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Abstract

We analyze the quantum phases, correlation functions and edge modes for a class of spin-1/2 and
fermionic models related to the one-dimensional Ising chain in the presence of a transverse field.
These models are the Ising chain with anti-ferromagnetic long-range interactions that decay with
distance ras1/r®, as well as a related class of fermionic Hamiltonians that generalize the Kitaev chain,
where both the hopping and pairing terms are long-range and their relative strength can be varied. For
these models, we provide the phase diagram for all exponents «, based on an analysis of the
entanglement entropy, the decay of correlation functions, and the edge modes in the case of open
chains. We demonstrate that violations of the area law can occur for a < 1, while connected
correlation functions can decay with a hybrid exponential and power-law behavior, with a power that
is a-dependent. Interestingly, for the fermionic models we provide an exact analytical derivation for
the decay of the correlation functions at every cv. Along the critical lines, for all models breaking of
conformal symmetry is argued at low enough «. For the fermionic models we show that the edge
modes, massless for & 2> 1, can acquire amass for v < 1. The mass of these modes can be tuned by
varying the relative strength of the kinetic and pairing terms in the Hamiltonian. Interestingly, for the
Ising chain a similar edge localization appears for the first and second excited states on the
paramagnetic side of the phase diagram, where edge modes are not expected. We argue that, at least for
the fermionic chains, these massive states correspond to the appearance of new phases, notably
approached via quantum phase transitions without mass gap closure. Finally, we discuss the possibility
to detect some of these effects in experiments with cold trapped ions.

1. Introduction

Topological superconductors and insulators have generated enormous interest in recent years as they
correspond to examples of novel quantum phases that are not captured by the familiar Ginzburg-Landau theory
of phase transitions. Breakthrough experiments have alreadyled to the observation of symmetry protected
topological phases both in condensed-matter systems [1] and atomic, molecular, and optical physics [2, 3].
While topological phases are finding applications in fields as diverse as photonics and spintronics, the recent
probable observation of Majorana modes [4-10] in solid-state materials represents the first major step towards
the realization of topological quantum computing.

Majorana modes are non-dispersive states with zero energy. In [11], Kitaev has shown that these modes can
existlocalized at the edges of a one-dimensional superconductor made of spinless fermions with short-range
(SR) p-wave pairing. This model is solvable and the underlying lattice Hamiltonian can be mapped exactly onto
the well-known Ising chain in a transverse field in one-dimension. For SR interactions, the latter is a text-book
example of Hamiltonian displaying a quantum phase transition, here from an ordered (anti-)ferromagnetic
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phase to a disordered paramagnetic one. Following earlier theoretical works [12, 13], recent experiments with
cold trapped ions have generated enormous interest by demonstrating that long-range (LR) Ising-type
Hamiltonians arise as the effective description for the dynamics of the internal states of cold trapped ions, acting
as (pseudo-)spins with two or, recently three, internal states. In these experiments, effective spin interactions are
generated by a laser-induced manipulation of the vibrational modes of the ion chain [13—17], which are
naturally long ranged. The resulting Ising-type interactions are antiferromagnetic and decay with distance ras a
power-law 1/r%, with an adjustable exponent o usually in the range 0 < o < 3.5.

In experiments with cold ions, the quantum state of individual particles can be prepared and measured. As a
result, both the static and dynamical properties of the many-body system are accessible. Recent experiments
have led to the observation of instances of interaction-induced frustration [ 18], non-local propagation of
correlations [19-23] and entanglement in a quantum many-body system [16, 24]. Very recently, spectroscopy
experiments have focused on the precise determination of the excited states of LR models [25].

The experimental works described above are based on the understanding of the phase diagram of the Ising-
chain in a transverse field, which is known exactly for SR interactions only. In a seminal work [26], Koffel,
Lewenstein and Tagliacozzo have explored the phase diagram of this system with LR interactions in the
parameter range « 2, 0.5. The results were intriguing: (i) the connected correlation functions decay with a
power-law tail even within the gapped paramagnetic phase, at odds with conventional wisdom inherited from
SR models and consistent with earlier predictions for other quantum models with LR interactions [12, 21—

23, 27]. Crucially, (ii) the entanglement entropy, usually a constant within gapped phases, seems to scale
logarithmically with the system size within the paramagnetic phase for sufficiently small o < 1as well as sub-
logarithmically for & > 1. This is remarkable as would signal a violation of the so-called ‘area law’, dictating the
behavior of the entanglement entropy in SR quantum mechanical systems. These studies also confirm (iii) the
persistence of antiferromagnetic and paramagnetic orders with decreasing a.

Research in the area of topological phases with LR interactions is very active, and several possible
experimental realizations have been recently proposed. In particular, Kitaev chains with non-local hopping and
pairing may be realized in solid state architectures with so-called helical Shiba chains, made of magnetic
impurities on an s-wave superconductor [28, 29]. For atomic and molecular systems, key implementations of
topological phases have been proposed with polar molecules, dipolar ground state atomic quantum gases and
Rydberg excited atoms [30—47]. In addition, the famous Haldane phase may be soon realized in cold ion
experiments with three internal states per ion [48, 49], simulating spin-1 particles. For this latter model, very
recent theoretical work [50] has demonstrated that major features of symmetry-protected topological order can
persist for LR interactions. It remains an open question to determine the validity of these results for generic
symmetry-protected topological phases with LR interactions.

In this work, we analyze the quantum phases, correlation functions and edge-mode localization of a class of
spin-1/2 and fermionic models related to the one-dimensional Ising chain in the presence of a transverse field.
These models are the Ising chain with anti-ferromagnetic LR interactions, as discussed in [26], as well as a class of
Hamiltonians corresponding to a generalization of the Kitaev chain, where both the hopping and pairing terms
are LR with an algebraic decay 1 /r®, and their relative strength can be varied.

For these models, we provide the phase diagram for all exponents «, based on an analysis of: (i) the
entanglement entropy; (ii) the decay of correlation functions in all phases; (iii) the mass and the localization
properties of the edge modes when the chains are open.

In the case of the long-range Ising (LRI) chain we utilize numerical calculations based on the density-matrix-
renormalization group (DMRG) method [51, 52], while the long-range Kitaev-type (LRK) models remain
exactly solvable for all o, allowing for analytical calculation.

The following results are obtained for all models.

(i) A violation of the area law for the entanglement entropy occurs in gapped regions with o < 1. For a 2 1,
no violation is found.

(ii) For any finite o, connected correlation functions within the gapped phases display a hybrid decay that is
exponential at short distances and algebraic atlong ones. The power of the algebraic decay, however, as well
as the extension of the two decay regimes, depends on a.. However, when @ < 1, the connected correlation
functions show a purely algebraic decay.

(iii) For the LRK models, we provide an exact analytical expression for the decay of correlation functions within
the gapped phases that describes the hybrid behavior with distance mentioned above and explains its
origin.
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(iv) Along the critical lines, we demonstrate that conformal symmetry is broken for sufficiently small «, by
analyzing the finite size scalings of the von Neumann entropy and of the energy density for the ground
states, as well as the behavior of the dynamical exponent with a around the minima of the spectrum.

(v) We find the existence of two kinds of edge modes: massless and massive. For the LRK models, massless
(Majorana) modes, as previously found in [53], appear in the antiferromagnetic region of the phase diagram
for large . The antiferromagnetic phase for the LRK models is defined in analogy with that of the short-
range Ising chain. The massive modes, instead, are entirely new and are found to appear in a broad area of
the antiferromagnetic phase for @ < 1and when we choose the unbalance e between the strengths of the
hopping and pairing terms to be different from 1. This results suggests, for v < 1, arestoration of the Z,
symmetry associated with the (absence of) ground state degeneracy, as well as a possible transition to a
novel Z, symmetric phase and without mass gap closure. Interestingly, if we choose € = 1, the massless
modes survive for all & > 0 and they are exponentially localized at the edge of the system.

(vi) For the LRI chain in the antiferromagnetic phase, edge modes are massless for all o, and, up to numerical
precision are exponentially localized at the edge of the chain, in contrast, e.g. to [50]. However, surprisingly
we find in the paramagnetic phase alocalization of excited, gapped, energy eigenstates for a < 1, which for
a 2 1areinstead delocalized in the bulk.

(vii) We finally discuss the persistence of some of the LR effects discussed above (e.g., hybrid decay of correlation
functions and edge mode localization) in small chains of up to 30 sites, as relevant to current experiments.

The paper is organized as follows. In section 2 we introduce the model Hamiltonians that we consider in this
work (section 2.1), the observables that are used to characterize the various phases (section 2.2), and present the
corresponding phase diagrams (section 2.3). In particular, in section 2.4 we discuss the critical lines of the Ising
and Kitaev models, and argue that conformal symmetry is broken for sufficiently small c. In section 3 we
provide an analytic calculation of the correlation functions for the fermionic Hamiltonians that explains the
hybrid exponential and algebraic decay observed in these LR models (sections 3.1 and 3.2). In section 3.4 we
provide a numerical comparison with results for the LRI chain, displaying similar behavior. In section 4 we
analyze the edge modes in the LRI and LRK chains. In particular, in section 4.1 we analyze the properties of
gapless Majorana modes that are found in the anti-ferromagnetic phases of the LRK models for v 2> 1.In
section 4.2, instead, we demonstrate that the edge modes can become massive for o < 1, signalling a transition
to anew phase. We discuss similar results obtained for some excited states that get localized on the edges in the
paramagnetic phase of the LRI model for o < 1. In section 5 we discuss the observability of some of the results
above in small chains of a few tens of particles, as relevant for cold ions experiments. Finally, section 6 discusses
conclusions and outlook.

2.Model Hamiltonians and quantum phases

In this section we introduce the model Hamiltonians that we consider in this work and present the
corresponding phase diagrams that we compute based on results from the entanglement entropy, decay of
correlation functions, spectrum of excitations, and edge mode localization, as discussed in detail in the following
sections.

2.1.Model Hamiltonians

2.1.1. LR Ising model

In this work, we are interested in Ising-type Hamiltonians with LR interacting terms. The LRI Hamiltonian [26]
reads

. L oo L
Hig; = sin 6 Z ——— + cos 920?, (1)

i=1;>il —Jl i=1

X __X
1

where 0] (v = x, y, z) are Pauli matrices for aspin-1/2 atsite j on a chain of length L. The first term on the
right-hand side of equation (1) describes spin—spin interactions that we choose antiferromagnetic (AM) with
sin 6 > 0 (orequivalently 0 < 6 < 7). The second term describes the coupling of individual spins to an
external field pointing in the z-direction. Thus, while the first term favours an antiferromagnetic phase with
spins pointing along the x direction, the second terms favours a paramagnetic (PM) phase where all spins align
along z. In the case of SR interactions (i.e., for &« — 00) the Hamiltonian equation (1) is exactly solvable and a
quantum phase transition between these two phases is known to occur at . = 7 /4. Reference [26] has shown
numerically that a quantum phase transition separating the AM and the PM phases survives for all finite

a 2 0.5. Below, we are interested in exploring the phase diagram of equation (1) for all « and 6.
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2.1.2. LRK chains
Related to the LRI chain, in the following we introduce and analyze a class of fermionic Hamiltonians of the form

Hirk = sin QZa;aj +a + E). a4 + hoc.
i li—jI*
where a]T describes the creation operator for a fermionic particle at site j, and n; = a;’ a;. The Hamiltonians
equation (2) represent generalizations of the Kitaev chain for spinless fermions with superconducting p-wave
pairing, where both the hopping and pairing terms decay with distance algebraically with exponent . Here, all
energies are expressed in dimensionless units and the parameter € governs the unbalance between the hopping
and pairing terms.
In the SRlimit & — 00, equation (2) maps into the Ising chain equation (1) via the Jordan—Wigner

transformation [54]

+ 2cos 0 nj, (2)

g;r = a;f exp [i WZW]; 3)

¢<j
0% =2m; — 1, (4)
with U}L = (0] + io'Jy- ) / 2. However, at finite « this identification does not hold anymore due to the

contributions of the string operators exp (i7r Z g <jnf) in equation (4). In particular, unlike the LRI, equation (2)

remains exactly solvable, allowing for analytic solutions at any finite .

2.2. Observables

2.2.1. von Neumann entropy

Entanglement measures are routinely used to characterize the critical properties of strongly correlated quantum
many-body systems [55]. A key example is the von Neumann entropy S, that we employ in this work. For a
system of L sites that is partitioned into two disjoint subsystems A and B containing £ and L — £ sites,
respectively, Sy is defined as

S¢ = —Tr p, log,py, (5)

where p, is the reduced density matrix of the subsystem A.

Two general behaviors of Sy are known for the ground states of one-dimensional SR interacting systems.
Within gapped phases, Sy saturates to a constant value independently of # and thus obeys to the so-called area
law [56]. On the contrary, S, diverges with ¢ for critical gapless phases and, for conformally invariant systems,
satisfies the universal law [57]:

S,=a+ % log,d (¢, L), (6)

with d (¢, L) = (2L/x)sin(n£ /L) for the case of open boundaries. Here, a is a non-universal constant and cis
the central charge of the theory. The latter characterizes the universality class of the gapless phase [58, 59]. Sy,
and thus the central charge, can in principle be directly computed by numerical techniques, such as density
matrix renormalization group [51, 52] as well as by means of analytical methods for quadratic Hamiltonians
[60-63].

In the case of LR models it has been shown [26, 53, 56] that the divergence of S, in equation (6) can also
occur for gapped phases, corresponding to a so-called violation of the area law. Since this violation is found to be
logarithmic, an effective central charge c.¢¢ may be defined also within the gapped phases and used to characterize
the main features of the phase diagram for LR interactions [26].

2.2.2. Correlation functions
The various quantum phases can be characterized by the decay of two-point correlation functions with distance.
For the LRI model, we are interested in the connected correlations

iy = (otay) = (o) (%), )
withv = x, z.
For the LRK models we are interested both in the density—density correlation function

%G ) = (mny) = (ni) (m;) ®)
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and the function

HES < (a;r + ai)exp (’Ni S ﬂ;af)(a; + aj)> ®

=i+l

X

that correspond to the functions C;7; and < 0} 0]
transformation given above [54]. Since the LRK models are quadratic, the functions equations (8) and (9) can be

> in the LRI model, respectively, via the Jordan—Wigner

directly obtained from the one-point correlations < a; aj> and < a; aJT> via Wick’s theorem. In particular, one
finds

gz(i,j):‘<a;a}h>’27‘<aiTaj>‘2 (10)
and

Gi,i+1 G,‘,j
3, j) = det : 1D
Gj—l,i+1 G]'_l,j

with Gy, p = S + 2(a)a)) + 2(a a,).

For SR interactions, the connected correlations above are known to decay exponentially (algebraically) with
distance within the gapped (gapless) phases. Surprisingly, for several models with LR interactions it was reported
that algebraic decay of correlations can coexist with an initial exponential decay within gapped phases
[12,22,53]. An analytic understanding of this effect has so far proven elusive.

In the following we use the decay of correlation functions to characterize the various phases. In particular,
for the LRI chain we provide extensive numerical results using DMRG techniques, while for the LRK chains we
exploit the integrability of the models to derive an analytic expression of the behavior of correlation functions in
all parameter regimes.

2.2.3. Edge states and edge gaps

Localized edge states within topological phases have attracted much interest over the last decade, largely because
of possible applications in schemes for topological quantum computing [64]. In particular, [11] has shown that
localized states arise at the edge of a 1D superconductor with p-wave SR pairing interactions (described e.g. by
thelimit & — o0 of equation (2)). The existence of these localized states is related with the spontaneous
breaking of the discrete Z, symmetry associated with the parity of the fermion number: when this Z, symmetry
is broken, two degenerate ground states with different parity appear. Here, they will be labeled by |07) and |0~)
in the even and odd parity sectors, respectively.

As Hamiltonians equations (1) and (2) are equivalent in the limit @ — 00, the same breaking of 7,
symmetry (now related to spin flips along x direction) described above occurs also for the LRI chain, resulting in
the presence of two degenerate edge states in this model. From the discussion above it turns our that the analysis
of the edge modes can be utilized to characterize the quantum phases of the system.

In this work, we identify the localized states by directly computing their wavefunctions and masses, which
can be achieved either numerically for equation (1) using DMRG simulations or exactly for equations (2). In
order to accomplish this task for the LRI model, it is useful to exploit the Jordan—Wigner transformation

. . . T + . + — . . . .
equation (4) to define new fermionic operators c]J = ojexp (177 > <i% orf) (similar to equation (4)) from spin

operators af. We then compute the wave-functions @21’2) of the massless edge modes as [65]

e = {o]]o) + {or] o), o

WP = i(<0*‘cj+|0+> = <0+‘cj|of>). (13)

Here, the states |07) and |0) are the ground states in the even and odd parity sector also for the LRI model,
respectively. The mass of the two modes ¢, also known as edge gap (in order to distinguish it from the usual
mass gap, i.e. the energy difference between the ground state and the first excited bulk state, see [50, 66]), is
defined as the difference Ej-) — Ejo+), with Ejo+ being the energy of the state | 0%).

In the following we will also be interested in characterizing the localization of massive edge states that are
found in the phase of LRI where the Z, symmetry is preserved, and thus where a unique ground state |0*) occurs
in the even-parity sector. This localization arises for the first two excited states | I") and |27) for @ < 1, whichare
instead delocalized in the bulk for a >> 1 (see section 4.2). Their wavefunctions read

5
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o= {rldlor) = (2 dlor) "

Here the mass of the mode w}s) is defined as the difference AE (s) = E|;-y — Ejo+y withs = 1,2. The difference
between equations (12)—(14) is that in the first two expressions the second term on the right-hand side of the
equations is nonzero because of the zero-energy condition [65].

For the LRK models, the wavefunctions for both the massless and massive modes can be extracted following
[54]. The latter describes a technique for the exact diagonalization of a generic fermionic quadratic Hamiltonian
of the form

L
1
H= .Zl[Aija’Taj + E(aiTB»ja;f + h.c.)], (15)
i,j=
with A = [A;;]and B = [B;;] real matrices. Equation (15) can be cast in diagonal form as
-1
n=0

by a singular value decomposition of the matrix A 4+ B:
Ay, = Z¢nj(Aji + Bji)%- (17)
ij

Here, A, are single-particle energies (orderedas Ay < Ay < --- < Ay_;)and 7, are fermionic operators defined
by the following Bogoliubov transformation

M, = Zgnjaj —+ hn]aj (18)
j

The matrix elements ¢,; = g,. + hyjand ¢; = g,. — hy; can be directly identified as the wavefunctions of the

two Majorana modes (), + 77:; ) / 2andi(n, — r]; ) / 2 with energy A, while g,;and h,,; are the wavefunctions of
T

n,and 7.

2.3.Phase diagrams of LRI and LRK models

In this section, we present the phase diagrams for the LR models equations (1) and (2), obtained from an analysis
of the observables described above. The results for the LRI model were obtained numerically via DMRG
techniques for chains of alength Lupto L = 200. For all calculations we utilized up to 128 local basis states and
10 finite-size sweeps [51, 52]. The discarded error on the sum of the eigenvalues of the reduced density matrix
was always less than 10~ %, For the LRK models all results were obtained (semi-)analytically.

2.3.1. LR Ising model.

Our results for the phase diagram of the LRI model are summarized in figure 1(a), where we plot the effective
central charge c.¢ defined in section 2.2.1 as a function of the angle 6 and the power « of the antiferromagnetic
term in equation (1). Hamiltonian equation (1) is invariant under the transformation cos § — —cos 6 and thus
the phase diagram is symmetricaround § = /2.

We find that for «« 2 1, cff is zero everywhere except along two critical lines. By comparing with results for
the energy gap (not shown), we find that the critical lines separate two gapped regions (denoted as PM1 and AM
in figure 1(a)) that for @ — 00 correspond to the known paramagnetic and antiferromagnetic phases of the SR
model. Similar to [26], we find that the behavior of the full correlation functions < oo} > and < oio; > is
consistent with the persistence of paramagnetic and antiferromagnetic orders for all . However, different from
the SR model, we find that the connected correlation functions decay with distance with a hybrid behavior that is
exponential at short distances and algebraic at long ones. An example is shown in figure 2(a) for C; in the PM1
phase. Surprisingly, we find numerically that the exponent +, of the long-distance decay for C;*; displays three
difference behaviors: (i) for o« > 2 it fulfills 7, = «, consistent with the results of [12, 26]. However, (ii) for
1 < a < 2weobtain a hybrid exponential and algebraic decay with a different -y that depends linearly on o with
aslope consistent, with ~0.55(5) and (iii) for o« < 1we observe numerically a curve compatible with a pure
algebraic decay, with an a-dependence of «, that is linear with slope ~0.25(2). The fitted exponent -, is shown
in figure 2(c).

For a < 1inthe paramagnetic regions of the phase diagram denoted as PM2 we find that the effective
central charge grows continuously with decreasing « from zero to a finite value that appears to be -dependent
and has a maximum of order 1 for & = 0 and  ~ 7/2. An example for § = 0.27 is plotted in figure 1(d) (blue
squares). As mentioned above, in this PM2 region, the correlation function C;% is found numerically to decay as
an almost pure power-law.

The energy spectrum changes in this region PM2 compared to the case PM1: the energy gaps AE (1) and
AE (2) between the ground state and the first excited states in the odd parity sector increase with decreasing «, as

6



10P Publishing

NewJ. Phys. 18 (2016) 015001 D Vodolaetal
s @ LRL ey ®  LRK  er 4o
AM
PM
AM1
21 pmi PMI | B Y L
S 110.5
1 L i |
' / {
pM2  \ / PM2 | | \ AMD2
0 L — e , :
0.0 0.5 1.0 0.0
O/n
(©)  Ceft (d Ao-LRK
1.0 6=02n a =00
LRK [ ] 107 ]
a=0.1
0-5 0.5] st w02}
/W'/'/VT_‘
0.0 0.0 2. =03,
0 1a 2 0.00 1/L 0.02 0.0

Figure 1. (a) Phase diagram of the LRI model equation (1) from the effective central charge c.¢ extracted from the entanglement
entropy Sy (see equation (6)) forasystem of L = 100 sites, as a function of vand . The phase diagram is symmetric with respect to
0 = 7/2.PM1 and AM denote gapped paramagnetic and antiferromagnetic phases, respectively, with cet = 0. In the paramagnetic
gapped region PM2, c.¢ > 0 (see panel (c) blue squares) and massive edge modes (see section 4.2 and figure 7(d)) are found. The
continuous black lines correspond to critical transition lines with central charge ¢ = 1/2. The dashed red lines signal an increase of
the central charge from 1/2 up to ¢ ~ 1with decreasing « (see figure 3(b) blue triangles). (b) Phase diagram of the LRK model
equation (2) from ceg extracted from Sy in the thermodynamic limit as a function of @ and 6, and for € = 0. AM1 and PM are gapped
phases with cef = 0 for @ 2 land cer = 0 for a < 1(see panel (c) green circles). AM1 shows massless edge modes with a hybrid
exponential and power-law decay with distance. AM2 shows edge states with a finite mass A, which increases with decreasing o (see
panel (c) and figure 8(a)). The continuous black lines correspond to critical transition lines with central charge ¢ = 1/2. The dashed
red lines signal an increase of the central charge from 1/2 up to ¢ ~ 1with decreasing cv. (c) Effective central charge c.f for the LR
Ising (blue squares) and the LRK models (green circles) for § = 0.27 as function of a. (d) Scaling with the system size L of the mass A
of the edge modes within the AM2 phase, for § = 0.757 and for several a < 1. (e) Edge gap A of the LRK model for a system of

L = 400sitesand € = 10. In the region denoted by ‘edge gap’ the Z, symmetry of the model is restored and the AM2 phase appears.

shown in figure 8(b), and the wave-functions of the two lowest-energy excited states | I") and |27), defined in
section 2.2.3, become localized at the edges of the chain (figure 7(b)).

In the antiferromagnetic phase, denoted as AM, the effective central charge is instead zero for all & [26]. For
a > 1the connected correlation functions C%; display a clear algebraic decay at long-distances (see the example
in figure 6(a) below), while our numerical results do not allow for establishing whether an initial exponential
decay is also present, as expected. The ground-state is found to be doubly degenerate for all . This degeneracy is
due to the spontaneous breaking of the Z, spin—flip symmetry [58, 67], and is related to the two modes that are
localized at the edges of the chain as in the short-range Ising model . While a LR power-law tail may be present
[50], the localization of these modes is here found to be consistent with exponential up to numerical precision
(see figure 7(b) below). We come back to this point below.

2.3.2. LR Kitaev models.
The phase diagram of the LRK model equation (2) for ¢ = 0 is reported in figure 1(b), where we plot the effective
central charge c.¢ defined in section 2.2.1 as a function of the angle 6 and the power « of the decay of the pairing
term. In this case the invariance of equation (2) under cos # — —cos 6 islost for any finite o and the phase
diagram is not symmetric around 6 = /2.

Figure 1(b) shows thatfor & 2 1and 0 < 6 < m, two phases exist that are denoted as PM and AM 1
separated by two critical lines. In the limit &« — o0 these phases correspond to the paramagnetic and
antiferromagnetic phases of the LRK model and are gapped. Consistently, figure 1(b) shows that the effective

> The presence of massless edge modes in the AM phase of the LRI model is not a sign of symmetry-protected topological order, as it is
discussed for the SR Ising model in, e.g., [68].
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Figure 2. (a) C{; correlation equation (7) for Hygng (0 = 0.2 and L = 60), showing the hybrid exponential and power-law behavior
for o 2 1and the purely power-law for a S 1. The oscillations and the bending of Cj*} for R 2 50 are due to finite size effects of the
DMRG simulations. (b) ¥ (1, R) correlation equation (9) for Higg at ¢ = 0.2m and L = 100 (PM phase), showing the same hybrid
behavior and the same decaying exponent as C;% for & > 1. For a < 1 instead the power-law tails have exponents differing from
C[k- (c) Decaying exponent -y, of the algebraic tail of the C;% correlation fitted as 1/R. Three different behaviors for ,,
corresponding to the three dashed black lines are numerically observed (see section 2.3.1). (d) Decaying exponent -y, of the algebraic
tail of the ¥ (1, R) correlation fitted as 1/R7s.
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Figure 3. (a) Effective central charge extracted from the scaling with L of the von Neumann entropy (6) as function of # for two values
of o, plotted for different system sizes L = 60, 80, 100. We located the critical point (indicated by red triangles) where the effective
central charge does not depend on L. (Main panel) scalingat a = 2.0: the critical pointis 6. ~ 0.3027 and the central charge cis
compatible with 1/2. (Inset) scalingat &« = 0.7: the critical pointis 6. &~ 0.3767 and the central charge cis compatible with ¢ ~ 0.66.
(b) Central charge on the critical lines of the LRI model (blue triangles) obtained with the same method as in panel (a) and of the LRK
model (green diamonds) obtained by finite size scaling from the expression for entanglement entropy in equation (6).
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Figure 4. (a) Integration contour adopted to evaluate the integral (25). The red dashed line is the branch cut of the square root in the
denominator of the integrand in (25). (b) Decay rate 1 /£ of the exponential part of the correlation of equation (29) as function of « for
two values of 6. The red lines represent the value of 1/¢ for a — oo.

central charge c.fr is zero within the phases for all 2 1 (see figure 1(d) for an example), while c.¢ = 0 along the
critical lines, as expected from general results for SR systems [57].

The PM and AM1 phases are distinguished by different asymptotic values of the correlation functions X (i, )
defined in section 2.2.2. In the region denoted as AM1, (4, j) has a finite value for |i — j| — oo, while 3 (i, §)
decays for |i — j| — oo within the PM phase. Similar to the situation in the LRI model (see above), the decay to
zero of ¥ (4, j) in the PM phase shows a hybrid exponential and power-law behavior with distance. This is shown
for a particular value of 0 in figure 2(b), where we find numerically that the exponent ~;, for the power-law tail of
%.(i, j) equals 7, = awwhen o > 1.For a < 1, however, the exponential part becomes numerically
unobservable, and X (4, j) decays essentially algebraically within the PM phase with an exponent that grows to 2
for &« — 0 (see figure 2(b)).

Remarkably, we show below in section 3 that the hybrid exponential and algebraic behavior described above
can be obtained analytically in all phases for several correlation functions, such as the one-body and the density—
density correlation functions. In particular, the leading contribution to the one-body correlation function
< al aj> reads

1
> 2,

Ra+1

—1)Re~<R 1
<a£ao>:A(y,9'(T+Ba’9'4W 1<a<?2, (19)
1
0<a<l,
R~

where the pre-factors A, g and B, ¢ are derived below in section 3. The algebraic part of the decay of g, (R) is
instead found tobe g, (R) ~ R™?*and g,(R) ~ R™*for & > land o < 1, respectively.

In section 4.1, we show that a similar hybrid exponential and power-law decay is found for the localization of
the edge modes within the antiferromagnetic phase AM1: for o 2 1, the edge modes are massless, as expected
from the SR Kitaev model. However, for o < 1the edge modes acquire a finite mass, i.e., become gapped. This is
shown in figure 1(c), where we plot the edge gap A defined in section 2.2.3 as a function of « for a few values of
the parameter e of Hamiltonian equation (2): while for « 2, 1 the gap scales to zero with the system size L as
1/L%, for a < 1itremains finite and for o« ~ 0 can be of order unity. The presence of the gap removes the
degeneracy of the ground-state, signaling a new phase for this class of topological LR models. This latter phase is
denoted as AM2 in figure 1.

2.4. Critical lines

2.4.1. LR Kitaev models.

For the LRK models, the critical lines can be computed exactly as the Hamiltonians in equation (2) are
integrable. A Fourier transform of the fermionic operators a; takes equation (2) to the form

9
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. g, (k) + cot —i(1 + e)f, (k) ax
Hirg = sin 6 loa_ - | 20
LRK = Sin Zk:(ak a k) i1+ of, k) — (gn,(k) + cot 9) (aik) (20)
1 " . . .
where a; reads a;, = f Zj elk]a]',k = 2mn/L is the lattice momentum with n = 0,..., L — 1,and the
functions f (k) and g, (k)read f, (k) = Zf sin(k¢)/¢*and g, (k) = Zt, cos(k£) /¢, respectively.
A Bogoliubov transformation brings equation (20) in diagonal form as
Hirk = Y Ao (0) (nfm = 1/2), @1
k
with
Ao (k) = 25in 0,5, () + cot O) + (1 + ef, (k) (22)

Here, the new fermionic operators (7]1, 1_,) are given in terms of the operators (a;/, a_;) by

[ 772 ) _ (sin B icosﬂk)( af ) (23)
_k icosBr sin B \a_i)

where tan(20;) = (1 + ¢)f (k)/[g (k) + cot 8]. The ground state of equation (21) is the vacuum of the 7,
fermions and has an energy density ey (a, L) = —Zk/\,} (k)/(2L).

The critical lines can be computed from the dispersion relation equation (22) as follows: (i) for a finite system
with L sites, equation (22) is zero on the line cot 6 + g, (0) = 0and ontheline cot 6 + g (m) = 0;(ii) fora
system in the thermodynamiclimit L — oo instead f, (k) = JLi,(e*) and g (k) = PRLi,(e¥), Li, (x) being
the polylogarithm of order o [69], and the critical line cot § 4 g, (0) = 0 endsatthe point = mand o = 1.

For the critical line with § < 7/2 we compute the value of the central charge ¢ by two methods: (i) by fitting
the von Neumann entropy equation (6) and (ii) by studying the finite size corrections to the ground state energy
density eg (o, L) (see [53] for a similar model).

The results for c obtained from the scaling of the von Neumann entropy equation (6) are reported in
figure 3(b). For o« 2 1, we find ¢ = 1/2 as expected from the SR model. For o« < 1, however, c g increases up to
values of order one (see red dashed line in figure 1(a)). In [53] it was demonstrated for a related model with LR
pairing only that this behavior corresponds to an exotic change for the decay of density—density correlation
functions: For o < 1 their oscillations mimic those of a Luttinger liquid. Here, we find a similar behavior (not
shown). The increasing of c.f, below & = 1, is also found in the very recent work [70] where the scaling of the
von Neumann entropy in the thermodynamic limit is analytically analized.

This anomalous behavior of c.¢ points towards a breaking of conformal symmetry along the critical line,
which we analyze further below.

The breaking of conformal symmetry can be inferred also by analyzing the scaling of the energy density
eo (cv, L) with the system size L [53]: for a conformally invariant theory the following relation must hold [59]
TVEC

612

where e, (o) is the energy density in the thermodynamic limit, vg = |2 sin 6 Li,_;(—1)] is the Fermi velocity
and cis the central charge of the conformal theory. We analyzed numerically ey (o, L), finding that relation (24)
works properly only for sufficiently large o 2 2. Thisresultsinavalue ¢ ~ 1/2 for o 2 2, as expected from
results for the SR Kitaev chain. Conversely, for a < 2, ey (o, L) does not satisfy the scaling law (24), which
implies a breaking of conformal symmetry. This behavior also implies that the quantum phase transition
between the PM and the AM1 phase for § < 7/2 and o < 2 isin a different universality class from that of the
SR Kitaev (Ising) model. We notice that, even if conformal symmetry is broken, the von Neumann entropy
predicts a value for c.¢ which tends to 1 as a goes to zero, compatible with the observed decay of density—density
correlation functions.

We further confirm the breaking of conformal symmetry for the fermionic models by looking at the
behavior of their low-energy spectra. The dispersion relation of a conformal field theory is linear in the
momentum k, implying a dynamical exponentz = 1[59]. Consistently, by expanding the dispersion relation
Aq (k) for the long range Kitaev models on the critical line with 6 > 7 /2, for o > 2 wefind A\, (k) ~ k, for
k — 0.However, for 1 < a < 2 we obtain the scaling A\, (k) ~ k%~ L. Thislatter scaling implies a dynamical
exponent z = « — 1 that varies continuously with o and is different from that of a conformal field theory. This
would imply that the quantum phase transition between the PM and the AM1 phase for § > 7/2and o < 21is
in a different universality class from that of the SR Kitaev model. The appearance of a new universality class due
to LR interactions is also found in [71, 72]. Incidentally, we notice that linearity of the spectrum around the
minimum is only a necessary condition for the persistence of conformal invariance: indeed along the critical line
at § < m/2 conformal symmetry breaking arises even if the low-energy spectrum is linear for every o

6()(0{, L) = eoo(a) - > (24)

10
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2.4.2. LR Ising model.

We locate the critical line (for § < 7 /2, the other being symmetric) of the LRI model numerically by using two
complementary ways that agree up to finite-size effects. Firstly, we determine the points in the phase diagram of
figure 1(a) where the energy gap between the ground state and the first excited state reaches its minimum. Then,
we compute the effective central charge c.g for different system sizes L from equation (6) and determine the
precise values of a and 6 for which its value does not depend on L [73, 74]. Examples of this latter technique,
which is found to be particular precise, are presented in figure 3 for different . We notice however that this
method does not allow us to extract a precise value for c.¢ when o < 0.2, since within our numerical results
lines with different L do not cross at a single point in this region.

On the critical line, we find that for o 2 1 (black solid lines in figure 1) c.g is equal to 1/2 as expected for the
central charge of the critical SR Ising model. However, for v < 1 (red dashed lines in figure 1), cincreases
continuously up to a value of order 1 as shown in figure 3(b). We argue that on this line the conformal invariance
of the model is broken as the found values of ¢ do not coincide with the discrete set allowed for the known
conformal field theories [58, 67].

Based on the mismatch between the predictions for ¢ from the von Neumann entropy and the ground state
energy density found in the previous subsection for the LRK model, we cannot exclude here a conformal
symmetry breaking also in a certain range for o above o« = 1. However our results do not allow us to provide a
final answer, since our DMRG calculations for the LRI model cannot reach sufficiently large sizes to perform a
satisfying finite-size scaling for the energy density.

3. Correlation functions for the LRK

In this section, we present an analytical calculation of the one-body correlation functions for the LRK models.
The latter display a hybrid exponential and algebraic decay with distance that is explained by exploiting the
integrability of the models. Higher-order correlation functions, such as the density—density correlations, are
readily obtained from these correlations via Wick’s theorem (see section 2.3.2 and below).

The one-body correlation functions (aga,) and (agag) read

0

(akao) = — = WO (25)
and
. isinf 2w . f(y k
(afal) = 152”; fo dk eiR ZAL(E) , (26)

respectively. In the following, we focus first on the one-body correlation function (aja,) and come back to the

anomalous correlation (a}ag) in section 3.3 below.
In order to evaluate equation (25), we use the Cauchy theorem applied to the contour in the complex plane

drawn in figure 4

(afao) =—$U; +j; +j; + Cw)eizR Ga(2) dz 7)

with G, (2) = [g, (2) + cot 9]/[2\/(cot 0 +g, () + fj (z)]and z = k + iy, and where we have chosen
¢ = 0.In equation (27) we have neglected the contributions from C, and C/, as they vanish when M — oo. As
we explain below, the integrations over the lines £ and Cy», (and thus momenta k ~ 7 and k ~ 0 and 2,
respectively) are responsible for the exponential and algebraic behavior observed in these models, respectively.

3.1. Exponential decay
The sum of the integrals on the lines £_ (where z = 7~ + iy)and £ (where z = 7" + iy) of figure 4 gives
ei'/TR e*fR 00 .
PR = = S [ e Gur + iy + ) dy. 28)
T 0

Equation (28) displays an exponential behavior with a decay constant 1/£. The appearance of this quantity is due
to the square root in the denominator of G,(z), yielding abranch cut from z = 7 + i £ to 00. The leading term
in equation (28) is obtained by integrating G, (7 + i(y + &))inthelimit y — 0[75], and reads

11
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I*(R) = (-DRA <= (29)
« - a,0 \/ﬁ 5
with
i(—eé i(—e¢
P (2 ot + Lla(l/ze ) + Lia(—e )) . 30)
4T |Lia,1( - ef)‘ [c0t9 + Lia(—e‘f)]
The decay constant £ is related to the zeroes of the denominator of G, (z) and is obtained by solving the
equation
[cot 0 + Li(,(fe*f)][cot 0+ Lir,( - ef)] = 0. (31)

Two cases must be distinguished: if cot # < |Li,(—1)|, the equation [cot § + Li,(—e ¢)] = 0 admitsa
solution, since the function —Li,(—e~¢) is always decreasing for ¢ > 0. Ifinstead cot 6 > |Li,(—1)|, then
[cot 6 + Liy( — e%)] = 0admitsasolution, for the same reason as above. In the following we focus, without
loss of generality, on the first case, where £ is solution of cot # = — Li,(—e~%). Notably for o = 0 solutions
existonly for § > 7 /4 [in which case, £ = £log(tan # — 1) for cot § < 1/2].For § < 7 /4, instead,
equation (31) does not admit any solutions, which implies the absence of exponential decay. This is in contrast
with, e.g., the expected behavior of correlation functions within gapped phases for SR models.

Figure 4(b) shows the decay constant 1 /¢ as a function of « for two different values of §. In particular, for
0 = 0.2mand @ — 00,1 /¢ tends to the SR value (£ — |log [tan 0]]), as expected. However, for & — 0 we find
that 1/¢ tends to zero, essentially linearly with c.. As explained below, this can result in the non-observability of
the exponential dependence of correlation functions for o < 1. Notice however that even if € is finite when
a < 1for @ = 0.4, the exponential part of the correlation functions is still unobservable.

3.2. Algebraic decay
The sum of the integrals on the lines Cy (where z = 1) + iy)and C,, (where z = 2 — 1 + iy) of figure 4 gives

B (R) =~ f T eRIG () dy, (32)
T 0

after sending 7 — 0. The leading contribution for R — oo to the integral in equation (32) can be computed
again by integrating the imaginary part 3G, (iy) for y — 0. By exploiting the following series expansion of the
polylogarithm [69]

Lig(e™”) =T — a)( Fy)* ' + Z%(i}/)]} (33)
=0 T
one obtains
(1
Rt a > 2,
I(EOW(R) = Ba,g © 9 % l1<a<?2, (34)
1
Ri-a a<l1
with
( M a > 2)
(¢ () + cot 6)?
(cos(ma) — DI'(1 — ) Qa — 1) l<a<2,
Bag = 1 4l (@) (cot () + ¢ (a))? (35)
cos® (E)F(z — a)(cot(®) + C(a))
2
a < 1.
L (1 — )

While, e.g., the phase diagram of figure 1(b) demonstrates the persistence of individual paramagnetic and
antiferromagnetic phases with varying o, the analytic expressions equations (34) and (35) for the one-body
correlation function clearly show that different regions are in fact present within each phase.

12
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Figure 5. (a) Comparison between numerical solutions of equation (25) (symbols) and the analytic expressions equations (29) and
(34) (solid lines) for 6 = 0.2397 and different a.. The inset refers to v = 0.45, where the exponential part is negligible. (b) Cf 1 ry+r
correlation for Hygrat ¢ = 0.2077,L = 100, Ry = L/4 and different a.. The power-law part of Cf; . | r, g shows the same decay
exponent 7, = 2a for o > 1,as g, (0, R) for Hygk (equation (39), solid black lines).

3.3. Hybrid decay and other correlations

The two contributions from equations (29) and (34) sum up to give the hybrid exponential-algebraic behavior of
equation (19) valid for all av. Figure 5(a) shows that the analytical results are in perfect agreement with a
numerical solution of equation (25).

The anomalous correlation (ajag) can be computed along the same lines as before and is given by
! a>1
e & ’
(ahad) = A0 —m— + B 1 6o
— 0<axl1
R
with
i (—e€) — Li.( — e
o _ 1 Lla( e ) Lla( e ) 37
o0 4T i 1/2 . 1/2
™ ‘L1a,1(fef)‘ (cot9 + L1a(fe*5))
and
— # a > 1,
B, — (cot 0 + ((a)) 38)
’ 1 e’
— — COs — 0<a<l.
2T 2

From (ajao) and (a}ag) we can compute other local correlations by Wick’s theorem. For instance, the

2
density—density correlation function g, (i, j) reads g, (i, j) = ‘ <ng a]T > ‘ — ‘ <gl.T a; > ‘2 and, from equations (34)
and (36), the leading part of its LR power law tail is found to be

1
R a>1,
SO, R ~ 1 (39)
F 0<a<l.

We notice that a hybrid exponential and algebraic behavior similar to that described above has been already
observed numerically in certain spin and fermionic models, e.g., in [12, 26, 50, 53]. This behavior is
characteristic of the non-local interactions and from our analysis appears to be largely unrelated to the presence
or absence of a gap in the spectrum. In fact, we have shown here for Hamiltonians equations (2) that this hybrid
decay does not require exotic properties of the spectrum (see [21] and [22]), rather is due to the different
contributions of momenta k = 7 (as for the SR limit) and k = 0, 27 respectively. In particular, the latter
momenta are responsible for the LR algebraic decay.

Finally, as mentioned before, we notice that (i) the contribution to the imaginary part in equation (32) is due
to Li,(e”) and disappears in the limit & — oo, This implies a simple exponential decay of correlations as
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Figure6. (a): Cg; 1, g correlation for the LRI for § = 0.357 (AM phase)and L = 200, computed from Ry = 100. The data are
fitted by the solid lines ~1/R, 7, reported in the plot. (b): C;; correlation at § = 0.2077 (PM phases) for asystem of L = 30 sites.

expected for a SR model. Conversely, (ii) the exponential decay is negligible when o < 1, as shown in the inset of
figure 5(a), implying an essentially pure algebraic decay.

3.4. Comparison with correlations of the LRI model

In this section we compare the decay with distance of the correlation functions g, (i, j) and ¥(i, j) of the LRK
models with those of the correlations Cf and C;" of the LRI model, respectively, since they are related by a
Jordan—-Wigner transformation (see, e.g., section 2.2.2). The correlation functions C and C}j" have been
studied within the PM phase in [26] for o 2 0.5. There, for o 2> 1it was found that the long-distance behavior
is characterized by an algebraic decay with exponents 7, = 2 and 5, = « for the two correlations, respectively.
For a Z 1, our own calculations for C and 7} are reported in figures 2(b) and 5(b), respectively. There,
we compare the decay of correlations with that of the corresponding correlation functions in the LRK models,
& (i, j) (seealso equation (39)) and 3 (i, j), respectively, showing very good quantitative agreement with the
(semi-)analytic results. In agreement with [12, 53], an hybrid exponential and power-law behavior is found for
G} (aswellasfor X (i, j) and g, (i, j)).

Conversely, when a < 1onlyanalgebraic tail is visible for the decay of C;} in figure 5 and C}f [as well as
3 (4, j)]in figure 2, since the initial exponential decay is too small to be observed, as expected from the discussion
above. Moreover, no universal behavior for the decay exponents is identifiable for C7* and C; in this region.
The exponents for C;j* and (i, j) differ here in general, probably because the contribution of the string
operators in Hyg; becomes more relevant.

In the AM phase, instead, we find that the decay of C7} (figure 6(a)) for o 2 1 displays an algebraic tail with
an exponent compatible with 7, = a, mimicking C}'}* in the PM phase (a very precise estimate is forbidden by
the decay oscillations between even and odd sites). These results are consistent with those of [12], obtained for
the case a = 3. Notably the decay exponent is here always different from the value 2cv analytically computed for
& (i, j) in equation (39). This discrepancy is again probably due to the role of the string operators, here
quantitatively relevant even for o 2 1. For av < 1again no universal behavior for +, is found.

4. Edge modes properties

4.1. Massless edge modes

Itis known that the SR Kitaev chain hosts modes localized at the edges [11] in the ordered phase for

m/4 < 0 < 37 /4. These modes are fermionic and massless (in the limit L — 00), thus they have Majorana
nature [76] and are a consequence of the topological non-triviality of the ordered phase (see e.g. [77] and
references therein).

For the LRK models of equation (2), Majorana massless modes are found for o« 2> 1in the AM1 region of the
phase diagram of figure 1(b). Plotting the square of the wavefunction v; corresponding to the zero edge gap Ao,
defined in section 2.2.3, we find for € = 1in equation (2) a hybrid exponential and algebraic decay with the
distance from one edge of the chain. The exponent of the algebraic decay of ‘ o ‘2 is found to be equal to 2«v. This
behavior is similar to that observed in [53] in the presence of LR pairing only.
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Figure 7. (a) LRK model: spatial probability distribution for the Majorana edge mode 1)y in the AM1 phase for § = 0.357, @ = 3and
different e. When ¢ = 1, the mode is exponentially localized at one edge, while a power-law tail gradually appears when ¢ = 1. (b) LRI
model: spatial probability distribution for the mode «pﬁ” as function of the lattice site j in the AM phase for different cvand 6 = 0.457.
The decay with j is numerically found to be exponential. (c) LRK model: spatial probability distribution for the massive edge mode in
the AM2 phase for § = 0.7 for different avand e. The decay with distance is purely power law and the probability distribution is

symmetric with respect to half of the chain. (d) LRI model: probability density p, = |w}1) |2 + | WJ(Z) |2 of the two degenerate excited

states |17) and |27) in the PM2 phase. When o 2 1, p;spreads into the bulk of the chain. When o < 1, p;is exponentially localized
near a single edge. In panel (b) and (d), we plot only the points compatible with the DRMG errors.

Interestingly, here the algebraic tail of the Majorana modes can be tuned to completely disappear by
changing the parameter € that fixes the unbalance between the hopping and the pairing terms in the
Hamiltonian of equation (2). Figure 7(a) shows an example for § = 0.47 and o = 3. When € = 1the hybrid
behavior is fully visible and the state v/;; decays in the bulk with an algebraic tail. However, by approaching the
value € = 1thealgebraic tail of 1; decreases and eventually disappears. As a result, for ¢ = 1the wave function
1o; becomes exponentially localized at one edge. We find that this exponential localization for ¢ = 1is present
also in the parameter region o < 1. Moreover, the edge gap A scales to zero exponentially with the system size
L for all v as figure 8(c) shows.

For the LR Ising Hamiltonian of equation (1), edge modes appear in the AM phase for every a > 0. They
have zero mass, since the edge gap Eo-y — E|o+) (defined in section 2.2.3) vanishes. Examples of these edge modes
for different «v are given in figure 7(b), where we plot the square of the wavefunction cpg.l) defined in

equation (12). We find numerically that @21) decays exponentially with the distance from the edge of the chain

for all values of , as well as <p5.2) (not shown) from the opposite edge.

4.2. Massive edge modes
If we extend the analysis of the LR Kitaev Hamiltonian of equation (2) to different € and sufficiently small o, a
totally new situation arises for the edge gap A and the edge modes: in the region denoted as AM2 in the phase
diagram of figure 1(b), we find that A (which is zero for & 2 1) becomes nonzero for « < land € = 1,alsoin
the thermodynamical limit.

This case is shown in figure 1(e), where we plot the edge gap A as function of & and 6 for ¢ = 10. Between
€ = land ¢ = 10 we checked a continuous increase of the extension of the region AM2 and no transitions in

15



I0OP Publishing NewJ. Phys. 18 (2016) 015001 D Vodolaetal

A, - LRK 1 45 mass gap LRI | Ao(L) - LRK
T €N IR b pnemssssnasessar NP Supbtt ©
3L 1 16 AE(]) -« (b) 1072 |
1.40
2‘ ] | +
1.35 * :
I[ “,e=10 | L ]
Te=2, L |
0. ‘AAI . v'vuAQ edge mode 1.30 ; €= 1, &= 0"5 ‘
0¢=11 2 3 0.00 0.01 0.02 20 40 60 80 100
a 1/L L

Figure 8. (a) First 45 low energy states of the LRK models for L = 500and 6 = 0.77 as function of cv. It is possible to distinguish the
A mode (solid points for three different €) separated from the A, - o bulk modes (light green triangles for ¢ = 10). When « 2 1the
vanishing of A for ¢ = 1signals the spontaneous breaking of the Z, symmetry of LRK and defines the AM1 phase (see also the phase
diagram in figure 1(b)). When A > 0 the Z, symmetry is restored and the phase AM2 appears. (b) Main panel: AE (1) (empty
circles) and AE (2) (solid triangles) for the LRI as functions of the inverse of the length of the chain L for = 0.1597 and for three o
reported in the plot. These two states are degenerate in the L — oo limit, as finite-size scaling shows. Inset: AE (1) as function of « for
6 = 0.1597. When « decreases, AE (1) increases, showing a change for the energy spectrum in the region PM2 of the phase diagram
of figure 1(a). (c) Edge gap A for (squares) ¢ = 0.5 and two different «v as function of the system size L. When ¢ = 1, the edge gap
scales exponentially to zero for all cv. For comparison, the case (crosses) e = 2 and o = 3 isalso reported. There the edge mass
displays an hybrid exponential and power-law decay.

between. Similarly in figure 8(a) we plot A together with several other single-particle energies as a function of «
and for a fixed 0. These energies have been computed as described in section 2.2.3. In figure 8(a) the mass of the
edge mode A is easily recognizable for all ¢, since it is separated from all bulk modes by a finite gap.

Consistently with the discussion above, for o 2 1, Ay is zero as expected from the SR model, so that two
degenerate ground states exist as the Z, symmetry of the model is spontaneously broken. However, surprisingly,
for « < land e = 1, we find that Ay becomes finite and thus the ground state is unique. This indicates that the
Z, symmetry of the model (which is broken for o 2 1in the AM1 phase) is restored for o < 1. Asa
consequence, the region AM2, where the Z, symmetry is restored, must be separated from AM1 by a quantum
phase transition, even if no closure for the mass gap arises in the bulk.

The wavefunction of the lowest massive A state is now given by the matrix element g,; defined in
section 2.2.3. By plotting the probability density | i ° we now obtain a localization on the edges that is
symmetric with respect to the middle of the chain. This probability density decays algebraically when
approaching half of the chain, as is clearly seen in figure 7(d).

A similar wavefunction localization at the edges of the system is found also for the LRI model in the PM2
region in the phase diagram of figure 1(a) for o < 1, where the Z, symmetry is preserved. However, while for
the LRK massive edge modes originate from Majorana edge modes present at o« 2> 1, for the LRI the edge

localization arises for excited states of the bulk spectrum in the region PM1. For o < 1, these states are
degenerate, as shown in figure 8(b), and separated from the third excited state by a gap that is finite in the

R TI . . . . _ (1) 2 2) 2
thermodynamic limit. Because of this degeneracy, we consider the probability density P = ‘ w; ‘ + ‘ Wil

with ‘W;l’z) wavefunctions of |(1, 2)) defined in section 2.2.3. A typical situation is depicted in figure 7(d), where
we plot p; as function of the lattice site j for different values of .. For o 2 1, pjis oscillating and delocalized in the
bulk, while it is localized exponentially at the edges for & < 1and is symmetric with respect to half of the chain.

We leave as an open question whether the edge localization here signals the appearance of a new phase (and
without mass-gap closure) with preserved Z, symmetry, similar to the LRK models above.

5. Observability in current experiments

Recent experiments with cold ions have made possible the realization of LR Ising-type Hamiltonians as
equation (1) with 0 < a < 3.5[15, 16, 18, 20]. In these experiments, both static and dynamical spin—spin
correlations, as well as the spectrum of quasi-particle excitations [25], can be measured with extreme precision,
which in principle could allow for an analysis of some of the observables discussed above. For example, the
observation of long-distance algebraic of correlations, as well as spectroscopic signatures of the formation of
localized excited edge modes for o < 1 could allow for the precise determination of the properties of these LR
models.
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One key aspect of experiments, however, is that experimentally attainable lengths for ion chains are
currently limited to at most few tens of ions. It is thus natural to ask whether the characteristic long-distance
decay of correlation functions described above can be observed in systems of such length. To explore this issue,
figure 6 (right panel) shows the correlation C;%; for Hamiltonian equation (1) in the PM1 and PM2 phases for a
chainof L = 30 sites with open boundary conditions and for different . For av > 2, the initial exponential
decay dominates the correlations for R < 10, while a comparatively small algebraic tail is found for R 2 10. For
a 5 1, however, the exponential part has essentially disappeared and the decay is purely algebraic at all
distances, as expected from the discussion of sections 3.4. This fundamental change of behavior around av = 1
may be observable. We note, however, that the exponent v, of the algebraic decay is here different from that
presented in figure 2(a), due to strong finite size effects in these systems. We find similar results for the
correlation C\%.

On the other hand, the emergence of massive edge modes in the LRI chain could be a convenient diagnostic
of the change of nature of the paramagnetic phase for o < 1.

6. Summary and outlook

In this work we have analyzed the phase diagram of the long range anti-ferromagnetic Ising chain and of a class
of fermionic Hamiltonian of the Kitaev type, with LR pairing and hopping. We have clarified in what regions of
the phase diagram violation of the area law occurs, and have provided numerical evidence and exact analytical
results for the observed hybrid decay of correlation functions, which are found to decay exponentially at short
range and algebraically at long range, for all . We have further demonstrated the breaking of conformal
symmetry along the critical lines in both models at low enough «.. Most interestingly, for the fermionic models
we have demonstrated for the first time that the topological edge modes can become massive for sufficiently
small values of a < 1. This implies the existence of a transition to a novel phase without closure of the mass gap,
to the known phase with massless Majorana modes for o 2> 1. We conjecture that the possibility of a phase
transition with nonzero mass gap is due to the peculiar behavior of LR correlations, showing power-law tails also
when the gap does not vanishes. Similarly, we have found that excited bulk states in the paramagnetic phase of
the Ising model can become localized at the edges of the chain for o < 1.

This works may open several exciting research directions. The first question concerns the nature and
topological properties of the proposed new phase of the Kitaev model with o < 1, and of its localized edge
modes. We conjecture that these massive edge modes are due to the hybridization of the Majorana modes at
small o, due to the bulk overlap between their wave functions, whose decay is slower and slower for decreasing
. This aspect will be the subject of future studies.

Another important open question is whether the appearance of massive edge modes may be connected also
to the violation of the area-law for the entanglement entropy in these models.

In general, these results represent counter-examples for the topological properties of existing topological
models with LR interactions, as recently analyzed in [50]. The question of whether a possible universal behavior
exists for topological models with LR interactions is thus still wide open.
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