
08 August 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Alina, S., Ozalp, B. (2016). Power Consumption Modeling and Prediction in a Hybrid CPU-GPU-MIC
Supercomputer. Cham : Springer Verlag [10.1007/978-3-319-43659-3_9].

Published Version:

Power Consumption Modeling and Prediction in a Hybrid CPU-GPU-MIC Supercomputer

Published:
DOI: http://doi.org/10.1007/978-3-319-43659-3_9

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/540901 since: 2017-05-16

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/978-3-319-43659-3_9
https://hdl.handle.net/11585/540901

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Sîrbu A., Babaoglu O. (2016) Power Consumption Modeling and Prediction in a
Hybrid CPU-GPU-MIC Supercomputer. In: Dutot PF., Trystram D. (eds) Euro-Par
2016: Parallel Processing. Euro-Par 2016. Lecture Notes in Computer Science, vol
9833. Springer, Cham.

The final published version is available online at: https://doi.org/10.1007/978-3-319-
43659-3_9

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://doi.org/10.1007/978-3-319-43659-3_9
https://doi.org/10.1007/978-3-319-43659-3_9

Power Consumption Modeling and Prediction in
a Hybrid CPU-GPU-MIC Supercomputer

Alina Ŝırbu1,2 and Ozalp Babaoglu2

1 Department of Computer Science, University of Pisa, Italy
2 Department of Computer Science and Engineering, University of Bologna, Italy

Abstract. Power consumption is a major obstacle for High Performance
Computing (HPC) systems in their quest towards the holy grail of Ex-
aFLOP performance. Significant advances in power efficiency have to
be made before this goal can be attained and accurate modeling is an
essential step towards power efficiency by optimizing system operating
parameters to match dynamic energy needs. In this paper we present
a study of power consumption by jobs in Eurora, a hybrid CPU-GPU-
MIC system installed at the largest Italian data center. Using data from a
dedicated monitoring framework, we build a data-driven model of power
consumption for each user in the system and use it to predict the power
requirements of future jobs. We are able to achieve good prediction re-
sults for over 80% of the users in the system. For the remaining users,
we identify possible reasons why prediction performance is not as good.
Possible applications for our predictive modeling results include schedul-
ing optimization, power-aware billing and system-scale power modeling.
All the scripts used for the study have been made available on GitHub.

Keywords: job power modeling, job power prediction, high performance
computing, hybrid system, support vector regression

1 Introduction

A major impediment for supercomputers from reaching the ExaFLOP target
is power consumption. Energy efficiency of computing systems has to increase
by at least one order of magnitude to achieve this goal [1]. This requires power
optimization at all levels of hardware and software, including computation, net-
working and cooling. Numerous power modeling studies have been conducted in
recent years towards these goals. Models can enable prediction of power usage un-
der different scenarios, and indicate operating modes that optimize energy needs.
Optimization can be obtained not only at low levels, e.g. through frequency and
voltage scaling present in most modern CPUs, but also at higher levels, e.g.
through power-aware scheduling, which has not been extensively studied.

In this paper, we model power needs of jobs in a hybrid CPU-GPU-MIC
system (Eurora) with the aim of predicting power consumption of future jobs
before they are started. Among other benefits, accurate prediction could enable
development of advanced power-aware schedulers that can optimize power for the

2 A. Ŝırbu, O. Babaoglu

same workload. Eurora is a prototype supercomputer that topped the Green500
list in July 2013 for energy efficiency. It includes an advanced monitoring frame-
work that collects status data in an open-access database [1], which we use to
extract important features that enable prediction of job power consumption.
The prediction problem is formulated as a regression task: given feature values
(independent variables), compute the power consumption for a job (dependent
variable). We divide this task into subproblems corresponding to each compo-
nent type (CPU, GPU, MIC), and use Support Vector Regression (SVR) [16]
for each individual problem. The total job power is then obtained as the sum of
the individual component power consumptions.

This paper makes several contributions to power research for HPC systems.
First, it identifies several features relevant to job power consumption in hybrid
systems, supported by data examples. These include features not previously con-
sidered when modeling power such as application names, same-node resources
used by other jobs and job running times. We model power exclusively through
job-related features and do not require knowledge of CPU frequencies, load or ap-
plication code structure to extract the sequence of executed operations. Second,
we build power consumption models for each user starting from historical data
and employing SVR. Models are shown to have high predictive power for most
users. Third, we perform an analysis of power consumption variability for the
system to provide context for the model error levels, and explain model limita-
tions. Finally, we outline a methodology to implement the prediction framework
in real time and discuss application scenarios. We used the Google BigQuery
data analytics service [17] for the initial data analysis phase, while model train-
ing was done using the scikit-learn python package [9]. We have made all of the
scripts used for our study available on GitHub [6].

2 The Eurora system and its data

Eurora [5] is a prototype HPC system hosted at CINECA (www.cineca.it) that
combines the use of CPUs, GPUs and MICs to achieve higher power efficiency. It
remained in production for over 2 years from 2013 to 2015. The system consists of
64 nodes, each hosting two 8-core Intel Xeon E5 CPUs and two expansion cards
that can contain either GPU or MIC accelerator modules. There are 3 different
classes of CPUs based on their maximum frequencies: 2.1GHz (the slow class,
denoted as S and present at 24 nodes), 2.2GHz (the medium class, denoted as
M and present at 8 nodes) and 3.1GHz (the fast class, denoted as F and present
at 32 nodes). Half of the nodes mount GPUs (Nvidia Tesla Kepler) while the
other half mount Intel “Knights Corner” MIC (Xeon Phi). All nodes run CentOS
Linux. The workload is handled through the Portable Batch System (PBS).

Eurora contains an extensive monitoring subsystem which collects high reso-
lution (5-second intervals) status data from system components, including power
and cooling infrastructures [1]. Log data for the period 31 March 2014 to 11 Au-
gust 2015 is available (250GB of data in 328 tables), with several gaps due to
system/monitoring errors or database migration operations. The work reported

Power Consumption Modeling and Prediction 3

in this paper is based on these data for computing power consumption per job
and building a prediction framework for estimating future job power. We limited
our study to the data from 2014 since the system underwent several changes in
2015 and became more unstable. Workload information provided the number
of resources used by each job on each node at 5-minute resolution. Although
this number is known, it is impossible to extract from the data exactly which
CPU/GPU/MIC is being used out of the two available on each node. Power logs
allowed us to compute power consumption for each component (CPUs, GPUs
and MICs) on each node, again every 5 minutes. Power data is known only at
the level of CPU, GPU and MICs but is not available for the cores.

Combining workload and power data, we computed at 5-minute intervals the
overall power usage of a job j as the sum of the power of each component type:

P j = P j
S + P j

M + P j
F + P j

GPU + P j
MIC (1)

Power for each component type is computed by summing over all used nodes.
For example, for the F CPU type, P j

F =
∑

i∈nodes P
j
F (i) where P j

F (i) is the
power used by job j at a fast CPU on node i. If the job does not use node i
or if CPU type F is not present at node i, the corresponding power is assumed
to be 0. Denoting the number of cores used by job j on node i as nj(i) and
that used by other jobs as nother(i), the number of free cores at node i is given
by nidle(i) = 16 − nj(i) − nother(i) (recall that each node contains two 8-core
CPUs). Let PF (i) denote the total power recorded for the fast CPU type at node
i. Then, the power used by job j at a fast CPU on node i is computed based
on the number of cores used by job j in relation to the total number of cores at
the node, the number of cores used by other jobs and the total power recorded
at the node for that CPU type:

P j
F (i) = nj(i)

PF (i) − P̂F × nidle(i)

nj(i) + nother(i)
(2)

where P̂F denotes the average power consumed by a single F type CPU core
when it is idle. We estimate this quantity from the log data by dividing the total
power consumed by an idle CPU of type F by the number of cores (which is
8). The same procedure is repeated for the remaining types M , S, GPUs and
MICs. This procedure may introduce some noise in calculating job power, since
it assumes that when two jobs share the same node, the power usage is evenly
distributed across used components (e.g., cores). It is highly unlikely that this
assumption holds since jobs have different power needs, yet it is necessary in
order to be able to use the entire job set in our study, since many jobs indeed
share nodes with other jobs.

3 Power model

3.1 Features

Power consumption of a job can depend on several factors. One is the number of
components of each type used by the job. A job using 16 cores will most likely

4 A. Ŝırbu, O. Babaoglu

use more power than a job using only 8 cores. A related factor is the type of
core being used, with faster class cores using more power than slower class cores
(e.g. Fig. 1a). The structure of the application is also important. A job can have
periods of high power usage and other periods of lower power usage, although
the number of components in use remains the same (e.g. Fig. 1b). These patterns
can be captured by including the runtime as a feature (i.e., the time since the
job started). We also use the job name, a user-defined string, to identify the
application. We performed a textual analysis, using the CountVectorizer class
in the scikit-learn python package [9], checking which n-grams of 2 and 3 letters
are present in the job names. This resulted in a set of numerical features that
count how many times each n-gram appears.

The distribution of resources is also important. Fig. 1c shows two jobs running
the same application using 16 cores, however one job is allocated one node while
the other two nodes, causing differences in power. A related factor is the load of
a node that is partially used by a job. Fig. 1d shows an example job using 16
cores on 4 nodes, together with the number of cores used by other jobs on the
same nodes at the same time. We see a negative correlation between power and
cores used by other jobs, so we include the same-node used cores as features.

To summarize, for each job we extracted the number of components of each
type used (S, M , F , GPU, MIC), runtime, name (occurrence of n-grams of
size 2 and 3), number of nodes and same-node components used by other jobs as
regression features, and the power as regression target. These were computed at 5-
minute intervals, resulting in numerous data points per job. Google BigQuery[17]

(a) Three jobs with same name and same
number of cores, but allocated on different
classes of CPUs.

(b) Power consumption of a single job
throughout its execution.

(c) Two jobs with same name and same
number of cores, but allocated on different
number of nodes.

0 5000 10000 15000 20000 25000
Seconds since job start

200

300

400

500

P
o
w

e
r

(W
) Power

0

5

10

15

20

25

C
o
re

s
u
se

d
 b

y
 o

th
e
r

jo
b
s

Cores

(d) One job with variable number of cores
in use by other users on the same nodes.
The job itself uses 16 cores on 4 nodes.

Fig. 1: Power consumption for various jobs.

Power Consumption Modeling and Prediction 5

was used, enabling analysis of large amounts of data in a reasonable amount of
time.

3.2 Regression problem and training procedure

Since power is measured for each component type, we divided the problem of
predicting power per job into 5 subproblems, corresponding to the terms on the
right side of Eq.1. Hence, for each user we perform 5 regression analyses, one for
each component type, and then sum the predicted component powers to obtain
an estimate for the global job power. In practice, most users use only 2 or 3
component types, so regression is only performed for those. We use SVR with
Radial Basis Function (RBF) kernels [16]. To simulate the realistic scenario
where power prediction is based on user histories, we train new models on a
monthly basis using all past data, and then apply the models to new data for
the current month. Here we show results for October 2014: models are trained
on data prior to October 1st and then applied to all data recorded in October.

Training consists of two steps. First, SVR meta-parameters have to be opti-
mized for each user and each component type. We use cross-validation to find
optimal values. That is, all past data is divided into a “train” subset and a
“test” subset. We use the first 80% of the jobs of each user as training data,
and the last 20% as test data. Then multiple models are trained with a range of
parameter values and the combination that produces the best results on the test
data is selected. Second, a new final model is trained with the optimal parameter
combination, using all past data in training (merging the train and test dataset).
This ensures that all available past information is included in the model.

Once the final model is available for each user and component type, it can be
applied for one month to new unseen data. Power is predicted for the individual
components and then summed to obtain global job power. To avoid poor predic-
tion due to limited training, we only analyzed those users for which historical
data included at least 1,000 total data points, at least 10 jobs totaling at least
100 time points for each component type, and at least 10 data points to apply
the model to. Table 1 shows the number of users analyzed for each component
type and globally. For all users, a total of 435,079 data points from 22,130 unique
jobs were used to build the model (data before October), which was then applied
to 53,717 new points from 5,039 unique jobs (October data).

3.3 Evaluation

We will compare results of our multiple-SVR model with a simple Enhanced
Average Model (EAM). For each user, the EAM computes the average power used

Component type S M F GPU MIC Global

Users 21 20 27 9 2 34

Table 1: Number of users analyzed for each component type and globally.

6 A. Ŝırbu, O. Babaoglu

per component unit (core, GPU, MIC), based on historic data. Then job power
for each component is predicted by multiplying the number of component units
by the average power per unit. For instance, if a job j of user u uses nj

F F cores

and the historical usage for one F core for the user is P̄u
F , then P j

F = nj
F × P̄u

F .
All other terms in Eq. 1 are computed in a similar fashion and then summed
to obtain total job power. This model is an enhanced version of the so called
“average model”, which would compute job power just by averaging historical
data, without taking into account the number of components used. Even so, it
is much simpler than our multiple-SVR approach. Training is straightforward
as it only requires computing averages per user, while application of the model
requires knowing only the number of components used.

The models were evaluated using two standard criteria for regression: the
(mean-)normalized-root-mean-squared-error (NRMSE) and R-squared (R2):

NRMSE =

√
(
∑N

i=1 (Pi − P ∗i)2)/N

P̄
(3)

R2 = 1 −
∑N

i=1(Pi − P ∗i)2∑N
i=1(Pi − P̄)2

(4)

where N is the number of data points considered across the jobs of the user, P ∗i
and Pi are the predicted and real powers for data point i, respectively, while P̄
is the average of the real power over all N data points.

To provide context for the errors reported, it is important to understand
the natural fluctuations of power consumption at constant load — the noise
levels. Power usage can vary for the same workload on the same node, due
to hardware-related noise, such as variations in the production process which
may generate different electrical behaviors across same-type cores, or adaptive
mechanisms for performance optimization [12]. Additionally, there is software-
related noise, introduced by operating system interference, external interrupts
or shared resource contention [8]. Noise has a negative impact on power model
performance since random fluctuations are not captured by model features, hence
cannot be reproduced through regression. Thus, we cannot expect model errors
to be less than the noise levels. This has been shown to affect performance of
models by reducing the maximum accuracy they can obtain [12].

In the case of Eurora, undesired software and hardware variability between
nodes was previously shown to reach up to 20% (5% software and up to 15%
hardware) [8]. Here, we look at within-node variability at constant load for CPUs
and GPUs. Specifically, we computed the coefficient of variation (CV) of power
at various load levels, and averaged over all loads for each component. For MICs,
load information is not available so we could only analyze power at 0 load. The
variability observed may come from different sources, however we evaluate them
together since we are interested only in an overall value to be used as a baseline
for quantifying our errors. Fig. 2 shows average CV values for all 64 nodes,
per component type. The M CPUs show on average largest fluctuations, with
most nodes reaching over 20%. Most S, F and GPU components have average

Power Consumption Modeling and Prediction 7

Fig. 2: Variability of power consumption. The bars represent the coefficient of
variation (CV) of power at fixed load, averaged over all loads, for each node and
component type in the system.

fluctuations under 20%. However, some nodes in all categories display much
larger fluctuations, even over 100%. For MICs (not shown in the figure since
load data is unavailable), idle power fluctuates on average by 10.24% and we
expect this value to be larger at larger loads. Hence, based on our data analysis
and based on previous studies, in this work we consider NRMSE values < 0.2
(20%) to be good performance, since they are within the natural fluctuations of
the individual components.

We included here both the R2 and NRMSE evaluation criteria because they
are complementary: the NRMSE looks at overall fit and gives a measure relative
to the mean value, while R2 looks at the general shape of the time series and gives
a measure relative to the variations in the data. Additionally, they are affected
differently by noise. For instance, if the power levels for a user are relatively flat,
and vary only due to noise, the R2 measure becomes irrelevant. This because
R2 looks at the ‘shape’ of the data, which in this case is entirely determined by
local fluctuations, which cannot be reproduced by any model. However, a model
can still capture average behavior which is the best performance possible, but
which will correspond to low R2. In this case the NRMSE provides additional
information, with a NRMSE value similar to the noise level considered a good
performance. Conversely, when a user has highly variable power consumption
for jobs, NRMSE can be large due to a few data points, but the model can still
contain useful information, reflected in the R2 measure. In the following we will
consider NRMSE > 0.2 or R2 > 0.5 to be a very good result.

In our data, the distribution of job power for each user is very heterogeneous,
with users ranging from those having jobs with stable power requirements to
those showing very large differences across jobs and time, justifying the use of
both NRMSE and R2. Fig. 3 shows the distribution of variability in job power
for all users active during the month of October 2014, for each component type.
To quantify the variability for each user, we obtained the distribution of the
power levels for that user, by collecting the data in bins of size 20W in the range
[0W,500W], and computed the entropy of this distribution, normalized by the
maximum entropy possible (logarithm of the number of bins). The normalized

8 A. Ŝırbu, O. Babaoglu

Fig. 3: Distribution of variability of power across jobs and time for each user.
Variability for each user is computed as the normalized entropy of the distri-
bution of job power levels recorded in time for that user. The plot shows a
histogram of all entropies for the users active in the month of October 2014.

entropy is a measure of spread of the distribution, with 0 meaning all data fell
into one bin and 1 meaning power levels are uniformly distributed across all
bins. So, a user with 0 entropy has very flat power levels, while a user with high
entropy has very large differences between power levels. As Fig. 3 shows, our
data contains users with a wide range of entropies, hence we are dealing with a
very heterogeneous user population.

4 Model performance

Once meta-parameters are explored using cross-validation with data prior to
October 1st, 2014, the best meta-parameter combination is selected and a new
final model is trained on all data prior to October. One SVR model is obtained
for each user and each component type, which are then combined into a global
model for each user. Table 2 shows prediction performance for all users (all jobs
concatenated), for each component type, throughout the month of October. For
components S and GPU, both R2 and NRMSE values are very good. For F ,
NRMSE is quite high, however R2 is also very large, so the model contains
useful information. The high NRMSE is due to the fact that one user has jobs
that consume much more power than others (over 3KW versus under 500W

S M F GPU MIC

SVR NRMSE 0.13 0.33 0.52 0.15 0.28

SVR R2 0.87 0.47 0.92 0.84 0.34

EAM NRMSE 0.13 0.37 1.34 0.24 0.28

EAM R2 0.87 0.34 0.52 0.59 0.31

Table 2: Performance of the SVR and EAM for individual components.

Power Consumption Modeling and Prediction 9

for others), so a relatively small error in that user will produce a large overall
NRMSE (due to the fact that the normalizing factor depends on all jobs of all
users). If we remove the user with jobs consuming over 3KW, then we obtain
R2 = 0.89 and NRMSE = 0.26 which are very good considering the noise levels
for the F CPUs shown in Fig. 2. For M CPUs, which showed highest noise in
Fig. 2, performance is somewhat lower. R2 does not reach the 0.5 threshold, albeit
very close, while NRMSE is around 33%. This shows how power fluctuations can
affect model performance. Even so, the model is better than the average model
(R2 much larger than 0). For the MIC component, the amount of data is more
reduced, which can be one reason for the lower performance. Only two MIC users
exist, one with very good and another with lower prediction performance.

If we compare the SVR models with the EAM, for which results are also
shown in Table 2, we note that the SVR has better performance on all component
types except for S. For the S class, the SVR and EAM are comparable, meaning
that jobs using this component are quite predictable and power depends mostly
on the number of components used. Significantly better performance of the SVR
can be seen for the F and GPU components, which are also the most used across
the cluster. This increase in performance means jobs are much more complex and
additional SVR features are important in predicting the power outcome.

Fig. 4: Global real and predicted total power consumption (components summed
together). For each job, the power was computed at 5-minute intervals, with the
plot showing all power values for all users and jobs. The top panel shows all users,
while in the lower panel the first user with high power values was eliminated.

10 A. Ŝırbu, O. Babaoglu

Fig. 5: Global model performance per user, NRMSE vs R2. Circles show perfor-
mance for the EAM, while stars show performance for the multiple-SVR model.
Each circle/star corresponds to one separate user. For each user, the two model
types (EAM and SVR) are connected by an edge. For figure readability, data
points with very low negative R2 values have been mapped to −2.0.

While Table 2 shows how the model behaves on the individual components,
it is total job power (global model) that interests us the most. Fig. 4 shows the
power time series (predicted and real) for the total job power (i.e., after applying
Eq. 1), using the SVR model. Given the presence of that one user with very high
job power, NRMSE is again large, however R2 is very good. Again, by removing
this user, NRMSE reduces to 21%, meaning our model has an overall accuracy
of 79% for all other jobs of October, while R2 stays high at 0.87. Compared to
the EAM (global NRMSE= 0.91 and R2 = 0.53), NRMSE of the SVR is 40%
that of the EAM, while R2 is improved by 70%.

Model performance varies also from user to user. Fig. 5 plots global model
NRMSE versus R2 for each user, for both the SVR and EAM. In general, the
SVR outperforms the EAM (in the plot, stars are located south-east of the
corresponding circle), however there are a few users for which the EAM is better.
For these, one is better off using the EAM for predictions. Out of a total of 34
users analyzed, 27 have SVR NRMSE ≤ 0.2 or R2 ≥ 0.5, and 7 (20%) have lower
performance. For the latter, a weak SVR model corresponds also to a weak EAM
model. Poor performance could be due to noise, indicated by the fact that jobs
of these users use partial node resources (i.e., 1 out of 2 MICs or 1 out of 16
cores) or run on nodes with high variability, being thus more prone to noise.

5 Related work

Power monitoring, modeling and optimization have been major research concerns
in recent years. Modern computing units embed advanced control mechanisms
such as the Dynamic Frequency and Voltage Scaling that aim to optimize per-
formance and can affect power levels, making modeling problematic even for a
single computational unit [12]. Several models trying to explain the relation be-
tween frequency, load, hardware counters and power for single units have been

Power Consumption Modeling and Prediction 11

introduced for multicore CPUs [7,14] and GPUs[18]. Model performance ranges
widely depending on the applications running, with errors between 3.65 and
14.4% for the CPU case, and between 1.7% and 27.7% for GPUs. These errors
are only expected to grow when multiple units have to be combined, as is the
case for HPC systems. Our approach is very different in that we are modeling
power consumption per job, not per component. Additionally, our model does
not require direct measures of load and frequency, which are typically not known
in advance, but only workload measures which are known when the job starts.

Some work in modeling job or application power consumption has appeared
recently. Performance counters are used to model application power on three
small scale HPC platforms by [13]. GPU CUDA kernels are analyzed in [11],
again based on job performance counters. These methods are very different from
ours, since they require instrumenting the applications to extract signatures
and performance counters, while we only use the number of resources required,
making it much more straightforward to apply. An approach more similar to
ours was recently introduced in [15] which uses the number of nodes used by
applications as model input, with very good precision (errors between 0 and
5.2% per application). A more detailed model is introduced in [4] where a Hidden
Markov Model is used to represent job states and transitions. All these methods
build one model per job, while we are trying to explore user patterns as well.
Building one model per user has several advantages including larger training
datasets and greater robustness to inaccurate use of job names by HPC users
(e.g., when the user gives the same job name to different applications, or various
names to the same application). Additionally, unlike other methods, our model
applies to hybrid jobs using CPUs, GPUs and MICs.

On the road towards ExaFLOP performance, special attention has been given
to system-level power consumption by clusters. Recent work at Google [10] de-
scribes the use of Artificial Neural Networks to model Power Usage Effective-
ness using a mixture of workload and cooling features. System-level prediction of
power consumption is also one application of our predictive model . In terms of
power-aware scheduling, another possible application of our models, the authors
in [3,2] introduce a method based on Constraint Programming, to achieve power
capping on Eurora, the same HPC system analyzed here. This could benefit
greatly from power prediction offered by our framework.

6 Discussion and Conclusions

We presented an analysis of historical trace data from Eurora, and evaluated
prediction models for power consumption of jobs. The method is fully data driven
— no assumptions about the model structure nor additional instrumentation
of application code are required. The only application-aware feature is the job
name, making our method easily applicable to any system even when application
code is not available. The power of our prediction derives from user history
rather than from application counters, and our results show that when enough
data is available, high performance can be achieved. We employ a multiple-

12 A. Ŝırbu, O. Babaoglu

SVR model to estimate job power in time. One model per user is trained. An
alternative would have been to build one model per application (job name) but
this would have meant much less training data per model. Additionally, learning
from user profiles can allow for user trends to be captured, maintaining high
quality predictions even if job names are not properly employed by users (e.g.,
using the same name for different applications or many different names for the
same application).

The multiple-SVR approach is compared to an enhanced average model
(EAM) where power depends only on the number of components used. The
SVR outperforms the EAM approach for most users, obtaining good prediction
(error under 20% or R2 ≤ 0.5) for 80% of the users analyzed. For the rest of the
users, indications are that performance is affected by noise.

The approach is intended to be used in real time, where predictions are made
as new jobs arrive at the scheduler. Online application consists of training the
model for each user, then applying it to real time data, by employing the proce-
dure outlined in this work. Periodically, the model is updated by incorporating
recent data into the training dataset. We expect monthly model updates to be
sufficient in order to capture changes in job structure. available, prediction can
be improved by training the multiple-SVR model.

In terms of resources, our analysis was performed on a 516-node CentOS 7.0
cluster, with 2 octa-core 2.40GHz Intel Xeon CPUs per node. Since our problem
is intrinsically parallel, we obtained each model separately on one core. Running
times depended on the user (different amounts of data available) and on the
meta-parameters. Meta-parameter optimization required a total of 185.36 core-
hours for all users, with a maximum running time for one optimization run of
4.66 hours. Global model training for all users required at total of 2.92 core-hours
(maximum for one user was 1.7 hours), while model application to all the data
of October took only 6.81 minutes for all users. Consequently, if parallelized on
a multi-core platform, the entire process incurs little overhead, especially given
that the training procedure has to be repeated only once a month. We expect the
method to scale to systems that are much larger than Eurora, since the analysis
is performed separately for each user and can be easily parallelized.

The predictions presented here can be improved through more detailed data
on job characteristics (e.g., exact application names, input datasets and param-
eters) and more detailed power monitoring (e.g., power per core rather than
per CPU), work which we will undertake in the future after obtaining improved
datasets. Furthermore, we plan to use our predictions in several applications
to optimize system functionality. The first is modeling and prediction of system
level power consumption, including networking equipment, IO systems and even
cooling infrastructure, starting from prediction of job power. Secondly, our ap-
proach is applicable to power-aware scheduling, where the scheduler can estimate
power usage for various job allocation schemes and select the best among them.
Thirdly, our method can be employed by users to estimate power for their jobs
before submission, which can facilitate better management of resources by the
users, especially in the context of power-aware billing.

Power Consumption Modeling and Prediction 13

7 Acknowledgments

BigQuery analysis was carried out through a generous Cloud Credits grant from
Google. We are grateful to Prof. L. Benini and Dr. A. Bartolini for useful discus-
sions regarding the data and to the HPC group at CINECA, in particular Dr. E.
Rossi and Dr. C. Cavazzoni for providing access to the CINECA systems. We ac-
knowledge the CINECA ISCRA PACNA and PM-HPC awards allowing access
to HPC resources and support. This work was partially funded by the Euro-
pean project SoBigData Research Infrastructure — Big Data and Social Mining
Ecosystem under the INFRAIA-H2020 program (grant agreement 654024).

References

1. A. Bartolini et al.: Unveiling eurora-thermal and power characterization of the
most energy-efficient supercomputer in the world. In: DATE’14 (2014)

2. A. Borghesi et al.: MS3: A Mediterranean-stile job scheduler for supercomputers-do
less when it’s too hot! In: HPCS’15. pp. 88–95 (2015)

3. A. Borghesi et al.: Power Capping in High Performance Computing Systems. In:
CP’15 (2015)

4. C. Storlie, Curtis et al.: Modeling and predicting power consumption of high per-
formance computing jobs. arXiv preprint arXiv: 14125247 (2014)

5. Cavazzoni, C.: Eurora: a european architecture toward exascale. In: Future HPC
Systems: the Challenges of Power-Constrained Performance. ACM (2012)

6. A. Ŝırbu and O. Babaoglu: BigQuery and Python scripts. Github (2016), available
at: http://github.com/alinasirbu/eurora job power prediction.

7. Dargie, W.: A stochastic model for estimating the power consumption of a proces-
sor. IEEE Trans Comput. 64(5), 1311–1322 (2015)

8. F. Fraternali et al.: Quantifying the impact of variability on the energy efficiency for
a next-generation ultra-green supercomputer. In: ISLPED’14. pp. 295–298 (2014)

9. F. Pedregosa et al.: Scikit-learn: Machine learning in Python. J Mach Learn Res.
12, 2825–2830 (2011)

10. Gao, J.: Machine learning applications for data center optimisation. Google White
Paper (2014)

11. H. Nagasaka et al.: Statistical power modeling of GPU kernels using performance
counters. In: IGCC’10. pp. 115–122 (2010)

12. J.C. McCullough et al.: Evaluating the effectiveness of model-based power charac-
terization. In: USENIX ATC’11. vol. 20 (2011)

13. M. Witkowski et al.: Practical power consumption estimation for real life HPC
applications. Future Gener Comput Syst. 29(1), 208–217 (2013)

14. P. Gschwandtner et al.: Modeling CPU energy consumption of HPC applications
on the IBM Power7. In: PDP’14. pp. 536–543 (2014)

15. Shoukourian, H., Wilde, T.: Predicting the Energy and Power Consumption of
Strong and Weak Scaling HPC Applications. Supercomp Front Innov. 1.2 (2014)

16. Smola, A., Vapnik, V.: Support vector regression machines. Adv Neural Inf Process
Syst. 9, 155–161 (1997)

17. Tigani, J., Naidu, S.: Google BigQuery Analytics. John Wiley & Sons (2014)
18. X. Ma et al.: Statistical power consumption analysis and modeling for GPU-based

computing. In: ACM SOSP HotPower’09 (2009)

http://github.com/alinasirbu/eurora_job_power_prediction

	Copertina_postprint_IRIS_UNIBO
	1601.05961
	Power Consumption Modeling and Prediction in a Hybrid CPU-GPU-MIC Supercomputer
	1 Introduction
	2 The Eurora system and its data
	3 Power model
	3.1 Features
	3.2 Regression problem and training procedure
	3.3 Evaluation

	4 Model performance
	5 Related work
	6 Discussion and Conclusions
	7 Acknowledgments

