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framework, the posterior pdf of the parameters. Roberts and Everson (2001) have shown that a gen-

erative model for all the possible mapping procedures exists. Here we use the generative model ap-

proach, and we use the notation of Choudrey (2002). 

 In order to take into account missing data, which is a common problem in GPS time series, 

we have modified the variational bayesian ICA (vbICA) code of Choudrey (2002) 

(http://www.robots.ox.ac.uk/~parg/projects/ica/riz/code.html, last access June 10, 2015) following 

Chan et al. (2003). The modifications consist in applying a mask of 0 (missing) and 1 (recorded) to 

the data and to the formulas used to update the parameters of the generative model. Here we present 

a short overview of the main concepts, and for more details see Section S1 of the Supplementary 

material. 

3  Description of vbICA 

A generative model M is characterized by some observed variables (X), some hidden or latent 

variables (H), some hidden parameters ( ), and the mutual relationships between all these quanti-

ties. The observations and the hidden variables are quantities 

order to have the model working, some parameters exist and their distributions are modeled using 

further parameters (called hyper-parameters). Both the parameters and the hidden variables are un-

known, and they are indic W = {H, }. The prior pdf of the weights, given a 

model M, is indicated as p(W|M). The goal of a generative model is to find the best weights in or-

der to explain the observations and match the a priori knowledge, embodied in the particular struc-

ture of the model M and the hyper-parameter values of the prior pdfs. In a bayesian framework, 

given a model M and the observed data X, maximizing the posterior pdf over weights W given the 

data X is the best choice for W: 

 (4) 

 

where the denominator is called the evidence for M and is expressed by: 
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S1  The variational bayesian ICA: some details 10 

As said in Section 2 of the main text, under a bayesian framework the goal is to evaluate the 11 

quantity given by: 12 

 (S1) 

 13 

where 14 

 (S2) 

 15 

In most of the cases, the integral at right hand side (RHS) of (S2) is intractable because it involves 16 

the integration in the whole weight space. Such an integral is also called as evidence, and it repre-17 

sents the pdf of the observed data X under the model M. The variational approach allows us to ap-18 

proximate the integral in (S2), and the approximate form of the posterior pdf of the weights W, 19 

p'(W), is introduced to allow a closed form solution to the posterior (left hand side, LHS, of S1). 20 

The idea behind this approach is the following. Let us consider the log-evidence ln(p(X)), where we 21 

drop the symbol M for brevity. Since the integral over the whole weight space of any given pdf, 22 

p'(W), that depends only on the weights must be equal to the identity, and since the log-evidence 23 

does not depend on the weights W, the following equivalences hold: 24 

 (S3) 

 25 

Using the standard formulas for joint pdfs: p(X, W) = p(X | W) p(W) = p(W | X) p(X), we 26 

can write: 27 

 (S4) 

 28 
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Finally, rearranging equation (S4), we can write the following equality: 29 

 (S5) 

 30 

The first term of the RHS is called the Negative Free Energy of the data X, NFE[X], while the 31 

second term of the RHS is the Kullback-Leibler (KL-)divergence,  KL[p'(W) || p(W | X)], between 32 

the two pdfs p'(W) and p(W | X), . The KL-divergence between two given pdfs is a strictly non-33 

negative quantity that measures the difference among the pdfs under comparison, and it is equal to 0 34 

iff the two pdfs are the same. In particular, the smallest the KL-divergence the more similar are the 35 

two pdfs. In the case under study, our goal is to find a pdf p'(W) such that it approximates well the 36 

posterior pdf p(W | X). In other words, we want to minimize RHS's second term of equation (S5). 37 

In order to achieve this goal, since the log-evidence does not depend on the weights W, maximizing 38 

the NFE w.r.t. the p'(W) will automatically minimize the KL-divergence. Let us now discuss further 39 

the structure of the NFE. 40 

We can write the NFE as follows: 41 

 (S6) 

 42 

where < >p'(W) is the expected value given the pdf p'(W), and H[W] is the entropy of p'(W). The 43 

most common restrictions for  p' are (Ormerod and Wand, 2010): 44 

a) p'(W) factorizes into , for some partition {w1 wN} of W 45 

b) p' is a member of a parametric family of density functions. 46 

From equation (S6) it becomes clear the reason why it is necessary to choose a proper factori-47 

zation for p'(W) if we want to be able to maximize the NFE w.r.t. p'(W). Indeed, such a maximiza-48 
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tion is performed iteratively via an Expectation-Maximization procedure, and two different factori-49 

zations result in two different sets of learning rules. 50 

For the particular case of the BSS problem, and for the implementation of a variational bayes-51 

ian ICA, Choudrey (2002) used the ensemble of hidden variables and parameters given by W = { , 52 

A, S, q, }. He tested two different factorizations: 53 

 54 

i) p'(W) = p'( )p'(A)p'(S)p'(q)p'( ) 
(S7) 

 55 

ii) p'(W) = p'( )p'(A)p'(S | q)p'(q)p'( ) 
(S8) 

 56 

where  the factorization ii) outperforms the first one (Choudrey, 2002). This is the reason why in our 57 

work we use only the second factorization. The meaning of the rvs can be understood taking a look 58 

to the original BSS problem, formulated by the equation (2) of the main text. We want to find those 59 

parameters (i.e., those weights W) that can explain the data X under the framework of linear com-60 

bination of independent source signals. The sources are described by the rvs S, the mixing matrix is 61 

described by the rvs A, and the noise is described by the rvs . Each of these rvs can be described 62 

by a given distribution or by other rvs. 63 

Here we are going to present  the so called learning rules we apply in order to maximize the 64 

NFE. In particular we specify the approximating posteriors in the RHS of (S8) used in order to cal-65 

culate explicitly the NFE. MacKay (1995) has shown that there is no need to specify functional 66 

forms for the posteriors if conjugate forms for the densities are chosen. Families of conjugate func-67 

tions are such that, when member functions are multiplied together, they give a function in the same 68 

family. 69 

Noise is assumed to be Gaussian with zero mean, and the rvs  describe the precision (i.e., 70 

the inverse of the variance) associated to the noise. Such rvs are assumed to follow a Gamma distri-71 
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bution, such that two hyper-parameters are necessary to describe each of them. The distribution of 72 

the mixing matrix coefficients is a Gaussian, where each element of the matrix A is described by a 73 

mean and a precision. Finally, in order to allow the sources to adapt and mimic different distribu-74 

tions, the rvs S are described using a mix of Gaussian distributions for each source si with i 75 

L. This means that for each source si there is a set of rvs i such that it explains the set of Gaussian 76 

pdfs that contributes to the final realization of si. Supposing that mi Gaussian pdfs are used to de-77 

scribe the i-th source, then we need a mean and a precision for each of the mi Gaussians as well as a 78 

rv i expressing the probability that a given Gaussian is selected to contribute to the source. Finally, 79 

the rv q is an indicator variable, and for the i-th source there is the rv qi that may vary between 1 80 

and mi. The mean of a Gaussian  follows itself a normal distribution, while a precision of a 81 

Gaussian  follows a Gamma distribution. The mixture proportion i is described by a Dirichlet 82 

distribution. 83 

The choice of these particular families of distribution is arbitrary, but not accidental. Indeed, 84 

the Gamma distribution (G  ( )) is the conjugate prior for the precision of the normal distribution 85 

(N   ( )) with known mean, and the Dirichlet distribution (D  ( )) is the conjugate prior of the cate-86 

gorical distribution. All the previous assumptions can be summarized by Figure S1, which repre-87 

sents the direct graph to solve the BSS problem via an ICA. The formulas associated to all these 88 

assumptions on the prior distributions are the following: 89 

 (S9) 

 90 

 (S10) 

 91 

 (S11) 

 92 
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 (S12) 

 93 

 (S13) 

 94 

 (S14) 

 95 

 (S15) 

 96 

 (S16) 

 97 

The derivation of the posteriors can be found in the Appendix B and C of Choudrey (2002). 98 

Here we just report his results, in order to describe the modifications we have introduced for appli-99 

cations to cases with missing data, following Chan et al. (2003).  The priors from (S9) to (S16) be-100 

come the posteriors given by: 101 

 102 

 (S17) 

 103 

 (S18) 

 104 

 (S19) 

 105 

 (S20) 

 106 

 (S21) 
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 107 

 (S22) 

 108 

 (S23) 

 109 

 (S24) 

 110 

From these approximating pdfs, it is possible to maximize the NFE w.r.t. the p'(wi). The pa-111 

rameters are estimated using an Expectation-Maximization algorithm, obtaining the values indicat-112 

ed with the hat at each iteration. The missing data are taken into account using a data mask oj
t, 113 

with j M and t T, that is equal to 0 if the data is missing and 1 if the data is record-114 

ed. The learning rules for the different pdf hyper-parameters are the following: 115 

p'( ) 116 

 (S25) 

 117 

 (S26) 

 118 

p'(A) 119 

 (S27) 

 120 

 (S28) 

 121 
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p'(S | q) 122 

 (S29) 

 123 

 (S30) 

 124 

p'(q) 125 

 (S31) 

 126 

where  and 127 

 (S32) 

 128 

  (S33) 

 129 

 (S34) 

 130 

p'( ) 131 

 (S35) 

 132 

p'( ) 133 

 (S36) 

 134 
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 (S37) 

 135 

p'( ) 136 

 (S38) 

 137 

 (S39) 

 138 

where . 139 

We specify also the learning rules relative to the Automatic Relevance Determination tech-140 

nique (see Section 4 of the main text). Indeed, the precision of each column of the mixing matrix is 141 

treated as a rv, and it follows its own distribution. In particular, it obeys a Gamma distribution: 142 

 (S40) 

 143 

and the updating equations for the parameters  and  are: 144 

 (S41) 

 145 

 (S42) 

 146 

 In all case studies we have used the following starting hyper-parameter values: mi0 = 0, i0 = 147 

1, bi0 = 103, ci0 = 10-3, i0  [0.01, 0.1]T, = 103, = 10-3 for i L; and = 103, = 10-3 148 

for j M. 149 
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S2  Simulated sources 150 

S2.1  Seismic cycle 151 

In order to reproduce the seismic cycle, we use three different source signals: 1) a linear func-152 

tion; 2) a Heaviside function; 3) a logarithmic function, representing the inter-, co-, and post-153 

seismic stages, respectively. The reason behind the choice of these functions can be found in Sec-154 

tion 5.1 of the main text. The mathematical expressions used are the following: 155 

 156 

 (S43) 

 157 

 (S44) 

 158 

 (S45) 

 159 

where t is time, and (x, y, z) is a point in the space. 160 

We discretize the fault plane into different patches of smaller area. For each patch located in 161 

(x, y, z) we specify the following six parameters in (S43-S45) 162 

1) qlin: arbitrary value of stationary aseismic slip (creep) at time Tstart 163 

2) : creep rate 164 

3) Aco: co-seismic slip 165 

4) tco: epoch of the earthquake 166 

5) Apost: post-seismic amplitude 167 

6) : post-seismic decay time. 168 

Varying these 6 parameters we can vary the Signal-to-Signal Ratio (SSR) among the different 169 

sources, defined, in analogy with the Signal-to-Noise Ratio (SNR), as the ratio between the power 170 

of one signal and the power of a second signal. In particular, we maintain the same value for the fol-171 
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lowing three parameters: qlin = 0 mm, tco 172 

study allowing the remaining three parameters to assume the values shown in Table S1. 173 

The co-seismic and post-seismic amplitudes are intended to vary in order to generate events 174 

with different energies. Assuming that the fault under study is embedded in a homogeneous and 175 

elastic half-space, then the seismic moment associated to an earthquake (or the equivalent seismic 176 

moment associated to afterslip) can be calculated using the formula: 177 

 (S46) 

 178 

where  is the rigidity modulus, and A is the area that slips an amount  during the co-seismic peri-179 

od (or during the post-seismic period). In all our simulations, we keep constant the rigidity modulus 180 

= 30 GPa (a typical value for the crust, e.g. Kanamori and Brodsky, 2004). For the purposes of 181 

this work, it is sufficient to use uniform slip distributions in a set of contiguous patches within a cer-182 

tain depth interval, so the co-seismic and post-seismic amplitudes take only the values shown in Ta-183 

ble S1. Since the moment magnitude is related to the seismic moment (in the International System 184 

of units) by the Hanks and Kanamori (1979) formula 185 

 (S47) 

 186 

then we vary  the moment magnitude of the generated events by changing M0. In turns we vary M0  187 

by changing the extension of the slipping portion of the fault and then its area A. Figure 2 of the 188 

main text shows the three different fault models proposed. We use a fixed planar fault geometry, 189 

described by the 7 parameters of Table S2. The tectonic regime is set to simulate a thrust fault (rake 190 

-90°). The associated Mw
co are 6.85, 6.29, and 5.94, respectively, and the corresponding equivalent 191 

Mw
post after 2 years are 6.57, 6.09, and 5.80. 192 

S2.2  Volcanic source 193 
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The time dependence of the magma chamber's volume  associated to the volcanic source is 194 

modeled using the following equation: 195 

 (S48) 

 196 

The values of the 4 parameters ainfl, tinfl, adefl, tdefl are 0.01 1/yr, 4 yr, 0.05 1/yr, and 4.5 yr, re-197 

spectively. 198 

S3 - Credibility intervals for the post-seismic decay constant 199 

Let us suppose that we want to explain a data vector d  D using a parameter vector m  200 

M and the relationship (model) g : M D such that d = g(m). The misfit function  S(m, d) = d 201 

g(m) depends on both the data and the parameter model vectors, d and m. For brevity we will 202 

consider the observed data as a known vector d = dobs , and the misfit function depending only on 203 

the choice of the parameter vector. In general, g can be a non-linear function, and it is not guaran-204 

teed that S is convex everywhere in the model space. In other words, it is not guaranteed that only 205 

one minimum exists for the misfit function. 206 

A bayesian approach to the fitting problem consists in assigning to the data d, the parameters 207 

m, and the model function g some a priori probability density function (pdf), and then solve for the 208 

inverse problem to find the a posteriori pdf of the parameters. In the particular fitting problem 209 

treated in this work, the observed data vector dobs corresponds to the IC related to the post-seismic 210 

decay, the model function g is given by a slightly modified version of equation (S45): 211 

           for t > tco (S49) 

 212 

where m=(m1, m2, m3), m1  bias, m2 amplitude, and m3 decay time. We consider only times t > tco, i.e. 213 

epochs after the occurrence of the mainshock. The time is a known parameter, so it can be neglected 214 

in the count of the model space dimensionality. We assume that modelization uncertainties are neg-215 



Gualandi et al., Blind Source Separation problem in GPS time series

13 of 30 

ligible compared to observational uncertainties. Since the data and model spaces are linear, the solu-216 

tion to the inverse problem can be written as (equation 1.93 of Tarantola, 2005): 217 

 (S50) 

 218 

where M is the a posteriori probability density of the parameters, M is the prior probability density 219 

in the model space, D is the probability density describing the result of the measurement, and 220 

 is a normalization constant. We will identify D(g(m)) with the likelihood 221 

function L(m), which gives a measure of how good a model m is in explaining the data. 222 

If no a priori information is available about the parameters, M(m) can be replaced by its ho-223 

mogeneous limit M(m). We consider a uniform M(m)=k, and we can rewrite equation (S45) as: 224 

 (S51) 

 225 

Knowing the a posteriori pdf of the parameters m, we can compute the x% credibility volume 226 

Vx in the M-dimensional space, that is determined as the volume Vx such that the probability P to 227 

find a parameter vector in it is x%, i.e. Vx = V  M such that P (m  V ) = x%. From the definition 228 

of probability we can write: 229 

 (S52) 

 230 

Obviously, if Vx = M, then the probability to find m in Vx is 100%. Since the problem is not 231 

linear, it is not possible to use a direct formula to solve it and we have to sample the model space. 232 

Fortunately, for all the cases treated in this work the model space dimensionality is low (M = 3), and 233 

we can sample the posterior distribution using a grid search approach. It remains to specify the a 234 

priori pdf for the data, D(g(m)) or L(m) . This choice is case dependent. In the cases treated here, 235 

the data consist in the temporal sources obtained from an ICA. A great advantage of the vbICA 236 
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technique is that it finds an approximation of the sources using a mix of Gaussian distributions, and 237 

thus it is possible to calculate the moments of such a distribution. In particular, for each point of a 238 

given IC, i.e. for each element of the temporal sources, we can compute (at least) the variance. We 239 

assume that all the T elements that compose an IC are independent and identically distributed (iid), 240 

in particular they follow a normal distribution D(g(m)). Practically, we are not assuming any tem-241 

poral dependency between the value of the IC at time t and the value at time t t. An attempt to 242 

consider this dependency has been done by Choudrey (2002). He developed a Dynamic ICA, based 243 

on Hidden Markov Models (HMMvbICA). It might be a good idea for the future to follow the same 244 

approach also for the analysis of geodetic data. 245 

We explore the ranges [- m1, m2, and m3, 246 

16. These ranges are chosen around the values found using an unconstrained 247 

non-linear minimization of the sum of squared residuals, and ensure us to explore all the regions of 248 

the model space where the likelihood function is significantly greater than 0. We say that the likeli-249 

hood is significantly greater than 0 if even considering a m3 range 100 times wider, the sum of all 250 

the new added points investigated would not contribute more than 1 /10 of the contribution to the 251 

volume given by the point of maximum likelihood. If a relevant portion of the model space having a 252 

likelihood function significantly different from 0 is not taken into account, than the uncertainty on 253 

the time decay parameter is too high, and such a parameter is not resolved. The grid step adopted 254 

for the three parameters is 0.005, 0.0001, and 0.5 respectively. The actual m3 value is 1 day (see 255 

Section 5.1 of the main text), and the credible intervals at 68.27% and 99.99% for the low tectonic 256 

rate case are listed in Tables S7 and S8. For 6 over 18 cases the m3 parameter is not resolved, and all 257 

the values spanned are acceptable or the post-seismic source has not been identified (NI). These 6 258 

cases correspond to the N2 geometry scenarios for the intermediate and small post-seismic source 259 

intensities. This proves that it is necessary to have a good quality network if we want to study crus-260 

tal displacements of the order of few mm with multivariate statistical techniques such as vbICA. In 261 

more than one case we recover more than one credible interval. This is the direct consequence of 262 
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the non linearity of the forward model. Indeed, the likelihood function has few local maxima, and 263 

we can not exclude the possibility that the proper model does not belong to the global maximum. 264 

Moreover, as every inverse problem, the solution is not unique, and to give only the maximum like-265 

lihood model could be misleading. In all cases where the number of ICs used is 2, it is probably 266 

more correct to use a forward model (i.e., equation S49) that takes into account also the linear sig-267 

nal. Nevertheless, the number of parameters used in equation S49 seems to be already enough to 268 

correctly guess the decay constant at a 99.99% level. 269 
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Figure captions 270 

Figure S1: Same as figure 5.1 of Choudrey (2002). Bayesian Independent Component Analysis as a 271 

Graphical Model. Circles represent random variables and rectangles represent hyper-parameters. 272 

The meaning of each symbol is indicated in the main text of the supplementary material. The mix-273 

ing matrix parameters are all summarized in one symbol for brevity. 274 

Figure S2: Black dots: temporal evolution of the recovered PCs (left) and ICs (right) in the case of 275 

0%, 5%, and 25% of missing data. The gray shadow in the ICs corresponds to the associated uncer-276 

tainty related to the ICs, calculated as the square root of the variance. This estimation is enabled by 277 

the knowledge of the approximated pdf of each IC via a mix of Gaussians. The red lines correspond 278 

to the post-seismic and seasonal actual sources. The scenario here represented corresponds to the 279 

one of the network geometry N1, a big post-seismic source Mw
post = 6.57, and a low tectonic rate 280 

 281 

Figure S3: As Figure S2, but with N2  Mw
post = 6.57  282 

Figure S4: As Figure S2, but with N1  Mw
post = 6.09   283 

Figure S5: As Figure S2, but with N2  Mw
post = 6.09  284 

Figure S6: As Figure S2, but with N1  Mw
post = 5.80   285 

Figure S7: As Figure S2, but with N2  Mw
post = 5.80   286 
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Tables 287 

 288 

Parameter Values Unit of measurement 

mlin 2 12 60 mm/yr 

Aco 400 400 200 mm 

Apost 30.3 15.2 9.1 mm 

 289 

Table S1: Source parameters case study 290 

xtop centre 0 km 

ytop centre 0 km 

Length 46 km 

ztop -2 km 

zbottom -26 km 

Strike 45 ° 

Dip 40 ° 

 291 

Table S2: Fault plane geometry parameters.  292 
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Table S3: Linear SNR values.293



Gualandi et al., Blind Source Separation problem in GPS time series

19 of 30

Table S4: Co-seismic SNR values295
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Table S5: Post-seismic SNR values296
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Table S6: Seasonal SNR values.297
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m3 (days) 
MD 0% MD 5% MD 25% 

Mw
co = 6.85 

N1 [1.0] [1.0] [1.0] 

N2 [2.0, 2.5] [1.5] [0.5] 

Mw
co = 6.29 

N1 [1.5], [4.0] [1.0] [1.0] 

N2 [15.5, 37.5] 
[5.0],[6.0,9.5], 

[10.5],[38.0,50.0] 
[NI] 

Mw
co = 5.94 

N1 [11.5, 15.5] [10.5, 15.5] [0.5,1.0] 

N2 [NI] [NI] [ , 50.0] 

 298 

Table S7: m3 ranges in days: 68.27% credible intervals. 299 

 300 

m3 (days) 
 

MD 0% MD 5% MD 25% 

Mw
co = 6.85 

N1 [1.0] [1.0] [1.0] 

N2 
[1.0],[2.0,2.5], 

[4.5,5.5] 
[1.5] [0.5, 1.0] 

Mw
co = 6.29 

N1 [1.5,2.0],[3.0,5.0] [0.5,1.0],[2.0,3.0] [0.5, 1.0], [2.0] 

N2 [0.5, 50] [0.5,50.0] [NI] 

Mw
co = 5.94 

N1 
[0.5,1.5],[2.5,5.5], 

[8.0,21.5] 
[0.5,5.5], 
[7.0,22.5] 

[0.5,1.5] 

N2 [NI] [NI] [ , 50.0] 

 301 

Table S8: m3 ranges in days: 99.99% credible intervals. 302 
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Figures 303 

Figure S1 304 

305 
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a) PCA  MD 0% b) vbICA  MD 0% 

c) PCA  MD 5% d) vbICA  MD 5% 

e) PCA  MD 25% f) vbICA  MD 25% 

Figure S2 307 

308 
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a) PCA  MD 0% b) vbICA  MD 0% 

c) PCA  MD 5% d) vbICA  MD 5% 

e) PCA  MD 25% f) vbICA  MD 25% 

 310 

Figure S3 311 

312 
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a) PCA  MD 0% b) vbICA  MD 0% 

c) PCA  MD 5% d) vbICA  MD 5% 

e) PCA  MD 25% f) vbICA  MD 25% 

 314 

Figure S4 315 

316 
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a) PCA  MD 0% b) vbICA  MD 0% 

c) PCA  MD 5% d) vbICA  MD 5% 

e) PCA  MD 25% f) vbICA  MD 25% 

 318 

Figure S5 319 

320 
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a) PCA  MD 0% b) vbICA  MD 0% 

c) PCA  MD 5% d) vbICA  MD 5% 

e) PCA  MD 25% f) vbICA  MD 25% 

 322 

Figure S6 323 

324 
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a) PCA  MD 0% b) vbICA  MD 0% 

c) PCA  MD 5% d) vbICA  MD 5% 

e) PCA  MD 25% f) vbICA  MD 25% 

 326 

Figure S7 327 
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