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Pathogenetic and diagnostic significance of microRNA
deregulation in peripheral T-cell lymphoma not otherwise
specified
MA Laginestra1,7, PP Piccaluga1,7, F Fuligni1,7, M Rossi1, C Agostinelli1, S Righi1, MR Sapienza1, G Motta1, A Gazzola1, C Mannu1,
E Sabattini1, F Bacci1, V Tabanelli1, CAS Sacchetti1, TZ Barrese2, M Etebari1, F Melle1, A Clò3, D Gibellini3, C Tripodo4, G Inghirami5,
CM Croce6,7 and SA Pileri1,7,8

Peripheral T-cell lymphomas not otherwise specified (PTCLs/NOS) are rare and aggressive tumours whose molecular pathogenesis and
diagnosis are still challenging. The microRNA (miRNA) profile of 23 PTCLs/NOS was generated and compared with that of normal
T-lymphocytes (CD4+, CD8+, naive, activated). The differentially expressed miRNA signature was compared with the gene expression
profile (GEP) of the same neoplasms. The obtained gene patterns were tested in an independent cohort of PTCLs/NOS. The miRNA
profile of PTCLs/NOS then was compared with that of 10 angioimmunoblastic T-cell lymphomas (AITLs), 6 anaplastic large-cell
lymphomas (ALCLs)/ALK+ and 6 ALCLs/ALK− . Differentially expressed miRNAs were validated in an independent set of 20 PTCLs/NOS,
20 AITLs, 19 ALCLs/ALK− and 15 ALCLs/ALK+. Two hundred and thirty-six miRNAs were found to differentiate PTCLs/NOS from
activated T-lymphocytes. To assess which miRNAs impacted on GEP, a multistep analysis was performed, which identified all miRNAs
inversely correlated to different potential target genes. One of the most discriminant miRNAs was selected and its expression was
found to affect the global GEP of the tumours. Moreover, two sets of miRNAs were identified distinguishing PTCL/NOS from AITL and
ALCL/ALK− , respectively. The diagnostic accuracy of this tool was very high (83.54%) and its prognostic value validated.
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INTRODUCTION
Peripheral T-cell lymphomas (PTCLs) correspond to a hetero-
geneous group of nodal and extranodal tumours, which account
for 10 to 15% of all lymphoid neoplasms. Four subtypes, namely
PTCL not otherwise specified (NOS), angioimmunoblastic T-cell
lymphoma (AITL) and anaplastic large-cell lymphoma (ALCL) (ALK
+ and ALK− ), represent about 60% of cases in Europe and the
United States of America.1,2 Particularly, PTCL/NOS is an aggressive
disease whose molecular pathogenesis and distinction from AITL
and ALCLs are still challenging.3 The latter is however relevant
because of possible differences in prognosis4–7 and therapeutic
options.8,9 Of note, despite the heterogeneity of cytogenetic
features,10–16 PTCLs/NOS share a consistent transcriptional signa-
ture, likely indicative of common altered pathways. During the
past few years, gene expression profiling (GEP) provided some
hints for the distinction among different PTCL entities.17–23 In this
respect, our group recently reported a molecular classifier that
might represent an useful tool in the diagnostic workup of nodal
PTCLs.7,24

MicroRNAs (miRNAs) are small noncoding single-stranded RNA
molecules (18–22nt) that mainly control gene expression

posttranscriptionally by binding the 3′-untranslated region of
the target mRNA. This results in the degradation of target mRNA
or inhibition of its translation.25 miRNA expression is tissue-specific
and changes in miRNA expression have been associated with
various human diseases, including cancer.26,27 Several studies
highlighted the role of specific miRNAs in lymphoma biology, in
particular miR-101, miR-16, miR-135b and miR-29a; five members
of the miR-17–92 cluster have been reported to have a role in
the oncogenic ALK signalling in ALCLs,28–32 and miR-187 was
overexpressed in PTCL/NOS associated with high Ki-67
expression.33 Furthermore, expression levels of miR-155 were
significantly higher in ALCL/ALK− than in ALCL/ALK+.28 In a
recent study, Liu et al.34 showed a signature of 11 miRNAs that
differentiated ALCL/ALK− from other PTCLs.
However, the possible impact of miRNA deregulation on the

transcriptional profile of PTCL/NOS has not been explored yet, as
well as the possible application of miRNA profiling for diagnostic
purposes. In the present study, by applying a phase IV diagnostic
accuracy study respecting the EBM rules and NCI criteria for
biomarkers validation, we performed extensive miRNA profiling of
PTCL/NOS, ALCLs, AITL and normal T cells aiming to (1) determine
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the possible contribution of miRNAs to PTCL/NOS transcriptional
profile, and (2) to assess whether differentially expressed miRNAs
may improve the differential diagnosis among the four subtypes
of nodal PTCL.

MATERIALS AND METHODS
Case collection and study design
We retrieved 174 formalin-fixed, paraffin-embedded tissue (FFPE) nodal
PTCLs from the archive of the Haematopathology Unit of Bologna
University, including 98 PTCLs/NOS, 30 AITLs and 44 ALCLs (21 ALK+,
23 ALK− ).
All the cases had been diagnosed by expert haematopathologists (ES,

FB, CA, CASS and SAP) according to the criteria of the WHO classification1

and collected at diagnosis before any treatment. Written informed consent
was obtained from all patients for tissue analysis. Patient characteristics are
summarized in the Supplementary Table 1.
The cases were used to assess (1) the possible impact of miRNAs on the

regulation of PTCL/NOS transcriptome, and (2) to assess specific miRNA
signatures useful for the differential diagnosis among PTCL/NOS, AITL
and ALCLs.
For the former purpose, 23 PTCLs/NOS were chosen, all provided with

GEP6 data and characterized by at least 80% of neoplastic cells as defined
based on their aberrant phenotypic profile. Their miRNA profile was
compared with that of 12 normal T-lymphocyte samples (corresponding
naive CD4+ (n= 4), activated CD4+ (n= 2), naive CD8+ (n= 4) and activated
CD8+ (n=2)). A signature based on miRNAs differentially expressed
between tumours and normal T-lymphocyte samples (see below) was
compared with GEP of the same neoplasms. The obtained gene patterns
were then tested in an independent cohort of PTCLs/NOS (n=55), which
had been included in a previous GEP analysis.7

For the other aim of the present study, the miRNA profile of the above-
mentioned 23 PTCLs/NOS was compared with that of 10 AITLs and 12
ALCLs (6 ALK+ and 6 ALK− ). The differentially expressed miRNAs were
validated in an independent set of cases (20 PTCLs/NOS, 20 AITLs, 19
ALCLs/ALK− and 15 ALCLs/ALK+) by quantitative reverse transcriptase-
PCR (qRT-PCR).
The study was conducted according to the principles of the Declaration

of Helsinki after approval of the Internal review Board (Prot. Numb. 001-
2011-U-Tess).

CD4+ and CD8+ normal T-lymphocytes isolation
Whole blood samples were collected by venipuncture from six healthy
donors. Peripheral blood mononucleated cells were separated by Ficoll
gradient (Ficoll-Histopaque; Pharmacia, Uppsala, Sweden). CD4+- and CD8
+- naive T cells were isolated from peripheral blood mononucleated cells
using magnetic MACS microbeads according to manufacturer’s instruc-
tions (Miltenyi, Bergisch Gladbach, Germany) The CD4+- and CD8+-naive
cell isolation was analysed by flow cytometry (FACS Calibur; Becton-
Dickinson, San Diego, CA, USA), and the cell purity was 494% for CD4+/
CD45RA+ or CD8+/CD45RA+ cells, respectively. Isolated cells were cultured
in RPMI-1640 (Lonza, Basel, Switzerland) with 10% foetal bovine serum
(GIBCO, Paisley, UK) and activated with phytohaemagglutinin (5 μg/ml;
Sigma, St Louis, MO, USA) plus IL-2 (10 U/ml; Miltenyi) for 4 days.

RNA extraction, microRNA profiling and gene expression profiling
RecoverAll Total Nucleic Acid Isolation Kit (Ambion, Life Technologies,
Carlsbad, CA, USA) was used to extract total RNA from FFPE tissues
according to the manufacturer’s procedure. Total RNA from normal
T-lymphocytes subset was extracted with Trizol according to the
manufacturer’s instructions (Invitrogen, Life Technologies, Carlsbad, CA,
USA). RNA was quantified using ND-1000 spectrophotometer running
software version 3.0.1 (NanoDrop Technologies Inc., Rockland, DE, USA).
After RNA extraction of samples, microRNA profiling was carried out by

using the TaqMan Array Human MicroRNA Card A v.2.0 (Life Technologies,
Carlsbad, CA USA). We used the Illumina Whole Genome DASL assay for
gene profile generation from FFPE samples, as described previously7,35,36

(details are provided in Supplementary File).

miRNA qRT-PCR
Validation of an miRNA signature with potential differential diagnostic
value (see above) was carried by qRT-PCR (TaqMan 7900HT; Life
Technologies) (details are provided in Supplementary File).

miRNA transfection and GEP
A human PTCL CD30+ cell line (Fe-Pd) was used to perform the ex vivo
functional experiments. Transient transfections were performed by
nucleofection, using an Amaxa apparatus, program X-01 and solution V
(Amaxa, Cologne, Germany). Total RNA from Fe-Pd cell line was extracted
with Trizol according to the manufacturer’s instructions (Invitrogen, Life
Technologies). RNA was quantified using ND-1000 spectrophotometer
running software version 3.0.1 (NanoDrop Technologies Inc.).
Gene expression profiling was executed on transfected and untrans-

fected Fe-Pd cells using Gene Chip 2.0 Whole Transcript Assay (Affymetrix,
Santa Clara, CA, USA) (details are provided in Supplementary File).

Data analysis
miRNA and gene expression analysis. Based on unsupervised and
supervised analyses, which showed that activated T-lymphocytes represent
the closest normal counterpart of PTCLs/NOS (see below) differentially
expressed miRNAs between PTCL/NOS and activated T-lymphocytes were
identified, using a two-tailed Student's t-test with Welch approximation for
different variance among groups and adjusted Bonferroni correction for
false discovery rate, applying the following filtering criteria: P-value o0.05,
and fold change (FC) in absolute value 42 for log2-transformed data.
To identify miRNAs more likely impacting on the transcriptome of PTCL/

NOS, we used a three-step bioinformatic approach: (1) miRNAs differen-
tially expressed between PTCL/NOS- and CD4+/CD8+ -activated
T-lymphocytes were selected using a two-tailed Student's t-test with
Welch approximation for different variance among groups, with the same
filtering parameters mentioned above; (2) Spearman's correlation between
every differentially expressed miRNA–gene pairs was calculated using a
custom R script and only miRNA–gene pairs with negative Spearman's
correlation and P-value o0.01 were selected; (3) microRNA Data Integration
Portal was used for further filter of miRNA–gene pairs, selecting only miRNA–
gene target predictions confirmed by at least 5 out of 12 data sets.37

The miRNA-related genes signature was then tested in 55 PTCLs/NOS,
which had been the object of a previous GEP study by hierarchical
clustering (HC) and applying a classifier based on a support vector machine
algorithm.7 Broad Institute Gene Set Enrichment Analysis (GSEA) software38

was performed to identify significant enrichments in differentially
expressed genes signatures, in case of nominal P-values corrected for
false discovery rate for enrichment scores o0.05. GSEA was also used to
identify KEGG pathways significantly enriched for genes found after
filtering steps. DAVID Functional Annotation Bioinformatics Microarray
Analysis (http://david.abcc.ncifcrf.gov/) was also used to establish whether
specific pathways and biological processes defined according to gene
ontology were significantly represented among the deregulated genes.

Classification of PTCL subtypes. Molecular signatures of differentially
expressed miRNAs between PTCL/NOS vs AITL, PTCL/NOS vs ALCL/ALK−
and ALCL/ALK+ were generated by supervised analysis (two-tailed
Student's t-test). Differentially expressed miRNAs were selected according
to P-value (o0.05) and FC (⩾2). Stepwise discriminant analysis was
performed using IBM SPSS Statistics 20.0 (IBM, Armonk, NY, USA) to
identify the minimal number of miRNAs able to classify correctly a given
sample in different PTCL subgroups. For each step of the analysis, the
miRNA that minimizes Wilks' lambda test probability distribution was
selected to enter in the discriminant model and included in the list of
discriminant miRNAs if its probability associated with Fisher's exact test
was lower than 0.05. Otherwise, the miRNA with probability associated
with Fisher's exact test 40.10 were excluded from the list. Stepwise
method was run until no further miRNAs could be added or excluded to
reduce Wilks' lambda probability distribution. A discriminant function
based on linear combination of the expression of discriminant miRNAs was
created for each classification step (PTCL/NOS vs AITL and PTCL/NOS vs
ALCL/ALK− ), to assign a discriminant score for each sample.
To test discriminant function associated to reduced miRNA signatures,

each case was then assigned to a specific PTCL subgroup according to the
distance between its discriminant score and a cutoff value was calculated
for each predicted group. Samples with discriminant score rate o60%
were not assigned to a particular PTCL subgroup and were flagged as
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unclassified. Calculations of sensitivity (ST), specificity (SP), positive
predictive value (PPV), negative predictive value (NPV), positive and
negative likelihood ratio (LR) and odds ratio were made by CAT maker
software (Centre for Evidence Based Medicine, Oxford University, http://
www.cebm.net).

Survival analyses. Clinical information and complete follow-up were
available for 65/119 cases for which miRNA profile and miRNA qRT-PCR
were performed. Overall survival (OS) was calculated from the time of
diagnosis to death or last follow-up. Statistical analyses were carried out by
IBM SPSS Statistics 20.0. Survival data were analysed with the Kaplan–Meier
estimator method.39 The limit of significance for all analyses was defined as
Po0.05 for the log-rank Mantle–Cox test.
More data analysis details and any associated reference are available in

the Supplementary File.

RESULTS
Identification of normal T-lymphocyte-specific miRNA signature
and its expression in PTCL/NOS samples
We studied the miRNA profile of 23 PTCLs/NOS and 12 normal
T-lymphocyte samples (n= 4 naive CD4+, n= 4 naive CD8+, n= 2
activated CD4+ and n= 2 activated CD8+). First, unsupervised HC
clearly distinguished PTCLs/NOS from naive and activated
T-lymphocytes based on global miRNA expression patterns
(Figure 1a). Second, supervised analysis (two-tailed Student's
t-test P-value o0.05 and FC 42) allowed the identification of a
signature consisting of 52 miRNAs that distinguished naive (CD4+,
CD8+) from activated (CD4+, CD8+) T-lymphocytes. Third, this
miRNA signature was applied to PTCL/NOS samples using a cell-
type classifier based on a support vector machine algorithm: such
analysis showed that activated CD4+ and CD8+ T-lymphocytes
represented the closest normal counterpart of the tumour
(Figure 1b). This result was consistent with previous studies based
on gene expression profiling.18,40,41 Accordingly, for further
analyses, activated CD4+ and CD8+ T-lymphocytes were regarded
as the normal counterpart of PTCL/NOS.

PTCL/NOS can be distinguished from normal activated
T-lymphocytes based on global miRNA and GEPs
First, to exclude that bias was introduced by comparing FFPE
samples (PTCL/NOS) and fresh normal lymphocytes, we excluded
from the analysis cases with RNU6B Ct value 423; further, we
compared the RNU6B Ct values in the two classes of samples and
they turned out to be quite similar (P= 0.33).24

Based on the above, we performed a supervised analysis (two-
tailed Student's t-test P-value o0.05 and FC 42) between PTCLs/
NOS and activated CD4+ and CD8+ T-lymphocytes, which allowed
the distinction of neoplastic and normal samples into two
different clusters based on the differential expression of 236
miRNAs (32 miRNAs upregulated and 204 miRNAs downregulated
in PTCLs/NOS) (Figure 2a and Supplementary Table 2). Further-
more, the GEP of the same 23 PTCLs/NOS and activated CD4+ and
CD8+ T-lymphocytes was interrogated by supervised analysis
(t-test, P-value o0.05, FC 42, false discovery rate adjusted
Bonferroni correction) aiming to identify differentially expressed
genes between PTCLs/NOS and activated CD4+ and CD8+
T-lymphocytes. Specifically, we found 2162 differentially
expressed genes (1225 upregulated and 937 downregulated in
PTCLs/NOS) (Figure 2b and Supplementary Table 3).

A multistep bioinformatics approach: miRNA-related genes fall in
cancer pathways
We then sought to assess whether miRNAs deregulated in PTCLs/
NOS might affect the transcriptional profile of the tumours. To this
aim, we adopted a multistep approach integrating miRNA and
GEP data (schematic representation in Figure 2c). First, we
integrated miRNA and GEP data by using Spearman's correlation

(236 differentially expressed miRNA with 2162 differentially
expressed genes) and selected only the inverse miRNA–gene
paired combinations (i.e. miRNA up/gene down and vice versa)
with high statistical significance (negative Spearman's correlation,
P-value o0.01) for a total of 137 609 miRNA–genes pairs. Second,
using the microRNA Data Integration Portal database we selected
among the 137 609 miRNA–gene pairs only those confirmed by at
least 5 out of 12 miRNA prediction algorithms and found 1184
miRNA–gene pairs corresponding to 475 inversely correlated
genes that were the predicted targets of 158 miRNAs
(Supplementary Table 4). To assess the potential role of such
475 miRNA-related genes, we predicted their biological functions
by mapping biomolecular networks using DAVID bioinformatics
resources (http://david.abcc.ncifcrf.gov/). We found that they were
involved in biological processes—such as intracellular signalling
cascade, cell adhesion, response to endogenous stimulus, regula-
tion of cell proliferation and positive regulation of protein catalytic
activity (Figure 3a)—that may be relevant in neoplastic transfor-
mation and progression. These results suggest that miRNAs may
contribute to PTCL/NOS pathogenesis by inducing significant
transcriptional changes.

miRNA expression significantly affects the transcriptome
of PTCL/NOS
Subsequently, to validate the hypothesis that miRNA deregulation
may affect the transcriptome of PTCL/NOS, we studied the
expression of the above-mentioned 475 miRNA-related genes in
55 PTCLs/NOS in comparison with the profile of CD4+ and CD8+
T-lymphocytes (n= 4). HC showed a clear distinction of PTCLs/NOS
from activated CD4+ and CD8+ T-lymphocytes (Figure 3b),
indicating that these 475 genes significantly characterize the
molecular profile of PTCL/NOS. Further, based on the expression of
these 475 genes, we developed a classifier using a support
vector machine algorithm leave one-out iterative algorithm
(cross-validation method). Each case among the 55 PTCLs/NOS
was then re-evaluated by the molecular classifier with 100%
accuracy. Moreover, this gene signature was found to be
specifically enriched in PTCL/NOS vs activated CD4+ and CD8+
T-lymphocytes as demonstrated by GSEA (P-value o0.0001)
(Figures 3c and d). In particular, KEGG Pathway Analysis showed
a significant enrichment in several pathways as WNT signalling,
mitogen-activated protein kinase signalling, T-cell receptor
signalling, cell cycle and chemokine signalling. Taken together,
these results indicated that the deregulated expression of the
identified miRNAs is likely to contribute to the abnormal
transcriptional profile of PTCL/NOS.

miRNA-132-3p downregulation has influence over PTCL/NOS
transcriptome
As our analyses strongly suggested that the identified miRNAs
may contribute to PTCL/NOS gene expression pattern, we aimed
to validate these data providing functional evidence as well. In
particular, we focused our attention on the miR-132-3p that
provided the highest combination number of postulated target
genes (N= 22) and the greatest difference in expression between
PTCLs/NOS and activated CD4+ and CD8+ T-lymphocytes (log2
FC=− 6.21). First, we confirmed miR-132-3p downregulation in the
comparison between neoplastic and normal samples in an
independent set consisting of 20 PTCLs/NOS by qRT-PCR
(Supplementary Figure 1A). To investigate its biological role, we
introduced miR-132-3p into Fe-Pd cells by transient transfection
(100 nM mimic), transfection efficiency being confirmed by qRT-
PCR (Supplementary Figure 1B). To evaluate functional effects of
miR-132-3p transfection, we carried out a global GEP on
transfected and untransfected Fe-Pd cells. Thereafter, we
performed a supervised analysis identifying 468 genes differen-
tiating transfected vs untransfected Fe-Pd cells (Supplementary
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Figure 1. (a) Unsupervised analysis comparing PTCL/NOS vs naive and activated CD4+ and CD8+ normal T-lymphocytes. The heat map
diagram shows the result of the two-way unsupervised HC of miRNAs and samples based on the expression of 379 miRNAs. HC, clearly
discriminated PTCLs and CD4+ and CD8+ T-lymphocytes based on the miRNA expression patterns. In the matrix, each row represents an
miRNA and each column represents a sample. The colour scale illustrates the relative expression level of an miRNA across all samples: red
represents an expression level above the mean and green represents expression lower than the mean. (b) Supervised analyses identified 52
differentially expressed miRNAs comparing naive and activated CD4+ and CD8+ T-lymphocytes. HC shows miRNA expression pattern of PTCL/
NOS is closest to activated CD4+ and CD8+ T-lymphocytes. In the matrix, each row represents an miRNA and each column represents a
sample. The colour scale illustrates the relative expression level of an miRNA across all samples: red represents an expression level above the
mean and green represents expression lower than the mean.

MicroRNA profiling of PTCL/NOS
MA Laginestra et al

4

Blood Cancer Journal © 2014 Macmillan Publishers Limited



Figure 2. Supervised analyses identified (a) differentially expressed miRNAs between PTCL/NOS and activated CD4+ and CD8+ T-lymphocytes.
miRNAs with differences in expression were selected by the comparative cycling threshold methods (ΔΔCT) and filtered for statistical
significance (two-tailed Student's t-test P-value o0.05 and FC 42). (b) Genes differentially expressed between PTCL/NOS and activated CD4+
and CD8+T-lymphocytes (t-test, P-value o0.05, FC 42, false discovery rate (FDR) adjusted Bonferroni correction). Top 500 genes in ranking
are plotted. In the matrix, each row represents an miRNA/gene and each column represents a sample. The colour scale illustrates the relative
expression level of an miRNA and genes across all samples: red represents an expression level above the mean and green represents
expression lower than the mean. (c) Bioinformatic approach (three steps). Schematic representation of miRNA profiling and gene expression
profiling data integration. The flow diagram is constituted by three steps indicated in the figure by three arrows.
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Figure 3. Four hundred and seventy-five miRNA-related genes. (a) Pie chart shows the distribution of several biological processes in which are
involved the 475 ‘miRNA-driven’ genes. Each colour represents a different biological process. (b) HC created on the 475 gene signatures and
applied on 55 PTCLs/NOS shows a clear distinction of PTCL/NOS from activated CD4+ and CD8+ T-lymphocytes. In the matrix, each row
represents a gene and each column represents a sample. The colour scale illustrates the relative expression level of genes across all samples:
red represents an expression level above the mean and green represents expression lower than the mean. GSEA on the 475 miRNA-related
genes: (c) heat map shows the distribution of 475 miRNA-related gene expressions in PTCL/NOS and activated CD4+ and CD8+
T-lymphocytes. (d) GSEA enrichment plot shows that the 475 genes are significantly enriched in PTCL/NOS vs activated CD4+ and CD8+
T-lymphocytes. In the enrichment plot, the x axis shows the rank order of genes from the most upregulated to the most downregulated
between PTCL/NOS and activated CD4+ and CD8+ T-lymphocytes. The barcode indicates the position of 475 miRNA-related genes in the
ranking list. The y axis shows the distribution of the running enrichment score generated by walking down the list of ranked genes.

MicroRNA profiling of PTCL/NOS
MA Laginestra et al

6

Blood Cancer Journal © 2014 Macmillan Publishers Limited



Table 5). Then, we tested gene signature in 78 PTCL/NOS
primary tumours. Indeed, HC, GSEA and a support vector
machine-based classifier indicated that the genes modulated by
miR-132-3p were consistently deregulated in primary cases as well
(Figures 4a and b).
Taken together, these data indicated that miR-132-3p modula-

tion has a significant impact on PTCL/NOS transcriptome.

miRNA expression discriminate PTCL subtypes
As we found that miRNAs can modulate gene expression in PTCL/
NOS and GEP can be effectively used to discriminate different
PTCL subtypes, we sought whether nodal PTCLs could be
distinguished based on miRNA expression. To this aim, we
adopted a two-step bioinformatic approach (Figure 5a). First, we
performed a supervised comparison of PTCL/NOS vs AITL, PTCL/

NOS vs ALCL/ALK− and ALCL/ALK− vs ALCL/ALK+ (two-tailed
Student's t-test) using 23 PTCLs/NOS, 10 AITLs, 6 ALCLs/ALK− and
6 ALCLs/ALK+. Based on P-value (Po0.05) and FC (⩾2), we
identified differentially expressed miRNAs among the different
PTCL subtypes. In particular, we found 35 miRNAs distinguishing
PTCL/NOS from AITL (Figure 5b and Supplementary Table 6), 68
miRNAs distinguishing PTCL/NOS from ALCL/ALK− (Figure 5c and
Supplementary Table 7) and 136 miRNAs distinguishing ALCL/
ALK− from ALCL/ALK+ (Supplementary Figure 2). Second, we
focused on the possibility of developing a practical tool to be
applied in the routine diagnostic workup for the differential
diagnosis of nodal PTCLs. A stepwise linear discriminant analysis
was then used to identify three sets of miRNAs able to efficiently
distinguish PTCL/NOS vs ALCL/ALK− , PTCL/NOS vs AITL and ALCL/
ALK− vs ALCL/ALK+, respectively. A discriminant function based

Figure 4. GSEA of 468 genes differentially expressed between transfected and untransfected Fe-Pd cell line with miR-132-3p (mimic 100 nM) in
80 PTCL/NOS primary tumour and activated CD4+ and CD8+ T-lymphocytes. (a) Heat map shows the distribution of 468 genes, differentially
expressed in transfected and untransfected Fe-Pd cell line, in PTCL/NOS and activated CD4+ and CD8+ T-lymphocytes. (b) GSEA enrichment
plot shows that 468 genes are significantly enriched in PTCL/NOS vs activated CD4+ and CD8+ T-lymphocytes.. In the enrichment plot, the
x axis shows the rank order of genes from the most upregulated to the most downregulated between PTCL/NOS and activated CD4+ and
CD8+ T-lymphocytes. The barcode indicates the position of 468 miRNA-related genes in the ranking list. The y axis shows the distribution of
the running enrichment score generated by walking down the list of ranked genes.
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on the linear combination of the discriminant miRNAs was created
to perfectly distinguish PTCL/NOS from ALCL/ALK− using a minimal
miRNA set of five miRNAs (hsa-miR-515-3p, hsa-miR-155, hsa-
miR-598, hsa-miR-625 and hsa-miR-199a-5p), PTCL/NOS from AITL

using eight miRNAs (hsa-miR-652, hsa-miR-627, hsa-miR-519e, hsa-
miR-487b, hsa-miR-324-5p, hsa-miR-449a, hsa-miR-381 and hsa-
miR-574-3p) and ALCL/ALK− from ALCL/ALK+ using four miRNAs
(hsa-miR-124, hsa-miR-325, hsa-miR-181a and hsa-miR-618).
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We then established the diagnostic accuracy of miRNA profiling
in a phase IV study, analysing the obtained discriminant sets of
miRNAs in an independent set of cases by qRT-PCR (20 PTCLs/
NOS, 20 AITLs, 19 ALCLs/ALK− and 15 ALCLs/ALK+). As our aim
was to develop a practical tool for the diagnostic workup of nodal
PTCLs, focusing on PTCL/NOS vs AITL and PTCL/NOS vs ALCL/
ALK− .
We applied the linear discriminant function to classify PTCL

cases, assigning each case to either one PTCL subgroups (PTCL/

NOS vs AITL and PTCL/NOS vs ALCL/ALK− ). We found that 16 out
of 20 AITLs and 15 out of 20 PTCLs/NOS were correctly classified,
for an overall accuracy of 77.5% (P-value for Fisher's exact
test = 0.0012). ST and SP were, respectively, 76.2% and 78.9%,
whereas PPV and NPV were 80% and 75% respectively (Figure 5d
and Table 1).
Discriminant function applied on PTCLs/NOS vs ALCLs/ALK−

was able to classify correctly 18 out of 19 ALCLs/ALK− and 17 out
of 20 PTCLs/NOS, for an overall accuracy of 89.74% (P-value for
Fisher's exact test o0.0001). ST and SP were, respectively, 85.7%
and 94.4%, whereas PPV and NPV were 94.7% and 85%,
respectively (Figure 5e and Table 1).

The microRNA classifier improves categorization and prognosis of
PTCL subtypes
As PTCL diagnosis based on GEP is provided with relevant
prognostic implications, we then assessed whether the proposed
PTCLs classification based on miRNAs expression was endorsed
with clinical significance as well. We could include 65/119 cases for
which complete information was available; the median follow-up
of alive patients was 1489 days (range 321–3435 days). The
median OS for the entire population was 607 days, the 3-year OS
rate being 36.2%, 68.8%, 83.3% and 27.3% for AITL, ALCL/ALK− ,
ALCL/ALK+ and PTCL/NOS patients, respectively. We then
calculated the OS curves for cases classified according to the
minimum set of miRNAs for PTCL/NOS vs AITL, PTCL/NOS vs ALCL/
ALK− and ALCL/ALK− vs ALCL/ALK+. Significant survival
differences were recorded when PTCL/NOS (median OS 277 days)
vs AITL (median OS, 1694) subtypes were reclassified by miRNA
expression (P= 0.027; Figure 6a). Similarly, when PTCL/NOS
(median OS 277 days) vs ALCL/ALK− (median OS not reached)
subtypes were reclassified by miRNA expression, we found a
statistically significant difference in terms of OS (P= 0.001). The
miRNA-based classifier was more effective than histopathological
diagnosis in predicting prognosis (Figure 6b; P= 0.001 vs P= 0.05,
respectively). The 3-years OS rate for reclassified samples was 50%,
77.20%, 83.3% and 8.33% for AITL, ALCL/ALK− , ALCL/ALK+ and
PTCL/NOS patients, respectively.
Moreover, we tested six examples of PTCL/NOS with CD30

expression (positivity ⩾ 75% of neoplastic elements), which had
been sent to the Unit of Haematopathology because of the
problems encountered in the distinction between PTCL/NOS and
ALCL/ALK− . All patient cases were classified as PTCL/NOS in
keeping with the fact that no hallmark cells were observed on the
light microscopy. Most importantly, the OS of these patients
turned out to be significantly worse than that of patients with
ALCL/ALK− (mean OS, 851 vs 2766 days; P= 0.005; Figure 6c),
indicating the usefulness of the tool in this peculiar setting. Taken
together, these data showed that the miRNAs tool might have
clinical relevance.

Figure 5. Supervised analysis identify (a) ‘bioinformatic approach (two-step). Schematic representation of PTCL subtypes classification based
on miRNA profiling analysis. The flow diagram is constituted by two steps indicated in the figure by three arrows’. (b) Differentially expressed
miRNAs comparing PTCL/NOS vs AITL. miRNAs with differences in expression were selected by the comparative cycling threshold methods
(ΔΔCT) and filtered for statistical significance (two-tailed Student's t-test P-value o0.05 and FC 42). Eight miRNAs emerging from stepwise
discriminant analysis. (c) Differentially expressed miRNAs comparing PTCL/NOS vs ALK-negative anaplastic large-cell lymphoma (ALCL/ALK− ).
miRNAs with differences in expression were selected by the comparative cycling threshold methods (ΔΔCT) and filtered for statistical
significance (two-tailed Student's t-test P-value o0.05 and FC42). Five miRNAs emerging from stepwise discriminant analysis. For each panel
in the matrix, rows represent miRNAs and columns represent samples. The colour scale illustrates the relative expression level of miRNAs
across all samples: red represents an expression level above the mean and green represents expression lower than the mean. Classification of
PTCL subtypes by linear discriminant analysis in an independent set of cases. Scatterplots shows the distribution of PTCL/NOS vs AITL (d) and
PTCL/NOS vs ALCL/ALK− (e) according to their discriminant scores in minimum miRNA set. Each case is represented in different colour
according to its molecular classification. Green circles represent PTCL/NOS cases, red rhombus represents AITL cases and blue hexagons
represents ALCL/ALK− cases.

Table 1. Diagnostic accuracy of PTCL/NOS vs AITL and PTCL/NOS vs
ALCL/ALK− miRNA classifier evaluated in an independent set of cases

miRNA classification Histopathology Total

PTCL/NOS AITL

PTCL/NOS 15 5 20
AITL 4 16 20

Accuracy

Value 95% CI

ST 0.762 0.549–0.894
SP 0.789 0.567–0.915
PPV 0.8 0.584–0.919
NPV 0.75 0.531–0.888
LR+ 3.619 1.467–8.928
LR- 0.302 0.136–0.671

Overall accuracy 77.5% (31 of 40)

miRNA classification Histopathology Total

PTCL/NOS ALCL/ALK−

PTCL/NOS 17 3 20
ALCL/ALK− 1 18 19

Accuracy

Value 95% CI

ST 0.857 0.654–0.95
SP 0.944 0.742–0.999
PPV 0.947 0.754–0.991
NPV 0.85 0.64–0.948
LR+ 15.429 2.278–104.475
LR− 0.151 0.053–0.434

Overall accuracy 89.74% (35 of 39)

Abbreviations: ALCL/ALK− , anaplastic large-cell lymphoma ALK− ; AITL,
angioimmunoblastic T-cell lymphoma; LR, likelihood ratio; NPV, negative
predictive value; PPV, positive predictive value; PTCL/NOS, peripheral T-cell
lymphoma/not otherwise specified; SP, specificity; ST, sensitivity.
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DISCUSSION
The PTCL/NOS category includes neoplasms that cannot be
attributed to any of the remaining T-cell entities of the 2008
WHO Classification. It is characterized by dismal prognosis and
lack of effective therapies.42–44 The pathobiology of PTCLs/NOS is
still largely unknown. GEP studies have provided some hints to
better understand their histogenesis, pathogenesis and prognos-
tication, and to identify new potential therapeutic targets.3,45–47 In
particular, the molecular profile of PTCL/NOS differs from those of
AITL and ALCL, and is characterized by the recurrent deregulation
of genes involved in relevant functions (e.g. matrix deposition,
cytoskeleton organization, cell adhesion, apoptosis, proliferation,
transcription and signalling transduction).18–23

In recent years, it has become clear that microRNAs have a
pivotal role in the regulation of gene expression. Several human
microRNAs identified so far show tissue or development stage-
specific expression profiles, suggesting that they are integrated in
the regulatory networks defining the cellular characteristics of the
immune system.48–50 Our study aimed to identify the possible
involvement of microRNAs in the regulation of PTCL/NOS GEP,
through the analysis of the miRNomes obtained from 23 PTCL/
NOS and 12 normal naive and activated CD4+ and CD8+
T-lymphocyte samples.
Only a few studies have been reported so far, dealing with

miRNA expression in PTCLs, all focusing in particular on
ALCLs.28–34

First, we compared naive CD4+ and CD8+ vs activated CD4+
and CD8+ T-lymphocytes to determinate an miRNA signature that
could distinguish these two groups. Then, we investigated if the
microRNA profile of PTCL/NOS was more similar to the one of
naive or activated T-lymphocytes. As previously demonstrated by
gene expression profiling,18,40,41 PTCL/NOS showed an miRNA
expression profile closest to activated CD4+ and CD8+
T-lymphocytes.
Thus, we focused on the identification of those microRNAs

differentially expressed between PTCLs/NOS and activated CD4+
and CD8+ T-lymphocytes identifying a signature consisting of 236
miRNAs.
We adopted a multistep integrated analysis of miRNA profiling

data with gene expression profiling and several computational
prediction tools to identify specifically miRNAs deregulated in
PTCL/NOS vs normal T-lymphocytes that might affect the
transcriptional profile of these tumours. Through a filtering step
using microRNA Data Integration Portal database, we selected
only miRNA–gene pairs inversely correlated by identifying 1184
miRNA–gene pairs, corresponding to 475 genes and 158 miRNAs.
Notably, on the basis of gene ontology enrichment analysis, we
found that these 475 miRNA-related genes were involved in
several relevant biological processes as the intracellular signalling
cascade, cell morphogenesis, cell cycle, apoptosis, regulation of
cell adhesion, Ras protein signal transduction, T-cell receptor
signalling, chemokine pathway and mitogen-activated protein
kinase signalling. Furthermore, our findings suggest that these 158
miRNAs significantly affect the transcriptome of PTCL/NOS. To this
end, we validated the 475 miRNA-related genes by GSEA in an
independent set of 55 PTCLs/NOS by confirming that this gene
signature was effectively enriched in PTCLs/NOS vs activated
CD4+ and CD8+ T-lymphocytes.
Among the 158 miRNAs, we focused our attention on mir-132-

3p that showed: (1) a higher number of mRNA targets and (2) the
greatest difference in expression in PTCLs/NOS vs activated CD4+
and CD8+ T-lymphocytes. Wang et al.51 described novel miRNAs
deregulated in tumours by meta-analysis of miRNA microarray,
and mir-132-3p was downregulated in human tumours. Moreover,
Zhang et al.52 found miR-132-3p downregulated in pancreatic
cancer, and its expression was remarkably influenced by promoter
methylation in pancreatic cell lines.52 Functional studies of cell

Figure 6. (a) Survival analyses of PTCL subtypes divided according to
histopathology diagnosis. (b) Survival analyses of PTCL subtypes
divided according to the minimum miRNA set classification.
(c) Survival analyses of PTCL/NOS CD30+ vs ALCL/ALK− according
to the minimum miRNA set classification. P-values o0.05 for log-
rank Mantel–Cox test were considered statistically significant.
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transfection and subsequent GEP on transfected and untrans-
fected cells allowed us to verify whether or not mir-132-3p had an
impact on the transcriptome in PTCL/NOS. By supervised analysis,
468 differentially expressed genes were identified between
transfected and untransfected cells. To evaluate the relevance of
such gene signature, we applied GSEA to 78 PTCL/NOS primary
tumours and found that they were enriched in these genes.
These data highlight that miR-132-3p modulation has a

significant impact on PTCL/NOS transcriptome. More in general,
they further stress that PTCL/NOS is a neoplasm characterized by a
complex array of molecular interactions at the genome, tran-
scriptome and proteome levels, which eventually have an
important role in the process of lymphomagenesis. When the
signature obtained upon miR-132-3p modulation was compared
with that discriminating PTCL/NOS and normal T cells, we found
nine specific genes (ADRA2A, ANKS1B, FRMPD1, FZD4, GRM3,
KIRREL, NCOA7, PON1 and SPARC) that overlapped. This is
reasonably consistent with the potential impact of a single
miRNA, although a formal biochemical validation is warranted to
confirm possible direct interactions.
Another aim of this study was to identify a specific set of

miRNAs that might be used for the differential diagnosis between
PTCL/NOS on the one hand and AITL and ALCL/ALK− on the
other hand, which may be of remarkable clinical interest and not
always straightforward based on the conventional criteria.53 In this
regard, a large international study reported that up to 30% of
PTCLs remain unclassified.54 Recently, our group showed that
PTCL/NOS, AITL and ALCL/ALK− can be distinguish based on their
GEP.7 Accordingly, we tried to develop a similar approach aiming
to distinguish these PTCL subtypes on the basis of miRNA profiles.
Previously, Liu et al.34 provided the basic evidence that 11 miRNAs
could discriminate ALCL/ALK− from PTCL/NOS and AITL, although
they did not test the potential diagnostic accuracy of their
observation. Of note, the signature we identified discriminating
PTCL/NOS and ALCL/ALK− (68 miRNA) only partially overlapped
(3/68) with the one of Liu et al.,34 this being expected as the
comparison did not include ALCL/ALK+ and AITL. We could
confirm the previously reported differential expression of miR-155
between ALCL/ALK+ and ALCL/ALK− ,28 although our analysis did
not specifically focus on ALCL/ALK+. In our series, miRNA profiling
was able to discriminate AITL and ALK− ALCL from PTCL/NOS
with a specific signature of 35 miRNAs and 68 miRNAs,
respectively. By linear discriminant analysis, we could restrict the
number of miRNAs needed for the distinction of PTCL/NOS from
ALCL/ALK− and AITL to five and eight, respectively. These sets of
miRNAs were confirmed in an independent set of PTCLs by qRT-
PCR, an assay that can be easily performed in most if not all
molecular laboratories at the time of diagnosis. After the
application of linear discriminant function, we obtained a
remarkable efficiency, with an overall diagnostic accuracy of
83.54%.
Our findings propose the use of a minimum set of miRNAs as an

additional tool in the diagnostic workup of nodal PTCLs, which can
integrate the morphology and phenotype.
Notably, this set was also provided with prognostic relevance by

distinguishing groups of tumours characterized by significantly
different outcomes.
Finally, we focused on a small series of CD30+ PTCLs/NOS,

which could not be easily classified according to the conventional
criteria (ALCL/ALK− vs CD30+ PTCL/NOS). Based on their miRNA
profile, they were all included among PTCLs/NOS.
Interestingly, although the number is relatively small, they

revealed a much more aggressive clinical course than ALCLs/
ALK− . These findings underline the usefulness of innovative tools,
which contribute to the clearcut distinction between ALCL/ALK−
and CD30+ PTCL/NOS, two conditions provided with significantly
different prognostic impact. Conversely, the difference recorded

between PTCL/NOS and AITL was quite surprising and probably
reflected the limited number of AITL cases included.
Recently, we described a gene signature with diagnostic and

prognostic potential.7 We then compared the results obtained
with the miRNA-based classifier to the previous gene-based one.
We found 97.5% concordance. Therefore, we considered them
equivalent on the clinical/diagnostic point of view. As the miRNA
classifier is technically easier to be applied, this may represent a
step forward in routine diagnostics.
In conclusion, our study identified miRNA signatures capable to

differentiate efficiently PTCL/NOS from activated CD4+ and CD8+
T-lymphocytes. In this setting, miR-132-3p turned out to be an
important modulator of PTCL/NOS transcriptome. Finally, a set of
miRNAs was developed that is applicable to FFPE tissue samples
by improving the differential diagnosis between PTCL/NOS on the
one hand and AITL and ALCL/ALK− on the other.
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