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Abstract Persistent homology has proven itself quite efficient in the topolo-
gical and qualitative comparison of filtered topological spaces, when invariance
with respect to every homeomorphism is required. However, we can make the
following two observations about the use of persistent homology for application
purposes. On the one hand, more restricted kinds of invariance are sometimes
preferable (e.g., in shape comparison). On the other hand, in several practical
situations filtering functions are not just auxiliary technical tools that can
be exploited to study a given topological space, but instead the main aim of
our analysis. Indeed, most of the data is usually produced by measurements,
whose results are quite often functions defined on a topological space. As a
simple example we can consider a 3D laser scanning of a surface, where the
result of each measurement can be seen as a real-valued function defined on
the manifold that describes the positions of the rangefinder measuring the
distances. In fact, in many applications the dataset of interest is seen as a
collection Φ of real-valued functions defined on a given topological space X,
instead of a family of topological spaces. As a natural consequence, in these
cases observers can be seen as collections of suitable operators on Φ.

Starting from these remarks, this paper proposes a way to combine per-
sistent homology with the use of G-invariant non-expansive operators defined
on Φ, where G is a group of self-homeomorphisms of X. Our goal is to give a
method to study Φ in a way that is invariant with respect to G.
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Some theoretical results concerning our approach are proven, and two ex-
periments are presented. An experiment illustrates the application of the pro-
posed technique to compare 1D-signals, when the invariance is expressed by
the group of affinities, the group of orientation-preserving affinities, the group
of isometries, the group of translations and the identity group. Another exper-
iment shows how our technique can be used for image comparison.

Keywords Natural pseudo-distance · filtering function · group action ·
persistent homology group · shape comparison

Mathematics Subject Classification (2000) Primary 55N35 · Secondary
47H09 54H15 57S10 68U05 65D18

1 Introduction

Persistent topology consists in the study of the properties of filtered topological
spaces. From the very beginning, it has been applied to shape comparison [18,
25–27]. In this context, datasets are frequently represented by continuous Rm-
valued functions defined on a topological space X. As simple examples among
many others, these functions can describe the coloring of a 3D object, the
coordinates of the points in a planar curve, or the grey-levels in a x-ray CT
image. Each continuous function ϕ : X → Rm is called a filtering function
and naturally induces a (multi)filtration on X, made by the sublevel sets of
ϕ. Persistent topology allows to analyse the data represented by each filtering
function by examining how much the topological properties of its sublevel
sets “persist” when we go through the filtration. The main mathematical tool
to perform this analysis is given by persistent homology [15]. This theory
describes the birth and death of k-dimensional holes when we move along
the considered filtration of the space X. When the filtering function takes its
values in R we can look at it as a time, and the distance between the times of
birth and death of a hole is defined to be its persistence. The more persistent
is a hole, the more important it is for shape comparison, since holes with small
persistence are usually due to noise.

An important property of classical persistent homology consists in the fact
that if a self-homeomorphism g : X → X is given, then the filtering functions
ϕ,ϕ ◦ g cannot be distinguished from each other by computing the persistent
homology of the filtrations induced by ϕ and ϕ◦g. As pointed out in [24], this
is a relevant issue in the applications where the functions ϕ,ϕ ◦ g cannot be
considered equivalent. This happens, e.g., when each filtering function ϕ : X =
R2 → R describes a grey-level image, since the images respectively described
by ϕ and ϕ ◦ g may have completely different appearances. A simple instance
of this problem is illustrated in Figure 1.

Therefore, a natural question arises: How can we adapt persistent homology
in order to prevent invariance with respect to the group Homeo(X) of all self-
homeomorphisms of the topological space X, maintaining just the invariance
under the action of the self-homeomorphisms that belong to a proper subgroup
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Fig. 1 Examples of letters A, D, O, P, Q, R represented by functions ϕA, ϕD, ϕO, ϕP, ϕQ, ϕR from
R2 to the real numbers. Each function ϕY : R2 → R describes the grey level at each point
of the topological space R2, with reference to the considered instance of the letter Y . Black
and white correspond to the values 0 and 1, respectively (so that light grey corresponds to
a value close to 1). In spite of the differences between the shapes of the considered letters,
the persistent homology of the functions ϕA, ϕD, ϕO, ϕP, ϕQ, ϕR is the same in every degree.

of Homeo(X)? For example, the comparison of the letters illustrated in Fig-
ure 1 should require just the invariance with respect to the group of similarities
of R2, since they all are equivalent with respect to the group Homeo(R2). We
point out that depicted letters are constructed from thick lines and therefore
have some width in opposite to the concept of geometrical lines.

One could think of solving the previous problem by using other filtering
functions, possibly defined on different topological spaces. For example, we
could extract the boundaries of the letters in Figure 1 and consider the distance
from the center of mass of each boundary as a new filtering function. This
approach presents some drawbacks:

1. It “forgets” most of the information contained in the image ϕ : R2 → R
that we are considering, confining itself to examine the boundary of the
letter represented by ϕ. If the boundary is computed by taking a single level
of ϕ, this is also in contrast with the general spirit of persistent homology.

2. It usually requires an extra computational cost (e.g., to extract the bound-
aries of the letters in our previous example).

3. It can produce a different topological space for each new filtering function
(e.g., the letters of the alphabet can have non-homeomorphic boundaries).
Working with several topological spaces instead of just one can be a dis-
advantage.

4. It is not clear how we can translate the invariance that we need into the
choice of new filtering functions defined on new topological spaces.

The purpose of this paper is to present a possible solution for the previously
described problem. It is based on a dual approach to the invariance with
respect to a subgroup G of Homeo(X), and consists in changing the direct
study of the group G into the study of how the operators that are invariant
under the action of G act on classical persistent homology. This change of
perspective reveals interesting mathematical properties, allowing to treat G as
a variable in our applications. According to this method, the shape properties
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and the invariance group can be determined separately, depending on our task.
The operators that we consider in this paper act on the space of admissible
filtering functions and, in some sense, can be interpreted as the “glasses” we
use to look at the data. Their use allows to combine persistent homology and
the invariance with respect to the group G, extending the range of application
of classical persistent homology to the cases in which we are interested in
G-invariance rather than in Homeo(X)-invariance.

The idea of applying operators to filtering functions before computing per-
sistent homology has been already considered in previous papers. For example,
in [7] convolutions have been used to get a bound for the norm of persistence
diagrams of a diffusing function. Furthermore, in [24] scale space persistence
has been shown useful to detect critical points of a function by examining the
evolution of their homological persistence values through the scale space. As
for combining persistent homology and transformation groups, the interest in
measuring the invariance of a signal with respect to a group of translations
(i.e. the study of its periodicity or quasi-periodicity) has been studied in [9,
23], using embedding operators. However, our approach requires to consider
just a particular kind of operators (i.e. G-invariant non-expansive operators on
the set of admissible filtering functions), and faces the more general problem
of adapting persistent homology to any group of self-homeomorphisms of a
topological space.

For another approach to this problem, using quite a different method, we
refer the reader to [17].

1.1 Our main idea in a nutshell

After choosing a set Φ of admissible filtering functions from the topological
space X to R, and a subgroup G of Homeo(X), we consider the set F(Φ,G)
of all G-invariant non-expansive operators F : Φ → Φ. Basically, our idea
consists in comparing two functions ϕ1, ϕ2 ∈ Φ by computing the supremum
of the bottleneck distances between the classical persistence diagrams of the
filtering functions F ◦ ϕ1 and F ◦ ϕ2, varying F in F(Φ,G). In our paper we
prove that this approach is well-defined, G-invariant, stable and computable
(under suitable assumptions).

1.2 Outline of the paper

Our paper is organized as follows. In Section 2 we introduce some concepts
that will be used in the paper and recall some basic facts about persistent
homology. In Section 3 we prove our main results concerning the theoretical
properties of our method (Theorems 15, 16 and 17). In Section 4 we illustrate
the application of our technique to an experiment concerning 1D-signals. In
Section 5 a possible application to image retrieval is outlined. A short discus-
sion concludes the paper.
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2 Mathematical setting

Let us consider a (non-empty) metric space X, triangulated by a finite (and
hence compact) simplicial complex. We also assume that X has nontrivial
homology in degree k. This last assumption is always satisfied for k = 0 and
unrestrictive for k ≥ 1, since we can embed X in a larger (finitely) triangulable
space Yk with nontrivial homology in degree k, and substitute X with Yk. Let
C0(X,R) be the set of all continuous functions from X to R, endowed with
the topology induced by the sup-norm ‖ · ‖∞. The compactness of X implies
that the functions in C0(X,R) are uniformly continuous. Let Φ be a topological
subspace of C0(X,R), containing at least the set of all constant functions. The
functions in the topological space Φ will be called admissible filtering functions
on X.

We assume that a subgroup G of the group Homeo(X) of all homeomor-
phisms from X onto X is given, acting on the set Φ by composition on the
right. In other words, we assume that G has been chosen in such a way that if
ϕ ∈ Φ and g ∈ G then ϕ ◦ g ∈ Φ. At least the identity group verifies this prop-
erty. The action of g ∈ G takes each function ϕ ∈ Φ to the function ϕ ◦ g ∈ Φ.
We do not require G to be a proper subgroup of Homeo(X), so the equality
G = Homeo(X) can possibly hold. It is easy to check that G is a topological
group with respect to the topology of uniform convergence, and that the right
action of G ⊆ Homeo(X) on the set Φ is continuous.

If S is a subset of Homeo(X), the set {ϕ◦ s : ϕ ∈ Φ, s ∈ S} will be denoted
by the symbol Φ ◦ S. Since we are assuming that the action of every g ∈ G
takes each function ϕ ∈ Φ to a function ϕ ◦ g ∈ Φ, we have Φ ◦ G = Φ. We
observe that in practice, in our experiments, we will work with a finite subset
Φds ⊂ Φ. In this case the inclusion Φds ◦G ⊇ Φds will hold.

We can consider the natural pseudo-distance dG on the space Φ (cf. [20,
11–13,2]):

Definition 1 The pseudo-distance dG : Φ× Φ→ R is defined by setting

dG(ϕ1, ϕ2) = inf
g∈G

max
x∈X
|ϕ1(x)− ϕ2(g(x))| .

It is called the (1-dimensional) natural pseudo-distance associated with the
group G acting on Φ.

The term “1-dimensional” refers to the fact that the filtering functions are
real-valued. The concepts considered in this paper can be easily extended to
the case of Rm-valued filtering functions, by substituting the absolute value
in R with the max-norm ‖(u1, . . . , um)‖ := maxi |ui| in Rm. However, the use
of Rm-valued filtering functions would require the introduction of a technical
machinery that is beyond the purposes of our research (cf., e.g., [5]), in order
to adapt the bottleneck distance to the new setting. Therefore, for the sake of
simplicity, in this paper we will just consider the 1-dimensional case.

It follows directly from the definition of the natural pseudo-distance dG
that when G is the trivial group Id, then dG equals the sup-norm distance d∞



6 Patrizio Frosini, Grzegorz Jab loński

on Φ, defined by setting d∞(ϕ1, ϕ2) := ‖ϕ1−ϕ2‖∞. Moreover, the definition of
dG immediately implies that if G1 and G2 are subgroups of Homeo(X) acting
on Φ and G1 ⊆ G2, then dG2(ϕ1, ϕ2) ≤ dG1(ϕ1, ϕ2) for every ϕ1, ϕ2 ∈ Φ. As
a consequence, the following double inequality holds, for every subgroup G of
Homeo(X) and every ϕ1, ϕ2 ∈ Φ (see also Theorem 5.2 in [5]):

dHomeo(X)(ϕ1, ϕ2) ≤ dG(ϕ1, ϕ2) ≤ d∞(ϕ1, ϕ2).

Remark 2 The proof that dG is a pseudo-metric does use the assumption that
G is a group, and one can give examples of subsets S of Homeo(X) for which
the function µS(ϕ1, ϕ2) := infs∈S ‖ϕ1 − ϕ2 ◦ s‖∞ is not a pseudo-distance on
Φ.

The rationale of using the natural pseudo-distance is that pattern recogni-
tion is usually based on comparing properties that are described by functions
defined on a topological space. These properties are often the only accessible
data, implying that every discrimination should be based on them. The fun-
damental assumption is that two objects cannot be distinguished if they share
the same properties with respect to a given observer (cf. [1]).

In order to proceed, we consider the set F(Φ,G) of all operators that verify
the following properties:

1. F is a function from Φ to Φ;
2. F (ϕ ◦ g) = F (ϕ) ◦ g for every ϕ ∈ Φ and every g ∈ G;
3. ‖F (ϕ1) − F (ϕ2)‖∞ ≤ ‖ϕ1 − ϕ2‖∞ for every ϕ1, ϕ2 ∈ Φ (i.e. F is non-

expansive).

Obviously, F(Φ,G) is not empty, since it contains at least the identity
operator.

Properties 1 and 2 show that F is a G-operator, referring to the right action
of G on Φ.

Remark 3 The operators that we are considering are not required to be linear.
However, due to the non-expansivity property, the operators in F(Φ,G) are 1-
Lipschitz and hence are continuous.

In this paper, we shall say that a pseudo-metric d̄ on Φ is strongly G-
invariant if it is invariant under the action of G with respect to each variable,
i.e., if d̄(ϕ1, ϕ2) = d̄(ϕ1 ◦ g, ϕ2) = d̄(ϕ1, ϕ2 ◦ g) = d̄(ϕ1 ◦ g, ϕ2 ◦ g) for every
ϕ1, ϕ2 ∈ Φ and every g ∈ G.

Remark 4 It is easily seen that the natural pseudo-distance dG is strongly
G-invariant.

Example 5 Take X = S1, G equal to the group R(S1) of all rotations of S1,
and Φ equal to the set C0(S1,R) of all continuous functions from S1 to R.
As an example of an operator in F(Φ,G) we can consider the operator Fα
defined by setting Fα(ϕ)(x) := 1

2 · (ϕ(x) + ϕ(xα)) for every ϕ ∈ C0(S1,R) and
every x ∈ S1, where xα denotes the point obtained from x by rotating S1 of a
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fixed angle α. It is easy to check that Fα is an R(S1)-invariant non-expansive
(linear) operator defined on C0(S1,R). An example of an R(S1)-invariant non-
expansive non-linear operator defined on C0(S1,R) is given by the operator F̄
defined by setting F̄ (ϕ)(x) = ϕ(x) + 1 for every ϕ ∈ C0(S1,R) and every
x ∈ S1.

This simple statement holds (the symbol 0 denotes the function taking the
value 0 everywhere):

Proposition 6 ‖F (ϕ)‖∞ ≤ ‖ϕ‖∞ + ‖F (0)‖∞ for every F ∈ F(Φ,G) and
every ϕ ∈ Φ.

Proof ‖F (ϕ)‖∞ = ‖F (ϕ)− F (0) + F (0)‖∞ ≤ ‖F (ϕ)− F (0)‖∞ + ‖F (0)‖∞ ≤
‖ϕ− 0‖∞ + ‖F (0)‖∞ = ‖ϕ‖∞ + ‖F (0)‖∞, since F is non-expansive. ut

If F 6= ∅ is a subset of F(Φ,G) and Φ is bounded with respect to d∞, then
we can consider the function

dF (F1, F2) := sup
ϕ∈Φ
‖F1(ϕ)− F2(ϕ)‖∞

from F × F to R.

Proposition 7 If F is a non-empty subset of F(Φ,G) and Φ is bounded then
the function dF is a distance on F .

Proof See Appendix A. ut

Remark 8 The sup in the definition of dF cannot be replaced with max. As
an example, consider the case X = [0, 1], Φ = C0([0, 1], [0, 1]), G equal to the
group containing just the identity and the homeomorphism taking each point
x ∈ [0, 1] to 1− x, F1(ϕ) equal to the constant function taking everywhere the
value maxϕ, and F2(ϕ) equal to the constant function taking everywhere the
value

∫ 1

0
ϕ(x) dx. Both F1 and F2 are non-expansive G-operators. We have

that dF (F1, F2) = 1, but no function ψ ∈ Φ = C0([0, 1], [0, 1]) exists, such that
‖F1(ψ)− F2(ψ)‖∞ = 1.

2.1 Persistent homology

Before proceeding, we recall some basic definitions and facts in persistent ho-
mology. For a more detailed and formal treatment, we refer the interested
reader to [15,1,3,6]. Roughly speaking, persistent homology describes the
changes of the homology groups of the sub-level sets Xt = ϕ−1((−∞, t]) vary-
ing t in R, where ϕ is a real-valued continuous function defined on a topological
space X. The parameter t can be seen as an increasing time, whose change
produces the birth and death of k-dimensional holes in the sub-level set Xt.
For k = 0, 1, 2, the expression “k-dimensional holes” refers to connected com-
ponents, tunnels and voids, respectively.
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Persistent homology can be introduced in several different settings, includ-
ing the one of simplicial complexes and simplicial homology, and the one of
topological spaces and singular homology. As for the link between the discrete
and the topological settings, we refer the interested reader to [4,10]. In this
paper we will consider the topological setting and the singular homology func-
tor H. An elementary introduction to singular homology can be found in [21].

The concept of persistence can be formalized by the definition of persistent
homology group with respect to the function ϕ : X → R:

Definition 9 If u, v ∈ R and u < v, we can consider the inclusion i of Xu into
Xv. Such an inclusion induces a homomorphism ik : Hk (Xu) → Hk (Xv) be-
tween the homology groups of Xu and Xv in degree k. The group PHϕ

k (u, v) :=
ik (Hk (Xu)) is called the k-th persistent homology group with respect to the
function ϕ : X → R, computed at the point (u, v). The rank rk(ϕ)(u, v) of
this group is said the k-th persistent Betti number function with respect to
the function ϕ : X → R, computed at the point (u, v).

Remark 10 It is easy to check that the persistent homology groups (and hence
also the persistent Betti number functions) are invariant under the action of
Homeo(X). For further discussion see Appendix B.

A classical way to describe persistent Betti number functions (up to sub-
sets of measure zero of their domain) is given by multisets named persistence
diagrams. Another equivalent description is given by barcodes (cf. [3]). The
k-th persistence diagram is the multiset of all pairs pj = (bj , dj), where bj and
dj are the times of birth and death of the j-th k-dimensional hole, respectively.
When a hole never dies, we set its time of death equal to ∞. The multiplicity
m(pj) says how many holes share both the time of birth bj and the time of
death dj . For technical reasons, the points (t, t) are added to each persistence
diagram, each one with infinite multiplicity.

Persistence diagrams can be compared by a metric δmatch, called bottleneck
distance or matching distance. We recall here its formal definition, taking into
account that each persistence diagram D can contain an infinite number of
points, and that each point p ∈ D has a multiplicity m(p) ≥ 1. For every
q ∈ ∆∗, the equality m(q) = 0 means that q does not belong to the persistence
diagram D. In our exposition we will set ∆ := {(x, y) ∈ R2 : x = y}, ∆+ :=
{(x, y) ∈ R2 : x < y}, ∆̄+ := {(x, y) ∈ R2 : x ≤ y}, ∆∗ := ∆+ ∪ {(x,∞) : x ∈
R} and ∆̄∗ := ∆̄+ ∪ {(x,∞) : x ∈ R}.

We start by endowing the set ∆̄∗ with the pseudo-metric

d∗((x, y), (x′, y′)) := min
{

max{|x− x′|, |y − y′|},max
{
y − x

2
,
y′ − x′

2

}}
by agreeing that ∞− y =∞, y −∞ = −∞ for y 6=∞, ∞−∞ = 0, ∞2 =∞,
| ±∞| =∞, min{∞, c} = c, max{∞, c} =∞.
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The pseudo-metric d∗ between two points p = (x, y) and p′ = (x′, y′)
compares the cost of moving p to p′ and the cost of moving p and p′ onto ∆
and takes the smaller. We observe that d∗(p, p′) = 0 for every p, p′ ∈ ∆. If
p ∈ ∆+ and p ∈ ∆, then d∗(p, p′) equals the distance, induced by the max-
norm, between p and ∆. Points at infinity have a finite distance only to other
points at infinity, and their distance equals the Euclidean distance between
their abscissas.

Definition 11 Let D1, D2 be two persistence diagrams. We define the bottle-
neck distance δmatch between D1 and D2 by setting

δmatch(D1, D2) := inf
σ

sup
x∈D1

d∗(x, σ(x))

where σ : D1 → D2 is a bijection.

For further details about the concepts of persistence diagram and bottle-
neck distance, we refer the reader to [8] and [15]. Algorithms to compute the
bottleneck distance δmatch can be found in [16].

Since each persistent Betti number function is associated with exactly one
persistence diagram, it follows that the metric δmatch naturally induces a
pseudo-metric dmatch on the sets of the persistent Betti number functions.
We recall that a pseudo-metric is just a metric without the property assur-
ing that if two points have a null distance then they must coincide. For more
details about the existence of pairs of persistent Betti number functions that
differ from each other at the points of a set of measure zero but are associated
with the same persistence diagram, we refer the interested reader to [5].

A key property of the distance dmatch is its stability with respect to d∞
and dHomeo(X), stated in the following result.

Theorem 12 If k is a natural number and ϕ1, ϕ2 ∈ Φ = C0(X,R), then

dmatch(rk(ϕ1), rk(ϕ2)) ≤ dHomeo(X)(ϕ1, ϕ2) ≤ d∞(ϕ1, ϕ2).

The proof of the inequality dmatch(rk(ϕ1), rk(ϕ2)) ≤ d∞(ϕ1, ϕ2) in The-
orem 12 can be found in [8] (Main Theorem) for the case of tame filtering
functions and in [5] (Theorem 3.13) for the general case of continuous func-
tions. The first inequality in Theorem 12 follows from Theorem 5.2 in [5]
(which is in turn a corollary of the Multidimensional Stability Theorem 4.4 in
[5], following from one-dimensional stability). The other inequality is a trivial
consequence of the definition of dHomeo(X). Theorem 12 also shows that the
natural pseudo-distance dG allows to obtain a stability result for persistence
diagrams that is better than the classical one, involving d∞. Figure 2 illus-
trates this fact, displaying two filtering functions ϕ1, ϕ2 : [0, 1]→ R such that
dmatch(rk(ϕ1), rk(ϕ2)) = dHomeo(X)(ϕ1, ϕ2) = 0 < ‖ϕ1 − ϕ2‖∞ = 1. In other
words, dG is closer than d∞ to dmatch and examples exist where the knowledge
of dG allows us to infer that two given persistence diagrams are close to each
other, while the knowledge of d∞ cannot give the same information.
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Fig. 2 These two functions have the same persistent homology (dmatch(rk(ϕ1), rk(ϕ2)) =
0), but ‖ϕ1 − ϕ2‖∞ = 1. However, they are equivalent with respect to the group G =
Homeo([0, 1]), hence dHomeo(X)(ϕ1, ϕ2) = 0. As a consequence, dHomeo(X)(ϕ1, ϕ2) gives an
upper bound of dmatch(rk(ϕ1), rk(ϕ2)) that is better than the one given by the sup-norm
‖ϕ1−ϕ2‖∞, via the classical Bottleneck Stability Theorem for persistence diagrams (cf. [8]).

2.2 Strongly G-invariant comparison of filtering functions via persistent
homology

Let us fix a non-empty subset F of F(Φ,G). For every fixed k, we can consider
the following pseudo-metric DF,kmatch on Φ:

DF,kmatch(ϕ1, ϕ2) := sup
F∈F

dmatch(rk(F (ϕ1)), rk(F (ϕ2)))

for every ϕ1, ϕ2 ∈ Φ, where rk(ϕ) denotes the k-th persistent Betti number
function with respect to the function ϕ : X → R. We will usually omit the
index k, when its value is clear from the context or not influential.

Proposition 13 DFmatch is a strongly G-invariant pseudo-metric on Φ.

Proof Theorem 12 and the non-expansivity of every F ∈ F imply that

dmatch(rk(F (ϕ1)), rk(F (ϕ2))) ≤
‖F (ϕ1)− F (ϕ2)‖∞ ≤
‖ϕ1 − ϕ2‖∞ .

Therefore DFmatch is a pseudo-metric, since it is the supremum of a family of
pseudo-metrics that are bounded at each pair (ϕ1, ϕ2). Moreover, for every
ϕ1, ϕ2 ∈ Φ and every g ∈ G

DFmatch(ϕ1, ϕ2 ◦ g) :=
sup
F∈F

dmatch(rk(F (ϕ1)), rk(F (ϕ2 ◦ g))) =

sup
F∈F

dmatch(rk(F (ϕ1)), rk(F (ϕ2) ◦ g)) =

sup
F∈F

dmatch(rk(F (ϕ1)), rk(F (ϕ2))) =

DFmatch(ϕ1, ϕ2)

because of Property 2 in the definition of F(Φ,G) and the invariance of per-
sistent homology under the action of homeomorphisms (Remark 10). Due to
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the fact that the function DFmatch is symmetric, this is sufficient to guarantee
that DFmatch is strongly G-invariant. ut

2.3 Approximating DFmatch

A method to approximate DFmatch is given by the next proposition.

Proposition 14 Assume Φ bounded. Let F∗ = {F1, . . . , Fm} be a finite subset
of F . If for every F ∈ F at least one index i ∈ {1, . . . ,m} exists, such that
dF (Fi, F ) ≤ ε, then∣∣∣DF∗match(ϕ1, ϕ2)−DFmatch(ϕ1, ϕ2)

∣∣∣ ≤ 2ε

for every ϕ1, ϕ2 ∈ Φ.

Proof Let us assume F ∈ F and dF (Fi, F ) ≤ ε. Because of the definition of
dF , for any ϕ1, ϕ2 ∈ Φ we have the inequalities ‖Fi(ϕ1) − F (ϕ1)‖∞ ≤ ε and
‖Fi(ϕ2)− F (ϕ2)‖∞ ≤ ε. Hence

dmatch(rk(Fi(ϕ1)), rk(F (ϕ1))) ≤ ε and dmatch(rk(Fi(ϕ2)), rk(F (ϕ2))) ≤ ε

because of the stability of persistent homology (Theorem 12). It follows that

|dmatch(rk(Fi(ϕ1)), rk(Fi(ϕ2)))− dmatch(rk(F (ϕ1)), rk(F (ϕ2)))| ≤ 2ε.

The thesis of our proposition immediately follows from the definitions of
DFmatch and DF

∗

match. ut

Therefore, if we can cover F by a finite set of balls of radius ε, centered
at points of F , the approximation of DFmatch(ϕ1, ϕ2) can be reduced to the
computation of the maximum of a finite set of bottleneck distances between
persistence diagrams, which are well-known to be computable by means of
efficient algorithms.

This fact leads us to study the properties of the topological space F(Φ,G).
We will do that in the next section.

3 Main theoretical results

We start by proving that the pseudo-metric DFmatch is stable with respect to
both the natural pseudo-distance associated with the group G and the sup-
norm.

Theorem 15 If ∅ 6= F ⊆ F(Φ,G), then DFmatch ≤ dG ≤ d∞.
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Proof For every F ∈ F(Φ,G), every g ∈ G and every ϕ1, ϕ2 ∈ Φ, we have that

dmatch(rk(F (ϕ1)), rk(F (ϕ2))) =
dmatch(rk(F (ϕ1)), rk(F (ϕ2) ◦ g)) =
dmatch(rk(F (ϕ1)), rk(F (ϕ2 ◦ g))) ≤
‖F (ϕ1)− F (ϕ2 ◦ g)‖∞ ≤ ‖ϕ1 − ϕ2 ◦ g‖∞.

The first equality follows from the invariance of persistent homology under
the action of Homeo(X) (Remark 10), and the second equality follows from
the fact that F is a G-operator. The first inequality follows from the stability
of persistent homology (Theorem 12), while the second inequality follows from
the non-expansivity of F .

It follows that, if F ⊆ F(Φ,G), then for every g ∈ G and every ϕ1, ϕ2 ∈ Φ

DFmatch(ϕ1, ϕ2) ≤ ‖ϕ1 − ϕ2 ◦ g‖∞.

Hence,

DFmatch(ϕ1, ϕ2) ≤ inf
g∈G
‖ϕ1 − ϕ2 ◦ g‖∞ ≤

‖ϕ1 − ϕ2‖∞ = d∞(ϕ1, ϕ2)

for every ϕ1, ϕ2 ∈ Φ. ut

The natural pseudo-distance dG and the pseudo-distance DFmatch are de-
fined in completely different ways. The former is based on a variational ap-
proach involving the set of all homeomorphisms in G, while the latter refers
only to a comparison of persistent homologies depending on a family of G-
invariant operators. Therefore, the next result may appear unexpected.

Theorem 16 D
F(Φ,G)
match = dG.

Proof For every ψ ∈ Φ let us consider the operator Fψ : Φ → Φ defined
by setting Fψ(ϕ) equal to the constant function taking everywhere the value
dG(ϕ,ψ), for every ϕ ∈ Φ (i.e., Fψ(ϕ)(x) = dG(ϕ,ψ) for any x ∈ X).

We observe that

i) Fψ is a G-operator on Φ, because the strong invariance of the natural pseu-
do-distance dG with respect to the group G (Remark 4) implies that if ϕ ∈
Φ and g ∈ G, then Fψ(ϕ◦g)(x) = dG(ϕ◦g, ψ) = dG(ϕ,ψ) = Fψ(ϕ)(g(x)) =
(Fψ(ϕ) ◦ g) (x), for every x ∈ X.

ii) Fψ is non-expansive, because

‖Fψ(ϕ1)− Fψ(ϕ2)‖∞ = |dG(ϕ1, ψ)− dG(ϕ2, ψ)| ≤
dG(ϕ1, ϕ2) ≤ ‖ϕ1 − ϕ2‖∞.
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Therefore, Fψ ∈ F(Φ,G).

For every ϕ1, ϕ2, ψ ∈ Φ we have that

dmatch(rk(Fψ(ϕ1)), rk(Fψ(ϕ2))) = |dG(ϕ1, ψ)− dG(ϕ2, ψ)|.

Indeed, apart from the trivial points on the line {(u, v) ∈ R2 : u = v},
the persistence diagram associated with rk(Fψ(ϕ1)) contains only the point
(dG(ϕ1, ψ),∞), while the persistence diagram associated with rk(Fψ(ϕ2)) con-
tains only the point (dG(ϕ2, ψ),∞). Both the points have the same multiplicity,
which equals the (non-null) k-th Betti number of X.

Setting ψ = ϕ2, we have that

dmatch(rk(Fϕ2(ϕ1)), rk(Fϕ2(ϕ2))) = dG(ϕ1, ϕ2).

As a consequence, we have that

DFmatch(ϕ1, ϕ2) ≥ dG(ϕ1, ϕ2).

By applying Theorem 15, we get DFmatch(ϕ1, ϕ2) = dG(ϕ1, ϕ2) for every
ϕ1, ϕ2 ∈ Φ. ut

The following two results (Theorem 17 and Corollary 19) hold, when the
metric space (Φ, d∞) is compact.

Theorem 17 If the metric space (Φ, d∞) is compact, then also the metric
space

(
F(Φ,G), dF(Φ,G)

)
is compact.

Proof Since Φ is bounded, Proposition 7 guarantees that the function dF(Φ,G)

is defined and
(
F(Φ,G), dF(Φ,G)

)
is a metric space. Therefore it will suffice to

prove that F(Φ,G) is sequentially compact. In order to do this, let us assume
that a sequence (Fi) in F(Φ,G) is given.

Given that (Φ, d∞) is a compact (and hence separable) metric space, we
can find a countable and dense subset Φ∗ = {ϕj}j∈N of Φ. We can extract a
subsequence (Fih) from (Fi), such that for every fixed index j the sequence
(Fih(ϕj)) converges to a function in Φ with respect to the sup-norm. (This
follows by recalling that Fi : Φ → Φ for every index i, with (Φ, d∞) compact,
and by applying a classical diagonalization argument.)

Now, let us consider the operator F̄ : Φ→ Φ defined in the following way.
We define F̄ on Φ∗ by setting F̄ (ϕj) := limh→∞ (Fih(ϕj)) for each ϕj ∈ Φ∗.
Then we extend F̄ to Φ as follows. For each ϕ ∈ Φ we choose a sequence

(ϕjr ) in Φ∗, converging to ϕ in Φ, and set F̄ (ϕ) := limr→∞ F̄ (ϕjr ). We claim
that such a limit exists in Φ and does not depend on the sequence that we
have chosen, converging to ϕ in Φ. In order to prove that the previous limit
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exists, we observe that for every r, s ∈ N∥∥F̄ (ϕjr )− F̄ (ϕjs)
∥∥
∞ =∥∥∥∥ lim

h→∞
(Fih (ϕjr ))− lim

h→∞
(Fih (ϕjs))

∥∥∥∥
∞

=

lim
h→∞

‖Fih (ϕjr )− Fih (ϕjs)‖∞ ≤

lim
h→∞

‖ϕjr − ϕjs‖∞ =

‖ϕjr − ϕjs‖∞

(3.1)

because each operator Fih is non-expansive.
Since the sequence (ϕjr ) converges to ϕ in Φ, it follows that

(
F̄ (ϕjr )

)
is a

Cauchy sequence. The compactness of Φ implies that
(
F̄ (ϕjr )

)
converges in

Φ.
If another sequence (ϕkr ) is given in Φ∗, converging to ϕ in Φ, then for

every index r ∥∥F̄ (ϕjr )− F̄ (ϕkr )
∥∥
∞ ≤ ‖ϕjr − ϕkr‖∞

and the proof goes as in (3.1) with ϕjs replaced by ϕkr .
Since both (ϕjr ) and (ϕkr ) converge to ϕ, it follows that limr→∞ F̄ (ϕjr ) =

limr→∞ F̄ (ϕkr ). Therefore the definition of F̄ (ϕ) does not depend on the
sequence (ϕjr ) that we have chosen, converging to ϕ.

Now we have to prove that F̄ ∈ F(Φ,G), i.e., that F̄ verifies the three
properties defining this set of operators.

We have already seen that F̄ : Φ→ Φ.
For every ϕ,ϕ′ ∈ Φ we can consider two sequences (ϕjr ) , (ϕkr ) in Φ∗,

converging to ϕ and ϕ′ in Φ, respectively. Due to the fact that the operators
Fih are non-expansive, we have that∥∥F̄ (ϕ)− F̄ (ϕ′)

∥∥
∞ =∥∥∥ lim

r→∞
F̄ (ϕjr )− lim

r→∞
F̄ (ϕkr )

∥∥∥
∞

=∥∥∥∥ lim
r→∞

lim
h→∞

(Fih (ϕjr ))− lim
r→∞

lim
h→∞

(Fih (ϕkr ))
∥∥∥∥
∞

=

lim
r→∞

lim
h→∞

‖Fih (ϕjr )− Fih (ϕkr )‖∞ ≤

lim
r→∞

lim
h→∞

‖ϕjr − ϕjr‖∞ =

lim
r→∞

‖ϕjr − ϕjr‖∞ =

‖ϕ− ϕ′‖∞ .

Therefore, the operator F̄ is non-expansive. As a consequence, it is also con-
tinuous.

Now we can prove that the sequence (Fih) converges to F̄ with respect to
dF(Φ,G). Let us consider an arbitrarily small ε > 0. Since Φ is compact and
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Φ∗ is dense in Φ, we can find a finite subset {ϕj1 , . . . , ϕjn} of Φ∗ such that for
each ϕ ∈ Φ an index r ∈ {1, . . . , n} exists, such that ‖ϕ − ϕjr‖∞ ≤ ε. Since
the sequence (Fih) converges pointwise to F̄ on the set Φ∗, an index h̄ exists,
such that ‖F̄ (ϕjr )− Fih(ϕjr )‖∞ ≤ ε for any h ≥ h̄ and any r ∈ {1, . . . , n}.

Therefore, for every ϕ ∈ Φ we can find an index r ∈ {1, . . . , n} such that
‖ϕ − ϕjr‖∞ ≤ ε and the following inequalities hold for every index h ≥ h̄,
because of the non-expansivity of F̄ and Fih :∥∥F̄ (ϕ)− Fih (ϕ)

∥∥
∞ ≤∥∥F̄ (ϕ)− F̄ (ϕjr )
∥∥
∞ +

∥∥F̄ (ϕjr )− Fih (ϕjr )
∥∥
∞ + ‖Fih (ϕjr )− Fih (ϕ)‖∞ ≤

‖ϕ− ϕjr‖∞ +
∥∥F̄ (ϕjr )− Fih (ϕjr )

∥∥
∞ + ‖ϕjr − ϕ‖∞ ≤ 3ε.

We observe that h̄ does not depend on ϕ, but only on ε and the set {ϕj1 , . . . , ϕjn}.
It follows that

∥∥F̄ (ϕ)− Fih (ϕ)
∥∥
∞ ≤ 3ε for every ϕ ∈ Φ and every h ≥ h̄.

Hence, supϕ∈Φ
∥∥F̄ (ϕ)− Fih (ϕ)

∥∥
∞ ≤ 3ε for every h ≥ h̄. Therefore, the

sequence (Fih) converges to F̄ with respect to dF(Φ,G).
The last thing that we have to prove is that F̄ is a G-operator. Let us

consider a ϕ ∈ Φ, a sequence (ϕjr ) in Φ∗ converging to ϕ in Φ, and a g ∈ G.
Obviously, the sequence (ϕjr ◦ g) converges to ϕ ◦ g in Φ. We recall that the
right action of G on Φ is continuous, F̄ is continuous and each Fih is a G-
operator. Hence, given that the sequence (Fih) converges to F̄ with respect to
dF(Φ,G),

F̄ (ϕ ◦ g) =

F̄
(

lim
r→∞

ϕjr ◦ g
)

=

lim
r→∞

F̄ (ϕjr ◦ g) =

lim
r→∞

lim
h→∞

(Fih (ϕjr ◦ g)) =

lim
r→∞

lim
h→∞

(Fih (ϕjr ) ◦ g) =

lim
r→∞

((
lim
h→∞

(Fih (ϕjr ))
)
◦ g
)

=(
lim
r→∞

lim
h→∞

(Fih (ϕjr ))
)
◦ g =(

lim
r→∞

F̄ (ϕjr )
)
◦ g =

F̄ (ϕ) ◦ g.

This proves that F̄ is a G-operator.
In conclusion, F̄ ∈ F(Φ,G).
From the fact that the sequence (Fih) converges to F̄ with respect to

dF(Φ,G), it follows that
(
F(Φ,G), dF(Φ,G)

)
is sequentially compact.
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Example 18 As a simple example of a case where the previous Theorem 17
can be applied, we can consider X = S1 ⊂ R2, Φ equal to the set of all 1-
Lipschitz functions from S1 to [0, 1], and G equal to the topological group of
all isometries of S1. The topological space Φ can be easily shown to be compact
by applying the Ascoli-Arzelà Theorem.

Corollary 19 Assume that the metric space (Φ, d∞) is compact. Let F be a
non-empty subset of F(Φ,G). For every ε > 0, a finite subset F∗ of F exists,
such that ∣∣∣DF∗match(ϕ1, ϕ2)−DFmatch(ϕ1, ϕ2)

∣∣∣ ≤ ε
for every ϕ1, ϕ2 ∈ Φ.

Proof Let us consider the closure F̄ of F in F(Φ,G). Let us also consider the
covering U of F̄ obtained by taking all the open ε

2 -balls centered at points of
F . Theorem 17 guarantees that F(Φ,G) is compact, hence also F̄ is compact.
Therefore we can extract a finite covering {B1, . . . , Bm} of F̄ from U . We can
set F∗ equal to the set of centers of the balls B1, . . . , Bm. The statement of
our corollary immediately follows from Proposition 14.

The previous Corollary 19 shows that, under suitable hypotheses, the com-
putation ofDFmatch(ϕ1, ϕ2) can be reduced to the computation of the maximum
of a finite set of bottleneck distances between persistence diagrams, for every
ϕ1, ϕ2 ∈ Φ.

3.1 Comments on the use of DFmatch

The goal of this paper is to propose DFmatch as a comparison tool that shares
with the natural pseudo-distance dG the property of being invariant under
the action of a given group of homeomorphisms, but is more suitable than dG
for computation and applications. As for this subject, two observations are
important.

On the one hand, the reader could think of the direct approximation of
dG as a valid alternative to the use of DFmatch. This approach would lead
to consider a finite subgroup H of G and to compute the pseudo-metric
dH(ϕ1, ϕ2) = minh∈H ‖ϕ1 − ϕ2 ◦ h‖∞ as an approximation of dG. Unfortu-
nately, in many cases we cannot obtain a good approximation of the topo-
logical group G by means of a finite subgroup H, even if G is compact. As
a simple example, we can consider the group G = SO(3) of all orientation-
preserving isometries of R3 that take the point (0, 0, 0) to itself. Obviously,
SO(3) is a compact topological group with respect to the topology of uniform
convergence. Now, we restrict the homeomorphisms in SO(3) to the 2-sphere
S2 ⊂ R3, and endow S2 with the Euclidean metric. With a little abuse of
notation, we maintain the symbol SO(3) for this new group of homeomor-
phisms. The group SO(3) acts on the set Φ of the 1-Lipschitz functions from
S2 to R, by composition on the right. It can be easily shown that Φ is a
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compact topological space with respect to the topology induced by the sup-
norm by applying the Ascoli-Arzelà Theorem. Moreover, it is not difficult to
prove that a positive constant c exists such that for every finite subgroup H
of SO(3) we can find two functions ϕH , ψH ∈ Φ with dSO(3)(ϕH , ψH) = 0 and
dH(ϕH , ψH) ≥ c. It follows that the approximation error ‖dH − dSO(3)‖∞ is
greater than a positive constant c for any finite subgroup H of SO(3), where
c does depend on H.

We recall that the attempt of approximating G by a set S instead of a
group H appears inappropriate, because if S is not a group then the function
µS(ϕ1, ϕ2) := mins∈S ‖ϕ1 − ϕ2 ◦ s‖∞ is not a pseudo-metric (see Remark 2).
This makes the use of µS impractical for data retrieval.

It follows that, in general, the idea of a direct approximation of dG seems
unsuitable for applications. For the general problem of sampling SO(3), we
refer the interested reader to the paper [22].

On the other hand, DF
∗

match is always a strongly G-invariant pseudo-metric
giving a lower bound for dG, for any subset F∗ ofF(Φ,G). Moreover, if F∗ ⊆ F
is an ε-approximation of F and Φ is bounded, the pseudo-metric DF

∗

match is a
2ε-approximation of DFmatch (Proposition 14). We have also seen (Corollary 19)
that the existence of a finite ε-approximation F∗ ⊆ F of any F ⊆ F(Φ,G) is
always guaranteed in the case that Φ is compact. Therefore, at least in this
case, there is no obstruction to obtain a finite set F∗ for which the pseudo-
metric DF

∗

match is an arbitrarily good approximation of DFmatch, contrary to
what happens for the pseudo-distance dG. Indeed, we have shown that no fi-
nite subgroup H exists for which the pseudo-distance dH is an arbitrarily good
approximation of dG, in general. In other words, DFmatch has better proper-
ties than dG with respect to approximation. Furthermore, the results of the
experiments described in Sections 4 and 5 show that the use of some small
family of simple operators may produce a pseudo-metric DF

∗

match that is not
far from dG and can be efficiently used for data retrieval, even if F∗ is not a
good approximation of F(Φ,G).

These observations justify the use of DFmatch in place of dG, for practical
purposes.

We also wish to underline the dual nature of our approach. When G be-
comes “larger and larger” the associated family F(Φ,G) of G-invariant non-
expansive operators becomes “smaller and smaller”, so making the computa-
tion of DF(Φ,G)

match easier and easier, contrarily to what happens for the direct
computation of dG. In other words, the approach based on D

F(Φ,G)
match seems to

be of use exactly when dG is difficult to compute in a direct way. Moreover,
assuming that F is a finite subset of F(Φ,G) and H is a finite subgroup of
G, the duality in the definitions of DF(Φ,G)

match and dG causes another important
difference in the use of DFmatch and dH as respective approximations. It con-
sists in the fact that while DFmatch is a lower bound for DF(Φ,G)

match = dG, dH is
an upper bound for dG. As a consequence, if we take the pseudo-metric dG as
the ground truth, the retrieval errors associated with the use of DFmatch are
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just false positive, while the ones associated with the use of dH are just false
negative.

Remark 20 The main purpose of this paper is not to pursue the approxima-
tion of dG by using DFmatch via Theorem 16. Indeed, on the one hand that
theorem does not say anything about the way of choosing a suitable set of op-
erators. On the other hand it could be that the use of DFmatch to approximate
dG requires a family of operators whose complexity equals the one of directly
approximating dG via brute force. This would not be strange, because the cur-
rent state of development of research does not allow to estimate dG from a
practical point of view, generally speaking. We highlight that the problem of
quickly approximating the natural pseudo-distance is unsolved also in the case
of G equal to Homeo(X), to the best of the authors’ knowledge. Moreover, the
only result we know concerning the approximation of dG via persistent homol-
ogy is limited to filtering functions from S1 to R2 [19], and its relevance is
purely theoretical.

Therefore, our main purpose is to introduce a new and easily computable
pseudo-metric that is a lower bound for dG. Nevertheless, we can make two rel-
evant observations. First of all, the path to the approximation of dG via DFmatch
is not closed, even if it probably requires to develop further ideas. Indeed, The-
orem 17 states the compactness of the set of all non-expansive G-operators in
the case that Φ is compact, so laying the groundwork for the study of new ap-
proximation schemes. Secondly, even if no theoretical approach to the choice of
our operators is presently available, it can happen that the use of some small
family of simple operators produces a pseudo-metric DFmatch that is not far
from dG. We shall devote Section 4 to check this possibility in an experiment
concerning data represented by functions from R to R.

Remark 21 The pseudo-distance DFmatch is based on the set F . The smallest
set F of non-expansive G-operators such that DFmatch coincides with the natural
pseudo-distance dG is the one containing just the operators Fψ defined in the
proof of Theorem 16. However, this trivial set of operators is completely useless
from the point of view of applications, since computing Fψ for every ψ ∈ Φ is
equivalent to computing the natural pseudo-distance dG. As for the applications
to shape comparison, we need the operators in F to be simple to compute and
F to be small, but still large enough to guarantee that DFmatch is not too far
from dG.

4 Experiments

In the previous section we have seen that our approach to shape comparison
via non-expansive G-operators applied to persistent homology allows to get in-
variance with respect to arbitrary subgroups G of Homeo(X). However, some
assumptions are required, concerning G and the set Φ of admissible filtering
functions. A natural question arises about what happens in practical applica-
tions, when our assumptions are not always guaranteed to hold. To answer this
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question, we provide numerical results for some experiments concerning piece-
wise linear functions. Our experiments may be described as the construction
of a dataset that provides functionality to retrieve the most similar functions
with respect to a given “query” function, after arbitrarily choosing an invari-
ance group G.

The goal of this section is to show that our approximation of the natural
pseudo-distance dG via the use of a finite subset of operators is well behaving.
A motivating factor is Corollary 19, stating that if the set Φ of admissible
filtering functions is compact, then for every set of operators F there exists
a finite set of operators F∗ such that the pseudo-distance induced by F∗ is
ε-close to the pseudo-distance induced by the set F , even if F is an infinite
set. While it is impractical to use the proof of Corollary 19 to build the finite
set F∗, we show that a small subset of F is sufficient in several applications,
both in the compact and in the non-compact case.

Our ground truth for shape comparison is the pseudo-distance dG, ap-
proximated by brute force methods (when possible). On the one hand, the
approximation of dG usually has a large computational cost, as we shall see
in this section. On the other hand, DFmatch allows to get a simple and easy-
implementable approximation of dG. This fact justifies our approach.

In our experiments we have set Φ := C0(R,R). We have chosen to work
with a dataset Φds ⊂ Φ of 20.000 piecewise linear functions ϕ : R → [−1, 1],
with support contained in the closed interval [−1, 2]. In order to obtain the
graph of each function we have randomly chosen eight points {(xi, yi)}i∈{0,..,7}
in the rectangle [−1, 2]× [−1, 1] such that y-coordinate of the first and the last
point equal to 0 and −1 < x0 < x1 < . . . < x7 < 2. The graph of the function
is obtained by connecting (xi, yi) to (xi+1, yi+1) by a segment for 0 ≤ i ≤ 6.

Additionally, for computational reasons we require that all functions are
Lipschitz, with a given Lipschitz constant C, hence each function with a Lip-
schitz constant greater than C is filtered out. An example of a randomly
generated function is presented in Fig. 3.

The choice of our dataset yields useless persistent Betti number functions
in degree k > 0. Therefore, in our experiments we will use just persistent Betti
number functions in degree k = 0.

Invariance groups and operators To evaluate the approach described in this
paper, we use five invariance groups Gi, for i = 1, .., 5. Each group Gi induces
a strongly Gi-invariant pseudo-metric dGi . Then we define a set F∗i of non-
expansive Gi-operators for each group Gi. Here is the list of the groups we
have used in our experiments:

1. G1: the group of all affine transformations from R to R;
2. G2: the group of all orientation-preserving affine transformations from R

to R;
3. G3: the group of all isometries of R;
4. G4: the group of all translations of R;
5. G5: the trivial group containing just the identity map id : R→ R.
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Fig. 3 One of the functions used in our experiments. The function is zero outside the closed
interval [−1, 2].

In our experiments we have tested the use of the pseudo-distances DF
∗
i

match

to decide if two functions in our dataset are similar with respect to the invari-
ance groups Gi. This approach avoids the computation of the natural pseudo-
distances dGi , which can be hard to approximate.

We have selected our G-invariant non-expansive operators just relying on
two practical rules of thumb: 1) Their apparent link with perceptual and geo-
metric properties; 2) The attempt to choose them as different as possible from
each other.

Finding the most similar function with respect to the chosen invariance group
After constructing the dataset Φds that we have previously described, we com-
pute the 0-th persistence diagram of F (ϕ), for every ϕ ∈ Φds and every
F ∈ F∗i , varying the index i. Afterwards, we choose a “query” function ϕq
in our dataset, which will be compared with all functions in Φds. Finally, we
compute DF

∗
i

match(ϕq, ϕ) for every ϕ ∈ Φds and i = 1, . . . , 5. In Figures 4–8 we
show the most similar functions with respect to DF

∗
1

match, . . . , DF
∗
5

match (i.e. the
functions ϕ minimizing DF

∗
i

match(ϕq, ϕ), with ϕ 6= ϕq).

In the next subsections we describe the operators that we have used in our
experiments, for each of the invariance groups Gi.

4.1 Invariance with respect to the group G1 of all affinities of the real line

The first group that we consider, denoted by G1, consists of all affinities of
the real line (i.e. maps x 7→ αx + β with α 6= 0, β ∈ R). Intuitively, we can
squeeze, stretch, horizontally reflect and translate the graph of the function.
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In order to define the non-expansive G1-operators that we will use in this
section, we introduce the operator Fŵ,ĉ defined as:

Fŵ,ĉ(ϕ)(x) := sup
r∈R

n∑
i=1

wi · ϕ (x+ rci) , (4.1)

where ŵ and ĉ are two vectors ŵ := (w1, . . . , wn), ĉ := (c1, . . . , cn) in Rn. We
additionally require

∑n
i=1 |wi| = 1, so we can easily check that Fŵ,ĉ is a non-

expansive G1-operator. From the computational point of view, the operator
Fŵ,ĉ can be approximated by substituting the supremum in its definition with
a maximum for r belonging to a finite set. For more details about this, see
Appendix C.

In order to apply our method to approximate dG1 , we will consider the set
F∗1 , consisting of the following non-expansive G1-operators:

- The identity operator;
- F b1 , defined by setting F b1 (ϕ)(x) = −ϕ(x) for every ϕ ∈ Φ and every x ∈ R;
- F c1 to Fn1 based on (4.1) with the following arbitrarily chosen values of ŵ, ĉ.
F c1 : ŵ = (0.3, 0.4, 0.3), ĉ = (0.3, 0.6, 0.9)
F d1 : ŵ = (−0.3, 0.4,−0.3), ĉ = (0.3, 0.6, 0.9)
F e1 : ŵ = (−0.3, 0.4,−0.3), ĉ = (0.1, 0.5, 0.6)
F f1 : ŵ = (0.3, 0.4, 0.3), ĉ = (0.1, 0.5, 0.9)
F g1 : ŵ = (−0.3, 0.4,−0.3), ĉ = (0.1, 0.2, 0.5)
Fh1 : ŵ = (−0.3,−0.4,−0.3), ĉ = (0.1, 0.3, 0.3)
F i1 : ŵ = (0.3,−0.4, 0.3), ĉ = (0.3, 0.5, 0.6)
F j1 : ŵ = (0.5, 0.5), ĉ = (0.1, 0.5)
F k1 : ŵ = (0.5,−0.5), ĉ = (0.1, 0.5)
F l1 : ŵ = (−0.5,−0.5), ĉ = (0.1, 0.5)
Fm1 : ŵ = (0.3,−0.4, 0.3), ĉ = (0.1, 0.6, 0.9)
Fn1 : ŵ = (0.3,−0.4, 0.3), ĉ = (0.1, 0.2, 0.9).

In Fig. 4 we show an example of retrieval in our dataset. The two functions
that are most similar to a given query function are displayed. We also show
the alignments of the retrieved functions to the query function. One can notice
that if we restrict ourselves to consider a finite set S1 of affinities from R to
R, the inclusion S1 ⊂ G1 implies that for every ϕ1, ϕ2 in our dataset

D
F∗1
match(ϕ1, ϕ2) ≤ dG1(ϕ1, ϕ2) ≤ min

g∈S1
‖ϕ1 − ϕ2 ◦ g‖∞.

This is due to the stability of DFmatch with respect to the natural pseudo-
distance dG associated with the group G (Theorem 15), and to the definition
of natural pseudo-distance. It follows that if∣∣∣∣DF∗1match(ϕ1, ϕ2)− min

g∈S1
‖ϕ1 − ϕ2 ◦ g‖∞

∣∣∣∣ ≤ ε
then ∣∣∣DF∗1match(ϕ1, ϕ2)− dG1(ϕ1, ϕ2)

∣∣∣ ≤ ε.
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This inequality suggests a method to evaluate the approximation of dG1 that
we obtain by means of DF

∗
1

match, via an estimate of ming∈S1 ‖ϕ1 − ϕ2 ◦ g‖∞.
We choose c := 10C and discretize the domains for α and β in the affinity
x 7→ αx + β, by considering two sets {α1, . . . , αr} and {β1, . . . , βs}, with
1/c ≤ |αi| ≤ c and −c ≤ βj ≤ c for 1 ≤ i ≤ r and 1 ≤ j ≤ s. Then
we compute mini,j ‖ϕ1 − ϕ2 ◦ gij‖∞, where gij(x) := αix + βj . In practice,
we set C = 5 and discretize the intervals [ 1

50 , 50] and [−50, 50] by choosing
equidistant points with the distance between neighboring points equal to 0.01.
This approach requires the computation of the sup-distance d∞ between ϕ1

and ϕ2 ◦ gij for a total number of rs functions gij . The overall computation
of mini,j ‖ϕ1 − ϕ2 ◦ gij‖∞ is slow, and we performed it just to find an upper
bound for the distance between D

F∗1
match and dG1 , in order to evaluate our

method. Actually, the purpose of our approach is to avoid the computation of
mini,j ‖ϕ1 − ϕ2 ◦ gij‖∞ and dG1 , by substituting dG1 with D

F∗1
match.
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Fig. 4 Output of the experiment concerning the invariance group G1: the most similar
(solid black line, left upper plot) and the second most similar function (solid black line, left
lower plot) with respect to the query function (dotted blue line) are displayed. In these two
cases the natural pseudo-distance dG1 takes the respective values 0.35 and 0.2. On the right
side of the figure the results of alignment of the retrieved function to the query function
are displayed (solid red lines). These alignments are obtained via brute force computation,
by approximating the affine transformations in G1. They are added to allow a visual and
qualitative comparison.
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We encourage the readers to analyze the presented results. We point out
that in Fig. 4 the graphs of the retrieved functions (solid black lines) are
similar to the graph of the “query” function (dotted blue line), with respect
to the group G1. The red graphs show how we can get good alignments of the
retrieved functions to the query function by applying affine transformations.

4.2 Invariance with respect to the group G2 of all orientation-preserving
affinities of the real line

The second group that we consider, denoted by G2, consists of all affinities of
the real line that preserve the orientation (i.e. maps x 7→ αx + β with α > 0
and β ∈ R). This group is smaller than G1 - one cannot use reflections to
align the functions. With reference to the operator Fŵ,ĉ defined in (4.1), it
is easy to check that after changing the condition r ∈ R to r > 0 in (4.1),
the operator is invariant under the action of the group of all orientation-
preserving affinities. Let us denote this new operator as F̄ŵ,ĉ. With reference to
the other operators used in previous subsection 4.1, we know that the identity
operator and F b1 are non-expansive G2-operators. As a consequence we use
them also for the invariance group G2, adding the operators F a2 , F b2 , F c2 , F d2
and F e2 defined for the following arbitrarily chosen values of ŵ, ĉ in F̄ŵ,ĉ.
F a2 : ŵ = (0.3, 0.4, 0.3), ĉ = (0.3, 0.6, 0.9)
F b2 : ŵ = (−0.3, 0.4,−0.3), ĉ = (0.3, 0.6, 0.9)
F c2 : ŵ = (−0.2, 0.2,−0.2, 0.2,−0.2), ĉ = (0.2, 0.4, 0.6, 0.8, 1.0)
F d2 : ŵ = (0.2,−0.2, 0.2,−0.2, 0.2), ĉ = (0.2, 0.4, 0.6, 0.8, 1.0)
F e2 : ŵ = (−0.1, 0.2,−0.4, 0.2,−0.1), ĉ = (0.2, 0.4, 0.6, 0.8, 1.0).

In plain words, the group G2 does not allow reflections, but only squeez-
ing/stretching and translations. In Fig. 5 we show an example of retrieval in
our dataset. The two functions (solid black lines) that are most similar to a
given query function (dotted blue line) are displayed. The red graphs show how
we can get good alignments of the retrieved functions to the query function by
applying orientation-preserving affine transformations. These alignments have
been obtained by approximating the transformations in G2.

4.3 Invariance with respect to the group of all isometries of the real line

The third group that we consider, denoted by G3, consists of all isometries of
the real line (i.e. maps x 7→ αx+ β with α = ±1 and β ∈ R).

Since G3 ⊆ G1, the operators that we have used for comparison with
respect to the group G1 are also G3-operators. As a consequence we can use
them also for the invariance group G3, adding the operators F a3 , F b3 , F c3 , F d3
and F e3 defined as follows:

- F a3 , defined by setting F a3 (ϕ)(x) = max
(
ϕ
(
x− 1

4

)
, ϕ(x), ϕ

(
x+ 1

4

))
for

every ϕ ∈ Φ and every x ∈ R;
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Fig. 5 Output of the experiment concerning the invariance group G2. Color and type of
plots are the same as in Fig. 4. In both the displayed cases the natural pseudo-distance dG2
takes the value 0.4.

- F b3 , defined by setting F b3 (ϕ)(x) = 1
3

(
ϕ
(
x− 1

4

)
+ ϕ(x) + ϕ

(
x+ 1

4

))
for

every ϕ ∈ Φ and every x ∈ R;
- F c3 , defined by setting F c3 (ϕ)(x) = 1

3

(
ϕ
(
x− 1

3

)
+ ϕ(x) + ϕ

(
x+ 1

3

))
for

every ϕ ∈ Φ and every x ∈ R;
- F d3 , defined by setting
F d3 (ϕ)(x) = 1

5

(
ϕ
(
x− 1

3

)
+ ϕ

(
x− 1

4

)
+ ϕ(x) + ϕ

(
x+ 1

4

)
+ ϕ

(
x+ 1

3

))
for

every ϕ ∈ Φ and every x ∈ R;
- F e3 , defined by setting
F e3 (ϕ)(x) = max

(
ϕ
(
x− 1

3

)
, ϕ
(
x− 1

4

)
, ϕ(x), ϕ

(
x+ 1

4

)
, ϕ
(
x+ 1

3

))
for ev-

ery ϕ ∈ Φ and every x ∈ R.

In Fig. 6 we show an example of retrieval in our dataset. The two functions
(solid black lines) that are most similar to a given query function (dotted blue
line) are displayed.

4.4 Invariance with respect to the group of all translations of the real line

The fourth group that we consider, denoted by G4, consists of all translations
of the real line (i.e. maps x 7→ x+ β with β ∈ R).
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Fig. 6 Output of the experiment concerning the invariance group G3. Color and type of
plots are the same as in Fig. 4. In both the displayed cases the natural pseudo-distance dG3
takes the value 0.4.

Since G4 ⊆ G3, the operators that we have used for comparison with
respect to the group G3 are also G4-operators. As a consequence we can use
them also for the invariance group G4, adding the operators F a4 , F b4 , F c4 , F d4
and F e4 defined as follows:

- F a4 , defined by setting F a4 (ϕ)(x) = max
(
ϕ(x), ϕ

(
x+ 1

4

)
, ϕ
(
x+ 1

3

))
for

every ϕ ∈ Φ and every x ∈ R;
- F b4 , defined by setting F b4 (ϕ)(x) = 1

4ϕ
(
x− 1

4

)
+ 3

4ϕ(x) for every ϕ ∈ Φ and
every x ∈ R;

- F c4 , defined by setting F c4 (ϕ)(x) = 3
4ϕ(x)+ 1

4ϕ
(
x+ 1

4

)
for every ϕ ∈ Φ and

every x ∈ R;
- F d4 , defined by setting F d4 (ϕ)(x) = 1

3ϕ(x) + 1
6ϕ
(
x+ 1

5

)
+ 1

2ϕ
(
x+ 3

5

)
for

every ϕ ∈ Φ and every x ∈ R;
- F e4 , defined by setting F e4 (ϕ)(x) = max

(
ϕ(x), ϕ

(
x+ 1

5

)
, ϕ
(
x+ 3

5

))
for

every ϕ ∈ Φ and every x ∈ R.

In Fig. 7 we show an example of retrieval in our dataset. The two functions
(solid black lines) that are most similar to a given query function (dotted blue
line) are displayed.
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Fig. 7 Output of the experiment concerning the invariance group G4. Color and type of
plots are the same as in Fig. 4. In these two cases the natural pseudo-distance dG4 takes
the value 0.4.

4.5 Invariance with respect to the trivial group

The fifth (and last) group that we consider, denoted by G5, is the trivial group
Id containing just the identity. We observe that the concept of Id-operator
coincides with the concept of operator.

Since G5 ⊆ G4, the operators that we have used for comparison with
respect to the group G4 are also G5-operators. As a consequence we can use
them also for the invariance group G5 = Id, adding the operators F a5 , F b5 , F c5 ,
F d5 and F e5 defined as follows:

- F a5 , defined by setting F a5 (ϕ)(x) = ϕ(x) sin(5πx) for every ϕ ∈ Φ and every
x ∈ R;

- F b5 , defined by setting F b5 (ϕ)(x) = ϕ(x) sin(9πx) for every ϕ ∈ Φ and every
x ∈ R;

- F c5 , defined by setting F c5 (ϕ)(x) = (ϕ(x) + 2) · f 1
4
(x) for every ϕ ∈ Φ and

every x ∈ R;
- F d5 , defined by setting F d5 (ϕ)(x) = (ϕ(x) + 2)) · f 1

2
(x) for every ϕ ∈ Φ and

every x ∈ R;
- F e5 , defined by setting F e5 (ϕ)(x) = 1

2 (ϕ(x) + 2) ·
(
f 3

8
(x) + f 5

8
(x)
)

for every
ϕ ∈ Φ and every x ∈ R
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where fµ(x) = e−( x−µ0.1 )2

.
In Fig. 8 we show an example of retrieval in our dataset. The two functions

(solid black lines) that are most similar to a given query function (dotted blue
line) are displayed. No alignment is necessary here, since the unique allowed
transformation is the identity, and dG5 equals the sup-norm.

From the practical point of view, the computation of dG5 can be done di-
rectly, without using the pseudo-distance DF

∗
5

match as an approximation. How-
ever, we decided to include this last experiment for the sake of completeness,
in order to show how our method behaves also in this trivial case.
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Fig. 8 Output of the experiment concerning the invariance groupG5 = Id. The most similar
and the second most similar function (solid black lines) with respect to the query function
(dotted blue line) are displayed. In both the displayed cases the natural pseudo-distance
dG5 takes the value around 0.4.

4.6 Quantitative results

The purpose of this section is to give a quantitative estimate of the approx-
imation of the natural pseudo-distance dGi via the pseudo-distance DF

∗
i

match.
Due to the time-consuming nature of the computation of dGi , we use only part
of the set Φds.

In Table 1 we show the mean value of dGi for i = 1, . . . , 5 and statistics of
the error made by substituting dGi with DF

∗
i

match: mean absolute error (MAE)
and mean relative error (MRE).

On average, the relative error results are around 0.20, with the best results
for the group G1. The results displayed in Table 1 show that a small set
of operators is sufficient to produce a relatively good approximation of the
pseudo-distances dGi that we have considered. The most important question
and natural next step is to find heuristics or optimal methods to decide which
operators bring most information.

In our opinion it is surprising that a set of just a few operators is sufficient
to get a good approximation of any natural pseudo-distance dGi . This fact
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Group Mean dGi MAE MRE
G1 0.54 0.08 0.18
G2 0.56 0.09 0.20
G3 0.61 0.10 0.19
G4 0.63 0.11 0.19
G5 0.91 0.22 0.24

Table 1 Mean values for dGi , together with the mean absolute error (MAE) and the

mean relative error (MRE) made by substituting dGi with D
F∗i
match. These values have been

computed on 1000 functions from Φds (5 × 105 pairs) in case of G3, G4, G5 and on 100
functions (5 × 103 pairs) in case of G1 and G2. The reason of not using the whole set of
functions was computation time for the brute force approximation.

seems quite promising, since it opens the way to an alternative approach to
approximate the natural pseudo-distance, besides the one based on brute-force
computation.

5 Towards an image retrieval system

The experiment in the previous section was prepared to show quantitative
results. In this section we present another experiment, whose goal is to show
qualitative results. We demonstrate how our approach can be used in a simple
image retrieval task, where the invariance group consists of all isometries of
R2. We compute the pseudodistance DF

∗

match using ten operators, and referring
just to homology in degree 0. While in the previous experiment there was no
reason to use homology in degree 1, this could be of use in the image case.
Nevertheless, we do not include it, in order to speed up computations.

We keep the notation consistent with the one in the previous section. The
dataset of objects consists of 10.000 grey-level images with three to six spots.
Each spot is generated by adding a 2D bump function with randomly chosen
size at a randomly chosen position, whereas images are represented as functions
from R2 to the interval [0, 1] with support in the square [0, 1]2. However, in
this experiment the set Φ of admissible filtering functions will consists of all
continuous functions from R2 to [−1, 1] with compact support. This choice will
allow us to use a wider range of operators.

In order to skip unnecessary technical details, we confine ourselves to give
a concise description of the operators that we have used. We have chosen ten
operators, divided into two families of five. The first family consists of the
following operators:

1. Identity operator;
2. Four operators based on convolution of the image ϕ with different kernels.

These operators are formally defined in the Appendix D.

The second family consists of the operators that we can obtain by revers-
ing the sign of the previous five operators. Overall, we have ten operators.



Combining persistent homology and invariance groups for shape comparison 29

Fig. 9 Examples of grey-level images from the dataset used in the second experiment. Black
and white represent the values 1 and 0, respectively.

The reader can easily verify that our ten operators are non-expansive and
G-invariant, when G is the group of all isometries of R2.

We look for the most similar images to three images from the dataset. In
each of the Figures 10, 11 and 12 we present the three images that minimize
the pseudo-distance DF

∗

match from the query image.

Remark 22 Due to the randomness of the method we used to construct our
images, it is quite unlikely that two images in our dataset are identical (or
even nearly identical), especially when the number of bumps that appear in
them is 5 or 6. We would like to underline that our goal is not to find images
that are equal to each other, but images that resemble each other with respect
to the group of isometries.

Remark 23 We intentionally decided to build our dataset by producing im-
ages that do not encode meaningful information for humans. Otherwise, the
qualitative results would be biased by a priori knowledge of the image content.
In our research we focus on topological and geometrical properties, and neglect
the perceptual aspects of image comparison. Therefore, we decided not to use
standard datasets from image comparison and retrieval projects.

Discussion and future work

In our paper we have described a method to combine persistent homology and
the invariance with respect to a given group G of homeomorphisms, acting on
a set Φ of filtering functions. This technique allows us to treat G as a variable
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(a) Primary image (b) Result 1 (c) Result 2

(d) Result 3

Fig. 10 Most similar images to the query image from a dataset of 2D artificial im-
ages. Computed pseudo-distances DF

∗
match are respectively 0.035, 0.042 and 0.050 for im-

ages 10(b), 10(c) and 10(d). The second image can be approximately obtained from the first
one via reflection and rotation, which are both isometries. The third and the fourth images
require only rotation.

in our problem, and to distinguish functions that are not directly distinguish-
able in the classical setting. Our approach is based on a new pseudo-distance
depending on a set of G-invariant non-expansive operators, that approximates
the natural pseudo-distance in the limit.

Some relevant questions remain open:

– How can we choose the G-invariant operators in order to get the best
possible results, depending on the set Φ and the group G? How large should
the set of operators be? Is it possible to build a dictionary of operators to
be used for a specific group?

– How could our theoretical results be applied to problems in shape compar-
ison?

– What is the best way to adapt the use of G-invariant non-expansive oper-
ators to multidimensional persistence?

As for the last question, we observe that it would be interesting to extend
our approach to cases involving signals that are naturally described by Rk-
valued functions, such as color images or surfaces in R3. This kind of data
is common in many applications, so that such an advancement would greatly
enhance the use of our method in topological data analysis.

Our first experiments suggest that the introduced method is pretty robust,
taking advantage from the stability of persistent homology. We hope that this
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(a) Primary image (b) Result 1 (c) Result 2

(d) Result 3

Fig. 11 Most similar images to the query image from a dataset of 2D artificial im-
ages. Computed pseudo-distances DF

∗
match are respectively 0.039, 0.046 and 0.050 for im-

ages 11(b), 11(c) and 11(d).

property can open the way to new applications of the concept of persistence,
in presence of constraints concerning the invariance of our data.

The reader can note that our approach could be extended to the use of
invariants that do not arise from persistent homology. It is sufficient that each
invariant I that we consider is stable and invariant under the action of every
homeomorphism. In other words, we require that I is a function from Φ to a
metric space (D, dD) of descriptors, such that dD(I(ϕ1), I(ϕ2)) ≤ ‖ϕ1−ϕ2‖∞
for every ϕ1, ϕ2 ∈ Φ, and I(ϕ ◦ g) = I(ϕ) for every ϕ ∈ Φ and g ∈ G.
As three examples among many, we could use the invariants taking each ϕ
to its size homotopy group (the analogue of persistent homology group in
homotopy theory) [20], its Reeb graph [14], or also its maximum, together
with suitable metrics. The reason for which we have confined ourselves to the
case of persistent homology is our opinion that this theory is both endowed
with pretty fast and efficient algorithms and still sufficiently powerful for shape
comparison. However, we think that also the application of our method to other
invariants should be explored.

In conclusion, we would also like to consider the problem of formalizing
the framework that we have described in this paper in a categorical setting. In
our approach, each object belonging to a given dataset is seen as a collection
{ϕi : Xi → R} of continuous functions, where each ϕi belongs to an admissible
space Φi. These functions represent the measurements made on the object. No
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(a) Primary image (b) Result 1 (c) Result 2

(d) Result 3

Fig. 12 Most similar images to the query image from a dataset of 2D artificial im-
ages. Computed pseudo-distances DF

∗
match are respectively 0.011, 0.015 and 0.019 for im-

ages 12(b), 12(c) and 12(d).

attempt is made to define the objects in a direct way, according to the idea
that each object is accessible just via acts of measurement (cf. [1]).

However, the measurements {ϕi : Xi → R} are not directly used by the
observer that has to judge about similarity and dissimilarity. Indeed, percep-
tion usually changes the signals {ϕi : Xi → R} into several new (and usually
simpler) collections {ψji : Xi → R} of data. This passage is given by some
operators F ji , taking each function ϕi into a new function ψji . In the approach
that we have presented, these operators are supposed to be G-invariant and
non-expansive, because perception usually benefits of some invariance and
quantitative constraint. In other words, the observer is represented by an or-
dered family {F ji : Φi → Φi} of suitable operators, each one acting on a set Φi
of admissible signals. As a consequence, two objects in the dataset can be dis-
tinguished if and only if the observer is endowed with an operator F , changing
the corresponding signals into two new signals that are not equivalent with
respect to the invariance group.

We think that this approach could benefit of a precise categorical formal-
ization, and we plan to devote our research to this topic in the future. Far
from being just a formal abstraction, this description in the categorical lan-
guage might contribute to free the analysis of data from an approach based
on the “absolute role” of the objects, and to propose an “observer-oriented”
approach focused on the signals produced by those objects and on the oper-
ators that act on them. In this framework, the observer could be seen as a
collection {F ji : Φi → Φi} of operators acting on the elements of the family
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{Φi} of the sets of possible signals, and shape comparison could be interpreted
as a metric property of the pair

(
{Φi}, {F ji }

)
, instead of a discrimination of

absolute features of the objects.
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A Proof of Proposition 7

Proof 1. The value dF (F1, F2) is finite for every F1, F2 ∈ F , because Φ is bounded. Indeed,
a finite constant L exists such that d∞(ϕ,0) := ‖ϕ‖∞ ≤ L for every ϕ ∈ Φ. Hence
‖F1(ϕ)− F2(ϕ)‖∞ ≤ ‖F1(ϕ)‖∞ + ‖F2(ϕ)‖∞ ≤ 2L for any ϕ ∈ Φ and any F1, F2 ∈ F ,
since F1(ϕ), F2(ϕ) ∈ Φ. This implies that dF (F1, F2) ≤ 2L <∞ for every F1, F2 ∈ F .

2. dF is obviously symmetrical.
3. The triangle inequality holds, since

dF (F1, F2) := sup
ϕ∈Φ
‖F1(ϕ)− F2(ϕ)‖∞ ≤

sup
ϕ∈Φ

(‖F1(ϕ)− F3(ϕ)‖∞ + ‖F3(ϕ)− F2(ϕ)‖∞) ≤

sup
ϕ∈Φ
‖F1(ϕ)− F3(ϕ)‖∞ + sup

ϕ∈Φ
‖F3(ϕ)− F2(ϕ)‖∞ =

dF (F1, F3) + dF (F3, F2)

for any F1, F2, F3 ∈ F .
4. The definition of dF immediately implies that dF (F, F ) = 0 for any F ∈ F .
5. If dF (F1, F2) = 0, then the definition of dF implies that ‖F1(ϕ) − F2(ϕ)‖∞ = 0 for

every ϕ ∈ Φ, and hence F1(ϕ) = F2(ϕ) for every ϕ ∈ Φ. Therefore F1 ≡ F2.
ut

B Remark

If X and Y are two homeomorphic spaces and h : Y → X is a homeomorphism, then
the persistent homology group with respect to the function ϕ : X → R and the persistent
homology group with respect to the function ϕ ◦ h : Y → R are isomorphic at each point
(u, v) in the domain. The isomorphism between the two persistent homology groups is the
one taking each homology class [c =

Pr
i=1 ai · σi] ∈ PHϕ

k (u, v) to the homology class

[c′ =
Pr
i=1 ai · (h−1 ◦ σi)] ∈ PHϕ◦h

k (u, v), where each σi is a singular simplex involved in
the representation of the cycle c.

C Approximation of the non-expansive G1-operator Fŵ,γ̂

The operator Fŵ,ĉ(ϕ)(x) := supr∈R
Pn
i=1 wi · ϕ (x+ rci) can be approximated by substi-

tuting the supremum in its definition with a maximum for r belonging to a finite set.
In order to show this, first of all we observe that if ŵ = 0 then Fŵ,ĉ is just the null

operator, while if ĉ = 0 then Fŵ,ĉ is just the operator taking each function ϕ to the function`Pn
i=1 wi

´
· ϕ. Therefore, we can restrict ourselves to consider the case ŵ 6= 0, ĉ 6= 0.

Secondly, let us consider the function ψ := ϕ ◦ h, where h : R → R is the linear
homeomorphism taking 0 to −1 and 1 to 2 (i.e., h(y) = 3y − 1). Given that every function
ϕ ∈ Φds is assumed to be Lipschitz, with Lipschitz constant C, the function ψ is Lipschitz,
with Lipschitz constant 3C. The support of ψ is the interval [0, 1]. It is easy to check that
Fŵ,ĉ(ϕ)(x) = Fŵ,γ̂(ψ)(y), where y = 1

3
x+ 1

3
and γ̂ = (γ1, . . . , γn) := 1

3
ĉ.

Furthermore, we can assume that γp 6= γq for p < q. Indeed, if γp = γq with p < q
we can consider the new vectors ŵ′ := (w′1, . . . , w

′
n−1), γ̂′ := (γ′1, . . . , γ

′
n−1) obtained by

setting for 1 ≤ i ≤ n− 1

w′i =

8>>><>>>:
wi, if i < p

wp + wq , if i = p

wi, if p < i < q

wi+1, if i ≥ q

and γ′i =

(
γi, if i < q

γi+1, if i ≥ q
.
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It is easy to check that Fŵ′,γ̂′ = Fŵ,γ̂ .

Hence, we can assume µ := min{|γp − γq | : p 6= q} > 0. Let us set M := maxi |γi|.

We start by observing that if |y| > M
µ

+ 1 the value Fŵ,γ̂(ψ)(y) is easily computable,

because the condition 0 ≤ y + rγp, y + rγq ≤ 1 cannot hold for p 6= q.

Indeed, if y < −M
µ
−1, then 0 ≤ y+rγi implies |rγi| ≥ rγi ≥ −y > M+µ

µ
> 0, and hence

|r| > M+µ
µ|γi|

≥ 1
µ

. If y > M
µ

+ 1, then y + rγi ≤ 1 implies rγi ≤ 1− y < −M
µ
< 0, and hence

|rγi| > M
µ

, so that |r| > M
µ|γi|

≥ 1
µ

. As a consequence, in both cases |(y+rγp)− (y+rγq)| =
|r| · |γp−γq | ≥ |r| ·µ > 1, for p 6= q. Therefore, the condition 0 ≤ y+rγp, y+rγq ≤ 1 cannot
hold, so that at most one of the points y + rγp, y + rγq can belong to [0, 1].

Now, let us consider the value
Pn
i=1 wi · ψ (y + rγi) as a function of r ∈ R, under the

assumption that |y| > M
µ

+ 1.

When r = 0, for every index i we have that y + rγi = y /∈ [0, 1], so implying thatPn
i=1 wi · ψ (y + rγi) = 0 because the support of ψ is contained in [0, 1].

When r 6= 0 we have that at most one of the points in the set {y+ rc1, . . . , y+ rcn} can
belong to the interval [0, 1]. Moreover, for every index i such that γi 6= 0 and every η ∈ [0, 1]
exactly one value r 6= 0 exists, such that y + rci = η.

It follows that supr∈R
Pn
i=1 wi · ψ (y + rci) = max{0,max(w1 · ψ), . . . ,max(wn · ψ)}.

In conclusion, if |y| > M
µ

+ 1, Fŵ,γ̂(ψ)(y) = max{0,max(w1 · ψ), . . . ,max(wn · ψ)}.

It follows that if |y| > M
µ

+ 1 we can easily approximate Fŵ,γ̂(ψ)(y) because the values

max(wi ·ψ) can be approximated with arbitrary precision. Indeed, we know that the function
ψ is Lipschitz, with Lipschitz constant 3C. This implies that we can approximate max(wi ·ψ)
by computing the value maxs(wi · ψ (rs)), where {r1, . . . , rm} is a sufficiently dense finite
subset of the interval [0, 1].

Let us now consider the case |y| ≤ M
µ

+ 1. In this case, if γi 6= 0 and |r| > M+2µ
µ|γi|

then

ψ(y+ rγi) = 0. Indeed, the support of ψ is contained in [0, 1] and |y+ rγi| ≥
˛̨
|rγi| − |y|

˛̨
=

|rγi| − |y| > 1 because |rγi| > M
µ

+ 2 and |y| ≤ M
µ

+ 1.

Setting R := M+2µ
µ·min{|γi|:γi 6=0} , it follows that |y| ≤ M

µ
+ 1 implies

sup
|r|>R

nX
i=1

wi · ψ (y + rγi) =

(
wj · ψ(y), if an index j exists s.t. γj = 0

0, if γi 6= 0 for every index i

so that

sup
r∈R

nX
i=1

wi · ψ (y + rγi) =

max

(
sup
|r|≤R

nX
i=1

wi · ψ (y + rγi) , sup
|r|>R

nX
i=1

wi · ψ (y + rγi)

)
=8<:max

n
sup|r|≤R

Pn
i=1 wi · ψ (y + rγi) , wj · ψ(y)

o
, if an index j exists s.t. γj = 0

max
n

sup|r|≤R
Pn
i=1 wi · ψ (y + rγi) , 0

o
, if γi 6= 0 for every index i.

.
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Now, we have ˛̨̨̨
˛
nX
i=1

wi · ψ (y + rγi)−
nX
i=1

wi · ψ
`
y + r′γi

´˛̨̨̨˛ =˛̨̨̨
˛
nX
i=1

wi ·
`
ψ (y + rγi)− ψ

`
y + r′γi

´´˛̨̨̨˛ ≤
nX
i=1

|wi| ·
˛̨
ψ (y + rγi)− ψ

`
y + r′γi

´˛̨
≤

nX
i=1

|wi| · 3C · |(r − r′) · γi| =

nX
i=1

|wi| · 3C · |r − r′| · |γi| ≤

nX
i=1

|wi| · 3C · |r − r′| ·M =

3C ·M · |r − r′|

because
Pn
i=1 |wi| = 1 and ψ is Lipschitz, with Lipschitz constant 3C. Hence we can appro-

ximate sup|r|≤R
Pn
i=1 wi ·ψ (y + rγi) by computing the value maxs

Pn
i=1 wi ·ψ (y + rsγi),

where {r1, . . . , rm} is a sufficiently dense finite subset of the interval [−R,R]. It follows that
we can easily approximate Fŵ,γ̂(ψ)(y) also in the case |y| ≤ M

µ
+ 1.

Therefore our statement is proven.

D Definition of the first five operators used in Section 5

The formal definition of our operators is:

Fβ(ϕ)(x) :=

Z
B
ϕ(x− y) · β (‖y‖2) dy

where β is an integrable function defined on a ball B ⊂ R2 such that
R
B |β (‖y‖2)| dy ≤ 1

(here, ‖y‖2 denotes the Euclidean norm of the vector y). This condition is necessary in
the proof of non-expansiveness, and β can be considered as a kernel function. We used the
following four kernel functions:

1. β(t) =

(
16/π, if 0 ≤ t ≤ 1/4

0, if t < 0 ∨ t > 1/4
.

2. β(t) =

8><>:
16/π, if 0 ≤ t < 1/8

−16/π, if 1/8 ≤ t ≤ 1/4

0, if t < 0 ∨ t > 1/4

.

3. β(t) =

8>>>>><>>>>>:

16/π, if 0 ≤ t < 1/16

−16/π, if 1/16 ≤ t < 1/8

16/π, if 1/8 ≤ t < 3/16

−16/π, if 3/16 ≤ t ≤ 1/4

0, if t < 0 ∨ t > 1/4

.

4. β(t) =

8><>:
4/π, if 0 ≤ t < 1/4

−4/π, if 1/4 ≤ t ≤ 1/2

0, if t < 0 ∨ t > 1/2

.


