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Thermal Analysis and Interpolation Techniques for

a Logic + WideIO Stacked DRAM Test Chip
Francesco Beneventi, Andrea Bartolini, Member, IEEE, Pascal Vivet, Member, IEEE,

and Luca Benini, Fellow, IEEE

Abstract—Self-heating, high-operating temperature are major
concerns in 3D-chip integration. In this paper we leverage a 3D
test chip (WideIO DRAM on top of a logic die) equipped with
temperature sensors and heaters to explore thermal effects and to
develop advanced thermal modeling strategies suitable for com-
plex 3D-stacked circuits. We correlate temperature measurements
with the power dissipated by the heaters using model learning
techniques. Moreover we defined a Thermal Basis Function
obtained using power and thermal data available from the on-
chip sensors. This function can be used to predict temperatures
at chip locations far from the temperature sensors and to infer
the power dissipation at any location of the chip. In addition the
same Thermal Basic Function can be used jointly with formal
interpolation frameworks like Radial Basis Function (RBF)
methods to effectively estimate the full-chip thermal map. Results
show that this methodology outperforms existing interpolation
approaches for sparse integrated sensors.

Index Terms—Temperature sensor, Thermal interpolation, ra-
dial basis function, 3D Integration, Temperature estimation,
Sensor Virtualization.

I. INTRODUCTION

3D-chip integration aims to overcome scalability and per-

formance bottlenecks of planar ICs by stacking multiple

silicon dies to augment the silicon active area (e.g. number of

processing element, memory banks, etc.) accessible with low

latency [1], [2]. In addition, the vertical dimension opens new

integration opportunities making possible to stack different

silicon technologies in the same package. Components with

incompatible planar manufacturing processes, e.g. CMOS mul-

ticore processors and DRAM memories, can be efficiently cou-

pled enabling new performance breakthrough. The capability

of integrating heterogeneous technologies makes 3D staking a

good candidate to alleviate the ”memory wall” as shown by

recent products [3]–[5].

The potential for three-dimensional DRAM-logic integra-

tion has been recognized by industrial standardization commit-

tees. As an example, the JEDEC WideIO interface specs were

defined for SDRAM interface to deliver twice the bandwidth

of the LPDDR3 specification while improving the power
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efficiency [5]. WideIO is a 512-bit wide bus (four 128-bit

channels) larger than previous solutions. The main concern in

having such a large number of bus lines in off-chip connections

is the routing at PCB level. Through Silicon Vias (TSVs) are

formed through the dies along the vertical dimension and allow

short path between adjacent layers. This technology has the

potential to deliver efficient inter-layer interconnections [2]

alleviating also routing problems.

The vertical integration of silicon dies has two drawbacks: it

reduces the vertical heat conductivity of the bottom and central

dies w.r.t. the ambient and it increases the peak power density.

The former is primarily due to the lower thermal conductivity

of the silicon with respect to copper and other materials used in

the heat-spreader which is directly thermally-connected with

the active silicon in planar chips [6]. This worsen the heat

removal from the inner silicon layers as they cannot be directly

connected to a heat sink. The latter is caused by the stacking

of active dies, often characterized by a thinner bulk, for which

even a small amount of power consumed can result in high

power densities. Moreover replicating the same logic die in

the 3D stacks can lead to the scenario where power consuming

units in each layer are aligned along the vertical dimension;

as consequence maximum temperature can easily reach worst

case values causing dangerous hotspots and thermal gradients.

To overcome these issues technological strategies have been

proposed to augment the heat dissipation capabilities. Some of

them exploit a thermal-aware floorplan and additional TSVs

placement to serve as heat pipes for reducing the resistance

toward the ambient [7], [8] while other solutions adopt liquid

cooling through micro-channels on the silicon die [9], [10].

Recent work from Santos et al. [11] verifies with real silicon

and with accurate simulations that TSVs improves vertical

heat transfer but due to the SIO2s insulation layer they causes

lateral thermal blockage in the silicon substrates containing

TSVs arrays which may lead to increased hotspot temperature.

Therefore practical evaluation of specific thermal design in

manufactured 3D ICs is hard as classical thermal introspection

methods used for 2D ICs are less effective. Indeed traditional

approaches based on precise die temperature measurement

by means of IR-cameras [12] are hardly applicable in a 3D

stacking context. In addition, as in 2D chips, fine grain thermal

measurements based on integrated thermal sensors causes

high silicon area, power and design complexity penalties.

These limitations also jeopardize the effectiveness of fast 3D-

chips thermal simulators [13], [14] which cannot be carefully

calibrated against real measurements.

With the goal of pushing the research toward new solutions
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for improving the thermal introspection of 3D ICs, test chips

have been recently manufactured to evaluate 3D-integration

thermal properties by embedding controllable heaters and

thermal sensors [15], [16]. This allows to assess how the heat

spreads in the silicon die. Unfortunately, since in practical

applications only a limited number of sensors can be integrated

due to cost/area reasons, they cannot provide a full detailed

silicon temperature map which covers the entire chip area.

Thermal interpolation strategies allow to estimate the tem-

peratures of the die at locations different than those cor-

responding to the thermal sensors. Common interpolation

algorithms exploit existing measured data e.g. coming from on

chip sensors to recover, at runtime, a full 2D thermal profile

useful in DTM solutions for hotspots mitigation. Few works

in literature tackle this problem, but they are validated on

simulators or on planar devices [17], [18] and often rely on

calibrated fine-grain thermal models of the underlying HW

which can be obtained only by the manufacturer. In addition

they do not account for environmental conditions as well as

for real deployment scenarious.

On the other hand, classical curve interpolation algorithms

are agnostic of the physics of thermal diffusion and of the

physical properties of the specific device. This often leads to

poor results in case of a limited number of thermal sensors.

Kung et al [19] uses an approximation function to describe the

chip thermal distribution as a function of the distance between

two locations. Their approach approximates the Green’s func-

tion (inside the analytical solution of the heat equation for the

chip) to reduce the computational complexity of the thermal

map reconstruction. As in previous techniques, this is based

on simplified models of the underlining HW and it cannot

capture real geometry and in-field environmental condition.

Radial Basis Function (RBF) methods [20] interpolate scat-

tered data through “ad-hoc” univariate basis functions. This

enable to bring an “a priori” knowledge of the problem physics

in the interpolation process. In this work we exploit RBF in

the interpolation of 3D ICs thermal field introducing as basis

function the thermal resistance field directly-learned from the

target physical device. This approach has the advantage of

combining physical knowledge of the problem and in-field

calibration with a robust formal identification methodology.

If assessing the temperature of an IC is a hard task, assessing

its power consumption is even worse due to the difficulties in

building accurate and low overhead power gauges [21]. HW

thermal sensors have been exploited to estimate the power

consumption of an IC by solving the temperature-to-power

inverse problem. Unfortunately this procedure is well-known

to be ill-conditioned and as a consequence it is strongly

affected by measurement noise and models errors [22].

In this work we tackle the temperature-to-power problem by

exploiting the thermal resistance field identified directly form

the target device. We improve the robustness of the solution

by taking advantage of partial power consumption knowledge

by means of HW heaters and system level power gauges [21],

[23].

We demonstrate the effectiveness of our techniques on a

real 3D-chip (Mag3D) dealing with the quantization noise

of the provided thermal sensors. Mag3D is a real 3D test

chip designed by CEA-LETI under the Wide IO Memory

Interface Next Generation (Wioming) project, and features

built-in heaters and thermal sensors [24], [25]. We use them

to extract the static thermal model and to derive the thermal

resistance field function. This function/model can be coupled

with floorplan data to extrapolate thermal information at chip

locations not covered by thermal sensors. Moreover, this

model/function allows to estimate the power consumption of

HW components by simply knowing their position. Finally to

evaluate the performance of the RBF interpolation approach

we built an accurate thermal model (FEM) of Mag3D to be

used as a reference in the cross-validation step.

A. Related Work

Several approaches have been proposed for estimating the

on-chip temperature map. Some authors deal with the statisti-

cal nature of the measured temperature data coming from the

real silicon [18], [26], [27]. Liu et al. [26] propose a framework

to build a spatial correlation model based on temperature

measurements. A generalized least-square fitting approach and

a Kriging technique are used to account for die variability

and to maximize the accuracy of the model. Zhang et al.

[18], [27] adopt a statistical method to obtain the thermal

profile of the chip. Starting from the thermal sensor readings

they found a maximum a posteriori (MAP) estimate of the

power density distribution of the whole chip. Successively

they used this information in a linear model to recover the

corresponding temperatures. However the estimation based on

the correlation model in [26] is strongly sensitive to noisy

measurements as it is open loop. In [18], [27] the key elements

of the proposed method are the prior knowledge of the cross-

correlation among different chip power sources and a fine

grain thermal model. Unfortunately authors demonstrate this

approach for a simulated system composed of a single core

only for which: (1) a strong cross-correlation holds in between

functional units and (2) the thermal model is assumed to

be exact. In a real multiprocessor SoC the cross-correlation

in between the different power sources will decrease as the

components activity will depend more on the specific program

flow. In addition the thermal evolution of real devices diverges

from thermal-models extracted at design-time which cannot

account for ambient temperature and deployment conditions.

Computationally efficient methods leveraging fast convo-

lution have also been investigated. Cochran et al. [17] pro-

posed an alternative to Kriging, exploiting Fourier analysis

techniques to fully recover the chip thermal map. In their

work a convolution filter in the space domain is applied to

the measurements vector of spatially distributed temperature

sensors. Although this method benefits of the computational

efficiency of the FFT algorithm, the final accuracy is limited by

the non band-limited nature of the temperature spectrum and

approximations are needed in case of non-uniform placement

of the thermal sensors, which is common in heterogeneous

SoC. Convolution is also at the base of the methods developed

in [28]–[31]. These methods require the prior knowledge

of the full chip thermal impulse response to each power

source. A generic input power map then is convolved with
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the impulse response of each power source to reconstruct

the corresponding thermal map. Power Blurring [32], [33]

is a recent techniques presented by Ziabari et al. which

uses the discretized temperature response to a unity power

impulse placed in the center of the silicon die to create 2D

thermal mask. This thermal mask can then be convolved in

the x and y domain to a generic spatial power stimulus to

obtain the steady-state thermal map. In these works however,

the thermal impulse response is obtained from FEM thermal

models and this makes the methods difficult to be applied since

these models are not always available and cannot account for

different deployment conditions.

When dealing with noisy thermal sensors, linear predictive

filtering techniques have been applied. In [34] Sharifi et al. use

the Kalman filtering approach to estimate the temperature at

different die locations starting from the available power and

temperature sensors measurements. Zajo et al. [35] estimate

the thermal field inside a 3D MPSoC by means of the

unscented Kalman filter (UKF) and on-chip thermal sensors.

The approach described in [34] gives good accuracy when

dealing with noisy thermal and power sensors. However these

method needs a prior knowledge of the chip thermal model and

a model order reduction step to lower the model computational

complexity. Moreover both [34] and [35] have been evaluated

only on simulators with Gaussian noise assumption.

Design constraints and area costs are the main factors

driving thermal sensors allocation in modern MPSoCs. In-

terpolation techniques have been shown to be very effective

in managing spatially non-uniform scattered measurements.

Recently Wang et al. [36] address the thermal map recon-

struction problem by using thermal sensors interpolation. The

approach is based on spline interpolation which can rely on

mature algorithm implementation and shows high accuracy

when compared with others not-standard approaches [17]. In

a non-optimized numerical implementation the overhead of

this method results in O(N3) considering N thermal sensors.

However a pure interpolation approach using a generic basis

function have limited accuracy in describing specific physical

phenomenas as e.g. heat transfer. In cases where a very small

number of thermal sensors are available, spline interpolation

returns poor performance as we will show in our experimental

results.

Several authors tackle the inverse problem: temperature-

to-power estimation problem. This is of practical interest

as integrated power-gauges have larger area overhead w.r.t.

thermal sensors. However thermal model inversion is an ill-

posed problem mainly due to its high sensitivity to the noise

present in the measured thermal data. Nowroz et al. [37],

have proposed to use AC stimuli instead of DC ones to

reduce the impact of flicker noise and spatial heat diffusion in

thermography and to improve the accuracy of the temperature

to power inversion problem. Results show the efficacy of AC

methodology in reducing the thermal noise enclosed in the

final thermal map. Differently Peak et al. [38] have introduced

transient analysis and probabilistic optimization to control the

noise sensitivity of thermography approaches. Ranieri et al.

[39], [40] have built a framework for optimal thermal sensor

allocation oriented to maximize the overall accuracy in the full

thermal and power map recovery at runtime. Reda et al. [41]

have formulated an NP-hard problem for the optimal thermal

sensor allocation under design constraints. They shown how

a temperature model obtained as a linear combinations of

the measurements of real thermal sensors can improve the

accuracy of an non optimal sensor allocation due to design

limitations.

Although some of the presented algorithms [39], [40] have

demonstrated accurate results, their performance are either

tightly coupled with the optimality of the sensor spatial allo-

cation which may not be feasible for real floorplans, or rely on

IR-camera images [37], [38], [41] which are not applicable in

3D stacked chip. Wang et al. [42] present Power Trace which

takes advantage of regularization extensions of the maximum

likelihood used in image restoration and deblurring. This

technique can bias the solution of the inverse problem to have

sharp edges which are more realistic for power maps. This

algorithm is shown to be more efficient than standard l2 norm

regularization algorithms. Like others, this approach relies

on extensive simulation to obtain the power-to-temperature

spatial transfer function which needs to be inverted. In our

work we show a methodology to derive this function from the

real device, exploiting built in heaters and thermal sensors.

This allows to capture the non-idealities of real manufactured

devices.

B. Contributions

This paper tackles the problem of augmenting the thermal

and power introspection of 3D ICs. This is achieved by intro-

ducing a novel methodology which leverages built-in heaters

and thermal sensors to directly extract from the target device

a thermal basis function. This function, given the geometrical

position of two points in the device, estimates the thermal

resistance present in between these two points. We then show

how this function can be combined at run-time with the

available temperature sensors and heaters values to generate

“virtual” sensors readings and power estimates for silicon

regions not directly covered by the built-in HW sensors. We

then show that the interpolation accuracy and computational

complexity can be improved by exploiting formal radial basis

function interpolation methods.

The main contributions of this paper are the following:

1) A novel interpolation approach that merges actual power

and thermal information coming from the silicon to

produce a detailed chip thermal map.

2) A new method to identify a Thermal Basis Function is

presented. It is able to analytically describe the spatial

distribution of the thermal resistance between two on-

chip locations.

3) We exploit this learned function with on-line HW

sensors measurements to create virtual sensors which

estimates the temperature and the power consumption

of unmonitored die regions.

4) We validate our approaches on Mag3D, a real 3D test

chip implementing WideIO and TSV technologies.

5) We show the effectiveness of these novel methods in

solving the ”temperature-to-power” inversion problems.
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6) We demonstrate how to include the thermal basis func-

tion in a well established methods like the Radial Basis

Function (RBF) interpolation.

7) We compared the accuracy and complexity of the pro-

posed methods w.r.t. state-of-the-art interpolation strate-

gies for estimating the temperature of digital ICs. The

proposed approach shows the highest temperature es-

timation accuracy with a practical number of thermal

sensors and limited computational time.

Differently from [43] this paper introduces the thermal inter-

polation problem and postulates the usage of the identified

thermal resistance function as a basis function for formal

interpolation method based on RBF approach (Section V-A).

To evaluate the performance of our approach we set-up a

CFD thermal model of Mag3D and we extended the exper-

imental results section with the comparison of the proposed

thermal interpolation approach based on RBF and the thermal

basis function against convolution, spline and the approach

presented in the previous conference version (Section VI-B).

The paper starts with an overview of the Mag3D architecture

in Section II. Section III provides the details of our thermal

modeling approach while in Section IV we show how the

modeling framework can be applied to practical cases to

augment the thermal and power introspection in 3D chip. In

Section V we introduce the Radial Basis Function interpolation

method and describe how to integrate the custom basis thermal

function in its flow. Finally in Section VI we illustrate the

results of our analysis. Section VII concludes the paper.

II. MAG3D ARCHITECTURE

Metal stack 

Wide IO DRAM: face down 

SoC: face down 

Package Substrate 

Metal stack 

Package 

molding 

1104 TSVs 

S1 S2 

S3 S4 

S5 

S6 S7 

H1 H2 

H3 H4 

H5 H6 

H7 H8 

Logic die 

8.5x8.5 mm 

Memory die 

7.8x8.0 mm 

TSVs 

Underfill 

Underfill 

Fig. 1. Mag3D layout (top) and stack view (bottom) (Courtesy CEA-Leti).

Mag3D [5], [16], [25] is a WideIO memory-on-logic 3D

circuit (65nm technology node) where the dies are stacked in

a face-to-back configuration and are connected through TSVs

and µ-bumps. The top die is a standard 1Gb mobile SDRAM

provided by Samsung [4]. The bottom one is a SoC logic die

(flip-chip) containing a WIOMING circuit and is only 80µm

thick to accommodate the integrated TSVs. The WIOMING

circuit (Fig.1) implements an asynchronous NoC composed of

16 routers that connect 24 different units. Data managements

units include SMEs (Smart Memory Engines) and MEPHISTO

DSP units. MEPHISTO units are reconfigurable cores opti-

mized for matrix computations [44].

The remaining units are dedicated IP cores with reconfig-

urable capabilities for DSP workloads. A generic application

processor (ARM1176) is implemented to manage the overall

system and acts as interface with the external world. The

Mag3D chip is hosted on an application board designed around

a Virtex5 FPGA. It implements an extension of the asyn-

chronous NoC and some other units that provide debugging

capabilities. Moreover it contains a NoC-ethernet bridge used

to link the Mag3D chip to a host PC. The 3D-chip includes

also HW sensors and programmable heaters to support thermal

testing. These are distributed as follows:

• Each memory controller integrates one heater (H1,..,H4)

and one thermal sensor (S1,..,S4).

• Four heaters (H5,..,H8) and three thermal sensors

(S5,..,S7) are placed in the bottom left corner to emulate

a quad-core processor (such as an ARM Cortex A9, for

instance).

The heaters are made of poly-Si resistance and can dissipate up

to 1W each. Each heater can be independently controlled from

the board via embedded software, while integrated thermal

sensors can be monitored in real time. Thermal sensor accu-

racy is ±1oC within the calibration temperature range (room

temperature 27oC), which decreases at ±4oC at 100oC. Sensor

resolution is 1oC in the entire range.

III. THERMAL BASIS FUNCTION

In this section we describe a methodology to exploit these

built-in thermal sensors and heaters to extract a Thermal Basis

Function which models the heat propagation in the device.

We obtain it in two steps. First, from the sensors data and

the heaters stress configurations we compute the static-thermal

model. Second, we correlate the model’s coefficients with the

sensor geometrical position to fit the Thermal Basis Function.

This will be used as basic building block in the next sections to

estimate the power and temperature at unknown die locations.

A. Measurement Setup

Fig. 2. Measurements setup

The training and validation data-sets are obtained with the

measurement set-up depicted in Fig. 2. A Matlab [45] client
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running on a lab workstation is directly connected to the

on chip asynchronous NoC taking advantage of the ethernet-

NoC interface provided by the board. We created a set of

Matlab APIs to manage the interface with Mag3D (Fig. 3)

which allows us to read the thermal sensors values and to

set the heaters status. In addition our framework allows the

measurements of the ambient temperature by means of an ex-

ternal temperature sensor connected to the Matlab environment

through an Arduino board.

Mag3d NoC 

Ethernet Interface 

“MagaliServer” 

(Qt/Socket/Named Pipe)  

 

 MagaliServer  

interface 
 

 sock_open_pipe() 

 sock_bind_to_card() 

 sock_enter_com_mode() 

sock_close_pipe() 

 

pipe.write() 

pipe.read() 

 mag_send_pkt() 

 mag_recv_pkt() 

mag_write_cfg_data() 

 mag_write_dump_request() 

 

mag_reset_units () 

init_smewio_pll() 

unassert_reset_denali() 

init_sme_thsens() 

init_mep_thsens() 

read_mag3d_sensor_values() 

 

 

 

write_i2c_reg() 

read_i2c_reg() 

 

 

i2c_init() 

i2c_enable_heater() 

i2c_disable_heater() 

i2c_set_heater() 

Matlab Script 

Existing architecture Matlab framework 

Fig. 3. Mag3D management interface

B. Static gain matrix

We extracted the steady-state thermal model of the Mag3D

chip by applying a similar methodology as the one presented

in [46] to the Mag3D Heater/Thermal sensor infrastructure.

Given H heaters and S thermal sensors, setting the heater

power stress P = (p1, ..., pH) the resulting temperatures T =
(t1, ..., tS) measured at the sensor locations can be described by

the following relation T = Tamb +K ·P where K is the static-

gain matrix and Tamb is the ambient temperature. As in [46],

in this work we obtain the K matrix by a set of empirical

measurements on the target chip.

The necessary data are obtained with the following proce-

dure. We apply a set of power vectors, composed of binary

power stress (heater on/off) to the chip considering all the

possible 2H combinations. At the same time we store the

corresponding temperature sensors readings after waiting for

the thermal response to get stabilized: the power vector is

maintained active for 10 minutes which is enough to ensure

that the transient effects are finished1. We collect the heaters

power measurements in the matrix Pm and the temperature

measurements in the matrix Tm. The elements of the Tm matrix

are relative to Tamb such as Tm = T − Tamb . Finally we

apply a least squares optimization to compute the K matrix

coefficients:

K̂ = argmin
K

‖Tm −Pm ·K‖2
(1)

The static-gain matrix is a thermal resistance matrix since

its coefficients have the units (oC/W ). We must note that the

availability of programmable heaters enables accurate, low-

noise and spatially well defined power stimuli which would

1This time period has been selected empirically.

have been hard to obtain with active logic. Usually logic

blocks spread among the entire die area and their power has

higher fluctuation due to the program flow and software stacks

interference (operating system and firmware run-time).

C. Thermal Basis Function

The thermal resistance is known to be a function of the

distance between the heat source and the sensing point [47].

By knowing its analytical relation which links the coefficients

of the K matrix to the geometrical distance of the heating

sources to a given die location, it is possible to systematically

compute extra coefficients related to thermal sensors and heat-

ing sources regions not covered by real one. This can be done

by correlating the values of the K matrix with the reciprocal

heater/sensor distance. The latter can be extracted from the

geometrical coordinates of the heaters and the temperature

sensors placed on the chip. Figure 4b displays the value of the

coefficients of the K matrix versus the distance. As we notice,

there is a strong correlation between these two quantities.

In this section we start from the K matrix and given the

geometrical coordinates of the power source xp and the thermal

sensors xs, we extract an approximation function that generates

the coefficients of the K matrix as K = fK(xp,xs). To build the

fK function we use the function template described in [47].

fK(xp,xs) =
1

((xs − xp)/a)2 +1
+

b

xs − xp

e

(

ln
xs−xp

c

)2

d (2)

This function has four fitting parameters θ = {a,b,c,d}. In this

paper we use a non linear least squares algorithm to calculate

them:

θ̂ = argmin
θ

‖eK‖2
2 (3)

where eK is the error vector obtained by subtracting the

coefficients of the original K matrix from those obtained using

the fK function.

K
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Fig. 4. (a) Mag3D floorplan; (b) Normalized Thermal Basis Function used
to approximate the K matrix coefficients

By applying the procedure described above to the Mag3D

chip we obtain the resulting approximation function shown in

Fig.4b with label ”Model” and solid line. This function repre-

sents an accurate analytical model able to approximate the real

coefficients of the K matrix as function of the heater(source)

to sensor(sink) distance. However, from the same figure, it

is clear that this approximation function depends only on the

distance and thus neglects information contained in the abso-

lute position of the heater/sensor. For instance, by considering
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the value of the coefficients describing the iteration between

H1, ..,H4 and the sensors S1, ..,S4, highlighted in the Fig. 4b

inset, we notice that different heater-sensor couples having the

same reciprocal distance have different K coefficient values.

Indeed in 3D-chips the floorplan is composed of spatial

regions that involve different materials (i.e. TSVs). To account

for this effect the basis function needs to be modified to

consider also the absolute location at which the heater and

sensors are located. Next section discusses our approach for

introducing spatial adjustment in the template of the Thermal

Basis Function and in the learning procedure. To distinguish

the two approaches, the Thermal Basis Function presented in

this section is named “Uniform” Thermal Basis Function while

the one in the next section is named “Spatial Adjustement”

Thermal Basis Function. It must be noted that due to current

Mag3D sensor and heater placement limitations, which are

all placed in the bottom die, the Thermal Basis Function has

been trained for a planar heat dissipation. Consequently if it is

used to estimate temperatures in the top die it will assume the

same building materials composition as in the planar die. In

future works we will extend this technique to handle the heat

conductance heterogeneity and vertical temperature estimation

[11].

D. Spatial Adjustement

The real values of the coefficients of the K matrix contain

this spatial behavior as depicted by the Fig.4b inset. Therefore,

to improve the accuracy of the approximation function we need

an “adjusting” factor able to consider also the real position

on the chip surface. The approach we propose is to weight

the error kerr between the uniform approximation and the real

coefficient. The weighting is done using a nearest-neighbor

approach. This assumes that the properties of an unknown

power source or thermal sensor are similar to the nearest

existing one. Considering dp as the distance of the power

source and ds as the distance of the sensing location from

respectively the nearest known power source and temperature

sensor, the adjusting factor can be defined as:

fad = Kerre
− dp+ds

α (4)

where α is a coefficient that regulates the spatial decaying

of the adjusting term. Putting all together, the final function

can be rewritten as fK,ad = fK + fad . In Section VI we will

validate our modeling methodology with off-sample tests. In

the following section we will present two main approaches

to use this Thermal Basis Function to both create “virtual

temperature and power sensors” and HW-aware interpolation.

IV. VIRTUAL SENSORS

In this section we discuss how these modeling strategies,

when combined with heaters and thermal sensors infrastruc-

ture, can be applied to augment the introspection on real 3D

devices in the modeling of the thermal properties, estimating

the real temperature and power consumption of not physically

monitored HW components by knowing only their position.

A. Thermal sensors virtualization

The Thermal Basic Function fK,ad can be exploited to infer

the temperature at positions of the silicon surface not covered

by any temperature sensors. Formally, in this case, the problem

translates into the evaluation of the temperature Tx at the

location xsx given K, the function fK,ad and the input power

map Pm. To solve this problem first we evaluate the new row

of the K matrix which correlates the existing power sources

to the new virtual temperature sensor:

KS+1,h = fK,ad(xsx ,xh), h = 1, ...,H

Finally, after reconstructing the new matrix Ks = {K|KS+1,h}
the temperature at the unknown location xsx of the chip is:

Tx =
H

∑
h=1

KS+1,h ·Pm,h (5)

In the Section VI we will evaluate the performance of the

proposed application directly on the Mag3D chip.

B. Temperature to power

The following procedure solves the orthogonal problem of

identifying the power dissipated at unknown locations of the

chip starting from the knowledge of the K matrix and the

corresponding fK,ad function. We aim to calculate the power

Px of an “extra unknown” unit in the chip that generates

the measurable (by the available thermal sensors) steady state

thermal response Tm. Given the position xpx of the new power

source we start generating a new column entry in the original

K matrix

Ks,H+1 = fK,ad(xpx ,xs) s = 1, ...,S (6)

obtaining the new matrix KN = {K|Ks,H+1}. To calculate Px

we need to solve the problem P = K−1 ·T . We can use two

approaches to obtain Px.

1) Model1: The first approach “Model1” assumes that an

external power gauges is available to monitor the full chip

power consumption [48]. This translates in a constrained

optimization problem where the complete chip power vector

PT = {Pm,Px} is the unknown. The optimization problem is:

P̂T = argmin
PT

‖KN ·PT −T‖2
s.t. {PT ≥ 0, ∑

i

pi = PMAX}

2) Model2: A second approach “Model2” assumes that

a limited number of power gauges are integrated on-chip

to monitor the power consumption of a small subset of

HW components, while others are not monitored [21] . This

translates in the following least square optimization where the

vector Px is the only unknown:

P̂x = argmin
Px

‖K ·Pm +KS,H+1 ·Px −Tm‖2
s.t. {Px ≥ 0}
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V. 2D TEMPERATURE INTERPOLATION

Previous section described a methodology to obtain at run-

time the temperature and power consumption of unknown die

region by combining the obtained Thermal Basis Function

with both the available heaters and thermal sensors measure-

ments. In this section we exploit the Thermal Basis Function

inside a formal interpolation framework that considers only the

available thermal sensors to estimate a detailed temperature

map of the entire die.

A. RBF Interpolation

In the R
2 domain an interpolating surface T (x) of scattered

data can be expressed as a linear combination of basis func-

tions

T (x) =
S

∑
s=1

csΦs(x), x ∈ R
2 (7)

In the case of Radial Basis Functions, the basis are defined

as Φs : R2 →R such that Φs(x) = ϕ(r) and r = ‖x− xs‖ is the

Euclidean norm.

Assuming to know the basis function ϕ(r), the only un-

knowns in the relation (7) are the coefficients cs that are

obtained solving the interpolation problem defined as follows.

Given a set of measurements Ts = (t1, .., tS) from sensors

located respectively at the positions stored in the vector

xs = (x1, ..,xS) we want to find a continuous function T (x)
corresponding to our thermal map, such that

T (xs) = Ts

From (7) this translates in finding the unknown coefficients

cs = (c1, ..,cS) by solving the following linear system

AIcs = Ts

where AI is the interpolation matrix having the entries ai,s =
Φs(xi). By knowing the basis function ϕ the entries of the

interpolation matrix are easily calculated as ai,s =ϕ(‖xi − xs‖).
The points xi ∈R

2 are the centers where the basis functions are

evaluated and they coincide with the spatial location xi = xs.

As final step the thermal map T (x) can be evaluated on an

arbitrary grid defined by the set of points x ∈ R
2 using (7).

We consider the points defined by the N ×M regular grid.

In this work we propose to use this approach together with

the Thermal Basis Function described in Section III-C. In

particular we consider ϕ(r) to be the eq. (2) and r =
∥

∥xp − xs

∥

∥

the distance between two chip locations.

VI. RESULTS

In this section we evaluated the proposed methodologies on

the Mag3D test chip. We split our analysis in two main parts.

In the first part we present the results obtained directly on

the real Mag3D chip. This first family of tests evalutes the

performance of the proposed learning algorithm for temper-

ature prediction and temperature-to-power inversion by using

real data and off-sample validation.

In the second part we focus on the evaluation of the accu-

racy and complexity of the proposed interpolation algorithm

to predict the entire chip thermal map w.r.t. state-of-the-art

approaches [17], [36]. This evaluation cannot be performed on

the real chip as it is impossible to directly measure a detailed

thermal map due to the absence of fine grid of thermal sensors.

We created a FEM model of the Mag3D chip to calculate the

steady-state thermal profile of the chip surface and we use it

as reference for the analysis.

A. Part 1: Real Mag3D chip results

1) Sensitivity to Heaters Availability: In the first test we

evaluated the sensitivity of the learning procedure of the

Thermal Basis Function and of the temperature estimation to

the available number of heaters in the chip. Indeed in practical

case due to the different HW costs, thermal sensors are more

available than programmable heaters and power sensors. In

our test chip there are H = 8 heaters and we emulate the case

of reduced number of heaters by considering only a subset

of the available ones in the test chip. We then compute a

new K matrix using (1), named Kred matrix to distinguish it

from the one constructed using all available heaters named

K. Both of them are learned by considering all the available

temperatures sensors (S= 7). The missing coefficients are thus

recovered using the fK,ad function. Finally we validate the

accuracy of this model by comparing the coefficients values

with the full K ones obtained using all the heaters. More in

details, as described in section III-B, we calculate the reduced

Kred matrix using 2H−n power vectors and temperature vectors;

n indicates the number of removed heaters. Successively, using

the method presented in Section IV-B we calculate the missing

parameters of the Kred matrix. In this case the approximation

function used in (6) is obtained using the Kred matrix and

so it has a lower accuracy. Finally we compare the obtained

coefficients with the corresponding ones in the original K

matrix.
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Fig. 5. Adjusted and uniform approximation function comparison

In Fig.5 we show the norm of the absolute error calculated

for the cases with n = 1, ..,4 missing heaters. Since the perfor-

mance of the approximation function are strictly correlated to

which heater is removed, for each of the four configurations

we calculated the average error considering all the n-choose-H

combinations. Fig.6 reports this metric for the 3-choose-8 case.

The results confirm that the adjusted approximation function

behaves better in coefficient recovery than the uniform one

since it can consider spatial variability. There is also a linear

dependency between the error in the matrix coefficients and

the number of removed heaters.

Moreover the higher QoS of the adjusted approximation

function does not incur in a timing overhead when compared

to the uniform one as the extra steps needed to compute the

nearest-neighbour map and the adjustment term (eq.(4)) needs
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to be computed offline only once. Then the runtime overhead

for the uniform and the adjusted approximation function is the

same.
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Fig. 8. Residuals of the Model1 and Model2 output obtained using the real
heater power trace

2) Temperature to Power Inversion Accuracy: The second

test aims to quantify the accuracy of the proposed Virtual

Sensor method in estimating the power dissipated at unknown

locations of the chip as described in Section IV-B. In particular

we removed the heater H4 and we use its power trace as a

reference for the validation. We then execute all the steps

described for both the “Model1” and “Model2” approaches.

The results of them are the two identified power vectors

compared in Fig.7 against the real one. The real validation

trace is indicated as “Actual”. “Model2” clearly has better

performance due to the larger number of input information and

less problem unknowns. Fig. 8 shows the residuals histograms.

We notice that both the models has similar average residual

but “Model2” shows significant smaller standard deviation. For

both the average error is below 20mW.

3) Virtual Sensor Accuracy: In this test we evaluate the

performance of the proposed virtual thermal sensors which

exploits the Thermal Basis Function to compute the tempera-

ture at chip locations not covered by real temperature sensors.

The procedure is explained in section IV-A. In this particular

test we removed the sensor S6 and we used its real value

as validation trace. We compute the error as the difference

between the real sensor output and the temperatures generated

by the two models: the “Full Model” obtained using all the

chip sensors (also the S6) and the recovered model (Rec.

Model) obtained reconstructing the missing coefficients using

the approximated function. Fig.9 shows the histogram of the
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Fig. 9. Residuals of the Recovered model and the Full model output obtained
using the real temperature trace

error for the two approaches. As expect the “Full Model” has a

lower error than the “Rec. Model”. Both of them are unbiased

as they have null error average. Moreover “Full model” has

an accuracy of 1oC which is within the HW thermal sensor

accuracy (1oC) and the “Rec. Model” has an accuracy loss of

only (1oC) w.r.t. real HW thermal sensors.
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Fig. 10. Full chip thermal map

Using this procedure it is possible to generate a detailed

thermal map of the whole chip surface. Assuming to subdivide

the chip surface in a MxL grid where each point is a virtual

thermal sensor point. Executing MxL times the procedure

described in IV-A we can generate a larger K matrix Kl

composed of (MxL)xH coefficients, able to estimate the tem-

perature at each point of the chip surface. Setting M=L=64

we reconstructed the steady-state thermal field of the chip

corresponding to a generic power map (i.e. H1,H4 and H5

= on). The resulting thermal map is showed in Fig.10.

Unfortunately with this set-up it is difficult to evaluate the

goodness of the fine grain thermal map estimation as we are

missing the true reference thermal map, which is impossible

to obtain with direct measurements in the Mag3D test chip. To

overcome this limitation in the next section we built a finite

element model (FEM) of the device on which we will evaluate

the accuracy of thermal interpolation strategies.

B. Part 2: Mag3D FEM Model Results

The validity of the interpolation algorithms needs to be

checked using an accurate and complete reference dataset.

We obtained the reference full chip thermal map by creating

a FEM model of the 3D stack. We use COMSOL [49] to

build the Mag3D chip model. We built the FEM model using
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Fig. 11. FEM model of the Mag3D chip.

the chip size and materials coming from the manufacturer

datasheet. We then validated it against real measurements done

on the real Mag3D device. As shown in Fig.11, the model

considers all the main layers of the 3D stack, up to the external

chip package. The layers are considered homogeneous material

blocks. However the heaters are obtained as poly-Si material

blocks located inside the silicon layer. We have neglected the

chip inhomogeneities like the metalization layers and the µ-

bumps located in the underfill material layers. The size of

each layer is obtained from the chip data-sheet as well as the

materials properties which include the thermal conductivity

and the heat capacity. We set up the simulation to get the

steady-state heat equation solution at the chip boundaries

considering the heaters as the unique heat sources. We consider

also a convective heat flux as boundary conditions imposed

on all the chip external faces. The heat transfer coefficient is

empirically selected to minimize the mismatch in between the

real thermal sensor readings and the thermal simulation results

when the same power pattern is applied both to the real chip

and the FEM model.

As a first step we recreated the entire chain of measurements

done on the real device. This is done following the procedure

described in Section III-B. This has been done by computing

the COMSOL model as a batch simulation in a Matlab script.

The script applies all the power vectors to the heaters in the

model and stores the corresponding steady-state temperatures

for all the silicon spatial coordinates that match the real

thermal sensor locations. The resulting dataset obtained by the

simulation is then used to compute the new K matrix following

eq. (1) and computing the new basis thermal function as

described in Section III-C.

We then used this set-up to evaluate the performance of

the novel proposed thermal interpolation strategies which are

based on formal RBF approach as presented in Section V. We

evaluated the performance of the proposed method w.r.t. state-

of-the-art methodologies and the proposed Virtual Thermal

Sensor approach which uses in addition to the thermal sensors

also per-component power information.

We carried out three main experiments to measure the

performance of the novel interpolation method (RBF) intro-

duced in Section V. Firstly we focused on the accuracy of

the temperature estimation at chip locations not covered by

any thermal sensor. Secondly, we considered the ability of

the algorithm in estimating the absolute temperature in the

hot-spot location. Finally, we measured the computational

overhead of the proposed algorithm to build the entire thermal

map.

We compared the RBF method against two state-of-the-art

approaches. More in details we have considered the spectral

approach (Spectral) presented in [17] and the surface spline

interpolation method (Spline) implemented in [36]. In addition

we provide a comparisons w.r.t. the virtual thermal sensors

approach discussed in Section.IV-A and presented in the

conference version of the paper [43].
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Fig. 12. Virtual sensor accuracy

In all the tests we assume the knowledge of the full

chip thermal map which is obtained by simulating the FEM

model. We selected as reference thermal profile the Mag3D

temperature map shown in Fig.17 where only the heater H3 is

turned on. This particular configuration emulates the presence

of an hotspot. The reference thermal map is composed of 4K

samples. The temperature field is sampled following a regular

square sensors pattern and considering an increasing number

of total thermal sensors as shown in the first column of Fig.

13. This emulates an increasing number of real temperature

sensors and measurements available in the target device. We

expect the estimation quality to increase as the number of

input thermal measurements increases. In each test, we initially

sampled the reference thermal map using a centred square grid

of S × S points where S = {3,7,15,31}. These are chosen

to have the samples of the smaller grid included in the

larger one and to minimize the noise in between the grids.

These values are computed using the formula S =
√

4096
Sstep

−1,

where Sstep = {2,4,8,16}. Successively these values and the

corresponding spatial coordinates are passed to the algorithms

that compute the interpolated thermal map. For each map we

used the RMS error as the interpolation performance index. We

compute for each size of the reference temperature the same

amount of output. These are chosen as the relative complement

of the largest temperature reference input (31x31) in the total

available reference samples (4K). This is done to consider

always the same off-sample sensors in the computation of the

error (RMSE).

1) Virtual Sensor Accuracy: The focus of this test is to

measure the accuracy of the different algorithms in predicting
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Fig. 13. Temperature maps: test (rows) and algorithm (columns). First column shows the input data obtained by sampling the reference map (Fig.17)

the temperature at unknown silicon locations. The temperature

error (RMSE) is calculated only for the off-sample map points,

namely the points of the map never considered as input

samples in beetween all the tests.

Figure 12 shows the final results; the RBF algorithm shows

the best accuracy for the different sensors numbers. In addi-

tion, we notice that as the number of sensors increases the

accuracy of the RBF and Surface Spline algorithms increases

faster than the Spectral algorithm that shows a relatively lower

accuracy and higher error. As reported by the DATE14 bar,

the thermal sensor virtualization strategy presented in Section

IV-A has an accuracy which is constant with respect to the

number of different input temperature sensor numbers. This is

expected since the temperature estimation for this approach,

once the thermal basis function is obtained, only depends on

the power input estimation. We can notice that, if a good

input power estimation is available on-line, this approach is

beneficial for reduced numbers of input temperature sensors.

If we focus the analysis to the pure thermal interpolation

strategies (Spectral, Spline, RBF) we can observe a relatively

higher performance of the RBF algorithm at low number of

sampled points. Indeed both Spline and RBF methods use a

basis function but what makes the difference is the specialized

one used in the RBF approach. In the RBF case indeed,

the basis function is learned using real silicon thermal data

and thus it encloses more detailed thermal information. This

property of the basis function is the key factor for a more

accurate thermal map recovery as described in the paper. It

must be noted that the relative higher accuracy of RBF w.r.t.

Spline decreases as the number of sensors increases. The

reason of such artefact is that in RBF we do not re-train

the basis function with the new thermal sensors, but we keep

the original Mag3D number. This biases the basis function

toward distant thermal sensors. Thus the reported results are

conservative bounds for the RBF case. A qualitative overview

of the various algorithms results can be found in Fig. 13. In the

figure we can see the temperature estimated by the different

approaches (along x-axis) for different input thermal sensors

numbers (along y-axis).

Figure 14 shows the absolute error histogram for the

corresponding interpolation algorithm and number of input

temperature measurements. RBF achieves a full thermal map

reconstruction with an accuracy of ±2oC starting from only

9 thermal sensors. With 49 thermal sensors RBF achieves an

estimation accuracy similar of real HW ones (±1oC).

2) Hot-Spot Estimation Error: In this test we measured the

capability of the algorithms in predicting the temperature of

the hotspot location. This is done by considering the original

temperature map and selecting the hottest point coordinate.

Then, the absolute error in between the original temperature

at this coordinate and the reconstructed ones is computed for

each of the configurations in S. The plot shows that, despite

the increasing number of total sensors, the absolute error has

a non monotonic behavior. This can be explained considering

that in the interpolation algorithm the relative position of the

sampled points has a primary role in the surface reconstruction.

The interesting result is that the spectral approach has better

accuracy for the small sensor number case than the others al-
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Fig. 14. Histogram of the absolute error: test (rows) and algorithm (columns). Errors in degrees celsius (x-axis). y-axis reports the frequency of a given error.

gorithms when considering a uniform sampling grid. However

by increasing the sampling points the accuracy improves for

the others algorithms and the RBF approach shows the best

performance for a realistic and affordable number of points.

3) Algorithms Overhead: All the algorithms are imple-

mented in Matlab and to have a comparison of their com-

putational complexity in this test we measure their execution

time. This is done for the different input temperature samples

considered but for constant output interpolated temperature

which is equal to 4K samples (64x64). More in detail we

measure the time interval needed to calculate the final inter-

polated map starting from the measured sampling points. As

expected the Spectral algorithm is the fastest approach since

it exploits the FFT numerical efficiency. Indeed it must be

considered that the basic implementation of the RBF and the

Spline approaches have a computational complexity equal to

O(N3) while for the Spectral method it is only O(NlogN).
In Fig. 16 are reported the normalized execution times of

the three algorithms. We executed the algorithms on a dual

core processor at 2.5GHz and 4GB of RAM. The maximum

elapsed time is 5.42 seconds obtained for the RBF algorithm

using 961 sampled points. Although it is a considerable high

value for a run-time implementation it should be considered

that it is computed for a large amount of sampling points

(961 thermal sensors) that is an unpractical scenario since this

sensor number would occupy the 53% of die area. The results

highlight that the Spline method is relatively faster than the

RBF. This can be caused by both the algorithm operation mode

and the radial base function used. During the map interpolation

the radial base function is called repeatedly to compute its

value for each evaluation point. The thin plate spline function

used in the Spline algorithm is relatively simpler than the

basis function in the RBF approach; consequently it requires

a shorter evaluation time. However this performance differ-

ence can be alleviated optimizing the function evaluation, for

example using LUTs.
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Fig. 15. Hot spot estimation error

C. Boundary Aware RBF

One of the main benefits of the RBF interpolation method

introduced above is that it is agnostic of mesh constraints

between the data points. This makes the algorithm extremely

flexible in contexts where the data points follow an irregular

spatial pattern. In this section we take advantage of this feature
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to improve the thermal map estimation when supplementary

temperature measurements are available on top of the exist-

ing ones. As seen before the main data points are thermal

information coming from the on chip sensors. In some cases

however, additional chip thermal data are available directly

from advanced compact thermal models (CTMs) [50] and thus

temperatures at particular chip/package location can be easily

inferred. This can be useful if a higher accuracy at certain

chip location is needed. Indeed Fig. 17 shows that the real

device (Comsol model) has a thermal gradient near the chip

border. This information is not present in the radial basis

function kernel by itself and it is partially included with the

spatial adjustment as discussed in Section III-D. To test this

assumption we assume to directly measure the temperature

of the chip at SoC boundaries as described in Fig. 17. After

adding these informations to the existing Mag3D data-set,

following the same procedure early described in Section III-C

we generated a new radial function namely RBF+boundary.

Figure 18 shows the new thermal basis function. From this

comparison we notice that the shape of the basis function gets

modified to account for the newly added data points.
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Fig. 17. FEM model reference temperature map and locations of thermal
sensors (white squares) and points on the chip borders (red squares).

Starting from a coarse set of data (the power map, the

thermal sensors and ambient temperature) we want to recover

the fine-grain temperature field. We considered the scenario

depicted in Fig. 17. Initially we identify the two radial
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Fig. 18. RBF vs RBF+boundary function comparison

functions by fitting the parameters of the model (2). The

first basis function (RBF) is obtained only using the thermal

sensors data (white squares) while the second basis function

(RBF+boundary) is computed using data points from both

thermal sensors and borders temperature (red squares). We

have then estimated the fine-grained thermal map using the

proposed algorithm described in section V-A and using data

points both from thermal sensors and borders temperature. In

Figures 19 and 20 we evaluate the border-aware estimation

when compared with the standard RBF estimation by means

of two error metrics (RMS): etotal is the error computed

considering all the map points while ebound considers only

the points of the map lying on its border. The results clearly

show an improvement in accuracy near the points of interest

(SoC borders) in the case where we used the RBF+boundary

basis function (+35% local accuracy increase). However for

the same case the global accuracy (etotal) is lower than the

approach with the simpler basis function (RBF) (65% global

accuracy loss). It follows that, when there is a particular

interest in estimating the temperature at specific chip location,

the accuracy can be significantly improved by considering

supplementary data points in the identification of the thermal

basis function. Moreover it is possible to design ad-hoc data

points mesh to build a Thermal Basis Function which provides

a given accuracy of the estimated thermal map.
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Fig. 19. Normal RBF: estimated thermal map (left) and residuals (right)

D. Final Remarks

From the proposed RBF approach results, the main ben-

efit is introduced by the improved interpolation accuracy in

cases with a lower number of available temperature sensors.

Although in our tests we used a regular sampling grid, RBF
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(and Spline) methods do not have any particular restrictions

for the position of the input sample points. This simplifies

the placement of the thermal sensor in early design stages

avoiding additional floorplan constraints. For this reason the

RBF algorithm is indicated for optimal sensor allocation

frameworks. The study of optimal sensor placement which

provides the best accuracy in hotspot temperature detection

goes beyond the scope of this work. It must be noted that to

have the same flexibility in the Spectral approach it is needed a

supplementary step for approximating the irregular sensor grid

to a regular one before starting the interpolation procedure.

However this step will jeopardize the overall accuracy of

the interpolation method. Therefore the RBF approach can

find the right trade-off between accuracy, area and design

constraints at the cost of an additional post-silicon step needed

for the calibration of the Thermal Basis Function for accurate

temperature map estimation at run-time.

VII. CONCLUSION

In this paper we presented a novel thermal estimation frame-

work suitable for the new forthcoming 3D-chips. It exploits on

chip available thermal sensors and heaters to deliver a detailed

full thermal map of the active silicon surface, in addition

to model-based virtual thermal and power sensors. The focal

point of this work is the Thermal Basis Function, an analytical

representation of the thermal properties of the silicon derived

empirically from a real 3D device. It correlates the silicon ther-

mal resistance with the distance between two chip locations.

Exploiting the on chip power and thermal sensors, the Thermal

Basis Function is used directly to create virtual sensors and it

is capable of estimating the temperature and power at chip

positions not covered by any real sensor. In addition we

showed that the same Thermal Basis Function can be used

in classical RBF-based interpolation methods. We compared

the proposed solution with state-of-the-art approaches. Since

the Thermal Basis Function is tightly coupled to the target

HW, it gives more accurate results when compared to a more

generic basis function (i.e. Spline). Experimental results show

that the Thermal Basis Function provides the best trade-off in

between accuracy and interpolation cost for limited number of

thermal sensors, which is the case of real HW devices.
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