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Abstract

Modelling the propagation of interfaces is of interest in several fields of applied sci-
ences, such as those involving chemical reactions where the reacting interface separates
two different compounds. When the front propagation occurs in systems characterized
by an underlying random motion, the front gets a random character and a tracking
method for fronts with a random motion is desired. The Level Set Method, which is a
successful front tracking technique widely used for interfaces with deterministic motion, is
here randomized assuming that the motion of the interface is characterized by a random
diffusive process. In particular, here we consider the case of a motion governed by the
time-fractional diffusion equation, leading to a probability density function for the in-
terface particle displacement given by the M-Wright/Mainardi function. Some numerical
results are shown and discussed.

Keywords: random front propagation, level set method, time-fractional
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1. Introduction.

Tracking fronts and interfaces is a fundamental task in several real world
applications of mathematical modelling. One of the most widely used and
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successful tool for this purpose is the Level Set Method (LSM) [1,2], which
has been adopted in many different problems, including, for example, tur-
bulent premixed combustion [3] (to solve the so-called as G-equation [4]),
wildland fire propagation [5], groundwater infiltration [6], biology [7] and
material science [8].

Originally introduced by Osher and Sethian [1], the LSM is a highly
robust and accurate method for tracking interfaces in any spatial dimension.
The motion of the propagating surface is governed by Hamilton–Jacobi
equations. Since in this setting sharp gradients and cusps can be easily
accounted for and the effects of curvature may be easily incorporated as
well, the LSM is particularly useful to handle problems in which the speed
of the evolving interface is dependent on the interface properties, such as
curvature and normal direction, as well as on the boundary conditions at the
interface location. Hence, it is suitable for problems in which the topology
of the evolving interface changes during the events, as when topological
merging and breaking naturally occur.

However, even if the LSM is a technique with strong theoretical [1,2,9]
and numerical [10,11] basis, in many applications the front is embedded into
a random environment and therefore the interface gets a random character.
An approach to “randomize” and average the LSM is needed.

Here, we consider an approach for tracking random fronts that is based
on the idea to consider the interface as embodied by particles with ran-
dom motion. This approach, first proposed to model turbulent premixed
combustion [12], has also been recently applied to wildland fire propaga-
tion [13–17].

In the proposed model, the front position is assumed to be split into
a deterministic part and a fluctuating part. According to this split, the
deterministic position of the particles, and then of the interface, is assumed
to be given by the ordinary LSM while a probability density function (PDF)
describes the particle spreading around the deterministic position because
of the random nature of the underlying environment. The average front
emerges to be determined by the weighted superposition of the solutions
of the ordinary LSM with the particle PDF as a weight function. This
formulation being based on the LSM has the same remarkable property
to be compatible with every type of geometry and flow in a simpler and
more versatile way than previous approaches, and it emerges to be easily
modifiable to include more detailed and correct physics.

The resulting evolution equation for the average value of the observable
turns out to be a reaction-diffusion equation. The modelling approach based
on reaction-diffusion equations and the one based on LSM can be consid-
ered alternative to each other because the solution of the reaction-diffusion
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equation is generally a continuous smooth function that has an exponential
decay and an infinite support, while the LSM generates a sharp function
with a finite support. However, these two approaches are indeed reconciled
in the proposed method resulting in the fact that, when the LSM is devel-
oped for tracking an interface with a random motion, the averaged process
emerges to be governed by an evolution equation of reaction-diffusion type.
In this reconciled approach, the front speed keeps the same key and char-
acterizing role proper to the LSM.

The study of front propagation is important in chemically reactive sys-
tems. The reaction rates are dependent on the average values of the reac-
tant density. In a diffusive media, reactant concentrations depends on dif-
fusion properties. In the present study, it is considered the propagation of a
plane front embedded into an environment characterized by subdiffusion as
modelled by the time-fractional diffusion equation. Thus a one-dimensional
problem is investigated and the particle PDF follows to be related to the
M-Wright/Mainardi function.

The paper is organized as follows. In Section 2 the LSM is briefly re-
viewed focusing on its key basic properties. In Section 3, the main features
of the “randomized” LSM, first introduced in [12], are recalled. The PDF of
the displacement of the interface particles, which appears as a consequence
of their random motion, is here assumed to be connected to anomalous
diffusion phenomena. In Section 4 the pertinent time-fractional diffusion
equation is discussed as long as its basic features in the one-, two- and
three-dimensional cases. In Section 5, a selection of the obtained numerical
results concerning one-dimensional front propagation in presence of anoma-
lous diffusion with subdiffusive feratures is presented and discussed. Finally,
in Section 6 the conclusions of the present study are drawn and its future
developments are outlined.

2. The Level Set Method.

The LSM has been designed to track an interface in frameworks with
a clear distinction between the interior and exterior part of the domain.
This method can be briefly described in two dimensions as follows. Let Γ
be a simple closed curve, or an ensemble of simple non-intersecting closed
curves, representing a propagating interface in two dimensions, and let γ :
S × [0,+∞[→ R be a function defined on the domain of interest S ⊆ R
such that the level set γ (x, t) = γ∗ coincides with the evolving front, i.e.
Γ(t) = {x ∈ S | γ(x, t) = γ∗}. In the case of a non-simply connected domain
including n simply connected subdomains, the considered interface Γ is the
ensemble of n curves surrounding each simply connected subdomain.
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The evolution of the field γ(x, t) is governed by the following Hamilton–
Jacobi equation [2]

(1)
∂γ

∂t
= V(x, t) ‖∇γ‖ , γ(x, t = 0) = γ0(x) ,

which is the ordinary level set equation, where γ0 is the initial field embed-
ding the interface Γ at t = 0, i.e. Γ0 ≡ Γ(t = 0).

The function γ(x, t) can be called level set function and the quantity
V(x, t), which has the dimension of a velocity, can be identified as the Rate
Of Spread (ROS) and its determination is problem dependent.

The subsets of the domain S corresponding to the interface Γ and to the
region Ω enclosed by Γ (which represent, respectively, the interface and the
domain bounded by it) may be conveniently described by the two indicator
functions IΓ, IΩ : S × [0,+∞[→ {0, 1} defined as follows:

(2) IΓ(x, t) =


1 , if γ (x, t) = γ∗

0 , elsewhere

,

and

(3) IΩ(x, t) =


1 , if γ (x, t) 6 γ∗

0 , elsewhere

.

The indicator functions at time t = 0, i.e. IΓ(x, t = 0) and IΩ(x, t = 0),
are denoted in the following as IΓ0(x) and IΩ0(x), respectively.

In the case of an interface Γ made up of n closed curves, the domain Ω
results to be a non-simply connected domain including n simply connected
subdomains that independently evolves.

3. Model picture and mathematical formulation.

Similarly to the Eulerian and Lagrangian view points in fluid mechanics,
we consider now the motion of the particles that made up the interface. Let
the motion of each interface particle be random. For any realization indexed
by ω, the random trajectory of these particles is stated to be Xω(t,x0)
with the same fixed initial condition Xω(0,x0) = x0 in all realizations. By
using statistical mechanics formalism [18], the trajectory of a single interface
particle is marked out by the one-particle density function pω(x; t) = δ(x−
Xω(t,x0)), where δ (x) is the Dirac δ-function.
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The deterministic level set function γ, which is solution of Equation (1),
may be written as

(4) γ (x, t) =

∫
S
γ (x, t) δ (x− x) dx.

Let γω be the random level set function corresponding the ω-realization
that embeds the frontline Γω. The equation analog of (4) turns out to be:

(5) γω(x, t) =

∫
S
γ(x, t) δ(x−Xω(t,x)) dx .

Accordingly, IΓ and IΩ are replaced by the new indicator functions
IΓω , IΩω : S × [0,+∞[→ {0, 1} defined as follows:

IΓω(x, t) =

∫
S
IΓ0(x0) δ(x−Xω(t,x0)) dx0

=

∫
Γ0

δ(x−Xω(t,x0)) dx0

=

∫
Γ(t)

δ(x−Xω(t,x)) dx(6)

and

IΩω(x, t) =

∫
S
IΩ0(x0) δ(x−Xω(t,x0)) dx0

=

∫
Ω0

δ(x−Xω(t,x0)) dx0

=

∫
Ω(t)

δ(x−Xω(t,x)) dx ,(7)

where, for any fixed initial condition x0, the evolution of the deterministic
trajectory is denoted by x(t) and it is obtained uniquely by a deterministic
time-reversible map x(t) = F(t,x0). Moreover, an incompressibility-like
condition can be assumed. The meaning is that the number of particles
embodying the interface is kept constant while the the frontline enlarges.
Thus the Jacobian J of the motion law is J = dx0/dx = 1.

Hence, denoting by 〈·〉 the ensemble average, the effective indicator of
the region surrounded by an random front, ϕe(x, t) : S × [0,+∞[→ [0, 1],
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may be defined as:

ϕe(x, t) = 〈IΩω(t)〉 = 〈
∫

Ω(t)
δ(x−Xω(t,x)) dx〉

=

∫
Ω(t)
〈δ(x−Xω(t,x))〉 dx

=

∫
Ω(t)

p(x; t|x) dx ,(8)

where p(x; t|x) = 〈δ(x − Xω(t,x))〉 is the PDF of the displacement of
the interface particles around the average position x. Equation (8) has
been originally proposed to model the burned mass fraction in turbulent
premixed combustion [12].

Since the present approach is formulated to study the effects of an un-
derlying diffusive media in front propagation processes, according to clas-
sical properties of diffusion, the resulting PDF p(x; t|x) of the stochastic
process Xω is considered to be unimodal and its mean and median are co-
incident. This means that p(x; t|x) is a symmetric probability distribution
which normalizes after integration both over x and x. Consequently, values
of the effective indicator ϕe(x, t) range in the compact interval [0, 1].

It should be noted that the effective indicator ϕe introduced here is not
an indicator function in the classical sense. In fact, adopting the language
of fuzzy logic, it is properly a membership function, being its range the
compact interval [0, 1] rather than the discrete set {0, 1}. Despite this, since
the concept of probability which led to Equation (8) should not be confused
with the concept of degree of truth (typical of fuzzy logic), ϕe is classified
as an indicator function instead of a membership function.

Making use of the indicator function IΩ, Equation (8) can be further
written as:

(9) ϕe(x, t) =

∫
S
IΩ(x, t) p(x; t|x) dx .

It is worth noting that the deterministic trajectory x is the trajectory of
a point belonging to the ordinary level set contour with the same initial
condition x0. In the deterministic case, i.e. Xω(t,x) = x for all realizations,
it turns out that p(x; t|x) = δ(x− x), and from Equation (9) one recovers
ϕe(x, t) = IΩ(t).

Applying the Reynolds transport theorem to Equation (8), the evolution
equation of the effective indicator ϕe(x, t) becomes [12]:

(10)
∂ϕe
∂t

=

∫
Ω(t)

∂p

∂t
dx +

∫
Ω(t)
∇x · [V(x, t) p(x; t|x)] dx ,

6



DOI: 10.1685/journal.caim.504

where V(x, t) = V(x, t) n̂, with n̂ = −∇γ/‖∇γ‖, with reference to Equation
(1). For a deterministic motion, i.e. when p(x; t|x) = δ(x−x), Equation (10)
reduces to the ordinary level set equation (1) [12].

Since the range of the effective indicator ϕe is the compact interval [0, 1],
a criterion to mark the effective surrounded region Ωe has to be stated. In
particular, here we mark when the effective indicator exceeds an arbitrarily
fixed threshold value ϕthe , i.e. Ωe(x, t) = {x ∈ S | ϕe(x, t) > ϕthe }.

4. The time-fractional diffusion equation.

The random trajectory of each interface particle is assumed to be de-
termined as Xω(t,x) = xROS + χω, where xROS is a deterministic position
defined as dxROS/dt = V(xROS , t) and χ is the noise corresponding to the
underlying diffusive environment.

When the system is characterized by anomalous diffusion, the evolution
in time of particle PDF can be modelled by the time-fractional diffusion
equation, which is obtained from the diffusion equation by replacing the
first order time derivative with a real order derivative operator [19–21]. This
replacement can be done by using the time fractional derivative operator
in the Caputo sense or in the Riemann–Liouville sense. However, these two
forms are equivalent if standard initial condition is used [22].

The emergence of fractional kinetics in complex media has been recently
described within the standard diffusion framework in terms of parameter
fluctuations [23].

Let β be a real positive parameter limited as 0 < β ≤ 1, the time-
fractional diffusion equation in the Caputo sense reads

(11) ∗D
2β
t u = K∇2u ,

where coefficient K is a positive constant with dimensions [K] = [L]2[T ]−2β

and tD
µ
∗ is the Caputo fractional derivative defined for a sufficiently well-

behaved function f(t) by its Laplace transform as

(12)

∫ +∞

0
e−st {tDµ

∗ f(t)} dt = sµ f̃(s)−
m−1∑
k=0

sµ−1−k f (k)(0+) ,

with m− 1 < µ ≤ m and m ∈ N .

The time-fractional diffusion equation in the Riemann–Liouville sense
reads

(13)
∂u

∂t
= KD1−2β

t ∇2u ,
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where Dµ is the Riemann–Liouville fractional derivative defined as

(14)

∫ +∞

0
e−st {tDµ f(t)} dt = sµ f̃(s) ,

provided that all the limiting values f (k)(0+) are finite with k ∈ N such
that 0 ≤ k ≤ m− 1 where m ∈ N and m− 1 < µ ≤ m.

When β = 0.5 Equations (11) and (13) become the normal diffusion
equation and when β = 1 they reduce to wave equation.

Green’s function G of Equations (11) and (13) for arbitrary dimension
d is [21]
(15)

Gd(x; t) =
1

(2π)d/2+1iK(1+d/2)/2

∫ +i∞

−i∞
sβ(d/2+1)−1 estKd/2−1(sβr/

√
K) ds ,

where Kν is the Macdonald function, or modified Bessel function of the
second kind, of order ν and r = |x|. Moreover, Gd is real by setting s = −iω,
ω ∈ R, and then sβ = e−iπβ sgnω/2|ω|β [21].

In one and three dimensional cases, Green’s function (15) can be ex-
pressed in terms of the M-Wright function Mβ [21] as
(16)

G1D(x; t) =
1

2

1√
K tβ

Mβ

(
|x|√
K tβ

)
, G3D(x; t) = − 1

2πr

∂

∂r
G1D(r; t) .

To have a proper diffusion process characterized by a unimodal PDF,
parameter β must be constrained as 0 < β < 1/2 [19,24], from which
sub-diffusion follows. Furthermore, from (16) it follows also that when
1/2 < β < 1, since the function Mβ(z) is bimodal, the Green function
G3d can be negative and no kind of diffusion occurs.

Function Mν(z), 0 < ν < 1, is called M-Wright/Mainardi function
[25–28], its series representation is

(17) Mν(z) =

∞∑
n=0

(−z)n

n! Γ[−νn+ (1− ν)]
=

1

π

∞∑
n=1

(−z)n−1

(n− 1)!
Γ(νn) sin(πνn) ,

and a noteworthy particular case is

(18) M1/2(z) =
1√
π

exp
(
−z2/4

)
.

In spite of the fact that for some particular properties the Mν(z) can be
considered a generalized hyper-Airy function [29], in view of its leading role
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in diffusive stochastic processes, it is now considered as a natural (frac-
tional) generalization of the Gaussian function [30]. Further properties on
the M-Wright function can be found in the book by Mainardi [31], especially
in Chapter 6 and Appendix F.

The subdiffusive character is highlighted by particle variance that in
one dimension is [21,24]

(19) σ2
1d =

∫ +∞

−∞
x2 G1d(x; t) dx =

2

Γ(2β + 1)
K t2β ,

so that σ2
2d = 2σ2

1d and σ2
3d = 3σ2

1d [21].

Readers interested on the time-fractional diffusion equation can find a
deeper analysis for example in References [24,32,33].

Since Gd(x; t) is a symmetric probability distribution (i.e. Gd(x; t) =
Gd(|x|; t), see (15)) and also unimodal, then the mode, the mean and the
median coincide such that for a given average value x it holds Gd(x; t|x) =
Gd(x − x; t). Finally, in the time-fractional diffusion case here considered,
Equation (9) results to be

(20) ϕe(x, t) =

∫
S
IΩ(x, t)Gd(x− x; t) dx ,

and, by using (13), evolution equation (10) turns out to be

∂ϕe
∂t

=

∫
Ω(t)

∂Gd

∂t
dx +

∫
Ω(t)
∇x · [V(x, t)Gd(x− x; t)] dx

= K∇2

∫
Ω(t)

D1−2β
t Gd(x− x; t) dx +

∫
Ω(t)
∇x · [V(x, t)Gd(x− x; t)] dx .(21)

Numerical solutions of formula (20) are discussed in the following sec-
tion.

5. Numerical results.

In this section, a selection of the numerical results obtained for the
propagation of fronts in presence of anomalous diffusion, as well as normal
diffusion, is proposed. The results are here limited to the one-dimensional
case, involving the propagation of plane fronts, the analysis in two and three
dimensions is presented elsewhere [34]. The one-dimensional case, despite
its simplicity, has the relevant advantage to easily allow to point out the
main features of the front propagation when diffusion processes come into
play, and to help in performing a straightforward comparison between the
effects of normal and anomalous diffusion on the front propagation.
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The numerical results have been obtained by means of a software pack-
age suitably developed for the purpose. This includes a Python/Fortran95
library (pyMlib) useful for the numerical computation of the fundamental
solutions in the one-, two-, and three-dimensional cases by means of several
state-of-the-art algorithms [21,35], and is coupled with a standard LSM
library [36].

The one-dimensional fundamental solution for the various values of the
parameter β, ranging from β = 0.1 to β = 0.5, that will be considered
throughout this section is represented in Fig. 1. It is worth recalling here
that the case with β = 0.5 coincides with the case of normal diffusion, while
the cases with 0 < β < 0.5 are associated to anomalous diffusion and, in
particular, model the so-called “subdiffusive” phenomena.

0 1 2 3 4 5
x

0.0

0.2

0.4

0.6

0.8

1.0

f(
x
)

β=0.1

β=0.2

β=0.3

β=0.4

β=0.5

Figure 1. Fundamental solution in the one-dimensional case for five values of the pa-
rameter β: β = 0.1, 0.2, 0.3, 0.4, 0.5, where β = 0.5 corresponds to the case of normal
diffusion.

The analysis proposed here focuses on the investigation of the combined
effects of the diffusion coefficient K and of the parameter β on the features
of the random propagating front.

When the diffusion coefficient K is small enough, one can see that – no
matter the value of the coefficient β – the only outstanding feature of the
propagating front is its smoothing with respect to the sharp front obtained
in the deterministic (non-diffusive) case. The profiles plotted in Fig. 2, in
which the numerically computed random fronts are plotted together with
the deterministic front for the case K = 5, are representative of this be-
haviour.

On contrast, when the diffusion coefficient K is large, the qualitative
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(a) K=5, t=0.01
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(b) K=5, t=5

Figure 2. Evolution of the deterministic front (black curve) and of random fronts for
several values of β (coloured curves) for K = 5 for two time instants: (a) t = 0.01 and
(b) t = 5. All the fronts are located at t = 0 in x = xl = −10 and x = xr = 10 (dotted
line) and they propagate to the right with velocity vl = −5 and to the left with velocity
vl = 10.

behaviour of the random fronts is remarkably different from the behaviour
reported in Fig. 2. In fact, as it is shown in Fig. 3, in this case the smoothing
of the front may affect the existence of the bulk of the region Ωe enclosed
by the propagating front, where the “bulk region” is intended as the region
characterized by ϕe close to 1. In this scenario, the maximum value of
the effective indicator ϕe can be substantially reduced from its maximum
unitary value, especially when the region Ωe enclosed by the propagating
front is small enough (i.e. for small times), leading to what may be referred
to as a weakening effect of the diffusion phenomena on the region Ωe. For
large times, as the region enclosed by the propagating front increases in
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size, the qualitative behaviour previously discussed for the case of a small
diffusion parameter K can be eventually recovered, as it is seen in Fig. 3(c).

A remarkable feature of the random fronts connected with the anoma-
lous diffusion phenomena, easily appreciable in the set of plots of Fig. 3, is
that the more the diffusion is subdiffusive (i.e. the smaller is β), the more
important the described weakening effect is. This effect, though, is seen
only for small times: as time increases, the intrinsic subdiffusive nature of
the diffusion emerges and the steepness of the random front increases, as
expected, as the coefficient β decreases.

The features of the random fronts described so far for the case with
K = 100 remains qualitatively unchanged as the diffusion coefficient K
increases, but an important remark is in order. Depending on the physical
interpretation of the indicator ϕe, it may – or may not – be meaningful to
introduce the concept of an “effective” position of the propagating random
front. In this cases, assuming the front to be located, say, at the position for
which the effective indicator ϕe reaches the threshold value ϕthe , it might be
meaningful to argue that when the effective indicator ϕe is reduced to the
extent as to be less of ϕthe over all the domain Ωe, the region Ωe extinguishes
and no further front propagation takes place. Such a circumstance may, for
instance, be the case met in turbulent premixed combustion [12]: if ϕe marks
the position of the propagating front, should the value of ϕe drop below the
given threshold value, the flame would be regarded as extinguished and no
further calculation of the front evolution would be meaningful. Accordingly
to what already noticed, such a circumstance would become more and more
likely as the diffusion coefficient K increases. In Fig. 4, one can see the
propagation of the random and deterministic fronts obtained with K = 500.
Assuming, for instance, ϕthe = 0.5, in this case the area Ωe associated with
the front obtained with β = 0.5 (normal diffusion) would be extinguished
already at t = 5 (see Fig. 4(b)), and any further calculation concerning the
propagation of the connected random front would be meaningless, even if
at larger times the effects of the diffusion would be such that the values of
the effective indicator ϕe could reach values larger than the threshold ϕthe ,
as seen if Fig. 4(c). However, as already noticed, these considerations are
problem-dependent and strongly connected with the physical model under
consideration.

The weakening effect of the diffusion on the size of the region Ωe de-
scribed above is well depicted in Fig. 5 and Fig. 6.

In Fig. 5(a) and Fig. 6(a), the ratio r of the sizes of the effective re-
gion Ωe and of the deterministic region Ω (i.e the region associated with
the deterministic front) is plotted as a function of time for the two cases,
respectively of K = 100 and K = 500. It is evident that in the first case,
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(a) K=100, t=0.01
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(b) K=100, t=5
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Figure 3. Evolution of the deterministic front (black curve) and of random fronts for
several values of β (coloured curves) in the case of K = 100 at: (a) t = 0.01, (b) t = 5, (c)
t = 200. The initial location and the velocities of the fronts are the same as in Figure 2.

13



A. Mentrelli et al.

80 60 40 20 0 20 40 60 80 100
x

0.0

0.2

0.4

0.6

0.8

1.0

ϕ
e

(a) K=500, t=0.01
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(b) K=500, t=5
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Figure 4. Evolution of the deterministic front (black curve) and of random fronts for
several values of β (coloured curves) in the case of K = 500 at: (a) t = 0.01, (b) t = 5, (c)
t = 200. The initial location and the velocities of the fronts are the same as in Figure 2.

14



DOI: 10.1685/journal.caim.504

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.94

0.96

0.98

1.00

r
=
|Ω

e
|/
|Ω
|

(a) K=100

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

7

8

9

10

11

s

(b) K=100

β=0.1

β=0.2

β=0.3

β=0.4

β=0.5

Figure 5. (a) Evolution of the ratio of the sizes of the effective region Ωe and the
deterministic region Ω, r = Ωe/Ω, for several values of the parameter β in the case of a
diffusion coefficient K = 100 and (b) corresponding front speeds. The fronts are supposed
to be placed in the locations for which ϕth

e = 0.5.
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Figure 6. The same as in Fig. 5 but for K = 500. In this case, the regions Ωe extin-
guish as a consequence of the weakening due to the diffusion. The crosses indicate the
extinguishing of the regions Ωe, corresponding to the time instant in which the maximum
value of ϕe over all the domain falls below the threshold value ϕth

e = 0.5.

i.e. the case with K = 100 whose front profiles are plotted in Fig. 3, see
Fig. 5(a), the region after being initially weakened as previously explained,
eventually recovers reaching asymptotically a stable state. A completely
different behaviour is, instead, shown in Fig. 6(a) for the case of K = 500:
in this case, the diffusion is so strong that the weakening leads to the ex-
tinguishing of the region Ωe. For the purpose of this analysis, all the fronts
have been supposed to be located at the position for which ϕthe = 0.5,
and their velocities have been plotted as functions of time in Fig. 5(b) and
Fig. 6(b).
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6. Conclusions.

In this paper, a first step towards the development of a model and of
the related numerical simulation set-up for the study of the propagation of
interfaces whose particles are subject to random motion due to anomalous
diffusion phenomena is presented.

To this purpose, the well-known LSM, which, in the past decades, has
proven to be very successful in tracking the evolution of interfaces with
complex motion, has been selected as the preferred tracking method. In its
traditional formulation, the LSM accounts only for the motion of determin-
istic interfaces (i.e. interfaces whose particles’ motion is deterministic), the
introduction of a suitable generalization capable of accounting for a ran-
dom motion of the interface particles is in order. This generalization, which
has been here outlined following [12], is exploited in the case in which the
PDF of the interface particle displacement is connected to the phenomena
of anomalous diffusion taking place in the media in which the interface
propagates.

The front propagation in presence of anomalous diffusion is then inves-
tigated, with the aid of numerical calculations carried out by means of a
suitably developed code, in the one-dimensional case (plane fronts) under
the restriction of subdiffusive phenomena.

The presented numerical results clearly show that when the intensity of
the diffusion (namely, the diffusion coefficient K) is small enough, the prop-
agating front is smoothed-out with respect to the sharp front obtained in
the deterministic (non-diffusive) case, but the overall qualitative behaviour
of the front propagation in not affected by the diffusive phenomena tak-
ing place in the medium. On contrast, when the intensity of the diffusion
is large, the qualitative behaviour of the random fronts sensibly changes:
in this case the smoothing of the front may be so significant as to even
compromise the existence of the region enclosed by the propagating front
(and the front itself, in turn). This effect, which has been referred to as a
weakening effect of the diffusion phenomena on the region bounded by the
propagating front can be, as shown, a transient effect gradually vanishing
as the front propagates, or even a phenomenon which drastically affects the
very existence of the front, depending on the intensity of the diffusion itself.

Moreover, aside from depending on the intensity of the diffusion phe-
nomena through the diffusion coefficient K, the above-mentioned weaken-
ing effects has also been shown to be more pronounced as the subdiffusive
nature of the diffusion increases.

The analysis presented here has been extended to the cases of two-
dimensional as well as three-dimensional propagating interfaces and is pre-
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sented elsewhere [34].
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