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Inversion Symmetry of the Euclidean Group:
Theory and Application in Robot Kinematics

Yuanqing Wu, Harald Löwe, Marco Carricato, Zexiang Li

Abstract—Just as the three-dimensional (3D) Euclidean space
can be inverted through any of its points, the special Euclidean
group SE(3) admits an inversion symmetry through any of its
elements, and is known to be a symmetric space. In this paper,
we show that the symmetric submanifolds of SE(3) can be
systematically exploited to study the kinematics of a variety of
kinesiological and mechanical systems, and therefore has many
potential applications in robot kinematics. Unlike Lie subgroups
of SE(3), symmetric submanifolds inherit distinct geometric
properties from inversion symmetry. They can be generated
by kinematic chains with symmetric joint twists. The main
contribution of this paper is: (i) to give a complete classification
of symmetric submanifolds of SE(3); (ii) to investigate their
geometric properties for robotics applications; and (iii) to develop
a generic method for synthesizing their kinematic chains.

Index Terms—Euclidean group, geodesic symmetry, symmetric
space, totally geodesic submanifold, Lie triple system (LTS),
Constant-Velocity (CV) coupling, kinesiology, parallel manipu-
lator, type synthesis.

I. INTRODUCTION

The special Euclidean group SE(3) refers to the 6D Lie
group of proper rigid displacements of 3D Euclidean space.
It is Hervé [2,3] and Brockett [4] who initiated application of
SE(3) and its Lie subgroups (e.g. the special orthogonal group
SO(3); see [5]) in robotics (kinematics and dynamics [6]–[8],
estimation and control [9]–[11], etc.).

Recent advances in type synthesis of parallel manipulators
[12]–[18] can be attributed to the successful exploitation of the
Lie algebra se(3) of SE(3). Central to the synthesis problem is
the exponential map, denoted exp, which maps se(3), locally
diffeomorphically, into SE(3). In this paper, we shall adopt
the homogeneous matrix representation for SE(3) [6], so that
the exponential map is identified with the matrix exponential
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e(·). Consider a serial manipulator comprising revolute (R),
helical (Hp; p denotes pitch) or prismatic (P) joints, with
linearly independent joint twists {ξ̂1, . . . , ξ̂k}, ξ̂i ∈ se(3). Its
direct kinematics map is given by the product of exponentials
(POE) formula [6]. The set of end-effector motions generated
by the serial manipulator is given by:

k∏
i=1

exp{ξ̂i}sp,
{
eθ1ξ̂1 ···eθkξ̂k

∣∣∣θi∈R,i=1,...,k
}

(1)

which coincides with a kD submanifold of SE(3) in an open
neighborhood of the identity I ∈ SE(3). We shall refer to
(1) as a POE-submanifold, and we say it is the motion type
[18] of the serial manipulator. In particular, when the linear
span of ξ̂i’s, denoted by {ξ̂1, . . . , ξ̂k}sp, is a Lie subalgebra g

of se(3),
∏k
i=1 exp{ξ̂i}sp is locally an open submanifold of

the corresponding (connected) Lie subgroup G ([19, pp. 299,
Lemma 9.2.6]). We simply say the motion type is G.

The element-wise product of two Lie subgroups [20,21] can
also be locally identified with a POE-submanifold [18], but is
in general not a Lie subgroup. Carricato et al. showed that
the tangent spaces of such submanifolds are all mutually con-
gruent, thus defining what is called a persistent screw system
of the end-effector [22,23]. When a persistent screw system
exists, the corresponding submanifold may be generated by
the envelop of a tangent space smoothly moving in SE(3)
like a rigid body [22]–[26]. In most previous studies on type
synthesis of parallel manipulators, the motion type of a parallel
manipulator can be identified with a POE-submanifold (see for
example, category I/II submanifolds [18], virtual chain [27],
displacement manifold [28]).

Since exp : se(3) → SE(3) is a local diffeomorphism of
an open neighborhood of the origin 0̂ ∈ se(3) onto an open
neighborhood of the identity I ∈ SE(3), the exponential image
of the kD vector subspace {ξ̂1, . . . , ξ̂k}sp ⊂ se(3):

exp{ξ̂1,...,ξ̂k}sp,
{
eθ1ξ̂1+···+θkξ̂k

∣∣∣θi∈R,i=1,...,k
}

is locally a kD submanifold of SE(3), which we refer to as
an Exp-submanifold (Exp for “exponential”) [1]. It is clear
from the Baker-Campbell-Hausdorff formula ([19, pp. 57,
Prop. 3.4.4]) that in general Exp-submanifolds are not POE-
submanifolds (except for example, when {ξ̂1, . . . , ξ̂k}sp is
a Lie subalgebra g ⊂ se(3), exp{ξ̂1, . . . , ξ̂k}sp is a subset
and contains an open neighborhood of the corresponding
connected Lie subgroup G ([19, pp. 299, Lemma 9.2.6])).
Therefore, in general, Exp-submanifolds can only be generated
by closed-loop manipulators [1,29].
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(a)

(b)

Fig. 1. (a) Listing’s law of eye saccade: wp,wg and wb denote the primary
or initial direction (perpendicular to the Listing’s plane), the gaze direction
and their angle bisector (perpendicular to the velocity plane). (b) reflected
tripod [30].

Exp-submanifolds have been used in robotics and biome-
chanics without being explicitly recognized or systematically
studied. Bonev et al. [31] analyzed the rotational motion of
several constant-velocity (CV) couplings using a modified
Euler angle parametrization (tilt and torsion angles, [32]),
which is equivalent to the following parametrization for SO(3)
[29]:

(θ1, θ2, σ) 7→ eθ1x̂+θ2ŷeσẑ ∈ SO(3) (2)

where {x,y, z} denotes the canonical basis for R3 and ŵ
defines a 3 × 3 skew-symmetric matrix such that ŵv =
w × v, ∀w,v ∈ R3. Bonev observed that the torsion angle
σ for a CV coupling is always zero, leading to a motion type
exp{x̂, ŷ}sp, a 2D Exp-submanifold [1,29]. In kinesiology and
biomechanics, the same Exp-submanifold (under quaternion
representation) is identified to be the motion type of human
eye saccade [33,34], and is known to obey Listing’s half-angle
law: as the gaze direction rotates away from the initial primary
direction (normal of the Listing’s plane), the instantaneous
velocity plane rotates away from the Listing’s plane along the
same rotation axis but half in magnitude (see Fig. 1(a)).

Another example of Exp-submanifolds arises in three
degree-of-freedom (DoF) parallel-architecture CV couplings
for intersecting shafts [35,36]. The instantaneous velocity of
such a coupling always lies in the bisecting plane1, demanding
the joint twists in each connecting chain to be mirror sym-
metric about the bisecting plane in all configurations. Typical

1The yellow plane shown in Fig. 1(b): (i) it is perpendicular to the plane of
input and output velocity win and wout; and (ii) it bisects the complement
of the working angle formed by win and wout.

Fig. 2. Graphical representation of the canonical basis of se(3) and notation
for twists with different pitch value p.

CV connecting chains include RSR (S for spherical joint)
chain and RER (E for planar gliding joint) chain [35]. An
in-parallel assembly of three RSR chains that are mirror
symmetric about a common bisecting plane results in the
“reflected tripod” [30,31] (see Fig. 1(b)), which found appli-
cations in robotic wrists [37] and hyperredundant robots [38].
We showed that its motion type is the 3D Exp-submanifold
exp{ê3, ê4, ê5}sp [29], where {êi}6i=1 denotes the canonical
basis of se(3) (also see Fig. 2):

ê1 ,

[
0̂ x
0T 0

]
, ê2 ,

[
0̂ y
0T 0

]
, ê3 ,

[
0̂ z
0T 0

]
,

ê4 ,

[
x̂ 0
0T 0

]
, ê5 ,

[
ŷ 0
0T 0

]
, ê6 ,

[
ẑ 0
0T 0

]
If each 5-DoF RSR chain of the reflected tripod is reduced

to a 4-DoF mirror symmetric UU (U for Cardan or universal
joint) chain with the U joints of all chains on each side
of the mirror sharing the same center of rotation [36], we
have the UNITRU coupling [39] (see Fig. 9(a)), which has
the motion type of a 2D surface in exp{ê3, ê4, ê5}sp [29].
This 2-DoF parallel manipulator is later used by Rosheim
in the Omni-Wrist III [40] and reportedly to mimic human
shoulder complex movement in terms of an extraordinary
orientation range [41]. So far, no further results on general
Exp-submanifolds of SE(3) are available in the literature.

It turns out that both the Listing’s law of eye saccade
and mirror symmetry of CV couplings can be attributed to
inversion (or geodesic) symmetry, a class of diffeomorphism
maps associated with symmetric spaces [42]. In fact, SE(3)
is an (affine) symmetric space with the inversion symmetry at
each point g defined by [43]:

∀g ∈ SE(3) ⇒ Sg(h) , gh−1g ∈ SE(3),∀h ∈ SE(3) (3)

and that both exp{x̂, ŷ}sp (or equivalently exp{ê4, ê5}sp)
and exp{ê3, ê4, ê5}sp can be extended via inversions to a
unique symmetric space. Such a submanifold M is closed
under inversions:

∀g,h ∈ M ⇒ gh−1g ∈ M (4)

and will be referred to as symmetric submanifolds of SE(3)
(they are more often referred to as symmetric subspaces in
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mathematical literature [42,43]). Note that all connected Lie
subgroups of SE(3) are automatically closed under inversions,
and are trivial symmetric submanifolds. We exclude Lie sub-
groups from our study, since their symmetric space structure
can be studied in a similar way to that for SE(3).

In this paper, we will show: (i) there are seven conjugacy
classes of symmetric submanifolds of SE(3), all of which can
be locally represented by expm, with m being a Lie triple
(sub)system (LTS) of se(3) [42,43], i.e. a vector subspace of
se(3) that is closed under double Lie brackets:

∀ξ1, ξ2, ξ3 ∈ m ⇒ [[ξ1, ξ2], ξ3] ∈ m

or simply [[m,m],m] ⊂ m, where the Lie bracket is defined
by [ξ̂1, ξ̂2] , ξ̂1ξ̂2 − ξ̂2ξ̂1,∀ξ̂1, ξ̂2 ∈ se(3); (ii) these sym-
metric submanifolds can be systematically studied to derive
several common geometric properties, which include Listing’s
law and mirror symmetry of CV couplings as special cases
(for exp{ê4, ê5}sp and exp{ê3, ê4, ê5}sp respectively); and
(iii) we can develop a generic method for synthesizing their
kinematic chains.

The only revelation that comes close to our discovery
is Selig’s attempt to study full cycle mobility using totally
geodesic submanifolds of SE(3) (see [44, Ch. 15.2]). Only Lie
subgroups are considered in [44], but both Lie subgroups and
symmetric submanifolds are totally geodesic (for the concept
of totally geodesic submanifolds of a symmetric space, see
[42,45]; the totally geodesic submanifolds of a symmetric
space are exactly the symmetric submanifolds [43, pp. 121,
Coro., Lemma 1.3]).

Recently, during the review process of this manuscript, Selig
[46] submitted and published a paper that, among other things,
presents a classification of the LTSs of se(3). However, we
published a systematic classification of the LTSs of se(3) in
an earlier conference paper [1], which this manuscript relies
upon and extends. In comparison to our previous and current
results, Selig’s classification has the following differences: it
includes several Lie subalgebras into the classification of LTSs
(all Lie subalgebras are, in fact, trivial LTSs), but omits the
5D LTS {ê1, ê2, ê3, ê4, ê5}sp, because its does not meet the
requirements of the application on which Ref. [46] focuses to,
namely motion planning.

This paper is organized as follows. Section II gives a
brief review of the symmetric space SE(3) and a systematic
classification of its symmetric submanifolds. Section III sum-
marizes a list of geometric properties common to all symmetric
submanifolds, and shows how they can be applied to the study
of eye saccade and CV coupling motion. Section IV proposes
a systematic approach for synthesizing kinematic chains for
symmetric submanifolds. Finally, Section V concludes our
work.

II. INVERSION SYMMETRY OF SE(3) AND SYMMETRIC
SUBMANIFOLDS

In this section, we first give a brief introduction to the
symmetric space theory of SE(3) following the elementary
treatment of Loos [43]. Then we give a systematic classifi-
cation of symmetric submanifolds or SE(3). We assume the
readers are familiar with basic Lie group theory of SE(3) [6].

A. SE(3) as a symmetric space

We associate to each g ∈ SE(3) an inversion symmetry Sg

as defined in (3). Sg is involutive, i.e. Sg ◦ Sg = idSE(3), and
reverses the exponential map expgξ̂ , geξ̂ for any tangent
vector gξ̂ ∈ TgSE(3) at g ∈ SE(3):

Sg(expgξ̂) = g(geξ̂)−1g = ge−ξ̂ = exp(−gξ̂).

SE(3) equipped with the inversion symmetry is called a sym-
metric space. A quadratic representation Q(g) of g ∈ SE(3)
is a diffeomorphism defined by:

Q(g) , Sg ◦ SI : SE(3)→ SE(3), Q(g)(h) = ghg

The group generated by {Q(g)|g ∈ SE(3)} under composition
of maps is called the group of displacements ([43, pp. 64]) of
SE(3) and shall be denoted by G̃. Since SE(3) is connected,
G̃ acts transitively on SE(3) ([43, pp. 91, Th. 3.1 a)]). See
Appendix A for more details.

For any ξ̂ ∈ se(3), we denote the corresponding right- and
left-invariant vector fields on SE(3) by ξ̂r and ξ̂l respectively,
i.e.: {

ξ̂r(g) , ξ̂g

ξ̂l(g) , gξ̂
∀g ∈ SE(3)

There are two special classes of vector fields relevant to the
inversion symmetry of SE(3): the (−)-derivations D− and
(+)-derivations D+ ([43, pp. 81]). Every twist ξ̂ ∈ se(3)
defines a (−)-derivation ξ̂−:

ξ̂−(g) ,
1

2
(ξ̂r + ξ̂l)(g) =

1

2
(ξ̂g + gξ̂), ∀g ∈ SE(3) (5)

and a (+)-derivation ξ̂+:

ξ̂+(g) ,
1

2
(ξ̂r − ξ̂l)(g) =

1

2
(ξ̂g − gξ̂), ∀g ∈ SE(3) (6)

In this case, the R-vector spaces D− and D+ can be identi-
fied with se(3) respectively. The integral curves of ξ̂− and
ξ̂+ passing through g ∈ SE(3) are given by e

t
2 ξ̂ge

t
2 ξ̂ =

Q(exp t
2 ξ̂)(g) and e

t
2 ξ̂ge−

t
2 ξ̂ = C(exp t

2 ξ̂)(g) respectively
(C(h) denotes conjugation by h ∈ SE(3)), since:

d

dt
Q(exp

t

2
ξ̂)(g)

∣∣∣∣
t=0

= ξ̂−(g)

d

dt
C(exp

t

2
ξ̂)(g)

∣∣∣∣
t=0

= ξ̂+(g)

∀g ∈ SE(3) (7)

For any ξ̂, ζ̂ ∈ se(3), from the fact that (see Appendix B
for proof):

[ξ̂r, ζ̂r] = −[ξ̂, ζ̂]r, [ξ̂l, ζ̂l] = [ξ̂, ζ̂]l, [ξ̂r, ζ̂l] = 0 (8)

we have:
[ξ̂−, ζ̂−] = −

1

2
[ξ̂, ζ̂]+

[ξ̂+, ζ̂+] = −
1

2
[ξ̂, ζ̂]+

[ξ̂+, ζ̂−] = −
1

2
[ξ̂, ζ̂]−

⇒


[D−,D−] ⊂ D+

[D+,D+] ⊂ D+

[D+,D−] ⊂ D−

(9)

Therefore D+ is a Lie algebra and D− is a LTS since:

[[D−,D−],D−] ⊂ [D+,D−] ⊂ D−
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TABLE I
CONJUGACY CLASSES OF LTSS OF se(3) (EXCLUDING ALL LIE SUBALGEBRAS OF se(3), WHICH ARE TRIVIAL LTSS).

dim LTS m (normal form) screw sys. [30] hm = [m,m] gm = hm + m isotropy group

2

m2A , {ê3, ê4}sp 2nd special 2-sys. {ê2}sp
{ê2, ê3, ê4}sp

exp{ê1, ê2}sp
mp

2A , {ê3, ê4 + pê1}sp {ê2, ê3, ê4 + pê1}sp
m2B , {ê4, ê5}sp 1st special 2-sys. {ê6}sp {ê4, ê5, ê6}sp exp{ê6}sp

3
m3A , {ê1, ê3, ê4}sp 10th special 3-sys. {ê2}sp {ê1, ê2, ê3, ê4}sp exp{ê1, ê2}sp
m3B , {ê3, ê4, ê5}sp 4th special 3-sys. {ê1, ê2, ê6}sp

se(3)

exp{ê1, ê2, ê6}sp
4 m4 , {ê1, ê2, ê4, ê5}sp 5th special 4-sys. {ê3, ê6}sp exp{ê3, ê6}sp
5 m5 , {ê1, ê2, ê3, ê4, ê5}sp special 5-sys. {ê1, ê2, ê3, ê6}sp exp{ê1, ê2, ê3, ê6}sp

Moreover, D+ ⊕ D− is a Lie algebra, and is identified with
the Lie algebra of G̃ ([43, pp. 91, Th. 3.1 d)]). In reference to
the identification of se(3) with D− via (5), we also say that
se(3) is a LTS.

B. Symmetric submanifolds of SE(3)

A symmetric submanifold (containing the identity I) of
SE(3) is a submanifold M which is closed under inversion
symmetry (eq. (4)). Since for ∀g0,g,h ∈ SE(3):

C(g0)(gh
−1g) = g0(gh

−1g)g−10

= g0gg
−1
0 g0h

−1g−10 g0gg
−1
0

= C(g0)(g)(C(g0)(h))
−1C(g0)(g)

the conjugation C(g0)(M) of a symmetric submanifold M
is still a symmetric submanifold. Therefore, the systematic
classification of symmetric submanifolds reduces to that of
their conjugacy classes.

Let m denote the tangent space TIM of M at I. m is
identified with the (−)-derivations D−(M) as in (5), and is a
LTS (subsystem) of se(3) ([43, pp. 121]). From the definition
of Lie group and Lie algebra ([6, Appendix A]), all Lie
subgroups of SE(3) are trivial symmetric submanifolds, with
their corresponding Lie subalgebras being trivial LTSs. Their
symmetric space structure can be understood in the same way
as that of SE(3). By the definition of LTS and Jacobi identity
([6, Appendix A]), one easily verifies that both hm , [m,m]
and gm , hm+m are Lie subalgebras of se(3). hm is identified
with D+(M) as in (6). A relation similar to (9) holds for m
and hm:

[m,m] = hm, [hm, hm] ⊂ hm, [hm,m] ⊂ m (10)

The following theorem establishes the fundamental relation
between a symmetric submanifold M and its tangent space at
identity.

Theorem 1. A (connected) symmetric submanifold M ⊂
SE(3) (containing I) is generated (via inversion symmetry)
by any open neighborhood (containing I) of expm, where the
tangent space m = TIM is a LTS of se(3):

M = {ghg ∈ SE(3)|∀g,h ∈ expm} (11)

Proof. See Appendix C.

According to Theorem 1, there is a one-to-one correspon-
dence between LTSs of se(3) and symmetric submanifolds of
SE(3) (containing I). Therefore, the systematic classification
of symmetric submanifolds of SE(3) up to conjugation is
equivalent to that of conjugacy classes of LTSs of se(3).
Starting from a screw system of se(3) (see for example [30,
Ch. 12] or [44, Ch. 8]), we can determine if it is a LTS by
verifying closure under double Lie brackets for an arbitrarily
chosen basis (the complete computation cannot be provided
here due to space limitations and will be presented in [47].).
A total of seven conjugacy classes of LTSs are found and
listed in Table I. The subscripts mA and nB for the LTSs in
the second column denote an mD LTS containing one rota-
tional/helical DoF and an nD LTS containing two rotational
DoFs respectively. The same subscript convention is used for
the corresponding symmetric submanifolds. Essentially the
same classification was reported in [1]. The only difference
is that the 2D LTS {ê3, ê4 + pê1}sp, though given here, was
omitted in [1], since it can be essentially studied in the same
way as {ê3, ê4}sp.

The screw systems corresponding to the LTSs (normal form)
are depicted in Fig. 3. A generic member of each conjugacy
class m is of the form Adgm,g ∈ SE(3), where Adg is the
Adjoint transformation:

Adgξ̂ , gξ̂g−1, ξ̂ ∈ se(3)

It is also clear from Theorem 1 that the local Exp-
submanifold expm we discussed in Section I is actually an
open neighborhood (about I) of a unique symmetric subman-
ifold M ⊂ SE(3) when m is a LTS of se(3). We shall say
M is generated (via inversion symmetry) by expm, which
we denote by M = 〈expm〉2. A generic member of each
conjugacy class M is given by:

C(g)(M) = 〈expAdgm〉.

It is proved that exp : g → G of a Lie subalgebra g into
its corresponding Lie subgroup G may not be surjective (sur-
jectivity fails for the conjugacy class of {ê2, ê3, ê4 + pê1}sp)
[48]. The following proposition shows exp : m→ M may not
be surjective either.

2For convenience, we shall also denote a (connected) Lie subgroup G ⊂
SE(3) with lie subalgebra g ⊂ se(3) by 〈exp g〉, since Lie subgroups are
trivial symmetric submanifolds.
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(a) mp
2A (m2A if p = 0) (b) m2B (c) m3A

(d) m3B (e) m4 (p arbitrary) (f) m5

Fig. 3. Screw systems of Lie triple systems. The basis screws of each LTS are denoted by green arrows, and a generic screw in each LTS is denoted by
a white arrow. Except for mp

2A, the pitch value p of the generic screw takes an arbitrary finite value. The characteristic (char.) plane of mp
2A (m2A), m2B,

m3A, m3B is defined to be the plane containing all axes of their screw systems. c(·) and s(·) denote cos(·) and sin(·) respectively.

Proposition 1. exp : m→ M is surjective for all LTSs except
mp2A = {ê3, ê4 + pê1}sp. Every point of Mp

2A can be reached
from expmp2A by one inversion.

Proof. See Appendix D.

III. GEOMETRIC PROPERTIES OF SYMMETRIC
SUBMANIFOLDS

In Section II-B, we use a LTS m ⊂ se(3) (identified with
D−(M)) to recover the corresponding symmetric submanifold
M = 〈expm〉 ⊂ SE(3). A list of useful properties common to
all symmetric submanifolds is given as follows.

Proposition 2. The following statements are true for all LTSs
m and symmetric submanifolds M = 〈expm〉:
a) The right translation (back to the identity I) of the tangent

space at g = eξ̂, ξ̂ ∈ m is given by:

(TgM)g−1 = Ad
g

1
2
m = Adeξ̂/2m

In the case of g = eξ̂1eξ̂2eξ̂1 (for mp2A):

(TgM)g−1 = Ad
eξ̂1eξ̂2/2

m

b) m is Adjoint invariant by elements of the isotropy group
HM , 〈exp hm〉 with hm , [m,m]

∀h ∈ HM ⇒ Adhm ≡ m

M is conjugation invariant by elements of HM

∀h ∈ HM ⇒ C(h)(M) ≡ M

c) gm = m + hm is the completion algebra of m (i.e.
the smallest Lie subalgebra containing m), and GM ,
〈exp gm〉 is the completion group of M (i.e. the smallest
connected Lie subgroup containing M); all LTSs except
m5 = {ê1, ê2, ê3, ê4, ê5}sp satisfy hm∩m = {0̂} and admit
a local parametrization for GM:

∀g ∈ GM ⇒
ẽxpg : m× hm → GM

(ξ̂, ζ̂) 7→ geξ̂eζ̂

in an open neighborhood of g ∈ GM.

Proof. See Appendix E.

First, Prop.2 a) is indeed a generalization to Listing’s law of
human eye saccade for the special case of M2B = 〈expm2B〉,
and may therefore be referred to as the half-angle property.
It is a direct consequence of the inversion symmetry of the
symmetric submanifolds (see the proof of Prop.2 a)). Other
than correctly predicting human eye saccade behavior, the half-
angle property also prescribes the location of the bisecting
plane of a CV coupling, and is therefore a convenient tool for
position and constraint analysis of CV connecting chains [36].

Second, Prop.2 b) can be referred to as the conjugation in-
variance property of the corresponding LTS m and symmetric
submanifold M = 〈expm〉. Physically, it corresponds to the
fact that the kinematics of the underlying symmetric subman-
ifold is uniform in the directions specified by the isotropy
group HM. In the case of a 2-DoF (M2B) CV coupling, this
uniformity ensures uniform (or constant) velocity transmission
between two intersecting shafts. The conjugation invariance
of M3B, for example, can also be exploited to synthesize its
parallel manipulators using identical and conjugate kinematic
chains. From a more mathematical viewpoint, conjugation
invariance implies that symmetric submanifolds should be
quotient (or homogeneous) spaces of certain transitive Lie
transformation group action, which we briefly summarized in
Appendix A.

Third, in Prop.2 c), the completion algebra gm is very
useful for type synthesis of kinematic chains for symmetric
submanifolds (see Section IV). In the case hm ∩ m = {0̂},
the local parametrization ẽxpI for an open neighborhood of I
in GM is an immediate generalization of the tilt and torsion
angle parametrization for SO(3) [32].

We give two full computation examples with applications
for a better understanding of the aforesaid geometric properties
of symmetric submanifolds of SE(3).
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Example 1 (M2B). It is obvious from:{
[[ê4, ê5], ê4] = [ê6, ê4] = ê5

[[ê4, ê5], ê5] = [ê6, ê5] = −ê4

that m2B = {ê4, ê5}sp ⊂ se(3) (or {x̂, ŷ}sp ⊂ so(3), with
so(3) the Lie algebra of SO(3)) is a LTS. Since exp is
surjective for m2B by Prop.1, M2B = expm2B (see also [34]):

M2B = {eŵ|w ∈ {x,y}sp}

It can be verified by straightforward computation (preferably
using unit quaternions) that M2B is closed under inversion
symmetry:

∀w1,w2 ∈ {x,y}sp ⇒ eŵ1e−ŵ2eŵ1 ∈ M2B

A computational verification of the half-angle property for
M2B = 〈expm2B〉 can be given as follows: according to [49,
eq. (20)],(

d

dt
eŵ(t)

)
e−ŵ(t) =

∫ 1

0

euŵ(t) ˙̂w(t)e−uŵ(t)du

=

(∫ 1

0

euŵ(t)ẇ(t)du

)∧ (12)

for ŵ ∈ m2B = {x̂, ŷ}sp (which is equivalent to {ê4, ê5}sp).
Since both w and ẇ lie in the xy-plane, ẇ(t) can be written
as λ1w+λ2w

⊥ for some real numbers λ1, λ2 and w⊥ = ẑw.
Then (12) gives:(

d

dt
eŵ(t)

)
e−ŵ(t)=

(∫ 1

0

euŵ(t)(λ1w + λ2w
⊥)du

)∧
=

(∫ 1

0

(λ1w + λ2(cu‖w‖w
⊥ + su‖w‖z))du

)∧
=
(
eŵ(t)/2

(
λ1w + λ2 sinc

(
‖w‖
2

)
w⊥
))∧

∈
(
eŵ(t)/2{x,y}sp

)∧
(13)

which verifies that (TeŵM2B)e
−ŵ = Adeŵ/2m2B.

M2B is conjugation invariant by elements of the isotropy
group HM2B

of M2B, which is given by 〈exp hm2B
〉 =

〈exp{ẑ}sp〉 = SO(2):

∀φ ∈ R ⇒ eφẑ · 〈exp{x̂, ŷ}sp〉 · e−φẑ

= 〈exp{cφx̂+ sφŷ,−sφx̂+ cφŷ}sp〉
= 〈exp{x̂, ŷ}sp〉

A direct consequence of the conjugation invariance is that
〈expm2B〉 may be generated by a parallel manipulator with
identical and axially symmetric kinematic chains [50]. To
see this, if a submanifold M with conjugation invariance
prescribed by a Lie subgroup HM is locally contained in a
POE-submanifold

∏k
i=1 exp{ξ̂i}sp generated by a kinematic

chain (ξ̂1, . . . , ξ̂k) (generation of symmetric submanifolds
using kinematic chains will be systematically studied in Sec.
IV),

M ⊂local

k∏
i=1

exp{ξ̂i}sp

Then we have:

∀g ∈ HM ⇒ M = C(g)(M) ⊂local C(g)(

k∏
i=1

exp{ξ̂i}sp)

where the conjugate submanifold C(g)(
∏k
i=1 exp{ξ̂i}sp) still

contains M and is generated by an identical but rigidly
displaced chain (Adgξ̂1, . . . ,Adgξ̂k). A parallel manipulator
comprising two or more such chains may generate M with
appropriate velocity or force matching conditions [18, Prop.
6].

Finally, ẽxpI : {x̂, ŷ}sp × {ẑ}sp → SO(3) is simply a
slight variation of the tilt and torsion angle parametrization
[32] given earlier in (2). Its parametrization singularity may
be easily investigated using half-angle property: the spatial
Jacobian of eŵeσẑ, ŵ = θ1x̂+ θ2ŷ is given by:[

(
∫ 1

0
euŵ(t)du)x (

∫ 1

0
euŵ(t)du)y eŵz

]
∈ R3×3

where the first two columns always span the half tilted xy-
plane eŵ/2{x,y}sp. Therefore,{

(
∫ 1

0
euŵ(t)du)x, (

∫ 1

0
euŵ(t)du)y, eŵz

}
sp

= eŵ/2{x,y, eŵ/2z}sp

and parametrization singularity is reached when eŵ/2z lies in
the xy-plane, or when the tilt angle reaches 180 degrees.

Example 2 (M3B). It is obvious from:

[[ê3, ê4], ê3] = [ê2, ê3] = 0̂

[[ê3, ê4], ê4] = [ê2, ê4] = −ê3
[[ê3, ê4], ê5] = [ê2, ê5] = 0̂

[[ê3, ê5], ê3] = [−ê1, ê3] = 0̂

[[ê3, ê5], ê4] = [−ê1, ê4] = 0̂

[[ê3, ê5], ê5] = [−ê1, ê5] = −ê3
[[ê4, ê5], ê3] = [ê6, ê3] = 0̂

[[ê4, ê5], ê4] = [ê6, ê4] = ê5

[[ê4, ê5], ê5] = [ê6, ê5] = −ê4
that m3B = {ê3, ê4, ê5}sp is a LTS. Since exp is surjective for
m3B by Prop.1, M3B = expm3B. A typical element g ∈ M3B

is given by:

g = exp

[
2ŵ 2λz
0T 0

]
=

[
e2ŵ 2λ sinc(‖w‖)eŵz
0T 1

]
and

g
1
2 = exp

[
ŵ λz
0T 0

]
=

[
eŵ λ sinc

(
‖w‖
2

)
eŵ/2z

0T 1

]
where w ∈ {x̂, ŷ}sp and λ ∈ R.

It can be verified by straightforward computation that:(
d

dt
g

)
g−1 = g

1
2

[
2(λ1ŵ + λ2 sinc (‖w‖) ŵ⊥) λ′z

0T 0

]
g−

1
2

for some λ′ ∈ R, where one needs to use both (13) and the
following similar equation:(

d

dt
e2ŵ
)
e−2ŵ =

(
2eŵ(t)

(
λ1w + λ2 sinc (‖w‖)w⊥

))∧
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and therefore (TgM3B)g
−1 = Ad

g
1
2
m3B,∀g ∈ M3B. The

half-angle property immediately leads to a closed-form direct
kinematic solutions for the reflected tripod [31].

M3B is conjugation invariant by elements of the
isotropy group HM3B

, which is given by 〈exp hm3B
〉 =

〈exp{ê1, ê2, ê6}sp〉 = SE(2): given any g ∈ SE(2) of the
form

g =

[
eθẑ λ1x+ λ2y
0T 1

]
we have:

Adgê3 = ê3

Adgê4 = (λ1sθ − λ2cθ)ê3 + cθê4 + sθê5

Adgê5 = (λ1cθ + λ2sθ)ê3 − sθê4 + cθê5

and therefore Adgm3B ≡ m3B, ∀g ∈ SE(2) and C(g)(M3B)
≡ M3B, ∀g ∈ SE(2). Using the same argument as in
Example 1, we see that M3B may be generated by identical
kinematic chains with arbitrary planar displacement (see the
M3B modules of The BROMMI hyperredundant robotic arm
[38]).

Finally, ẽxpI : {ê3, ê4, ê5}sp × {ê1, ê2, ê6}sp → SE(3)
gives a local parametrization of SE(3).

IV. GENERATING SYMMETRIC SUBMANIFOLDS USING
SYMMETRIC KINEMATIC CHAINS

A. Symmetric chains of symmetric submanifolds

Consider a kD symmetric submanifold M = 〈expm〉
and a basis of unit twists {ξ̂1, . . . , ξ̂k} ⊂ m for the
LTS m. In general, M cannot be generated by the POE-
submanifold

∏k
i=1 exp{ξ̂i}sp since it is not closed under

group product. In view of the inversion symmetry, M can
be locally generated by a (2k − 1)-DoF symmetric twist
chain (SC) (ξ̂1, . . . , ξ̂k−1, ξ̂k, ξ̂k−1, . . . , ξ̂1) with symmetric
joint variables:

eθ1ξ̂1 · · · eθk−1ξ̂k−1 · eθkξ̂k · eθk−1ξ̂k−1 · · · eθ1ξ̂1 =

Q(eθ1ξ̂1) ◦ · · · ◦Q(eθk−1ξ̂k−1)(eθkξ̂k) ∈ M

θi ∈ R, i = 1, . . . , k

We emphasize that the motion generated by a SC with arbitrary
joint variables:

eθ
+
1 ξ̂1 · · ·eθ

+
k−1ξ̂k−1 · eθkξ̂k · eθ

−
k−1ξ̂k−1 · · · eθ

−
1 ξ̂1

θ±i ∈ R, i = 1, . . . , k − 1

is in general not contained in M (but in GM) unless the joint
variables are also symmetric:

θ+i ≡ θ
−
i , i = 1, . . . , k − 1. (14)

In this case, we say the SC undergoes a symmetric movement.
The following proposition shows that the joint twists in a SC
can take general values in the completion algebra gm = hm +
m.

Proposition 3. Given a kD LTS m of a symmetric submanifold
M = 〈expm〉, a pair of unit twists (ξ̂+, ξ̂−) of gm satisfies:

∀g ∈ M, θ ∈ R ⇒ eθξ̂
+

geθξ̂
−
∈ M

if: {
ξ̂+ = ξ̂ + ζ̂,

ξ̂− = ξ̂ − ζ̂
, ξ̂ ∈ m, ζ̂ ∈ hm (15)

in which case (ξ̂+, ξ̂−) is referred to as a symmetric twist
pair (SP). The decomposition (15) is unique except for m5

where hm5
∩ m5 6= {0̂}. A SC formed by k nesting SPs

(ξ̂+i , ξ̂
−
i ), ξ̂

±
i , ξ̂i ± ζ̂i, ξ̂i ∈ m, ζ̂i ∈ hm, i = 1, . . . , k locally

generates M = 〈expm〉 if:

{ξ̂1, . . . , ξ̂k}sp = m

Condition (15) is equivalent to

{ξ̂±1 , . . . , ξ̂
±
k }sp ⊕ hm = gm (16)

if hm ∩m = {0̂}.

Proof. See Appendix F.

We emphasize that in the above proposition, both {ξ̂+i }ki=1

and {ξ̂−i }ki=1 are linearly independent sets of twists, twists
of the SC (ξ̂+1 , . . . , ξ̂

+
k ; ξ̂

−
k , . . . , ξ̂

−
1 ) may become linearly

dependent.

Corollary 1. Given a SP (ξ̂+, ξ̂−) of a LTS m ⊂ se(3) and
a twist η̂ ∈ m, the pair (ξ̂′

+
, ξ̂′
−
) defined by:{

ξ̂′
+
, Ade+η̂ ξ̂+

ξ̂′
−
, Ade−η̂ ξ̂−

(17)

is also a SP of m. In particular, (Ade+η̂ ξ̂,Ade+η̂ ξ̂), ξ̂ ∈ m is
a SP of m.

Proof. See Appendix G.

B. Symmetry type of symmetric chains

We shall use both the geometric condition (17) and the
algebraic condition (15) to study the particular symmetry type
of SPs and SCs for each LTS.

1) m2B: Consider the conjugacy class of 2D LTS m2B =
{ê4, ê5}sp as shown in Fig. 3(b). It consists of a pencil of zero-
pitch twists in the char. plane (Hunt’s 1st special 2-system,
[30]). A SP (ξ̂+; ξ̂−) = (Ade+ψη̂ ξ̂; Ade−ψη̂ ξ̂), ξ̂, η̂ ∈ m2B is
generated by a pair of rotational displacements (+ψ,−ψ) of
ξ̂ about the unit twist η̂. Pictorially, ξ̂+ and ξ̂− are mirror
symmetric about the char. plane of m2B (see Fig. 4 left).
Equivalently, the SP is given by the algebraic condition:{

ξ̂+ = cψξ̂ + sψê6

ξ̂− = cψξ̂ − sψê6

where ξ̂ ∈ m2B and ê6 ∈ hm2B
= {ê6}sp. Since gm2B

=
{ê4, ê5, ê6}sp, members of the m2B-SC can be arbitrary twists
not equal to scalar multiples of ê6; a m2B-SC consists of two
nesting SPs:{

ξ̂+1 = ξ̂1 + ζ̂1

ξ̂−1 = ξ̂1 − ζ̂1

{
ξ̂+2 = ξ̂2 + ζ̂2

ξ̂−2 = ξ̂2 − ζ̂2
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Fig. 4. Symmetric twist pairs of m2B. On the left: geometric condition, and
on the right: algebraic condition.

where ξ̂1, ξ̂2 ∈ m2B = {ê4, ê5}sp and ζ̂1, ζ̂2 ∈ hm2B
=

{ê6}sp, and such that:

{ξ̂1, ξ̂2}sp = m = {ê4, ê5}sp.

We shall refer to (ξ̂+1 , ξ̂
+
2 ; ξ̂

−
2 , ξ̂

−
1 ) as an even SC. When ζ̂2 =

0 and ξ̂+2 = ξ̂−2 = ξ̂2, we can lump the two twists together
and have an odd m2B-SC (ξ̂+1 ; ξ̂2; ξ̂

−
1 ).

Therefore, a m2B-SC is a concentric RRRR or RRR
chain with bilateral symmetry about the char. plane. As we
have pointed out earlier, without the symmetric movement
condition (14), a m-SC may generate a general subset of the
completion group GM = 〈exp gm〉 instead of 〈expm〉. Twists
of a SC need not be linearly independent (or non-redundant)
either. Since gm2B

is the three dimensional spherical Lie alge-
bra so(3) of SO(3), the concentric 4-R chain is necessarily
redundant. When ζ̂1 6= 0, the 3-R chain is a non-redundant
so(3)-chain. When ζ̂1 = ζ̂2 = 0, ξ̂+i = ξ̂−i = ξ̂i ∈ m2B, i =
1, 2 and we have a singular so(3)-chain. Both the odd m2B-SC
and the even m2B-SC can be found in the design of novel CV
joints [51,52].

2) m3B: Consider the conjugacy class of 3D LTS
m3B = {ê3, ê4, ê5}sp as shown in Fig. 3(d), with hm3B

=
{ê1, ê2, ê6}sp. It consists of a field of zero-pitch twists in,
and an infinite-pitch twist perpendicular to, the char. plane
(Hunt’s 4th special 3-system, [30]). Its SP can be one of the
following cases (see Fig. 5):
a) A pair of infinite-pitch twists (ξ̂+1 , ξ̂

−
1 ) given by:

ξ̂+1 , Ade+φη̂1 ê3 = cφê3 + sφ

[
0̂ ŵ1z
0T 0

]
ξ̂−1 , Ade−φη̂1 ê3 = cφê3 − sφ

[
0̂ ŵ1z
0T 0

] (18)

where η̂1 ∈ m3B, with unit direction vector w1. The second
half of (18) gives the algebraic condition for the same SP,
where [

0̂ ŵ1z
0T 0

]
∈ hm3B

= {ê1, ê2, ê6}sp

The SP corresponds to a pair of prismatic joints that are
symmetric about the z-axis in a plane containing them, and
is the same as a mirror symmetry about the char. plane if
we flip the direction of ξ̂−1 . This will make no difference
in type synthesis but will reverse the joint variable for ξ̂−1
in the symmetric movement condition (14).

Fig. 5. Symmetric twist pairs of m3B. On the left: geometric condition, and
on the right: algebraic condition.

b) A pair of finite-pitch twists (ξ̂′
+

2 , ξ̂
′−
2 ) with pitch (p,−p),

given by: {
ξ̂′

+

2 , Ade+ψη̂2 ξ̂
+
2

ξ̂′
−
2 , Ade−ψη̂2 ξ̂

−
2

with η̂2 ∈ m3B having a unit direction vector of w2, and
(ξ̂+2 , ξ̂

−
2 ) is another SP defined by algebraic condition:

ξ̂+2 , ξ̂2 + p

[
0̂ w2

0T 0

]
ξ̂−2 , ξ̂2 − p

[
0̂ w2

0T 0

]
(ξ̂′

+

2 , ξ̂
′−
2 ) can also be directly derived from the algebraic

condition:
ξ̂′

+

2 =
(
cψξ̂2+sψpê3

)
+

(
sψê6+cψp

[
0̂ w2

0T 0

])
ξ̂′
−
2 =
(
cψξ̂2+sψpê3

)
−
(
sψê6+cψp

[
0̂ w2

0T 0

]) (19)

The SP corresponds to a pair of helical joints with equal
and opposite pitches p and −p (or a pair of revolute joints if
p = 0), and is mirror symmetric about the char. plane. This
gives an explicit proof of Hunt’s observation that mirror
symmetric helical joints in a CV kinematic chain should
have equal and opposite pitches [35].
Note that when η̂2 ∈ m3B is a zero-pitch twist, the axes
of the two helical joints intersects at a point on the char.
plane; when η̂2 is chosen to be the infinite-pitch twist ê3,
the axes of the two helical joints become parallel.

A m3B-SC consists of three nesting SPs {ξ̂+i ; ξ̂
−
i }3i=1, each

being one of the aforementioned cases. According to (16), the
three twists ξ̂+1 , ξ̂

+
2 , ξ̂

+
3 ∈ gm3B

= se(3) must be chosen such
that:

{ξ̂+1 , ξ̂
+
2 , ξ̂

+
3 }sp ⊕ {ê1, ê2, ê6}sp = se(3)

The enumeration of eligible candidates is studied in our earlier
work [53]. The two most commonly seen m3B-SCs [35] are
the mirror symmetric RER chain, which is equivalent to a
mirror symmetric RRPRR chain, and the mirror symmetric
RSR chain, which is equivalent to a mirror symmetric 5-R
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Fig. 6. Symmetric twist pairs of mp
2A (or m2A by letting p = 0). On the

left: geometric condition, and on the right: algebraic condition.

chain. When (14) is not enforced, these chains generate 5D
submanifolds of SE(3).

The above results corroborate Hunt’s exhaustive classifica-
tion of 3D CV chains in [35]. It also confirms our earlier
conclusion that M3B , 〈expm3B〉 is indeed the motion type
of 3-DoF CV couplings. Moreover, the mirror symmetry is
a manifestation of the inversion symmetry of the underlying
symmetric submanifold.

3) m2A and mp2A: Consider the conjugacy class of 2D LTS
mp2A = {ê3, ê4+pê1}sp (and also m2A = {ê3, ê4}sp by letting
p = 0) as shown in Fig. 3(a), with hmp2A = {ê2}sp. It consists
of all twists with pitch p parallel to the x-axis in the char.
plane, and also a twist of infinite pitch perpendicular to the
char. plane (Hunt’s 2nd special 2-system, [30]). Note that m2A

is a LTS (subsystem) of m3B; its SPs can be synthesized in a
similar manner and therefore have the same type of symmetry:
as shown in Fig. 6, m2A-SPs are mirror symmetric about the
char. plane, with typical SPs given by:{

ξ̂+1 , Ade+φη̂ ê3 = cφê3 + sφê2

ξ̂−1 , Ade−φη̂ ê3 = cφê3 − sφê2{
ξ̂+2 , Ade+µê3 ξ̂2 = ξ̂2 + µê2

ξ̂−2 , Ade−µê3 ξ̂2 = ξ̂2 − µê2

mp2A-SPs admit exactly the same symmetry type, with the zero-
pitch SP replaced by a SP of pitch p. Unlike the case of m3B,
the two finite-pitch twists in (ξ̂+2 ; ξ̂

−
2 ) in Fig. 6 have equal but

not opposite pitches for the obvious reason that the LTS mp2A
itself admits finite-pitch twists.

Since gm2A = {ê2, ê3, ê4}sp is the Lie algebra of the 3D
planar Euclidean group, a m2A-SC (ξ̂+1 , ξ̂

+
2 ; ξ̂

−
2 , ξ̂

−
1 ) should

satisfy:

{ξ̂+1 , ξ̂
+
2 }sp ⊕ {ê2}sp = {ê2, ê3, ê4}sp

A m2A-SC can be one of the following:
a) A mirror symmetric RRRR or RRR chain with parallel

axes;
b) A mirror symmetric PRRP or PRP chain with R

perpendicular to the two P’s;
c) A mirror symmetric RPPR or RPR with parallel R’s

both perpendicular to the P’s.

Fig. 7. Symmetric twist pairs of m3A. On the left: geometric condition, and
on the right: algebraic condition.

These are all planar motion generators if the symmetric motion
condition (14) is not enforced. Synthesis of mp2A follows
exactly the same approach and have exactly the same result
with all revolute joints replaced by helical joints with pitch p.
Therefore mp2A-SCs are planar helical motion generators when
(14) is not enforced.

4) m3A: Consider the conjugacy class of 3D LTS m3A =
{ê1, ê3, ê4}sp as shown in Fig. 3(c), with hm3A = {ê2}sp. It
consists of twists of all pitches on all lines parallel to the x-
axis in the char. plane (xy-plane), and a twist of infinite-pitch
perpendicular to the xy-plane (Hunt’s 10th special 3-system,
[30]). From the fact that m(p)

2A ⊂ m3A, we see that any m2A-
SPs and mp2A-SPs are also m3A-SPs (compare Fig. 7 with Fig.
6). Besides, m3A admits the following SP by the algebraic
condition:{

ξ̂+1 , Ade+φê4 ξ̂1 = λ1ê1 + cφλ2ê3 − λ2sφê2
ξ̂−1 , Ade−φê4 ξ̂1 = λ1ê1 + cφλ2ê3 + λ2sφê2

where ξ̂1 = λ1ê1 + λ2ê3 for some real constants λ1, λ2 (see
Fig. 7). The prismatic SP is no longer mirror symmetric about
the xy-plane, but instead becomes mirror symmetric about the
xz-plane.

Since gm3A
= {ê1, ê2, ê3, ê4}sp is the Lie algebra of the 4D

Schönflies group, a m3A-SC (ξ̂+1 , ξ̂
+
2 , ξ̂

+
3 ; ξ̂

−
3 , ξ̂

−
2 , ξ̂

−
1 ) should

satisfy:

{ξ̂+1 , ξ̂
+
2 , ξ̂

+
3 }sp ⊕ {ê2}sp = {ê1, ê2, ê3, ê4}sp

The enumeration of eligible candidates of (ξ̂+1 , ξ̂
+
2 , ξ̂

+
3 ) can

be found in [53]. Since m3A-SCs are 5 or 6-DoF chains (in
comparison to the dimension of the Schönflies group being 4),
they are redundant Schönflies motion generators in the absence
of the symmetric motion condition (14).

5) m4: Consider the conjugacy class of 4D LTS m4 =
{ê1, ê2, ê4, ê5}sp as shown in Fig. 3(e), with hm4 =
{ê3, ê6}sp. It consists of twists of all pitches along the lines
of pencils in each plane normal to the z-axis, and that the
centers of the pencils all lie on the z-axis (Hunt’s 5th special
4-system, [30]). Its SP can be one of the following cases (see
Fig. 8):
a) A pair of finite-pitch twists (ξ̂+1 , ξ̂

−
1 ), both with pitch p,

given by: {
ξ̂+1 , Ad

e+φη̂1e+λη̂
′
1
ξ̂1

ξ̂−1 , Ad
e−φη̂1e−λη̂

′
1
ξ̂1
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Fig. 8. Symmetric twist pairs of m4. On the left: geometric condition, and
on the right: algebraic condition.

where η̂1, η̂
′
1 ∈ m4 have pitches equal to 0 and ∞

respectively, and ξ̂1 ∈ m4 has unit direction vector w1 and
pitch p. It can also be given by the algebraic condition:


ξ̂+1 =cφξ̂1+λsφ

[
0̂ w1

0T 0

]
+(pcφ−λcφ)ê3+sφê6

ξ̂−1 =cφξ̂1+λsφ

[
0̂ w1

0T 0

]
−(pcφ−λcφ)ê3−sφê6

(20)

b) A pair of infinite-pitch twists (ξ̂+2 , ξ̂
−
2 ), given by:{

ξ̂+2 , Ade+ψη̂2 ξ̂2 = cψξ̂2 + sψê3

ξ̂−2 , Ade−ψη̂2 ξ̂2 = cψξ̂2 − sψê3

where η̂2 ∈ m4 has pitch 0, and ξ̂2 ∈ m4 has infinite-pitch.

If we flip the direction of ξ̂−i ’s, (ξ̂+i , ξ̂
−
i ), i = 1, 2 both

admit a 2-fold rotational symmetry about the z-axis, with
the two twists (ξ̂+1 , ξ̂

−
1 ) having equal finite pitch of p (or in

particular 0). Therefore, a m4-SP may be a pair of prismatic,
helical or revolute joints.

Since gm4
= se(3), a m4-SC (ξ̂+1 , . . . , ξ̂

+
4 ; ξ̂

−
4 , . . . , ξ̂

−
1 )

should satisfy:

{ξ̂+1 , . . . , ξ̂
+
4 }sp ⊕ {ê3, ê6}sp = se(3)

Eligible candidates of (ξ̂+1 , . . . , ξ̂
+
4 ) can be found in [53].

Since m4-SCs are 7 or 8-DoF chains, they are redundant (and
possibly, singular) SE(3) motion generators in the absence of
the symmetric motion condition (14).

We remark that since m5 contains all other LTSs, its SPs
can be any of the SPs of the aforementioned LTSs and do not
possess a particular symmetry type. The derivation of its SCs
can be conducted in a similar manner to the previous cases.
Due to space limitations, a complete treatment of m5-SPs and
SCs will not be given here.

Finally, when a SC of a kD LTS m has less than k nesting
SPs, its symmetric movement generates a submanifold of the
symmetric submanifold M = 〈expm〉. Such incomplete SCs
are also prevalent in practice.

Fig. 9. (a) a UNITRU coupling with four UU -SCs; (b) twists of a UU chain
as an incomplete m3B-SC.

Example 3 (UU SC). A UU SC (as shown in Fig. 9(b)) is
briefly mentioned in [35] and studied in [36]. Its SPs are given
by: {

ξ̂+1 = Ade+λê3 ◦Ade+φη̂1 ξ̂1 , Ade+λê3 ζ̂
+
1

ξ̂−1 = Ade−λê3 ◦Ade−φη̂1 ξ̂1 , Ade−λê3 ζ̂
−
1{

ξ̂+2 = Ade+λê3 ◦Ade+ψη̂2 ξ̂2 , Ade+λê3 ζ̂
+
2

ξ̂−2 = Ade−λê3 ◦Ade−ψη̂2 ξ̂2 , Ade−λê3 ζ̂
−
2

where λ ∈ R, ξ̂1, ξ̂2, η̂1, η̂2 ∈ m2B. In other words, the UU
SC is generated from a m2B SC (ζ̂+

1 , ζ̂
+
2 ; ζ̂−2 , ζ̂

−
1 ) using a

geometric condition (17) for m3B.
The SC generates a 2D submanifold of M3B under symmet-

ric motion condition (14). In comparison to a m3B-SC, it has
not a free but a dependent translational DoF [29]. Rosheim
used this phenomenon to characterize the human shoulder
complex movement [41].

The UNITRU coupling can be synthesized using three
or more identical UU SCs with axial symmetry, since the
generated 2D submanifold is conjugation invariant by elements
of exp{ê6}sp [29].

V. CONCLUSION

In this paper, we have systematically studied inversion
symmetry of the special Euclidean group SE(3) and its
symmetric submanifolds that arise from kinesiology and robot
mechanical systems. Besides sharing many similarities with
Lie subgroups of SE(3), symmetric submanifolds expand
our general knowledge of motion types for the analysis and
synthesis of many kinesiological joints or robot mechanical
generators that defy a Lie group explanation.

The main contribution of our work is as follows. First, we
have identified, for the first time, seven conjugacy classes
of symmetric submanifolds of SE(3) (Table I), which are
generated via inversion symmetry by the exponential image
of Lie triple subsystems of se(3). So far as the authors are
aware of, this is also the first time the inversion symmetry
of SE(3) is studied. Second, we found that these symmetric
submanifolds share both a list of geometric properties and also
a universal type synthesis method for their symmetric twist
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chains, which are kinematic chains comprising nesting sym-
metric twist pairs. Third, the symmetry type of the symmetric
pairs and symmetric chains for each LTS is systematically
studied, thereby systematically extending (if not completing)
Hunt’s observation made more than forty years ago.

Our ongoing work comprises: systematic type synthesis
of parallel manipulators generating symmetric submanifolds
and systematic kinematics and singularity analysis of such
parallel manipulators (some preliminary case study is available
in [50]); application of symmetric submanifolds of SE(3) in
robot dynamics, planning and control; study on general Exp-
submanifolds exp n with n a general vector subspace of se(3)
that is neither a Lie subalgebra nor a Lie triple subsystem.
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APPENDIX A
SYMMETRIC SPACE AS HOMOGENEOUS SPACE [42,43]

The group of displacements G̃ generated by Q(SE(3)) is
the Cartesian product SE(3)×SE(3) which acts on SE(3) via:

τ : G̃× SE(3)→ SE(3), ((g1,g2),h) 7→ g1hg
−1
2 (21)

where the quadratic representation Q(g) of g ∈ SE(3) is given
by (g,g−1) ∈ G̃. The associated involution σ : G̃ → G̃ is
given by:

σ(g1,g2) = SI ◦ (g1,g2) ◦ SI = (g2,g1)

the stabilizer Hσ of σ equals {(g,g)|g ∈ SE(3)}, and is the
same as the isotropy group H̃ of I ∈ SE(3).

The homogeneous space G̃/H̃ is diffeomorphic to SE(3)
via:

π : G̃/H̃→ SE(3), (g1,g2)H̃ 7→ g1g
−1
2

and dπH̃(ξ̂1, ξ̂2) = ξ̂1 − ξ̂2.
σ induces an involution dσ(I,I) on se(3)× se(3):

dσ(I,I) : (ξ̂1, ξ̂2) 7→ (ξ̂2, ξ̂1)

Its two eigenspaces h̃ (of eigenvalue 1) and m̃ (of eigenvalue
−1) are given by:

h̃ , {(ξ̂, ξ̂)|ξ̂ ∈ se(3)}, m̃ , {(ξ̂,−ξ̂)|ξ̂ ∈ se(3)}

and satisfy:

[h̃, h̃] ⊂ h̃, [h̃, m̃] ⊂ m̃, [m̃, m̃] ⊂ h̃

dπH̃ maps the Lie subalgebra h̃ and LTS m̃ to {0̂} and se(3)
respectively, thus identifying m̃ with se(3).

Given a symmetric submanifold M with TIM = m and
hm , [m,m], define m̃ and h̃ by:

m̃ , {(ξ̂,−ξ̂)|ξ̂ ∈ m}, h̃ , {(ζ̂, ζ̂)|ζ̂ ∈ hm}

The group of displacements of M is generated by the Lie
algebra g̃ given by:

g̃ , h̃⊕ m̃ = {(ξ̂ + ζ̂,−ξ̂ + ζ̂)|ξ̂ ∈ m, ζ̂ ∈ hm}

Therefore, G̃ is generated by elements of the form
(eξ̂+ζ̂ , e−ξ̂+ζ̂) and a generic element of M is given by
τ((eξ̂+ζ̂ , e−ξ̂+ζ̂),g) = eξ̂+ζ̂geξ̂−ζ̂ ,∀g ∈ M. The vector sub-
spaces m, hm and gm in Prop.2 b), c) are in fact the projection
of m̃, h̃ and g̃ into the first component of se(3)× se(3).

APPENDIX B
PROOF OF EQ. (8)

Please refer to [54] for basic concepts in differential geom-
etry and Lie groups used in this proof.

Given any smooth function f : SE(3) → R and two right-
invariant vector fields ξ̂r, ζ̂r defined by ξ̂, ζ̂ ∈ se(3), we have
for any g ∈ SE(3):

[ξ̂r, ζ̂r]f(g) = (ξ̂rζ̂r − ζ̂rξ̂r)f(g)

=
d

du
ζ̂rf(euξ̂g)|0 −

d

du
ξ̂rf(euζ̂g)|0

=
d

du
ζ̂r(euξ̂g)f |0 −

d

du
ξ̂r(euζ̂g)f |0

=
d

du
(ζ̂euξ̂g)f |0 −

d

du
(ξ̂euζ̂g)f |0

= (ζ̂ξ̂g − ξ̂ζ̂g)f = −[ξ̂, ζ̂]rf(g)

and therefore [ξ̂r, ζ̂r] = −[ξ̂, ζ̂]r.
Similarly,

[ξ̂l, ζ̂l]f(g) = (ξ̂lζ̂l − ζ̂lξ̂l)f(g)

=
d

du
ζ̂lf(geuξ̂)|0 −

d

du
ξ̂lf(geuζ̂)|0

=
d

du
ζ̂l(geuξ̂)f |0 −

d

du
ξ̂l(geuζ̂)f |0

=
d

du
(geuξ̂ζ̂)f |0 −

d

du
(geuζ̂ ξ̂)f |0

= (gξ̂ζ̂ − gζ̂ξ̂)f = [ξ̂, ζ̂]lf(g)

and therefore [ξ̂l, ζ̂l] = [ξ̂, ζ̂]l.
Finally,

[ξ̂r, ζ̂l]f(g) = (ξ̂rζ̂l − ζ̂lξ̂r)f(g)

=
d

du
ζ̂lf(euξ̂g)|0 −

d

du
ξ̂rf(geuζ̂)|0

=
d

du
ζ̂l(euξ̂g)f |0 −

d

du
ξ̂r(geuζ̂)f |0

=
d

du
(euξ̂gζ̂)f |0 −

d

du
(ξ̂geuζ̂)f |0

= (ξ̂gζ̂ − ξ̂gζ̂)f = 0

and therefore [ξ̂r, ζ̂l] = 0.

APPENDIX C
PROOF OF THEOREM 1

In reference to (7), the group of displacements G̃(M) of M
is generated by Q(expm) , {Q(eξ̂)|ξ̂ ∈ m}. Since G̃(M)
acts transitively on M, M is recovered by letting G̃(M) act on
the identity I ∈ M:

Q(eξ̂)(I) = eξ̂Ieξ̂ = e2ξ̂ ∈ M, ξ̂ ∈ m

Therefore expm ⊂ M and also contains an open neighborhood
of M, which generates M via inversion symmetry, i.e. M =
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{gh−1g ∈ SE(3)|∀g,h ∈ expm}. For more details, see [43,
pp. 95, Prop. 3.2].

To see that {ghg ∈ SE(3)|∀g,h ∈ expm} is the same
as {gh−1g ∈ SE(3)|∀g,h ∈ expm}, note that if h = eξ̂ ∈
expm, so is h−1 = e−ξ̂ ∈ expm.

APPENDIX D
PROOF OF PROPOSITION 1

The proposition is proved by straightforward computation,
as follows. Consider first the 2D LTS m2A = {ê3, ê4}sp.
expm2A comprises homogeneous matrices of the form:

exp(θ1ê4 + θ2ê3) =

[
eθ1x̂ θ′2e

θ1
2 x̂z

0T 1

]
where θ1, θ2 ∈ R and θ′2 = 2sθ1/2θ2, and also

exp θ2ê3 =

[
I θ2z
0T 1

]
Combining the two cases, expm2A comprises elements of the
form: [

eθ1x̂ θ2e
θ1
2 x̂z

0T 1

]
, θ1, θ2 ∈ R

To see these are the only elements of M2A, compute ghg for
any g,h ∈ expm2A (see eq. (11)):[

eθ1x̂ θ2e
θ1
2 x̂z

0T 1

]
︸ ︷︷ ︸

g

[
eθ
′
1x̂ θ′2e

θ′1
2 x̂z

0T 1

]
︸ ︷︷ ︸

h

[
eθ1x̂ θ2e

θ1
2 x̂z

0T 1

]
︸ ︷︷ ︸

g

=

[
e(2θ1+θ

′
1)x̂ (θ′2+2c(θ1+θ′1)/2)e

2θ1+θ′1
2 x̂z

0T 1

]
∈ exp m2A

This verifies that M2A = expm2A, or exp : m2A → M2A is
surjective. In a similar way, we can verify that exp is also
surjective for m2B,m3A,m3B,m4 and m5.

For mp2A = {ê3, ê4 + pê1}sp, it can be verified that the
only elements in Mp

2A that do not correspond to elements in
expmp2A are of the form (c.f. [48, Prop. 2.2]):[

I 2ipπx+ θz
0T 1

]
, i ∈ Z− {0}, θ ∈ R− {0}

which can be generated by expmp2A via only one inversion:[
I 2ipπx+ θz
0T 1

]
=[

I θ
2z

0T 1

] [
I 2ipπx
0T 1

] [
I θ

2z
0T 1

]
= e

θ
2 ê3e2iπ(ê4+pê1)e

θ
2 ê3

In particular exp is not surjective for mp2A.

APPENDIX E
PROOF OF PROPOSITION 2

Proof of a): Since Q(eξ̂/2) is a diffeomorphism sending I

to g = eξ̂, it induces an isomorphism from m onto Teξ̂M.
Therefore:

(TgM)g−1 = (eξ̂/2meξ̂/2)e−ξ̂

= eξ̂/2me−ξ̂/2 = Adeξ̂/2m

Similarly, Q(eξ̂1) ◦ Q(eξ̂2/2) sends I to g = eξ̂1eξ̂2eξ̂1

diffeomorphically, and

(TgM)g−1 = (eξ̂1eξ̂2/2meξ̂2/2eξ̂1)e−ξ̂1e−ξ̂2e−ξ̂1

= (eξ̂1eξ̂2/2)m(eξ̂1eξ̂2/2)−1

= Ad
eξ̂1eξ̂2/2

m

Proof of b): For any [ξ̂1, ξ̂2] ∈ hm and ξ̂ ∈ m:

Ad
e[ξ̂1,ξ̂2] ξ̂ = ead[ξ̂1,ξ̂2] ξ̂ =

∞∑
i=0

adi
[ξ̂1,ξ̂2]

i!
ξ̂ ∈ m. (22)

since ad[ξ̂1,ξ̂2]
ξ̂ , [[ξ̂1, ξ̂2], ξ̂] ∈ m (since m is a LTS). Here

we have used the adjoint map ad(·) defined by:

adξ̂1
ξ̂2 , [ξ̂1, ξ̂2], ∀ξ̂1, ξ̂2 ∈ se(3)

and the fact that ([19, pp. 54, Lemma 3.4.1]):

Adeξ̂ = eadξ̂ , ∀ξ̂ ∈ se(3)

Now we have Ad
e[ξ̂1,ξ̂2]m ⊆ m. The equality holds because

Ad
e[ξ̂1,ξ̂2] is a linear isomorphism. Since HM is generated by

exp hm and Adgh = Adg ◦Adh,∀g,h ∈ SE(3), we have

∀h ∈ HM ⇒ Adhm ≡ m (23)

Next, in light of Prop.1, for any ∀g ∈ M, either g = eξ̂, ξ̂ ∈
m or g = eξ̂eη̂eξ̂, η̂, ξ̂ ∈ m. In the former case,

C(h)(eξ̂) = heξ̂h−1 = eAdhξ̂ ∈ expm ⊆ M

by the previous equation (23). The latter case:

C(h)(eξ̂eη̂eξ̂) = heξ̂eη̂eξ̂h−1

= heξ̂h−1heη̂h−1heξ̂h−1

= C(h)(eξ̂) · C(h)(eη̂) · C(h)(eξ̂)

is reduced to the former. Therefore we have C(h)(M) ⊆ M.
The equality holds since C(h) is a diffeomorphism for any
h ∈ SE(3), i.e.

∀h ∈ HM ⇒ C(h)(M) ≡ M

Proof of c): gm , hm + m is a Lie subalgebra and therefore
contains the completion algebra of m. On the other hand, the
completion algebra should contain both m and hm , [m,m].
Therefore, hm is the completion algebra of m.

Next, since m ⊂ gm, we have

M = 〈expm〉 ⊂ 〈exp gm〉 = GM

On the other hand, The Lie algebra of the (connected) comple-
tion group of M will be a Lie subalgebra of se(3) containing
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m and therefore gm. Therefore, GM is indeed the completion
group of M.

If hm ∩m = {0̂}, we have gm = hm ⊕m and

ẽxpg : m× hm → GM

defines a local diffeomorphism by the inverse function theorem
[54].

APPENDIX F
PROOF OF PROPOSITION 3

The first claim is immediate, since according to Appendix
A, eξ̂

+

geξ̂
−

with{
ξ̂+ = ξ̂ + ζ̂

ξ̂− = ξ̂ − ζ̂
, ξ̂ ∈ m, ζ̂ ∈ hm,g ∈ M

is a generic element of M.
The second claim is the same as saying that when

{ξ̂1, . . . , ξ̂k}sp = m,

{eθ1ξ̂
+
1 · · · eθkξ̂

+
k eθkξ̂

−
k · · · eθ1ξ̂

−
1 |θ1, . . . , θk ∈ R}

with ξ̂±i = ξ̂i ± ζ̂i, ξ̂i ∈ m, ζ̂i ∈ hm is locally identical
to M = 〈expm〉. The Jacobian of the map (θ1, . . . , θk) 7→
eθ1ξ̂

+
1 · · · eθkξ̂

+
k eθkξ̂

−
k · · · eθ1ξ̂

−
1 at (0, . . . , 0) is given by:

(θ̇1, . . . , θ̇k) 7→θ̇1(ξ̂+1 + ξ̂−1 ) + · · ·+ θ̇k(ξ̂
+
k + ξ̂−k )

= 2θ̇1ξ̂1 + · · ·+ 2θ̇kξ̂k

The claims follows immediate from the inverse function the-
orem [54].

Finally, if hm∩m = {0̂} and {ξ̂1, . . . , ξ̂k}sp = m, we have:

{ξ̂1 ± ζ̂1, . . . , ξ̂k ± ζ̂k}sp + hm = gm

The sum is direct by a simple dimension argument. On the
other hand, if

{ξ̂1 ± ζ̂1, . . . , ξ̂k ± ζ̂k}sp ⊕ hm = gm

A change of basis leads to

{ξ̂1, . . . , ξ̂k}sp ⊕ hm = gm

The claim follows by a simple dimension argument.

APPENDIX G
PROOF OF COROLLARY 1

Given a SP (ξ̂+, ξ̂−):{
ξ̂+ = ξ̂ + ζ̂

ξ̂− = ξ̂ − ζ̂
ξ̂ ∈ m, ζ̂ ∈ hm

and some η̂ ∈ m, we have:

Ade±η̂ ξ̂± = e±adη̂ (ξ̂ ± ζ̂)

=

( ∞∑
i=0

ad2iη̂
(2i)!

±
∞∑
i=0

ad2i+1
η̂

(2i+ 1)!

)
(ξ̂ ± ζ̂)

=

( ∞∑
i=0

ad2iη̂
(2i)!

ξ̂ +

∞∑
i=0

ad2i+1
η̂

(2i+ 1)!
ζ̂

)
±( ∞∑

i=0

ad2iη̂
(2i)!

ζ̂ +

∞∑
i=0

ad2i+1
η̂

(2i+ 1)!
ξ̂

)

with 

∞∑
i=0

ad2iη̂
(2i)!

ξ̂ +

∞∑
i=0

ad2i+1
η̂

(2i+ 1)!
ζ̂ ∈ m

∞∑
i=0

ad2iη̂
(2i)!

ζ̂ +

∞∑
i=0

ad2i+1
η̂

(2i+ 1)!
ξ̂ ∈ hm

by (10). Thus (Ade+η̂ ξ̂+,Ade−η̂ ξ̂−) defines a SP by the
algebraic condition (15).
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