarranged views. Center: coarse reconstruc-

tions provided by our pipeline. Bottom: final meshes attained

by refining coarse reconstructions by Scanalyze and then

running Poisson Reconstruction.

5. Final Remarks

Our evaluation neatly shows that, whereas 4PCS gets better
results with lower-resolution data, BSL12 is suited for high-
precision datasets and SI provides fairly stable performance,
our approach attains considerable registration rates on any

kind of dataset, regardless of the type of sensor used for ac-
quisition. Furthermore, it runs in times comparable to those
of BSL12, which exploits parallelism and works on range
images. As for its limits, even though our proposal proves to
successfully handle noisy data, it is not robust to the pres-
ence of outliers in the input data. In the 4-Points Congruent

Set paper, instead, the authors show that 4PCS easily deals
with a broad percentage of outliers. Such weakness in our
pipeline is due to the definition of the local reference frame
that does not account for the presence of spurious points in
the support. Another issue is the large number of parame-
ters of our pipeline. However, only a bunch of them actu-
ally affects performance significantly. Indeed, the proposed
evaluation suggests that most parameters may be left at their
default values (Table 1), and only the support radius, Rx, ad-
justed by trial-and-error to optimize performance on unseen
data.

Nonetheless, in order to both make its usage even easier
and to improve performance, the pipeline may be equipped
with an initial stage aimed at estimating some parameters au-
tomatically. For example, it may be possible to try to quickly
estimate on-line the value of the support radius, Rx, based on
a set of random probes, e.g. so as to optimize the trade-off
between the information content associated with the basic
shape cue deployed to match features, D, and computational
efficiency.

In the reconstruction stage, to build the spanning tree in-
cluding the best pairwise alignments, it is necessary to check
for all the combinations of view pairs so as to find those
showing high overlaps. This process can be costly, especially
in case of datasets, like Venus, Shell and OilPump, compris-
ing a large number of views. Even though the Hough vot-

ing stage is itself rather inexpensive, such a large number
of runs may slow down reconstruction time notably. There-
fore, it would be beneficial to be able to abort the registration
before the Hough stage in case a view pair is unlikely to be-
long to the spanning tree. This may be done efficiently on
the basis of the distribution of the scores resulting from the
fast feature matching stage. More precisely, as a small D̃ij

is more likely to come from a good correspondence while
a larger one will come from a wrong correspondence (see
Fig. 4), we may analyze the distribution of D̃ij in the current

view pair, p
(

D̃ij

)
, so as to guess, e.g. based on the proba-

bility of D̃ij to be small enough (p
(

D̃ij < T
)
), whether the

pair provides enough good correspondences and, as such, is
likely to belong to the spanning tree.

As already mentioned, the main bottleneck of the pipeline
resides in the search for neighboring points, especially in
the extraction of the spherical support used for the compu-
tation of the local reference frame. Indeed, a standard kd-
tree extracts all the points inside the sphere, which mandates
a further filtering operation to then select only those in the
shell used to determine the tangential axis. To speed-up the
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search, a dedicated indexing scheme may be devised to al-
low for a radius search that directly extracts only the useful
points in the shell of the sphere.
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