
16 July 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Vasco Brattka, Guido Gherardi, Rupert Hölzl (2015). Probabilistic computability and choice.
INFORMATION AND COMPUTATION, 242, 249-286 [10.1016/j.ic.2015.03.005].

Published Version:

Probabilistic computability and choice

Published:
DOI: http://doi.org/10.1016/j.ic.2015.03.005

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/521827 since: 2020-07-02

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.ic.2015.03.005
https://hdl.handle.net/11585/521827

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

V. Brattka, G. Gherardi and R. Hölzl (2015) Probabilistic computability and choice.
Information and Computation, vol. 242, pp. 249-286, DOI: 10.1016/j.ic.2015.03.005

The final published version is available online at: http://dx.doi.org/10.1016/j.ic.2015.03.005

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/

Probabilistic computability and choice

Vasco Brattka a,b,∗,1, Guido Gherardi a, Rupert Hölzl c,2

a Faculty of Computer Science, Universität der Bundeswehr München, Germany
b Department of Mathematics & Applied Mathematics, University of Cape Town, South Africa
c Department of Mathematics, Faculty of Science, National University of Singapore, Singapore

 a b s t r a c t

Keywords:
Computable analysis
Weihrauch lattice
Computability theory
Reverse mathematics
Randomized algorithms

We study the computational power of randomized computations on infinite objects, such
as real numbers. In particular, we introduce the concept of a Las Vegas computable multi-
valued function, which is a function that can be computed on a probabilistic Turing
machine that receives a random binary sequence as auxiliary input. The machine can
take advantage of this random sequence, but it always has to produce a correct result
or to stop the computation after finite time if the random advice is not successful. With
positive probability the random advice has to be successful. We characterize the class of
Las Vegas computable functions in the Weihrauch lattice with the help of probabilistic
choice principles and Weak Weak Kőnig’s Lemma. Among other things we prove an
Independent Choice Theorem that implies that Las Vegas computable functions are closed
under composition. In a case study we show that Nash equilibria are Las Vegas computable,
while zeros of continuous functions with sign changes cannot be computed on Las Vegas
machines. However, we show that the latter problem admits randomized algorithms with
weaker failure recognition mechanisms. The last mentioned results can be interpreted such
that the Intermediate Value Theorem is reducible to the jump of Weak Weak Kőnig’s
Lemma, but not to Weak Weak Kőnig’s Lemma itself. These examples also demonstrate
that Las Vegas computable functions form a proper superclass of the class of computable
functions and a proper subclass of the class of non-deterministically computable functions.
We also study the impact of specific lower bounds on the success probabilities, which
leads to a strict hierarchy of classes. In particular, the classical technique of probability
amplification fails for computations on infinite objects. We also investigate the dependency
on the underlying probability space. Besides Cantor space, we study the natural numbers,
the Euclidean space and Baire space.

E-mail addresses: Vasco.Brattka@cca-net.de (V. Brattka), Guido.Gherardi@unibw.de (G. Gherardi), r@hoelzl.fr (R. Hölzl).

1 Vasco Brattka is supported by the National Research Foundation of South Africa through Incentive Grant IFR2011033000081.
2 Rupert Hölzl was supported through a Feodor Lynen postdoctoral research fellowship by the Alexander von Humboldt Foundation and is supported by

the Ministry of Education of Singapore through grant R146-000-184-112 (MOE2013-T2-1-062).

http://dx.doi.org/10.1016/j.ic.2015.03.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:Vasco.Brattka@cca-net.de
mailto:Guido.Gherardi@unibw.de
mailto:r@hoelzl.fr
http://dx.doi.org/10.1016/j.ic.2015.03.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2015.03.005&domain=pdf

1. Introduction

What is the computational power of a sequence of coin flips for computations on real numbers? While the power of
randomized algorithms has been studied in the discrete setting for a long time (for a survey see for instance the text book
by Motwani and Raghavan [33]), very little is known for computations on real numbers.3

In the discrete setting of decision problems randomization has no impact on what can be computed in principle, which
follows from the Theorem of Sacks and its predecessors (see the discussion of Theorem 14.10), but it might have an impact
on the computational complexity (whether it does or not is still not known for polynomial time complexity).

As we will see, randomization actually increases the computational power in general for computations of multi-valued
functions in the infinite setting; and the question is to which extent it does so.

The purpose of this study is to analyze this question from the following perspective. Given a problem (a partial multi-
valued function) f :⊆ X ⇒ Y :

• Imagine that a Turing machine upon input of x ∈ X receives a second auxiliary input r ∈ R and is supposed to produce
a result y ∈ f (x) with the help of this additional “random advice” r.

• We will require that such a computation is successful for every fixed x with a certain probability, i.e., the set Sx of
successful advices r for input x has to have a certain measure.

• Additional conditions can be imposed on how the machine has to recognize the possible failure of an advice during the
course of the computation.

Hence, this scenario can be seen as a way to formalize randomized algorithms over infinite objects x, y, where the
computation is performed using some additional “random” input r. Now we can distinguish several ways in which this
scenario can be refined:

1. Probability space. The probability space R can be chosen in different ways:
(a) R = 2N reflects the situation where the computation depends on a sequence of “coin tosses” (i.e., a sequence of

zeros and ones),
(b) R =N reflects the situation where the computation depends on a randomly chosen natural number,
(c) R = N × 2N reflects the situation where the computation depends on a randomly chosen natural number and a

randomly chosen sequence of zeros and ones (as we will see, one can more or less equivalently work with R = R
and choose a real number x ∈ R),

(d) R =NN reflects the situation where the computation depends on a randomly chosen sequence of natural numbers.
In each case R is equipped with some natural canonical (probability) measure μ. We also allow measures which are
not probability measures.

2. Success probability. Different success probabilities can be imposed:
(a) μ(Sx) > 0 for all admissible inputs x reflects positive success probability, which is the weakest meaningful require-

ment in this regard,
(b) μ(Sx) ∈ I reflects more generally a success probability in some fixed interval I ⊆ R for all admissible inputs x.

3. Failure recognition. Finally, we can impose different conditions on how the machine has to recognize the failure of an
advice r:
(a) Las Vegas algorithms4 require that the machine always produces a correct result and otherwise recognizes at some

finite stage that the advice is unsuccessful and stops the computation in this case.
(b) Higher order probabilistic algorithms are defined by weaker failure recognition mechanisms of the machine.

The most important and most natural scenario for us is the one with a sequence of coin tosses R = 2N , with positive
success probability in I = (0, 1] and a Las Vegas failure recognition mechanism. In this setting we will simply speak of Las
Vegas computability.

We briefly summarize some major results that we are going to provide. After the introduction of some preliminaries in
Section 2 we formally introduce the concept of Las Vegas computability in Section 3 and we characterize it with the help of
a probabilistic choice operation PI CX . Intuitively, the problem PI CX is the problem of finding a point in a given closed set
A ⊆ X of measure μ(A) ∈ I (we assume that X is a topological space equipped with a suitable measure μ and I ⊆ R is an
interval). In case of I = (0, ∞] we briefly write PCX instead of PI CX and in this form this problem was already introduced
and studied under the name positive choice by the first author and Arno Pauly in [14]. Using the concept of Weihrauch
reducibility ≤W we show that

f is Las Vegas computable ⇐⇒ f ≤W PC2N .

3 See however the work of Hertling and Weihrauch [26], Gács [22], Bosserhoff [6,5] and Hoyrup and Rojas [28], Freer and Roy [21] for some results on
randomness and probabilistic computability over topological spaces in this direction and for further references.

4 Our understanding of Las Vegas algorithms for infinite computations is very close to Babai’s original understanding of this concept, see [2].

We assume that Cantor space 2N is equipped with the usual uniform measure. Intuitively, the above characterization means
that a function f is Las Vegas computable if and only if it can be computed using the resource of probabilistic choice PC2N

exactly once during the course of the computation. We also prove that Weihrauch reducibility ≤W cannot be replaced by
strong Weihrauch reducibility ≤sW here (the strong reducibility is different in that the only information that is available
after usage of the oracle is the answer of the oracle; in particular the original input is not available afterwards).

In Section 4 we prove a general Independent Choice Theorem 4.3 with the help of the Theorem of Fubini (that generalizes
a corresponding result of the first author, de Brecht and Pauly [9] on non-deterministic computations). This theorem implies,
in particular, that Las Vegas computable functions are closed under composition, i.e.,

f and g Las Vegas computable 	⇒ g ◦ f Las Vegas computable.

Closure under composition is in a certain sense a minimal requirement for a reasonable class of functions from a “practical
programming” perspective.

The Independent Choice Theorem 4.3 also shows that a similar result cannot just be obtained for randomized computa-
tions with positive probabilities, but more generally whenever the intervals I of probabilities are closed under multiplication.
In Section 5 we show that over the probability space R = 2N we can only get three classes of functions in this way: the
computable functions, the Las Vegas computable functions and the non-deterministically computable functions.5

In Section 6 we study the setting of the probability space R = N × 2N and we call the functions below PCN×2N Las Vegas
computable with finitely many mind changes. We prove that these functions are exactly those functions that one can obtain if
one composes a Las Vegas computable function f with a function g that is computable with finitely many mind changes in
either order. In particular, the class of functions that are Las Vegas computable with finitely many mind changes is closed
under composition as well. This result is interesting, since functions that are computable with finitely many mind changes
are of independent interest and have been used for instance in learning theory (see for instance [17]).

In Section 7 we use the Smith-Volterra Cantor set construction in order to show that the probability space R = 2N can
almost (up to some arbitrarily small measure) be replaced by the unit interval R = [0, 1], equipped with the Lebesgue
measure. In fact, the corresponding classes are even exactly equivalent if arbitrary positive probabilities are allowed and, in
particular, we obtain

f is Las Vegas computable ⇐⇒ f ≤W PC[0,1].
We also prove that R = N × 2N and R = R lead exactly to the same classes of probabilistically computable functions, no
matter what kind of intervals are imposed on the probabilities. In particular,

f is Las Vegas computable with finitely many mind changes ⇐⇒ f ≤W PCR.

In Section 8 we collect some definitions and observations regarding Weak Weak Kőnig’s Lemma WWKL, in particular we
have PC2N ≡W WWKL and thus

f is Las Vegas computable ⇐⇒ f ≤W WWKL.

In Section 9 we briefly discuss jumps WWKL′ and discrete jumps WWKL� of WWKL and we show that

f is Las Vegas computable with finitely many mind changes ⇐⇒ f ≤W WWKL�.

The functions f ≤W WWKL′ form an even larger class and they can be seen as probabilistically computable with weaker
failure recognition mechanisms. For all these functions failure of the random advice can, in particular, be recognized “in the
limit”.

In Section 10 we study the problem ε-WWKL that was introduced by Dorais et al. [19] and that is Weihrauch equivalent
to P(ε,1]C2N , the probabilistic choice problem for closed sets A ⊆ 2N with μ(A) > ε. We prove that the lower bounds that
are imposed on the probability lead to a strict hierarchy of problems, i.e.,

ε-WWKL≤W δ-WWKL ⇐⇒ ε ≥ δ.

A similar result has independently been proved by Dorais et al. [19, Proposition 4.7].
The aforementioned result can be interpreted such that probability amplification fails for Las Vegas computable functions.

Intuitively, this is because we are dealing with infinite computations and even if we perform two randomized computations
in parallel we need to start producing some definite output possibly before we might know that one of the computations
fails. Using a version of the Lebesgue Density Lemma LDL we prove in Section 11 that probability amplification works for
Las Vegas computable functions with finitely many mind changes, i.e.,

PCN×2N ≡W PCR ≡W P(ε,∞]CR for every ε > 0.

5 A multi-valued function is non-deterministically computable if it can be computed using an infinite sequence of coin tosses with failure recognition, but
without any further restrictions on the success probability; however, we still require that there has to be at least one successful guess.

This also shows that there is a trade-off between the different aspects of probabilistic computations that we consider:
the underlying probability space, the imposed probability and the failure recognition mechanism. If we want to achieve a
certain guaranteed probability, then this might be feasible for the price of changing the underlying probability space (for
instance from PC2N to PCN×2N) or for the price of allowing a weaker failure recognition mechanism (for instance from
PC2N to PC′

2N
).

As a side result we obtain that the Lebesgue Density Lemma LDL itself is equivalent to choice on natural numbers, i.e.,
LDL≡W CN . In Section 12 we briefly discuss an algebraic operation f + g that mimics parallel computations as they occur
in the usual probability amplification method.

In Section 13 we prove that single-valued functions f : X → Y on computable metric spaces X, Y , which are below
1
2 -WWKL(n) (the n-fold jump of 1

2 -WWKL) are always computable, i.e., for all n ∈ N we have

f ≤W
1

2
-WWKL(n) 	⇒ f computable.

The underlying idea of a “majority-vote” is the same that has been used for the classical proof of the Theorem of Sacks 14.10,
which we discuss in Section 14.

More generally, we discuss probabilistic functions f in Section 14, which have been called functions that are computable
with random advice in an earlier study of the first author and Arno Pauly [14]. Intuitively, a probabilistic f is an f that can
be computed with random advice irrespectively of any kind of uniformity or failure recognition method in this regard. In
[14] it was already proved that WKL is not probabilistic. We show that all functions below PC(n)

R for R among N, 2N, N × 2N

and NN are probabilistic. Hence, a proof that some function is not probabilistic shows that it cannot be computed with any
of the mentioned resources. In particular, we obtain

WKL�W WWKL(n)

for all n ∈ N. We prove another result that generalizes the Theorem of Sacks 14.10 in a certain sense, namely for suitable
single-valued f : X → Y we have that

f probabilistic 	⇒ f maps computable inputs x to computable outputs f (x).

In the remaining sections of the paper we present case studies in which we investigate certain computational problems
with regards to the question of whether they admit a Las Vegas algorithm. In Section 15 we start with the problem of
finding a zero x ∈ [0, 1] of a continuous function f : [0, 1] → R that changes its sign, i.e., f (0) · f (1) < 0. This problem
is also known as the Intermediate Value Theorem IVT. Using the finite extension method we prove that there is no Las
Vegas algorithm for this problem (not even with finitely many mind changes), however it is probabilistic and even admits a
uniform probabilistic algorithm with a weaker failure recognition mechanism in the sense that IVT ≤W WWKL′ . Altogether,
we obtain

IVT�W WWKL and IVT≤W WWKL′.

The second case study concerns the computation of Nash equilibria NASH. This problem was studied by Arno Pauly
[38,40] who proved that it is equivalent to the idempotent closure RDIV∗ of robust division RDIV, i.e., NASH≡W RDIV∗ .
Intuitively, robust divisions can be used to solve linear equations (and inequalities) in a compact domain and by using this
operation repeatedly, one can determine Nash equilibria. In Section 16 we first prove that there is a Las Vegas algorithm for
robust division and since WWKL is idempotent (which means WWKL∗ ≤W WWKL) we can conclude in Section 17 that

NASH≤W WWKL.

This implies that there is a Las Vegas algorithm to compute Nash equilibria. As a side result we prove that robust division
(and hence Nash equilibria NASH) cannot be computed with any fixed positive success probability and that Nash equilibria
cannot be reduced to the Intermediate Value Theorem, i.e.,

NASH�W IVT.

Hence, the two problems IVT and NASH are incomparable by the above results. The exact relation between most of the
problems studied in this paper is shown in the diagram in Fig. 1 in the concluding Section 18.

Altogether, our case study proves that there are problems of practical interest that are Las Vegas computable, but not
computable (such as Nash equilibria) and that there are other problems of practical interest which are probabilistically
and non-deterministically computable, but not Las Vegas computable, such as the problem of finding zeros of continuous
functions with sign changes. The latter problem also illustrates that there are problems of practical interest, which admit
randomized algorithms with weaker failure recognition methods (here the failure is recognizable only in the limit), but
not Las Vegas algorithms. This proves that the distinctions that we have made are meaningful and can be illustrated with
problems of practical importance.

2. Preliminaries

In this section we give a brief introduction into the Weihrauch lattice and we provide some basic notions from probability
theory.

Pairing functions We are going to use some standard pairing functions in the following that we briefly summarize. As usual,
we denote by 〈n, k〉 := 1

2 (n + k + 1)(n + k) + k the Cantor pair of two natural numbers n, k ∈ N and by 〈p, q〉(n) := p(k) if
n = 2k and 〈p, q〉(n) = q(k), if n = 2k + 1, the pairing of two sequences p, q ∈ NN . By 〈k, p〉(n) := kp we denote the obvious
pairing of a number k ∈ N with a sequence p ∈ NN . We also define a pairing function 〈p0, p1〉 := 〈〈p0(0), p1(0)〉, 〈p0, p1〉〉,
for p0, p1 ∈N × 2N , where pi(n) = pi(n + 1). Finally, we use the pairing function 〈p0, p1, p2, . . .〉〈i, j〉 := pi(j) for sequences
(pi)i in NN .

The Weihrauch lattice The original definition of Weihrauch reducibility is due to Klaus Weihrauch and has been studied for
many years (see [44–46,25,7,8]). More recently it has been noticed that a certain variant of this reducibility yields a lattice
that is very suitable for the classification of the computational content of mathematical theorems (see [23,38,39,11,10,9,12]).
The basic reference for all notions from computable analysis is Weihrauch’s textbook [47]. The Weihrauch lattice is a lattice
of multi-valued functions on represented spaces.

A representation δ of a set X is just a surjective partial map δ :⊆ NN → X . In this situation we call (X, δ) a represented
space. By N := {0, 1, 2, . . .} we denote the set of natural numbers. In general we use the symbol “⊆” in order to indicate that
a function is potentially partial. We work with partial multi-valued functions f :⊆ X ⇒ Y where f (x) ⊆ Y denotes the set
of possible values upon input x ∈ dom(f). If f is single-valued, then for the sake of simplicity we identify f (x) with the
single element y in it. We denote the composition of two (multi-valued) functions f :⊆ X ⇒ Y and g :⊆ Y ⇒ Z either by
g ◦ f or by g f . It is defined by

g ◦ f (x) := {z ∈ Z : (∃y ∈ Y)(z ∈ g(y) and y ∈ f (x))},
where dom(g ◦ f) := {x ∈ X : f (x) ⊆ dom(g)}. Using represented spaces we can define the concept of a realizer.

Definition 2.1 (Realizer). Let f :⊆ (X, δX) ⇒ (Y , δY) be a multi-valued function on represented spaces. A function F :⊆
NN → NN is called a realizer of f , in symbols F � f , if δY F (p) ∈ f δX (p) for all p ∈ dom(f δX).

Realizers allow us to transfer the notions of computability and continuity and other notions available for Baire space to
any represented space; a function between represented spaces will be called computable, if it has a computable realizer, etc.
Now we can define Weihrauch reducibility.

Definition 2.2 (Weihrauch reducibility). Let f , g be multi-valued functions on represented spaces. Then f is said to be
Weihrauch reducible to g , in symbols f ≤W g , if there are computable functions K , H :⊆ NN → NN such that H〈id, G K 〉 � f
for all G � g . Moreover, f is said to be strongly Weihrauch reducible to g , in symbols f ≤sW g , if an analogous condition
holds, but with the property HG K � f in place of H〈id, G K 〉 � f .

We can always tacitly assume that K , H are defined on the minimal necessary domains that consist of those names that
are actually involved. More precisely, let f :⊆ X ⇒ Y and g :⊆ W ⇒ Z be multi-valued functions on represented spaces
(X, δX), (Y , δY), (W , δW) and (Z , δZ), and let f ≤W g hold according to the above definition; then we say that H and K
have minimal domains if

1. dom(K) = {p ∈NN : δX (p) ∈ dom(f)} and
2. dom(H) = {〈p, q〉 : p ∈ dom(K) and δZ (q) ∈ g(δW (K (p)))}.

We use an analogous terminology in case of f ≤sW g .
The difference between ordinary and strong Weihrauch reducibility is that the “output modificator” H has direct access

to the original input in case of ordinary Weihrauch reducibility, but not in case of strong Weihrauch reducibility. There
are algebraic and other reasons to consider ordinary Weihrauch reducibility as the more natural variant. For instance, one
can characterize the reduction f ≤W g as follows: f ≤W g holds if and only if a Turing machine can compute f in such a
way that it evaluates the “oracle” g exactly on one (usually infinite) input during the course of its computation (see [41,
Theorem 7.2]). We will use the strong variant ≤sW of Weihrauch reducibility mostly for technical purposes, for instance it
is better suited to study jumps (see below).

We note that the relations ≤W, ≤sW and � implicitly refer to the underlying representations, which we will only mention
explicitly if necessary. It is known that these relations only depend on the underlying equivalence classes of representations,
but not on the specific representatives (see Lemma 2.11 in [11]). The relations ≤W and ≤sW are reflexive and transitive,
thus they induce corresponding partial orders on the sets of their equivalence classes (which we refer to as Weihrauch
degrees or strong Weihrauch degrees, respectively). These partial orders will be denoted by ≤W and ≤sW as well. The induced

lattice and semi-lattice, respectively, are distributive (for details see [39] and [11]). We use ≡W and ≡sW to denote the
respective equivalences regarding ≤W and ≤sW, by <W and <sW we denote strict reducibility and by |W, |sW we denote
incomparability in the respective sense.

The algebraic structure The partially ordered structures induced by the two variants of Weihrauch reducibility are equipped
with a number of useful algebraic operations that we summarize in the next definition. We use X × Y to denote the or-
dinary set-theoretic product, X � Y := ({0} × X) ∪ ({1} × Y) in order to denote disjoint sums or coproducts, by �∞

i=0 Xi :=⋃∞
i=0({i} × Xi) we denote the infinite coproduct. By Xi we denote the i-fold product of a set X with itself, where X0 = {()}

is some canonical singleton (i.e., we identify () with the empty word ε). By X∗ :=�∞
i=0 Xi we denote the set of all finite se-

quences over X and by XN the set of all infinite sequences over X . All these constructions have parallel canonical constructions
on representations and the corresponding representations are denoted by [δX , δY] for the product of (X, δX) and (Y , δY), by
δn

X for the n-fold product of (X, δX) with itself, where n ∈ N and δ0
X is a representation of the one-point set {()} = {ε}. By

δX � δY we denote the representation of the coproduct, by δ∗
X the representation of X∗ and by δNX the representation of XN .

For instance, (δX � δY) can be defined by (δX � δY)〈n, p〉 := (0, δX (p)) if n = 0 and (δX � δY)〈n, p〉 := (1, δY (p)), otherwise.
Likewise, δ∗

X 〈n, p〉 := (n, δn
X (p)). See [47] or [11,39,9] for details of the definitions of the other representations. We will

always assume that these canonical representations are used, if not mentioned otherwise.

Definition 2.3 (Algebraic operations). Let f :⊆ X ⇒ Y and g :⊆ Z ⇒ W be multi-valued functions. Then we define the follow-
ing operations:

1. f × g :⊆ X × Z ⇒ Y × W , (f × g)(x, z) := f (x) × g(z) (product)
2. f � g :⊆ X × Z ⇒ Y � W , (f � g)(x, z) := f (x) � g(z) (sum)
3. f � g :⊆ X � Z ⇒ Y � W , with (f � g)(0, x) := {0} × f (x) and (f � g)(1, z) := {1} × g(z) (coproduct)
4. f ∗ :⊆ X∗ ⇒ Y ∗, f ∗(i, x) := {i} × f i(x) (finite parallelization)

5. f̂ :⊆ XN ⇒ YN, ̂f (xn) := �
i∈N

f (xi) (parallelization)

In this definition and in general we denote by f i :⊆ Xi ⇒ Y i the i-th fold product of the multi-valued map f with itself
(f 0 is the constant function on the canonical singleton). It is known that f � g is the infimum of f and g with respect to
strong as well as ordinary Weihrauch reducibility (see [11], where this operation was denoted by f ⊕ g). Correspondingly,
f � g is known to be the supremum of f and g with respect to ordinary Weihrauch reducibility ≤W (see [39]). This turns
the partially ordered structure of Weihrauch degrees (induced by ≤W) into a lattice, which we call the Weihrauch lattice.
The two operations f �→ f̂ and f �→ f ∗ are known to be closure operators in this lattice (see [11,39]).

There is some useful terminology related to these algebraic operations. We say that f is a a cylinder if f ≡sW id× f where
id : NN → NN always denotes the identity on Baire space, if not mentioned otherwise. Cylinders f have the property that
g ≤W f is equivalent to g ≤sW f (see [11]). We say that f is idempotent if f ≡W f × f and strongly idempotent, if f ≡sW f × f .
We say that a multi-valued function on represented spaces is pointed, if it has a computable point in its domain. For pointed
f and g we obtain f � g ≤sW f × g . The properties of pointedness and idempotency are both preserved under equivalence
and hence they can be considered as properties of the respective degrees. For a pointed f the finite parallelization f ∗
can also be considered as idempotent closure since one can easily show that idempotency is equivalent to f ≡W f ∗ in this
case. We call f parallelizable if f ≡W f̂ and it is easy to see that f̂ is always idempotent. Analogously, we call f strongly
parallelizable if f ≡sW f̂ .

More generally, we define countable coproducts �i∈N f i :⊆�i∈N Xi ⇒�i∈N Yi for a sequence (f i) of multi-valued func-
tions f i :⊆ Xi ⇒ Yi on represented spaces and then it denotes the operation given by (�i∈N f i)(i, u) := {i} × f i(u). Using
this notation we obtain f ∗ =�i∈N f i . In [9] a multi-valued function on represented spaces has been called join-irreducible
if f ≡W �n∈N fn implies that there is some n such that f ≡W fn . Analogously, we can define strong join-irreducibility using
strong Weihrauch reducibility in both instances. We can also define a countable sum

�
i∈N f i :⊆ �i∈N Xi ⇒�i∈N Yi , defined

by
(�

i∈N f i
)
(xi)i :=�i∈N f i(xi).

One should note however, that
�

and � do not provide infima and suprema of sequences. By a result of Higuchi and
Pauly [27, Proposition 3.15] the Weihrauch lattice has no non-trivial suprema (i.e., a sequence (sn) has a supremum s if and
only if s is already the supremum of a finite prefix of the sequence (sn)) and likewise by [27, Corollary 3.18] the pointed
Weihrauch degrees do not have non-trivial infima. In particular, the Weihrauch lattice is not complete.6

Compositional products While the Weihrauch lattice is not completed, some suprema and some infima exist in general. The
following result was proved by the first author and Pauly in [15] and ensures the existence of an important maximum.

6 We note, however, that for the continuous variant of Weihrauch reducibility the objects �n∈N fn and �
n∈N fn are suprema and infima of the sequence

(fn)n , respectively, and the corresponding continuous version of the Weihrauch lattice is actually countably complete (see [27]).

Proposition 2.4 (Compositional products). Let f , g be multi-valued functions on represented spaces. Then the following Weihrauch
degree exists:

f ∗ g := max{ f0 ◦ g0 : f0 ≤W f and g0 ≤W g} (compositional product)

Here f ∗ g is defined over all f0 ≤W f and g0 ≤W g which can actually be composed (i.e., the target space of g0 and the
source space of f0 have to coincide). In this way f ∗ g characterizes the most complicated Weihrauch degree that can be
obtained by first performing a computation with the help of g and then another one with the help of f . Since f ∗ g is a
maximum in the Weihrauch lattice, we can consider f ∗ g as some fixed representative of the corresponding degree. It is
easy to see that f × g ≤W f ∗ g holds. We can also define the strong compositional product by

f ∗s g := sup{ f0 ◦ g0 : f0 ≤sW f and g0 ≤sW g}
(but we neither claim that it exists in general nor that it is a maximum). The compositional products were originally
introduced in [12].

Jumps In [12] the first two authors and Marcone introduced jumps or derivatives f ′ of multi-valued functions f on
represented spaces. We recall that the jump f ′ :⊆ (X, δ′

X) ⇒ (Y , δY) of a multi-valued function f :⊆ (X, δX) ⇒ (Y , δY) on rep-
resented spaces is obtained by replacing the input representation δX by its jump δ′

X := δX ◦ lim. This leads to f ′ ≡sW f ∗s lim
(see [12, Corollary 5.16]). By f (n) we denote the n-fold jump. Here

lim :⊆ NN →NN, 〈p0, p1, p2, . . .〉 �→ lim
n→∞ pn

is the limit operation on Baire space NN with respect to the product topology on NN. Hence, a δ′
X -name p of a point x ∈ X

is a sequence that converges to a δX -name of x. This means that a δ′
X -name typically contains significantly less accessible

information on x than a δX -name. Hence, f ′ is typically harder to compute than f , since less input information is available
for f ′ .

The jump operation f �→ f ′ plays a similar role in the Weihrauch lattice as the Turing jump operation does in the
Turing semi-lattice. In a certain sense f ′ is a version of f on the “next higher” level of complexity (which can be made
precise using the Borel hierarchy [12]). It was proved in [12] that the jump operation f �→ f ′ is monotone with respect to
strong Weihrauch reducibility ≤sW, but not with respect to ordinary Weihrauch reducibility ≤W. This is one reason why it
is beneficial to extend the study of the Weihrauch lattice to strong Weihrauch reducibility.

Closed choice A particularly useful multi-valued function in the Weihrauch lattice is closed choice (see [23,11,10,9]) and it is
known that many notions of computability can be calibrated using the right version of choice. We recall that a subset U ⊆ X
of a represented space X is open with respect to the final topology of its representation,7 if and only if its characteristic
function

χU : X → S, x �→
{

1 if x ∈ U
0 otherwise

is continuous, where S = {0, 1} is Sierpiński space (equipped with the topology {∅, {1}, S}). Analogously, U is c.e. open if
χU is computable, where S is equipped with its Standard representation δS defined by δS(p) := 0 if p(n) = 0 for all n and
δS(p) := 1, otherwise. Closed and co-c.e. closed sets A ⊆ X are sets whose complement U := X \ U is open and c.e. open,
respectively (see [9,16] for more details). For subsets A ⊆ N of natural numbers this leads to the usual notion of c.e. and
co-c.e. sets. The co-c.e. closed subsets A ⊆ 2N of Cantor space are exactly the usual �0

1-classes.
In general, if (X, δX) is a represented space then we always assume that this space is endowed with the final topology

of its representation. We denote by A−(X) the set of closed subsets of X represented with respect to negative information.
More precisely, we can define a representation ψ− of A−(X) by

ψ−(p) = A : ⇐⇒ [δX → δS](p) = χX\A,

where [δX → δS] is the canonical function space representation in the category of represented spaces (see [47]). This means
that a ψ−-name p of a closed set A ⊆ X is a name for the characteristic function χX\A of its complement.

We are mostly interested in closed choice for computable metric spaces X , which are separable metric spaces such that
the distance function is computable on the given dense subset. We assume that computable metric spaces are represented
via their Cauchy representations (see [47] for details). In this special case a computably equivalent definition of ψ− can be
obtained by

7 If δX is the representation of X , then {U ⊆ X : δ−1
X (U) open in dom(δX)} is called the final topology of δX .

ψ−(p) := X \
∞⋃

i=0

B p(i),

where Bn is some standard enumeration of the open balls of X with center in the dense subset and rational radius. Here
a ψ−-name p of a closed set A ⊆ X is a list of sufficiently many open rational balls whose union exhausts exactly the
complement of A. We are now prepared to define closed choice.

Definition 2.5 (Closed choice). Let X be a represented space. The closed choice problem of the space X is defined by

CX :⊆ A−(X) ⇒ X, A �→ A

with dom(CX) := {A ∈A−(X) : A �= ∅}.

Intuitively, CX takes as input a non-empty closed set in negative description (i.e., given by ψ−) and it produces an
arbitrary point of this set as output. Hence, A �→ A means that the multi-valued map CX maps the input A ∈A−(X) to the
set A ⊆ X as a set of possible outputs. We mention some classes of functions that can be characterized by closed choice.
The following results have mostly been proved in [9]:

Proposition 2.6. Let f be a multi-valued function on represented spaces. Then:

1. f ≤W C1 ⇐⇒ f is computable,
2. f ≤W CN ⇐⇒ f is computable with finitely many mind changes,
3. f ≤W C2N ⇐⇒ f is non-deterministically computable,
4. f ≤W CNN ⇐⇒ f is effectively Borel measurable.

In the latter case (4) we have to assume that f : X → Y is single-valued and defined on computable complete metric spaces X, Y .

Here and in general we identify each natural number n ∈ N with the corresponding finite subset n = {0, 1, . . . , n − 1}.
The problem C0, i.e., closed choice for the empty set 0 = ∅, is the bottom element of the Weihrauch lattice. Also C2 plays
a significant role, since it is equivalent to LLPO, the so-called lesser limited principle of omniscience as it is known from
constructive mathematics. In [12] we have characterized the jumps C′

X ≡W CLX for computable metric spaces X using the
cluster point problem CLX of X . We also use the limited principle of omniscience LPO : NN → {0, 1}, which is simply the
characteristic function of the constant zero sequence ̂0 ∈ NN .

Some measure theory We now introduce some notation from measure theory. We consider measures as non-negative func-
tions into [0, ∞]. On the set N = {0, 1, 2, . . .} we can use the geometric probability measure μ, induced by μ({n}) = 2−n−1 for
all n ∈N. This leads to a product measure μNN on Baire space NN with μNN (wNN) = ∏|w|−1

i=0 2−w(i)−1 for all words w ∈ N∗ .
Similarly, we use the uniform measure μ2 on 2 = {0, 1} with μ2({i}) = 1

2 for i ∈ {0, 1} and the induced product measure
μ2N on Cantor space 2N with μ2N (w2N) = 2−|w| for all words w ∈ 2∗ = {0, 1}∗ . Often, we rather use the counting measure
μN on N that is induced by μN({n}) = 1 for all n ∈ N. If not mentioned otherwise, we assume that N is endowed with
the counting measure. On R and [0, 1] we use the Lebesgue measure λ. We recall that a measure μ on X is called finite
if μ(X) < ∞ and σ -finite if there exists a sequence (Xn)n of measurable sets Xn ⊆ X with X = ⋃∞

n=0 Xn and μ(Xn) < ∞
for all n ∈ N. All the measures mentioned here are σ -finite, in fact all except the counting measure on N and the Lebesgue
measure on R are even probability measures. We only use Borel measures, i.e., measures for which exactly all sets in the
Borel σ -algebra generated by the underlying topology are measurable sets. This is because we want to assume that all
closed sets are measurable. If not mentioned otherwise, we always assume in the following that N is endowed with the
counting measure μN and 2N, NN are endowed with the product measures μ2N , μNN as standard measures, respectively.
Likewise, R and [0, 1] are always endowed with the Lebesgue measure λ. If we just write μ for a measure on one of these
spaces, then this refers to the corresponding standard measure.

Given two σ -finite measures μX on X and μY on Y , we obtain a unique product measure μX ⊗ μY on X × Y with
respect to the corresponding product σ -algebra and this measure is σ -finite too (see [3, Theorem 23.3]). The product
measure μX ⊗ μY satisfies

(μX ⊗ μY)(A × B) = μX (A) · μY (B)

for all corresponding measurable sets A ⊆ X and B ⊆ Y . In the following we assume that we always use this product
measure on product spaces. For instance, N × 2N is endowed with the measure μN ⊗ μ2N and so forth.

A basic computability theoretic property of all measures used here is that they are upper semi-computable on closed
sets.

Lemma 2.7 (Semi-computability of measures). The measures μ2N : A−(2N) → R and λ : A−([0, 1]) → R are upper-semi com-
putable.

We will also occasionally use the fact that two measures μ1, μ2 on 2N coincide on closed sets if they coincide on all
open balls w2N .

Lemma 2.8 (Identity of measures). Let μ1, μ2 be two Borel measures on a subspace R ⊆ NN of Baire space, at least one of which is
finite. If

μ1(wNN ∩ R) = μ2(wNN ∩ R)

for all w ∈N∗ , then μ1 = μ2 .

Proof. Firstly, if one of the involved measures is finite, then the other is finite too, since μ1(R) = μ2(R). It follows by
σ -additivity that μ1(U) = μ2(U) for every open U ⊆ R , since every such open set U can be written as a disjoint union of
balls wNN ∩ R . Finally, all finite Borel measures on Polish spaces are outer regular (see [3, Lemma 26.2]) and hence μ1, μ2
even coincide completely under the given conditions. �

By an interval I we mean any interval of real numbers with open or closed end points and including ∞ as a possible
right end point. An interval [a, ∞] can be used to accommodate a measure that is infinite. We note that [∞, ∞] is not
considered as an interval here, but singletons [a, a] = {a} for a ∈R are allowed. If we want to exclude the case of the closed
right end point ∞, then we speak about an interval I ⊆ R. If we want to exclude the case of the open right end point ∞,
then we speak about intervals I without the open endpoint ∞. We will need the following statement on the monotonicity
of Lebesgue integrals. We adopt the usual convention in measure theory (see [3]) that

0 · ∞ = 0 and x · ∞ = ∞ for x > 0.

We also assume that these products commute and we can set similar conventions for negative numbers (that we are not
going to use).

Lemma 2.9 (Monotonicity). Let X be a topological space with a σ -finite Borel measure μ and let I be a non-empty interval that
does not have ∞ as an open endpoint. Let A ⊆ X be measurable and let f : X → R be a non-negative measurable function such that
f (x) ∈ I for all x ∈ A. Then∫

A

f dμ ∈ μ(A) · I.

Proof. If μ(A) = 0, then μ(A) · I = {0} since I is non-empty and
∫

A f dμ = 0. Let now μ(A) > 0 and a, b ∈ R. Then we
obtain

1. a ≤ f (x) for all x ∈ A 	⇒ μ(A)a ≤ ∫
A f dμ,

2. f (x) ≤ b for all x ∈ A 	⇒ ∫
A f dμ ≤ μ(A)b,

3. a < f (x) for all x ∈ A 	⇒ μ(A)a <
∫

A f dμ,
4. f (x) < b for all x ∈ A 	⇒ ∫

A f dμ < μ(A)b.

Here the first two properties (1) and (2) are just consequences of the monotonicity of the Lebesgue integral (see [3, Theo-
rem 12.4]), whereas the other two strong monotonicity properties (3) and (4) follow from the first two properties together
with the following observation: for any constant c ∈ R we have that

∫
A f dμ −μ(A)c = ∫

A f −c dμ = 0 implies f = c almost
everywhere by [3, Theorem 13.2] and hence f (x) = c for some x ∈ A since μ(A) > 0. Altogether, suitable combinations of
the above statements prove the claim for all bounded intervals I . It clearly also holds if I is of the form I = (a, ∞] or
I = [a, ∞]. �

We mention that the above result cannot be extended to the cases (a, ∞) or [a, ∞), since for instance
∫
(0,1]

1
x dx = ∞,

even though 1
x < ∞ for all x ∈ (0, 1].

3. Las Vegas computability and probabilistic choice

In this section we would like to formalize the notion of a Las Vegas computable multi-valued function f :⊆ X ⇒ Y as it
was intuitively described in the introduction and we will show that this notion can be characterized by a suitably defined
probabilistic choice operation. Since we do not want to formalize probabilistic Turing machines on infinite sequences in a
technical way here, we will just use the notion of an ordinary computable function F :⊆NN → NN in order to introduce our
concept of randomized computations. Essentially, we will use two such functions F1, F2, which play the following roles:

1. F2 is a failure recognition function that takes a name p of the input x ∈ X and a “random advice” r ∈ R and indicates
whether r is successful on input p. Here δS F2〈p, r〉 = 0 indicates success, i.e., the set

S p := {r ∈ R : δSF2〈p, r〉 = 0}
(which is closed in R) is the set of successful advices on input p.

2. F1 is the computation function, i.e., it also takes a name p of the input and the “random advice” r and it actually
computes the correct result for f :⊆ (X, δX) ⇒ (Y , δY) in the sense that

δY F1〈p, r〉 ∈ f δX (p)

for all successful advices r ∈ S p .

By the nature of Sierpiński space (S, δS) the failure event δS F2〈p, r〉 = 1 is the one that can be recognized in finite time,
while success δS F2〈p, r〉 = 0 just means absence of failure in the long run. If no failure occurs, then F1〈p, r〉 will be a
correct result on input p with advice r in the long run. Having these interpretations in mind we are now prepared to give
the formal definition, which is actually a refined version of non-deterministic computability as defined in [9].

Definition 3.1 (Las Vegas computability). Let (X, δX) and (Y , δY) be represented spaces, let R ⊆ NN , let μR be a Borel measure
on R and let I be some interval. A multi-valued function f :⊆ X ⇒ Y is said to be Las Vegas computable over R with measure
in I , if there exist two computable functions F1, F2 :⊆ NN → NN such that 〈dom(f δX) × R〉 ⊆ dom(F2) and for each p ∈
dom(f δX) the following hold:

1. S p := {r ∈ R : δSF2〈p, r〉 = 0} is non-empty and μR(S p) ∈ I ,
2. δY F1〈p, r〉 ∈ f δX (p) for all r ∈ S p .

If f is Las Vegas computable over R = 2N with measure μ2N and values in I = (0, 1], then we say for short that f is
Las Vegas computable. If the same holds over R = N × 2N with μN ⊗ μ2N and I = (0, ∞], then we say for short that f is Las
Vegas computable with finitely many mind changes. The latter terminology will become clearer in Section 6 and in particular
by Corollary 6.4.

We mention that Las Vegas computability over 2N with probabilities in I = [0, 1] is the same as non-deterministic
computability as originally introduced by Martin Ziegler [50,49] and further studied in [9]. The above definition is just an
adaption of [9, Definition 7.1]. In [9, Theorem 7.2] non-deterministic computations over R were characterized with the help
of the closed choice principle CR and here we transfer this result to the probabilistic setting.

We introduce corresponding probabilistic choice principles by generalizing the corresponding definition in [14]. By PI CX

we denote the closed choice operation restricted to closed subsets of X whose measure is in the interval I .

Definition 3.2 (Probabilistic choice). Let X be a represented space together with a Borel measure μX on X and let I be an
interval. By

PI CX :⊆ A−(X) ⇒ X, A �→ A

we denote the choice operation restricted to dom(PI CX) := {A : μX (A) ∈ I}. We call PI CX probabilistic choice of X with
respect to I .

We usually abbreviate the interval I , for instance, by writing “> 0” instead of (0, ∞] and we use analogous abbreviations
for other intervals. We also write PCX := P>0CX = P(0,∞]CX , which was already studied under the name positive choice in
[14]. We also obtain ordinary closed choice as special case: CX = P≥0CX = P[0,∞]CX . Theorem 7.2 from [9] can now directly
be transferred to our setting.

Theorem 3.3 (Las Vegas computability). Let X and Y be represented spaces, let R ⊆NN be endowed with a Borel measure, let I be an
interval and let f :⊆ X ⇒ Y be a multi-valued function. Then the following are equivalent to each other:

1. f ≤W PI CR ,
2. f is Las Vegas computable over R with measure in I .

The proof is literally the same as the proof of Theorem 7.2 in [9], with the extra observation that the success sets S p in
case of Las Vegas computability have to satisfy analogous measure requirements as the sets in the domain of PI CR . As a
special case of Theorem 3.3 we obtain the following corollary.

Corollary 3.4 (Las Vegas computability). Let f be a multi-valued function on represented spaces. Then

1. f ≤W PC2N if and only if f is Las Vegas computable,
2. f ≤W PCN×2N if and only if f is Las Vegas computable with finitely many mind changes.

Theorem 3.3 raises the question of whether there is a difference between ordinary and strong Weihrauch reducibility to
PI CR , in other words, whether PI CR is a cylinder. The following result shows that this is typically not the case. We first
introduce a notation.

Definition 3.5 (Cardinality). Let f :⊆ X ⇒ Y be a multi-valued function. Then we denote by # f the supremum of the
cardinalities |M| of sets M ⊆ dom(f) such that { f (x) : x ∈ M} contains only pairwise disjoint sets. We call # f the cardinality
of f .

Obviously, the cardinality # f is always bounded from above by the cardinality of dom(f). It is clear that strong reduc-
tions preserve cardinalities in the following sense.

Proposition 3.6 (Cardinality). f ≤sW g 	⇒ # f ≤ #g.

It is folklore that for a σ -finite measure there cannot be an uncountable number of pairwise disjoint sets of positive
measure. For completeness we include the proof.

Proposition 3.7. Let X be a space that is equipped with a σ -finite measure. Then there can be at most countably many pairwise disjoint
measurable sets A ⊆ X of positive measure.

Proof. Since X is σ -finite, there is a sequence (Xi) of measurable sets Xi ⊆ X with X = ⋃∞
i=0 Xi and μ(Xi) < ∞ for all

i ∈N. Let F be a family of pairwise disjoint sets A ⊆ X of positive measure and let

Fn,k := {A ∈ F : μ(A ∩ Xn) > 2−k}
for all n, k ∈N. Then F = ⋃

n,k∈NFn,k . There cannot be more than μ(Xn) · 2k many pairwise disjoint sets in Fn,k . Hence any
set Fn,k is finite and hence F is a countable union of finite sets and countable itself. �

Hence, we obtain the following.

Proposition 3.8 (Cardinality of probabilistic choice). If X is a represented space that is equipped with a σ -finite measure and I is an
interval with 0 /∈ I , then #PI CX ≤ |N|.

Since #idNN = |NN|, we get idNN �sW PI CX in this situation. This yields the following corollary.

Corollary 3.9 (Probabilistic choice is not a cylinder). If X is a represented space that is equipped with a σ -finite measure and I is an
interval with 0 /∈ I , then PI CX is not a cylinder.

This means that typically (namely under the conditions given in Corollary 3.9) we cannot replace Weihrauch reducibility
≤W by strong Weihrauch reducibility ≤sW in Theorem 3.3.

4. Products of probabilistic choice

We now want to compare different probabilistic choice operations with each other and in particular we want to consider
products of probabilistic choice. As a first obvious observation we note that probabilistic choice is always monotone in the
interval of probabilities (or measure values).

Proposition 4.1 (Monotonicity). Let I, J be intervals and let X be some represented space endowed with some Borel measure. Then

I ⊆ J 	⇒ PI CX ≤sW P J CX .

We mention another obvious result on products. For two intervals I, J ⊆ R we denote by I · J := {x · y : x ∈ I, y ∈ J } the
arithmetical product of the two sets. It is not too difficult to see that products of non-negative intervals are always intervals
(the case [0, a] · [∞, ∞] = {0, ∞} cannot occur since [∞, ∞] is not considered as an interval here.) We say that an interval
I is closed under product, if I · I ⊆ I .

Proposition 4.2 (Products). Let X and Y be represented spaces, both endowed with σ -finite Borel measures. Let I, J be intervals. Then
we obtain

PI CX × P J CY ≤sW PI· J CX×Y .

The proof is straightforward, noting that the map

× : A−(X) ×A−(Y) → A−(X × Y), (A, B) �→ A × B

is computable and satisfies the property that the measure of the output is the product of the measures of the inputs.
In [9] an Independent Choice Theorem 7.3 was proved that allows to conclude that non-deterministically computable

functions are closed under composition. With an additional invocation of the Theorem of Fubini we can transfer this theorem
and its proof to the probabilistic setting. This theorem can also be seen as a generalization of Proposition 4.2 for ordinary
Weihrauch reducibility in the case of R, S ⊆ NN , since f × g ≤W f ∗ g .

Theorem 4.3 (Independent Choice). Let R, S ⊆ NN both be endowed with σ -finite Borel measures and let I, J be intervals, such that
∞ is not an open endpoint of I . Then

PI CR ∗ P J CS ≤W PI· J CR×S .

Proof. If one of the intervals I, J is empty, then I · J is empty and the claim holds. Hence, we can assume that I, J are
both non-empty. We consider represented spaces (X, δX), (Y , δY) and (Z , δZ). Let now f :⊆ Y ⇒ Z and g :⊆ X ⇒ Y be Las
Vegas computable over R, S , respectively with measures in I, J , respectively. Let μR , μS denote the σ -finite measures of
R, S , respectively. Due to Theorem 3.3 it suffices to show that f ◦ g is Las Vegas computable over R × S with measure in
I · J . Intuitively, we can choose an advice (r, s) ∈ R × S and use advice r for f and advice s for g . More precisely, let f and g
be Las Vegas computable using computable functions F1, F2 and G1, G2 according to Definition 3.1, respectively. We define
H1 and H2 that witness Las Vegas computability of f ◦ g over R × S with measure in I · J . We can define a computable H1
by

H1〈p, 〈r, s〉〉 := F1〈G1〈p, s〉, r〉
and there exists a computable H2 such that

δSH2〈p, 〈r, s〉〉 =
{

1 if δSG2〈p, s〉 = 1
δSF2〈G1〈p, s〉, r〉 otherwise

for all p ∈ dom(f gδX) and all (r, s) ∈ R × S . Such a computable H2 exists, since δSG2〈p, s〉 = 0 implies that δY G1〈p, s〉 ∈
g(δX (p)) ⊆ dom(f). Now we verify that H1 and H2 satisfy conditions (1) and (2) of Definition 3.1 for f ◦ g . To this end, let
p ∈ dom(f gδX).

Let (r, s) ∈ R × S be such that δSH2〈p, 〈r, s〉〉 = 0. Then δSG2〈p, s〉 = 0 and δS F2〈G1〈p, s〉, r〉 = 0. Hence by conditions (2)
for g and f we obtain δY G1〈p, s〉 ∈ gδX (p) and hence δZ F1〈G1〈p, s〉, r〉 ∈ f gδX (p), which proves condition (2) for f ◦ g .

It remains to prove that condition (1) holds for f ◦ g . For this purpose we consider for our fixed p the following sets
(which are closed in S , R , and R × S , respectively):

• S p := {s ∈ S : δSG2〈p, s〉 = 0},
• R p,s := {r ∈ R : δSF2〈G1〈p, s〉, r〉 = 0} for all s ∈ S p ,
• T p := {(r, s) ∈ R × S : δSH2〈p, 〈r, s〉〉 = 0}.

Intuitively, the set S p is the set of successful advices for the Las Vegas computation of g on input p, R p,s is the set of
successful advices of the Las Vegas computation of f on input G2〈p, s〉, provided s ∈ S p and T p is the set of all successful
advices (r, s) for the Las Vegas computation of f ◦ g on input p. By condition (2) for f and g we know that μS (S p) ∈ J and
μR(R p,s) ∈ I for all s ∈ S p . By definition of H2 we obtain

T p = {(r, s) ∈ R × S : s ∈ S p and r ∈ R p,s}.
By the Theorem of Fubini for measurable sets (see [3, Theorem 23.3]) and Lemma 2.9 this yields

(μR ⊗ μS)(T p) =
∫
S p

μR(R p,s)dμS ∈ I · μS(S p) ⊆ I · J ,

where the integrand is understood to be the function s �→ μR(R p,s). This shows that condition (1) also holds for f ◦ g . �
In order to complete our results on products we need another notion. A function f : X → Y on spaces X, Y that are

equipped with measures μX , μY , respectively, is called measure preserving if μX (f −1(A)) = μY (A) for all closed A ⊆ Y .

A function f : X → Y is called a computable isomorphism if it is bijective and f as well as f −1 are computable. We will
exploit the fact that the usual Cantor pairing functions (as introduced in Section 2) are computable and measure preserving.

Lemma 4.4 (Pairing functions). The following functions are computable isomorphisms and measure preserving. We assume that N is
endowed with the counting measure.

1. 2N × 2N → 2N, (p, q) �→ 〈p, q〉,
2. NN ×NN → NN, (p, q) �→ 〈p, q〉,
3. N ×N →N, (n, k) �→ 〈n, k〉,
4. (N × 2N) × (N × 2N) →N × 2N, (p, q) �→ 〈p, q〉.

In the special case of spaces R that are equipped with a pairing mechanism that is a computable isomorphism and
measure preserving (as for the spaces given in Lemma 4.4) and I is closed under product, we can exploit the fact that we
obtain

PI CR×R ≡sW PI CR .

This yields the following corollary.

Corollary 4.5 (Products and pairing). If I is an interval that is closed under product and does not contain ∞ as an open endpoint
and R ⊆ NN is equipped with a σ -finite measure and a corresponding pairing function that is a computable isomorphism as well as
measure preserving, then we obtain

PI CR×R ≡sW PI CR ≡sW PI CR × PI CR ≡W PI CR ∗ PI CR .

In particular, PI CR is strongly idempotent and closed under composition.

We note that by Lemma 4.4 the assumption on the pairing function applies to all the spaces R among N, 2N, NN, N × 2N

with the respective canonical measures. In particular, we get the following corollary.

Corollary 4.6 (Closure under composition). The classes of multi-valued functions that are Las Vegas computable and Las Vegas com-
putable with finitely many mind changes, respectively, are both closed under composition.

5. Intervals that are closed under product

In Corollary 4.5 we have seen that intervals that are closed under product lead to very natural notions of probabilistic
computability, since the corresponding classes of functions are closed under composition. For the case of coin tosses, i.e., for
the space 2N , we will see that we only obtain three distinct classes in this way: C1, C2N and PC2N . These classes correspond
exactly to the following classes of multi-valued functions: computable, non-deterministically computable and Las Vegas
computable ones, respectively.

We start by considering the types of intervals that are closed under product. In case that we are using a probability
measure, we only have to consider intervals I ⊆ [0, 1] and we can easily see which of those are closed under product.

Lemma 5.1 (Intervals closed under product). An interval I ⊆ [0, 1] is closed under product if and only if one of the following cases
holds:

1. I = {1},
2. 0 ∈ I ,
3. I = (0, b) or I = (0, b] for some b ∈ (0, 1].

These three cases lead exactly to the three choice principles C1, C2N and PC2N , respectively.

Proposition 5.2 (Choice for intervals that are closed under product). Let I ⊆ [0, 1] be an interval that is closed under product. We
obtain:

PI C2N ≡sW

⎧⎨⎩ C1 if I = {1}
C2N if 0 ∈ I
PC2N if I = (0,b) or I = (0,b] for some b ∈ (0,1]

.

Proof. If a closed set A ⊆ 2N has full measure 1, then it must be identical to the whole space 2N and hence it contains the
constant zero sequence that can be computed. This proves that P=1C2N ≡sW C1.

An arbitrary non-empty closed set A ⊆ 2N can be paired with the constant zero sequence 0ω to B = 〈0ω, A〉 and this
set has measure 0. Hence, the computable map A �→ B yields the reduction C2N ≤sW PI C2N if 0 ∈ I . The other direction is
obvious. This proves PI C2N ≡sW P≥0C2N = C2N if 0 ∈ I .

Now let I = (0, b) and J = (0, c) with b, c ∈ (0, 1]. We claim

P(0,b)C2N ≡sW P(0,c)C2N .

If b ≤ c, then the direction ≤sW is obvious. For the other direction, we need to map a given closed set A ⊆ 2N with positive
measure μ(A) < c in a computable way to a closed set B ⊆ 2N with positive measure μ(B) < b ≤ c such that we can recover
a point of the original set A from any point in B . For this purpose we use the map A �→ 0n A that adds a suitable prefix 0n

of length n to any point in A, where n depends on c
b and guarantees that 0n A has a small enough measure. This yields the

desired reduction. The proof for intervals of type I = (0, b] is analogous. �
We mention that the second case also includes P=0C2N , i.e., choice for non-empty closed zero sets. While the results

in this section show that upper bounds on the probability do not really lead to meaningful distinctions, we will see in
Section 10 that lower bounds can lead to such distinctions.

6. Las Vegas computability with finitely many mind changes

We recall that we want to call f Las Vegas computable with finitely many mind changes if f ≤W PCN×2N . The purpose
of this section is to get some further insights into the PCN×2N . We start with some comments on PCN .

Lemma 6.1 (Probabilistic choice on natural numbers). We obtain

PCN = P[0,∞]CN ≡sW P[0,∞)CN ≡sW CN,

if N is equipped with the counting measure or the geometric measure.

Proof. Let N be endowed with the counting measure. Then PCN = P[0,∞]CN = CN and P[0,∞)CN is closed choice restricted
to finite subsets A ⊆ N. Hence we get

UCN ≤sW P[0,∞)CN ≤sW P[0,∞]CN = CN,

where UCN denotes choice for singletons. In [12, Proposition 3.8] we have proved UCN ≡sW CN and hence the equivalence
follows. If N is endowed with the geometric measure (which is finite), then PCN = P[0,∞]CN = P[0,∞)CN = CN . �

It follows from the Independent Choice Theorem 4.3 that

CN × PC2N ≤W CN ∗ PC2N ≤W PCN×2N .

Here we assume that N is endowed with the counting measure. We now want to prove that we can also get the inverse
reductions in the above situation.

Lemma 6.2. PCN×2N ≤W PC2N ∗ CN .

Proof. Given a closed set A ⊆ N × 2N of positive measure we can compute the sequence (An) of sections

An := {p ∈ 2N : (n, p) ∈ A}.
Since the measure μ :A−(2N) →R is upper semi-computable by Lemma 2.7, we obtain that

B := {〈n,k〉 ∈N : μ(An) ≥ 2−k}
is co-c.e. in the original set A. Since A has positive measure, it follows that B is non-empty and hence we can use CN to
find a point 〈n, k〉 ∈ B . Given 〈n, k〉 ∈ B and the original input A, we can use PC2N to find a point p ∈ An . Then (n, p) ∈ A.
This proves the claim. �

Next we prove that PC2N commutes with CN . Essentially, we exploit for this proof that PC2N is a fractal (fractals are
defined after Theorem 15.4).8

8 Arno Pauly pointed out that Lemma 6.3 holds more generally for suitably defined uniform fractals f in place of PC2N too.

Lemma 6.3. PC2N ∗ CN ≤W CN × PC2N .

Proof. It suffices to prove that f ≤W PC2N ∗ CN implies f ≤W CN × PC2N for all f :⊆ NN ⇒ NN . Let then f ≤W PC2N ∗ CN .
Then upon input of p ∈ dom(f) there is a computation of a machine M with finitely many mind changes that produces
finitely many partial outputs v0, . . . , vk ∈ N∗ before it finally produces an infinite output q ∈ NN that is a name for a set
A ⊆ 2N of positive measure. A name r for a point in A together with q and p finally allow to compute a point in f (p). The
basic idea is to replace the computation of M with finitely many mind changes by an ordinary computation that produces
v0 v1...vkq instead. The problem is that the latter sequence might not be a name of a set A ⊆ 2N of positive measure.
However, this can be rectified.

Firstly, there is a computable function g : N∗ → N∗ such that g(v) = v if v is a valid prefix of a name of a set of
positive measure and such that g(v) is always a valid prefix of a name of a set of positive measure (this can be achieved by
replacing certain portions of negative information by dummy information). In this sense g “cleans-up” the output. A set of
positive measure described by only finitely many open balls in its complement also automatically has a non-empty interior.
Moreover, we can assume that g is monotone, i.e., that v � w implies g(v) � g(w). We assume that (wn) is a bijective
effective standard enumeration of 2∗ . Then there is a computable function h :⊆ N∗ ×N → N such that h(v, i) = j, where j
is minimal with the property that w j2N is left uncovered by the negative information v and wi � w j , which is possible
whenever an open subset of wiNN is left uncovered by v . Hence, h finds an “unspoiled region” where the computation
can continue. Finally, there is a computable function s : N∗ ×N → N∗ that has the property that if v describes a closed set
A ⊆ 2N , then s(v, i) describes the set wi A. Hence s “shifts the output” to a possibly unspoiled region. We can also assume
that s is monotone in the first component, i.e., w � v implies s(w, i) � s(v, i).

We now describe an algorithm that transfers the original computation of machine M with finitely many mind changes
into a regular computation of an infinite output together with a sequence (ni) of natural numbers. We start with n0 such
that wn0 is the empty word. Whenever the output of M is extended to w , then we convert it to the “cleaned-up” output
g(w) and we write the number n0 repeatedly to the output stream of numbers. When a first mind change happens, then
the output u0 := g(v0) has been produced so far. In case of this event we compute n1 := h(u0, n0) (i.e., an unspoiled region,
which exists since u0 is cleaned-up). We continue to read the pieces of information w produced by M after the first mind
change and we proceed writing s(g(w), n1) to the output (i.e., a cleaned-up version of the information that follows shifted
to the unspoiled region) and we write n1 repeatedly to the stream of natural numbers until possibly the second mind
change happens, in which case we continue inductively. In general, in between the i-th and the (i + 1)-st mind change we
have produced the output ui := s(g(vi), ni). When the (i + 1)-st mind change happens we compute ni+1 := h(ui, ni) and we
start writing s(g(w), ni+1) on the output and the number of ni+1 into the stream of numbers from now on (for the partial
output w of M that follows). Eventually (when i = k + 1) no further mind change happens and we continue with the last
step forever, writing s(g(w), nk+1) on the output tape and the number nk+1 into the stream of numbers.

In this phase after the last mind change w will consist of longer and longer prefixes of q and hence it will be already
clean (i.e., g(w) = w at this stage). Altogether, we end up writing an output that constitutes a name of the set wnk+1 A and a
sequence of numbers n0, n1, . . . , nk, nk+1 with possible repetitions of each ni and infinitely many repetitions of the last nk+1.
With the help of CN we can compute the value nk+1 from this list. Given a point r′ ∈ wnk+1 A and nk+1 we can easily recover
a point r ∈ A, which together with p, q allows to find some point in f (p). Altogether, this proves f ≤W CN × PC2N . �

Now Lemmas 6.2 and 6.3 together with Theorem 4.3 yield the following characterization.

Corollary 6.4. PC2N × CN ≡sW CN × PC2N ≡W PC2N ∗ CN ≡W CN ∗ PC2N ≡W PCN×2N .

We obtain the following corollary that expresses this result in different terms using Proposition 2.6 and Theorem 3.3.

Corollary 6.5 (Computability with finitely many mind changes). Let f be a multi-valued function on represented spaces. Then the
following are equivalent:

1. f is Las Vegas computable with finitely many mind changes,
2. f = g ◦ h with some g that is Las Vegas computable and some h that is computable with finitely many mind changes,
3. f = g ◦ h with some g that is computable with finitely many mind changes and some h that is Las Vegas computable.

This result actually justifies to call the f below PCN×2N Las Vegas computable with finitely many mind changes.
Since the uniform measure on Cantor space is finite, it does not matter whether we define PC2N using the interval

(0, ∞] or (0, ∞). Likewise, it does not matter for N by Lemma 6.1. The proof of Corollary 6.4 also goes through in both
cases. Hence we obtain the following corollary, which says that also PCN×2N can be defined using (0, ∞] or (0, ∞).

Corollary 6.6. PCN×2N = P(0,∞]CN×2N ≡sW P(0,∞)CN×2N .

We mention that also the equivalence class of PCN×2N does not depend on whether N is equipped with the counting
measure or the geometric measure. This is because the domains of P(0,∞]CN×2N are identical in both cases and hence the
multi-valued functions are identical.

Lemma 6.7. PCN×2N does not depend on whether N is equipped with the counting measure or the geometric measure.

7. Changes of the probability space

In this section we compare probabilistic choice for [0, 1] and 2N as well as probabilistic choice for R and N × 2N .
We recall that a computable embedding f : X → Y is a computable injective function, such that the partial inverse f −1 :⊆

Y → X is computable too. If there is such a computable embedding f such that range(f) is co-c.e. closed, then CX ≤sW CY
follows (see Corollary 4.3 in [9]). Likewise, if there is a computable surjection s :⊆ X → Y with a co-c.e. closed domain
dom(s), then also CY ≤sW CX follows (see Proposition 3.7 in [9]). We will implicitly use these ideas in the following and the
proofs work for probabilistic choice too with some assumptions on measure preservation.

We note that the binary representation

ρ2 : 2N → [0,1], p �→
∞∑

i=0

p(i)

2i+1

is surjective, computable and measure-preserving. This yields immediately the reduction PI C[0,1] ≤sW PI C2N . For the other
direction we use the usual Smith–Volterra–Cantor set construction.

Lemma 7.1 (Smith–Volterra–Cantor set). For every computable ε ∈ [0, 1) there exists a computable embedding fε : 2N → [0, 1] such
that

λ(fε(A)) = ε · μ(A)

for every closed A ⊆ 2N . Moreover, range(fε) is co-c.e. closed in this situation.

Proof. We consider the classical Smith–Volterra–Cantor set construction (see the ε-Cantor set in [1, Lemma 18.9]). Given
a computable ε ∈ [0, 1) we choose δ := 1 − ε and given the unit interval [0, 1] we inductively construct a sequence (I w)

of closed intervals I w ⊆ R indexed by binary words w ∈ {0, 1}∗ as follows. For the empty word e and words w ∈ {0, 1}n−1,
n ≥ 1 and symbols c ∈ {0, 1} we define

• Ie := [0, 1],
• I wc :=

{
[a,a + b−a

2 − δ

22n] if c = 0
[a + b−a

2 + δ

22n ,b] if c = 1
where [a, b] := I w .

In other words, I wc is constructed from I w with |w| = n − 1 by removing a middle piece of length δ

22n−1 and I w0 is the left
half of the result, while I w1 is the right half. The set

Cε :=
∞⋂

n=0

⋃
w∈{0,1}n

I w

is called the Smith–Volterra–Cantor set and due to the construction we obtain

λ(Cε) = 1 −
∞∑

n=1

2n−1 δ

22n−1
= 1 − δ = ε.

Now we define a computable function fε : 2N → [0, 1] by

{ fε(p)} :=
⋂

w�p

I w ,

where the function value is meant to be the unique real in the given set (the value is unique by Cantor’s Intersection
Theorem as diam(I w) ≤ 2−|w|). It is easy to see that fε is computable due to the inductive nature of the construction and
because ε and hence δ are computable. Moreover, range(fε) = fε(2N) = Cε and due to the symmetry of the construction we
obtain λ(fε(w2N)) = 2−|w|ε = ε · μ(w2N). Due to Lemma 2.8, this implies λ(fε(A)) = ε · μ(A) for any closed A ⊆ 2N . Since
2N is computably compact, it follows that fε(2N) = Cε is computably compact too by [48, Theorem 3.3] and, in particular,
co-c.e. closed. This also implies that the partial inverse f −1

ε is computable (see for instance [9, Corollary 6.7]). �
Altogether, we obtain the following result.

Proposition 7.2 (Cantor space and the unit interval). Let I be an interval and let ε ∈ [0, 1) be computable. Then we obtain

PI C[0,1] ≤sW PI C2N ≤sW Pε I C[0,1].

For the interval I = (0, ∞] we can just choose ε = 1
2 and we obtain the following result that was already proved in

[14, Corollary 19].

Corollary 7.3. PC[0,1] ≡sW PC2N .

In case of the spaces N × 2N and R we can obtain a stronger result.

Proposition 7.4 (Real numbers). Let I be an interval. Then we obtain

PI CR ≡sW PI CN×2N .

Here N is equipped with the counting measure.

Proof. For the proof of PI CR ≤sW PI CN×2N we use the function

f : N× 2N →R, (n, p) �→
{

1
2 n + ρ2(p) if n is even

− 1
2 (n + 1) + ρ2(p) if n is odd

,

which is defined with the help of the binary representation ρ2. This function f is computable, surjective and measure-
preserving (since the Lebesgue measure λ is translation-invariant) and hence we obtain the desired reduction.

For the proof of PI CN×2N ≤sW PI CR we use the function f 1
2

from the Smith–Volterra–Cantor set construction and we
define

g : N× 2N →R, (n, p) �→ 3n + 2 · f 1
2
(p).

The function g is injective and even a computable embedding and it satisfies

λ(g(A)) = 2λ(f 1
2
(A)) = μ(A)

for any closed set A ⊆ N × 2N , where μ is the measure on N × 2N . Finally, range(g) = 3N + range(2 · f 1
2
) is clearly

a co-c.e. closed set. This is because 2N is computably compact and hence range(f 1
2
) is computably compact too and

range(g) is the union of clearly separated copies of range(2 · f 1
2
) and hence it is co-c.e. closed. Altogether, this proves

PI CN×2N ≤sW PI CR . �
We give an example that shows that this stronger type of result cannot be achieved for the unit interval [0, 1] and Cantor

space 2N , hence Proposition 7.2 is in a certain sense optimal. The reason for this difference are the different connectedness
properties of [0, 1] and 2N . While the first one does not have two disjoint closed subsets of measure 1

2 , the second one
does.

Proposition 7.5. P≥ 1
2

C[0,1] <W P≥ 1
2

C2N .

Proof. The positive part of the reduction follows from Proposition 7.2. In order to prove the strictness, we claim that
C2 ≤sW P≥ 1

2
C2N and C2 �W P≥ 1

2
C[0,1] .

The first part is easy to see as 2N can be subdivided into Ai := i2N for i ∈ {0, 1} and μ(A0) = μ(A1) = 1
2 . Now any subset

C ⊆ {0, 1} is computably mapped to AC = ⋃
i∈C Ai and given some q ∈ AC one can directly recover an i with q ∈ Ai . This

yields a computable reduction C2 ≤sW P≥ 1
2

C2N .

In order to prove the negative claim, we assume for a contradiction that we have C2 ≤W P≥ 1
2

C[0,1] . Then there are
computable H, K such that H〈id, F K 〉 is a realizer of C2 whenever F is a realizer of P≥ 1

2
C[0,1] . We recall that we can

assume that H is defined on the minimal required domain and that we use the signed-digit representation of [0, 1]. Let p
be a name of {0, 1}. Then K (p) is a name of a closed set A ⊆ [0, 1] with λ(A) ≥ 1

2 . Let Ai ⊆ A be the set of all points that
have only names q such that H〈p, q〉 is mapped to (a name of) i ∈ {0, 1}. We write H〈p, q〉 = i in this situation. Let A2 ⊆ A
be a set of all those points that have names q with H〈p, q〉 = 0 as well as names q with H〈p, q〉 = 1. Then A = A0 ∪ A1 ∪ A2
is a disjoint union, where one of the Ai ’s might be empty. Let N be the set of names of the points in A, which is compact

for the signed-digit representation. Since H is uniformly continuous9 on the compact set {p} × N , there is a finite prefix
w � p such that H〈wNN, q〉 is a singleton for every name q of a point in A. Since K is continuous, we can assume that w
is long enough such that K (wNN) only contains names of sets A′ with λ(A′ \ A) ≤ (1−λ(A))

3 . There also exists an i ∈ {0, 1}
such that λ(Ai) ≤ 1

2 λ(A). Let now p′ be a name of C := {i} that extends w , i.e., w � p′ . Then K (p′) is a name of a set A′
with λ(A′) ≥ 1

2 . We claim that A′ ∩ A ⊆ Ai , for otherwise there is an x ∈ A′ ∩ A with a name q such that H〈p′, q〉 = 1 − i /∈ C
and there is a realizer F of P≥ 1

2
C[0,1] such that F K (p′) = q in contradiction to the assumption and the choice of C . Hence,

if λ(A) < 1, then we obtain

λ(A′) ≤ λ(Ai) + λ(A′ \ A) ≤ 1

2
λ(A) + 1 − λ(A)

3
<

1

2

in contradiction to the assumption. If, on the other hand, λ(A) = 1, then A = [0, 1] and by continuity of H we obtain
d(A0, A1) := inf{|a − b| : a ∈ A0, b ∈ A1} > 0. This implies λ(A2) > 0 and hence we can even assume λ(Ai) < 1

2 for some
i ∈ {0, 1}. Similarly to above, this yields the contradiction λ(A′) ≤ λ(Ai) + λ(A′ \ A) < 1

2 . �
This proves that Proposition 7.2 cannot be extended to the case ε = 1.

8. Weak Weak Kőnig’s Lemma

It is easy to see that PC2N is essentially equivalent to Weak Weak Kőnig’s Lemma as it is known from reverse math-
ematics [43]. By Tr we denote the set of binary trees T ⊆ 2∗ , represented via their characteristic functions. Then Weak
Kőnig’s Lemma WKL :⊆ Tr ⇒ 2N, T �→ [T] is the problem to map a binary tree T to set [T] of its infinite paths. The domain
dom(WKL) consists of all infinite binary trees. It has been proved in [11, Corollary 83 and Theorem 8.5] that C2N ≡sW WKL
(see also [23,9,12]). The proof is essentially based on the fact that the map

[] : Tr → A−(2N), T �→ [T]
that maps infinite binary trees to closed subsets of Cantor space (with respect to negative information) is computable and
has a multi-valued computable inverse. Analogously to Weak Kőnig’s Lemma, we can define the computational counterpart
of Weak Weak Kőnig’s Lemma, as it is used in reverse mathematics [43].

Definition 8.1 (Weak Weak Kőnig’s Lemma). Weak Weak Kőnig’s Lemma is the problem

WWKL :⊆ Tr ⇒ 2N, T �→ [T]
restricted to the set dom(WWKL) = {T : μ([T]) > 0} of those trees T , whose set of infinite paths [T] has positive measure.

Weak Weak Kőnig’s Lemma was already studied in the Weihrauch lattice in [14] and the following result was noticed.
This observation can be proved using the computable map T �→ [T] above which also preserves the respective measure
conditions.

Proposition 8.2 (Weak Weak Kőnig’s Lemma). WWKL≡sW PC2N ≡sW PC[0,1] .

We mention that by Corollary 4.5 we obtain the following.

Corollary 8.3. WWKL ∗ WWKL≡W WWKL.

Theorem 3.3 yields the following characterization.

Corollary 8.4 (Las Vegas computability). The following are equivalent to each other:

1. f ≤W WWKL,
2. f is Las Vegas computable.

It is important to note that WWKL can be separated from WKL. This was proved in [14, Theorem 20] and independently
in [19, Proposition 4.2].

9 Strictly speaking, we use the following property stronger than uniform continuity on K : if f : X → Y is a continuous function on metric spaces (X, dX)

and (Y , dY) and K ⊆ X is compact, then for every ε > 0 there exists a δ > 0 such that for all x ∈ X and all y ∈ K we obtain that dX (x, y) < δ implies
dY (f (x), f (y)) < ε. This can be proved analogously to the fact that f |K is uniformly continuous. When we refer to “uniform continuity” of a function
f : X → Y on K , then we mean this property.

Corollary 8.5 (Weak and Weak Weak Kőnig’s Lemma). WWKL<W WKL.

We will prove a more general result in Section 14, see Corollary 14.8. Corollary 8.5 can also be rephrased using classes
of functions as follows.

Corollary 8.6. Every Las Vegas computable multi-valued function is non-deterministically computable, but there are non-deterministi-
cally computable multi-valued functions that are not Las Vegas computable.

To emphasize multi-valuedness is important here, since all single-valued non-deterministically computable functions (on
computable metric spaces) are automatically computable, as proved in [11, Corollary 8.8].

Dorais et al. [19] also introduced a quantitative version ε-WWKL of Weak Weak Kőnig’s Lemma that requires a probability
above some threshold ε. We define this version here and we will study it starting from Section 10.

Definition 8.7 (Quantitative Weak Weak Kőnig’s Lemma). For ε ∈ R we denote by ε-WWKL the restriction of Weak Weak
Kőnig’s Lemma WWKL to the set dom(ε-WWKL) = {T : μ([T]) > ε}.

From the aforementioned results it is clear that we obtain the following corollary.

Corollary 8.8. ε-WWKL≡sW P>εC2N for all ε ∈ R.

9. Jumps of Weak Weak Kőnig’s Lemma

In this section we want to mention some observations on the jump of Weak Weak Kőnig’s Lemma. We will also see
that there is a certain trade-off between the complexity of the underlying spaces X in PC(n)

X and the number of jumps n.
We start with mentioning that with iterated jumps of WWKL one actually climbs up the Borel hierarchy. We recall that a
multi-valued map f :⊆ X ⇒ Y on Polish spaces X and Y is called �0

n-measurable if preimages

f −1(U) := {x ∈ X : f (x) ∩ U �= ∅}
of open sets U ⊆ Y are �0

n-sets in the Borel hierarchy relatively to dom(f) (see [8] for more details).

Proposition 9.1. WWKL(n) is �0
n+2-measurable, but not �0

n+1-measurable with respect to the Borel hierarchy for all n ∈N.

Proof. Since WWKL(n) ≤sW WKL(n) ≤sW lim(n) it is clear that WWKL(n) is �0
n+2-measurable. This is because lim(n) is

�0
n+2-measurable and hence so is WWKL(n) by [8, Proposition 7.5]. On the other hand, C(n)

2 ≤sW WWKL(n) (as one can easily
show) and C(n)

2 is not �0
n+1-measurable. Hence WWKL(n) is not �0

n+1-measurable by [8, Proposition 7.5]. We sketch the proof
that C(n)

2 is not �0
n+1-measurable, which can be proved by induction. It is clear that C2 is not continuous, which proves the

case n = 0. For n = 1 we note that C′
2 ≡sW CL2 by [12, Theorem 9.4] where CL2 denotes the cluster point problem of {0, 1},

also called the infinite pigeonhole principle. Since CL−1
2 {0} is the set of binary sequences that contain infinitely many zeros,

which is known to be �0
2-complete (see, for instance, [30, Exercise II.23.1]), it is not a �0

2-set and hence C′
2 ≡sW CL2 is not

�0
2-measurable. We note that for a convergent sequence (pi) in {0, 1}N we obtain

lim
i→∞

pi(k) = 0 ⇐⇒ (∃ j)(∀i ≥ j) pi(k) = 0 ⇐⇒ (∀ j)(∃i ≥ j) pi(k) �= 1.

This implies that each further application of a limit adds exactly one quantifier (the above equivalence allows to choose
whether it is an existential or a universal one). From this it follows by induction that the preimage (CL(n)

2)−1({0}) is
�0

n+2-complete and hence not a �0
n+2 set (using suitable complete sets of higher levels of the Borel hierarchy) and hence

C(n+1)
2 ≡sW CL(n)

2 is not �0
n+2-measurable. �

In particular, we obtain the following by [8, Proposition 7.5].

Corollary 9.2. WWKL(n) <W WWKL(n+1) for all n ∈N.

We also introduce discrete jumps of Weihrauch degrees. In [9] the discrete limit map lim� :⊆ NN → NN, 〈p0, p1, . . .〉 �→
limi→∞ pi was studied, which is the limit map with respect to the discrete topology on NN , i.e., lim� is the restriction of
lim to eventually constant sequences. This leads to the discrete jump δ�

X := δX ◦ lim� of a representation and analogously to
the discrete jump f � :⊆ (X, δ�

X) ⇒ (Y , δY) of a multi-valued function. It is easy to see that we obtain f � ≡sW f ∗s lim� . In
[12, Fact 3.7] it was proved that lim� ≡sW(id × CN), i.e., lim� is strongly equivalent to the cylindrification of CN . We can
use this concept to express the following result.

Theorem 9.3 (Discrete jump). WWKL� ≡sW PC�
2N

≡sW PCR ≡sW PCN×2N .

Proof. It follows from Proposition 7.4 that PCR ≡sW PCN×2N and from Proposition 8.2 that PC�
2N

≡sW WWKL� .
A close inspection of the proof of Lemma 6.2 shows that the number n that occurs in the pair 〈n, k〉 of that proof can be

encoded in the set An , by replacing it by Cn := 01n0An . Then an application of PC2N to Cn yields a point p from which a
point in the original set A can be reconstructed without any direct access to the original input. This proves

PCN×2N ≤sW PC2N ∗s (id × CN)≡sW PC2N ∗s lim� ≡sW PC�
2N .

On the other hand, exactly the same proof as the proof of Lemma 6.3 shows

PC2N ∗s lim� ≤sW CN × PC2N .

Finally, Proposition 4.2 implies CN × PC2N ≤sW PCN×2N , which completes the proof. �
We mention that by Corollary 4.5 we obtain the following.

Corollary 9.4. WWKL� ∗ WWKL� ≡W WWKL� .

If we combine Theorem 9.3 with Corollary 6.4 and Proposition 8.2, then we obtain the following corollary.

Corollary 9.5. WWKL� ≡W WWKL ∗ CN .

This yields the following characterization of Las Vegas computability with finitely many mind changes.

Corollary 9.6 (Las Vegas computability with finitely many mind changes). The following are equivalent to each other:

1. f ≤W WWKL� ,
2. f is Las Vegas computable with finitely many mind changes.

Theorem 9.3 together with lim� ≤sW lim yields the positive content of the following corollary. The fact that the reduction
is strict follows from PCN×2N ≤W lim, which holds by [9, Theorem 8.7] (an intuitive explanation of this fact is that there is a
limit computation that always selects the left most path in a given infinite tree T ⊆ N× {0,1}∗), which means that PCN×2N

is �0
2-measurable (by [8, Proposition 7.5]), whereas WWKL′ is not �0

2-measurable by Proposition 9.1.

Corollary 9.7. PCN×2N <sW PC′
2N

≡sW WWKL′ .

In [12] the cluster point problem of a space was studied and it was proved that the cluster point problem is the jump of
the closed choice problem of the same space. This result straightforwardly generalizes to the probabilistic setting. We will
call the problem to find a cluster point of a sequence that has a set of cluster points of a certain measure the probabilistic
cluster point problem.

Definition 9.8 (Probabilistic cluster point problem). Let X be a computable metric space that is equipped with a Borel measure
μ and let I be some interval. Then we call

PI CLX :⊆ XN ⇒ X, (xn) �→ {x ∈ X : x is a cluster point of (xn)}
the probabilistic cluster point problem with measure in I , where dom(PI CLX) is the set of all sequences (xn) in X , with a
non-empty set of cluster points C that satisfies μ(C) ∈ I .

We use similar abbreviations as for PI CX , for instance PCLX := P>0CLX := P(0,∞]CLX etc. Now we obtain the following
general result.

Theorem 9.9 (Probabilistic cluster point problem). Let X be a computable metric space that is equipped with a Borel measure and let
I be an interval. Then

(PI CX)′ ≡sW PI CLX .

Proof. We just adapt results that have been provided in [12]. If we denote by LX :⊆ XN ⇒A−(X) the surjective map that
maps each sequence (xn) to the set LX (xn) of its cluster points, then we obtain

PI CLX = PI CX ◦ LX .

By [12, Proposition 9.2] we have LX ≤sW lim and together with [12, Theorem 5.14] we obtain PI CLX ≤sW(PI CX)′ . The other
direction (PI CX)′ ≤sW PI CLX follows by [12, Corollary 9.5], which states that the jump (L−1

X)′ of the multi-valued inverse of
LX is computable. �

Together with Proposition 8.2 and the fact that jumps are monotone with respect to ≤sW we obtain the following
corollary.

Corollary 9.10. WWKL′ ≡sW PCL2N ≡sW PCL[0,1] .

10. Changes of the probability values

In this section we discuss the dependency of probabilistic choice on different lower bounds on the probability. Intuitively,
it should make choice easier if the measure of the set that one chooses from increases. Indeed, in some cases this is strictly
so. For instance, one easily obtains

1

2
-WWKL<sW

1

3
-WWKL<sW

1

4
-WWKL<sW ...

While the reductions ≤sW are obvious, the strictness of these reductions follows since Cn ≤sW
1

n+1 -WWKL and Cn �sW
1
n -WWKL. The latter is true for mere counting reasons, which show that there cannot be n disjoint subsets of 2N all with
measure > 1

n . In fact, # 1
n -WWKL = n − 1 and #Cn = n and Proposition 3.6 yields the result. As a consequence one obtains

ε-WWKL<sW WWKL for all ε > 0, which was also proved by Dorais et al. in [19, Proposition 4.7].
Here we generalize the above observation in several respects: for one we prove that the strictness of the reduction

even occurs for ordinary Weihrauch reducibility ≤W, secondly we separate the probabilistic choice principles for arbitrary
probabilities (not just for fractions of the form 1

n) and lastly we prove the result for both spaces, the unit interval [0, 1]
and Cantor space 2N . Instead of Cn as above we use a slightly more general variant of choice. For non-negative integers a, b
we denote by Ca,b the closed choice operation for the set b = {0, 1, . . . , b − 1}, restricted to subsets C ⊆ b with cardinality
|C | ≥ a. In other words,

Ca,b := P≥aCb.

Equivalent problems have been studied under the name LLPOb,b−a by Mylatz [34]. He also classified the exact relation of
the problems LLPOn,m and LLPOk,l to each other in terms of number theoretic properties of n, m, k and l [34, Satz 15].
Other finite choice principles with restricted cardinality have already been studied by Pauly and Le Roux in [31]. We point
out that the negative part of the following proof is very similar to the proof of Proposition 7.5 (and to a lesser extent to the
proof of Theorem 16.6).

Theorem 10.1 (Probability dependency). Let ε, δ ∈ [0, 1] and X = 2N or X = [0, 1]. Then

P>εCX ≤W P>δCX ⇐⇒ P>εCX ≤sW P>δCX ⇐⇒ ε ≥ δ.

Proof. “⇐	” these reductions are clear and follow from Proposition 4.1.
“	⇒” Let ε < δ. Then there are positive integers a < b with ε < a

b ≤ δ. By Proposition 7.2 it suffices to show
Ca,b ≤W P>εC[0,1] and Ca,b �W P>δC2N , since this implies P>εCX �W P>δCX for both X = [0, 1] and X = 2N .

In order to prove the first statement, we select b consecutive disjoint closed intervals I0, . . . , Ib−1 ⊆ [0, 1] with rational
endpoints of equal length l = λ(Ii) for all i ∈ B = {0, 1, . . . , b − 1} with ε

a < l < 1
b . The function that maps a subset C ⊆ B to

AC := ⋃
i∈C Ii is computable and if C is of cardinality |C | ≥ a, then λ(AC) ≥ al > ε. Since given a point x ∈ AC one can easily

recover the unique number i ∈ B of the interval Ii with x ∈ Ii , one obtains the reduction Ca,b ≤sW P>εC[0,1] .
Let us now assume for a contradiction that Ca,b ≤W P>δC2N . Then there are computable H, K such that H〈id, F K 〉 � Ca,b ,

whenever F � P>δC2N holds. Let p be a name of the entire set B = {0, 1, . . . , b − 1}. Then K (p) is a name of a closed set
A ⊆ 2N with measure μ(A) > δ. Now H〈p, q〉 is a (name of a) point i ∈ B for every q ∈ A. For simplicity we write H〈p, q〉 = i
in this situation. Let

Ai := {q ∈ A : H〈p,q〉 = i}
for all i ∈ B . By definition the sets A0, . . . , Ab−1 are pairwise disjoint. By a version of the Pigeonhole Principle there must
be a set C ⊆ B of cardinality |C | = a such that AC := ⋃

i∈C Ai has measure μ(AC) ≤ a μ(A).
b

Since H is uniformly continuous on the compact set {p} × A, it follows that there is some finite prefix w � p such that
H〈wNN, q〉 is (a name of) a singleton for every q ∈ A. Moreover, since K is continuous we can assume that w is long enough
such that K (wNN) only contains names of sets A′ ⊆ 2N with μ(A′ \ A) ≤ a

b (1 − μ(A)). Now there is a name p′ of the set C
with w � p′ and hence K (p′) is a name of a set A′ as above. It is clear that A′ ∩ A ⊆ AC : for if q ∈ A′ ∩ A, then there is a
realizer F of P>δC2N such that F K (p′) = q and hence H〈p, q〉 = H〈p′, q〉 = H〈p′, F K (p′)〉 ∈ C , which implies q ∈ AC . Finally,
the measure of A′ satisfies

μ(A′) ≤ μ(AC) + μ(A′ \ A) ≤ a

b
≤ δ

in contradiction to the requirement μ(A′) > δ. �
In particular, we obtain the following result.

Corollary 10.2. ε-WWKL≤W δ-WWKL ⇐⇒ ε ≥ δ for ε, δ ∈ [0, 1].

This result was independently proved by Dorais et al. [19, Proposition 4.7]. Since the proof of Theorem 10.1 includes the
case a

b = δ, we obtain the following.

Corollary 10.3. Cn �W
1
n -WWKL for all n ≥ 1.

Besides ε-WWKL we can also consider a ∗-version of this principle that we define next. Essentially, the definition is
∗-WWKL := �n∈N 2−n-WWKL, which can be understood as a uniform version of the logical statement “(∀n) 2−n-WWKL.”
We phrase the principle slightly more precisely.

Definition 10.4. We define ∗-WWKL :⊆ N × Tr ⇒ 2N by

∗-WWKL(n, T) := 2−n-WWKL(T),

where dom(∗-WWKL) := {(n, T) ∈N × Tr : μ([T]) > 2−n}.

That is the input to ∗-WWKL is a pair (n, T), where n is a natural number and T is a tree such that the set of infinite
paths [T] of T satisfies μ([T]) > 2−n . The output is an infinite path p ∈ [T]. It follows from Proposition 4.2 that ∗-WWKL is
idempotent. Similarly, we can define a lower counterpart (1 −∗)-WWKL := �

n∈N(1 − 2−n)-WWKL, which can be understood
as corresponding to the logical statement “(∃n) (1 − 2−n)-WWKL.” Also in this case we repeat the definition for clarity.

Definition 10.5. We define (1 − ∗)-WWKL :⊆ TrN ⇒ 2N by

(1 − ∗)-WWKL(Tn)n :=�
n∈N

(1 − 2−n)-WWKL(Tn),

where dom((1 − ∗)-WWKL) := {(Tn)n ∈ TrN : (∀n ∈N) μ([Tn]) > 1 − 2−n}.

Thus, the input to (1 − ∗)-WWKL is a sequence (Tn)n of trees with μ([Tn]) > 1 − 2−n and the output is an infinite
path p ∈ [Tn] of one of these trees Tn together with the information n to which tree the path belongs. It is clear that
Corollary 10.2 implies the following.

Corollary 10.6. (1 − ∗)-WWKL<W ε-WWKL<W ∗-WWKL≤sW WWKL for every ε ∈ (0, 1).

We want to show that the latter reduction is strict too. We use PCC[0,1] , which is closed choice on [0, 1] restricted
to connected sets of positive measure. In other words, this is choice restricted to proper intervals, which was already
considered in [10] under the name C−

I and in [13] under the name CC−
1 . In [10, Proposition 3.8] it was proved that

PCC[0,1] ≤W CN holds.
We first prove that PCC[0,1] is join-irreducible. We mention that due to distributivity of the Weihrauch lattice g is

join-irreducible (in the sense introduced in Section 2) if and only if g ≤W �∞
i=0 f i implies that there exists i ∈ N with

g ≤W f i . We prove a slightly more general result that we apply to other problems than PCC[0,1] at a later stage.

Lemma 10.7. Every restriction C[0,1]|C of closed choice to a set C of closed subsets A ⊆ [0, 1] with [0, 1] ∈ C is join-irreducible.

Proof. Let (f i)i be a sequence of multi-valued functions and let f :=�∞
i=0 f i . Let us assume that C[0,1]|C ≤W f holds. Then

there are computable H, K such that H〈id, F K 〉 is a realizer of C[0,1]|C for every realizer F of f . Now let p be a name of

[0, 1]. Then K (p) is a name of a pair (n, x), such that x is an input to fn . Since K is continuous, there is a finite prefix
w � p such that K (wNN) only contains names of pairs (n, x) with the same fixed n. Now there is a computable function
L that transforms any name p′ of a closed set A ⊆ [0, 1] into a name q = L(p′) of the same set that starts with w , i.e.,
such that w � q. This is because w contains no negative information that overlaps with [0, 1]. Hence, the functions H, K L
witness the reduction C[0,1]|C ≤W fn . �

We get the following immediate corollary.

Corollary 10.8. PCC[0,1] is join-irreducible.

Now we are prepared to prove the following.

Proposition 10.9. PCC[0,1] �W ∗-WWKL.

Proof. Let us assume for a contradiction that PCC[0,1] ≤W ∗-WWKL holds. Since PCC[0,1] is join-irreducible we can conclude
by Corollary 10.8, there is some n such that PCC[0,1] ≤W 2−n-WWKL. Now we obtain

C2n ≤W KN ≡sW C∗
2 ≤W PCC[0,1] ≤W 2−n-WWKL

in contradiction to Corollary 10.3. Here KN denotes choice for finite subsets of N that are given together with an upper
bound of the set and KN ≡sW C∗

2 has been proved in [12, Proposition 10.9]. The reduction C∗
2 ≤W PCC[0,1] has been proved

in [13, Proposition 7.2]. �
We note that this proof also yields another proof of the strictness of C∗

2 <W PCC[0,1] since C∗
2 ≤ ∗-WWKL (compare the

remark after [13, Proposition 7.2]). Since we also obtain PCC[0,1] ≤W PC[0,1] ≡W WWKL, we arrive at the following corollary
of Proposition 10.9.

Corollary 10.10. ∗-WWKL<W WWKL.

11. The Lebesgue Density Lemma

In the following we will need a simple version of the Lebesgue Density Theorem, which we will call the Lebesgue Density
Lemma, and for that purpose we will classify its Weihrauch degree. The classical Lebesgue Density Theorem (see [4, 5.8(ii)]),
which is a special case of the Lebesgue Differentiation Theorem for measurable sets, says that for every measurable set
A ⊆Rn

lim
ε→0

λ(A ∩ B(x, ε))

λ(B(x, ε))
= 1

for almost all x ∈ A (where B(x, ε) denotes the ball around x with radius ε). We will use a special case of this theorem in
Cantor space that is in for-all-exists form (see [20, Theorem 1.2.3] for a direct proof of this special case).

Lemma 11.1 (Lebesgue Density Lemma). For every closed A ⊆ 2N with μ(A) > 0 and every k ∈ N there exists a word w ∈ {0, 1}∗ such
that

μ(A ∩ w2N)

2−|w| ≥ 1 − 1

2k
.

We consider the following multi-valued function as a representative of the Lebesgue Density Lemma in the Weihrauch
lattice:

LDL :⊆ A−(2N) ×N⇒ {0,1}∗, (A,k) �→
{

w ∈ {0,1}∗ : μ(A ∩ w2N)

2−|w| ≥ 1 − 1

2k

}
with dom(LDL) = {(A, k) : μ(A) > 0}. It is easy to see that the Lebesgue Density Lemma is equivalent to CN .

Theorem 11.2 (Lebesgue Density Lemma). LDL≡sW CN .

Proof. We first prove LDL≤sW CN . By (wi) we denote some effective standard enumeration of {0, 1}∗ . Given a closed set
A ⊆ 2N with μ(A) > 0 and k ∈ N the Lebesgue Density Lemma 11.1 guarantees that

B :=
{

i ∈ N : μ(A ∩ wi2N)

2−|wi | ≥ 1 − 1

2k

}
is non-empty and since the measure μ : A−(2N) → R is upper semi-computable by Lemma 2.7 it follows that B is co-c.e.
closed in A. Hence, CN can determine some point i ∈ B which yields the desired result wi .

Now we prove CN ≤sW LDL. We recall that by UCN we denote choice for singletons {n}. In fact, since UCN ≡sW CN by
[12, Proposition 3.8] it suffices to prove UCN ≤sW LDL. Hence, given a singleton {n} ⊆ N by an enumeration of its comple-
ment, we need to find the number n. Given {n} by an enumeration of its complement, we can compute (negative information
on) the closed set

An := 0n1{0,1}N ∪ {0ω} ⊆ {0,1}N
and we obtain μ(An) > 0. Then LDL will produce upon input of (An, 2) a word w ∈ {0, 1}∗ such that μ(An ∩ w2N) > 2−|w|−1.
In order to ensure this condition, the word w has to have prefix 0n1, which yields the number n. �

By Corollary 9.5 we have WWKL� ≡W WWKL∗CN . We can now factorize WWKL� also using ε-WWKL for arbitrarily large
ε < 1. As a preparation we prove the following lemma.

Lemma 11.3. WWKL≤W ε-WWKL ∗ CN for all ε ∈ [0, 1).

Proof. Let ε ∈ [0, 1) and let k ∈ N be such that 1 − 1
2k > ε. By Theorem 11.2 it suffices to prove WWKL≤W ε-WWKL ∗ LDL.

Given a binary tree T with a set A of infinite paths of positive measure, we apply LDL to (A, k) in order to obtain a w such
that μ(A∩w2N)

2−|w| > 1 − 1
2k > ε. Hence, the subtree T w of T that starts in node w (i.e., u ∈ T w ⇐⇒ wu ∈ T) has a set Aw of

infinite paths of measure μ(Aw) > ε and hence ε-WWKL yields an infinite path pw in Aw . Given this path pw and w we
can compute p = wpw ∈ A. �

Now we can prove the following main result of this section.

Theorem 11.4. WWKL� ≡W ε-WWKL ∗ CN for all ε ∈ [0, 1).

Proof. Let ε ∈ [0, 1). Since ε-WWKL≤sW WWKL, we obtain by Corollary 9.5

ε-WWKL ∗ CN ≤W WWKL ∗ CN ≤W WWKL�.

On the other hand, Corollary 9.5 and Lemma 11.3 yield

WWKL� ≤W WWKL ∗ CN ≤W ε-WWKL ∗ CN ∗ CN ≤W ε-WWKL ∗ CN.

The last reduction follows since CN is closed under composition, which in turn follows from the obvious closure under
composition of the class of functions computable with finitely many mind changes [9, Corollary 7.6]. �

This result can also be interpreted such that on real numbers probabilistic choice does not depend on the value of the
probability.

Theorem 11.5. PCR ≡W P>εCR for all ε ≥ 0.

Proof. Let us suppose that the claim is true for ε = 2. Then we obtain for all ε ∈ [0, 1] by Proposition 4.1

PCR ≡W P>2CR ≤W P>εCR ≤W PCR.

This means that it follows that the claim also holds for ε ∈ [0, 1]. What remains is to prove the claim for ε > 1 (which
includes the case ε = 2). Hence, let ε > 1. Then there exists δ ∈ (0, 1) and n ∈ N with n ≥ 1 such that δ · n > ε. We note that
CN ≡sW P=nCN (which can be proved analogously to CN ≡sW UCN = P=1CN). With Theorems 9.3, 11.4, 4.3, Propositions 4.1
and 7.4 and Corollary 8.8 we obtain

PCR ≡W WWKL� ≡W δ-WWKL ∗ CN ≡W P>δC2N ∗ P=nCN ≤W P>δ·nC2N×N ≤W P>εCR.

The inverse reduction is clear by Proposition 4.1. �
This result is in sharp contrast to Theorem 10.1. While probabilistic choice on Cantor space sensitively depends on lower

bounds on the probability, probabilistic choice on the Euclidean space does not. Intuitively, this is because Cantor space is
compact, whereas Euclidean space offers “enough space” to enlarge the measure of sets.

12. Probability amplification

Theorem 10.1 shows that the technique of probability amplification, which is well-known from the theory of random-
ized algorithms [33] fails for Las Vegas computability over infinite objects. The reason is that we are dealing with infinite
computations and if we run two instances of a probabilistic algorithm with different guesses in parallel, then we need to
decide at some finite time which output we are going to choose. This is simply not possible in general. The positive content
of probability amplification can however be captured in an algebraic way. In order to express it precisely, we introduce the
parallel sum of two degrees.

Definition 12.1 (Parallel sums). Let f :⊆ X ⇒ Y and g :⊆ W ⇒ Z be multi-valued functions. Then we define the parallel sum
f + g : X × W ⇒ Y × Z by

(f + g)(x, w) := (f (x) × range(g)) ∪ (range(f) × g(w))

for all (x, w) ∈ dom(f + g) := dom(f) × dom(g).

The parallel sum f + g captures an operation that takes inputs x, w for both f and g and it produces a pair (y, z)
such that y ∈ f (x) or z ∈ g(w), i.e., only one of the two results is guaranteed to be correct.10 We note that for f , g with
computable points in the range one obtains f + g ≤W f � g . The concept of a parallel sum is closely related to the concept
of a fraction as introduced in [13]. We can now express probability amplification with sums as follows.

Proposition 12.2 (Probability amplification). Let X and Y be represented spaces with σ -finite Borel probability measures μX and μY ,
respectively and let a, b ∈ [0, 1] and c := 1 − (1 − a)(1 − b). Then

P>aCX + P>bCY ≤sW P>cCX×Y .

Proof. Given closed sets A ⊆ X and B ⊆ Y with μX (A) > a and μY (B) > b we can compute C := (A × Y) ∪ (X × B) and we
obtain (μX ⊗ μY)(C) > c. This yields the reduction. �

In case that X is a space that has a measure preserving pairing mechanism, we can replace X, Y and X × Y by X in this
result using Corollary 4.5. In particular, we obtain the following.

Corollary 12.3. Let a, b ∈ [0, 1] and c := 1 − (1 − a)(1 − b). Then

a-WWKL + b-WWKL≤sW c-WWKL.

We also note that in the situation of Proposition 12.2 with X = Y one single mind change allows us to identify the
successful one among the two parallel computations, i.e., P>aCX � P>bCX ≡W P>max(a,b)CX ≤W C2 ∗ (P>aCX + P>bCX).

13. Majority vote

In this section we will prove that any suitable single-valued function f below any jump (1
2 -WWKL)(n) is computable.

The idea is that a simple majority vote after an exhaustive search will yield the result if more than half of the random
advices do the job. We will consider single-valued functions f : X → Y to computable metric spaces Y . The majority vote
technique works for these spaces since the consistency of approximations can be recognized. We will make this statement
more precise. If (X, δ) is a represented space, then we denote by F(X) the set of finite subsets of X that is represented in
the canonical way by δF(X) , which is defined by

δF(X)〈n, p0, . . . , pn〉 := {δ(p0), . . . , δ(pn)}.
Moreover, we recall that every represented space (X, δ) induces a dual represented space (O(X), δ◦), where O(X) is the
topology of X (i.e., the final topology of δ) and δ◦(p) := X \ ψ−(p) is the representation of open subsets via their character-
istic functions to Sierpiński space. In the following lemma we consider NN as a represented space via the identity idNN as
representation.

10 We warn the reader that the parallel sum is not monotone for (strong) Weihrauch reducibility and hence it cannot be considered as an operation on
the Weihrauch lattice.

Lemma 13.1 (Cauchy representation). Let X be a computable metric space. The (suitably defined) Cauchy representation δ of X satisfies

1. � :O(NN) →O(X), U �→ δ(U) is computable,
2. C := {W ∈F(N∗) : ⋂w∈W δ(wNN) �= ∅} is c.e.

We say that a set W ∈F(N∗) is consistent, if W ∈ C.

Proof. Let (X, d, α) be a computable metric space (see [47] for definitions). Then we can define a version of the Cauchy
representation δ of X by δ(p) := limn→∞ α(p(n)) with

dom(δ) := {p ∈NN : (∃x ∈ X)(∀i ∈ N) d(x,αp(i)) < 2−i}.
This representation δ is computably equivalent to other standard versions of the Cauchy representation of X and we obtain

δ(wNN) =
|w|−1⋂

i=0

B(αw(i),2−i)

for every w ∈ N∗ . Secondly, for U = ⋃
w∈W wNN with W ⊆ N∗ we obtain δ(U) = ⋃

w∈W δ(wNN). Since finite intersections
and countable unions of open sets are computable, we can conclude that � is computable. Since

{U ∈ F(O(X)) :
⋂

U �= ∅}
is c.e. open and � is computable, it follows that C is c.e. �

Now we can prove our main result on majority votes. We point out that the multi-valued function g in the following
result need not be computable.

Theorem 13.2 (Majority vote). Let X be a represented space, let Y be a computable metric space and let f : X → Y be a single-valued
function. If

f ≤W
1

2
-WWKL ◦ g

for some g, then f is computable.

Proof. Let (Y , d, α) be a computable metric space. Without loss of generality, we can assume that δ is the Cauchy repre-
sentation of Y according to Lemma 13.1. Let f ≤W

1
2 -WWKL ◦ g and let g :⊆ Z ⇒ Tr. Then there are computable H, K , such

that H〈id, G K 〉 is a realizer of f whenever G is a realizer of 1
2 -WWKL ◦ g . Given a name p of a point x ∈ dom(f), K (p)

is a name of a point z ∈ dom(g) such that every tree T ∈ g(z) satisfies μ([T]) > 1
2 and every infinite path q ∈ [T] yields a

name H〈p, q〉 of f (x), i.e., δH〈p, q〉 = f (x). We need to prove that there is a computable realizer F of f . Upon input of p
one can use H〈p, q〉 for varying q in order to obtain such a realizer by majority vote. For every p that is a name of a point
x ∈ dom(f) as above we can compute a monotone function hp : {0, 1}∗ → N∗ that approximates q �→ H〈p, q〉. Since every
A = [T] for binary trees T is a compact set, the function H is uniformly continuous on {p} × A. That means that for every
k ∈ N there is an n ∈ N such that for every q ∈ A it holds that |hp(q|n)| ≥ k + 2. On the other hand, μ(A) > 1

2 and hence
there is a finite set W ∈ F({0, 1}∗) that consists of more than half of the words in {0, 1}n and such that {hp(w) : w ∈ W }
is consistent and |h(w)| ≥ k + 2 for all w ∈ W . Since consistency is a c.e. property by Lemma 13.1, we can find for our
given k a suitable n and a corresponding set W by exhaustive search. As soon as we have found it, we compute an ap-
proximation α(i) ∈ ⋂

w∈W δ(hp(w)NN) of f (x), which is possible since δ is computably open by Lemma 13.1. We claim that
d(α(i), f (x)) < 2−k . We note that if W consists of half of the words in Nn , then due to the measure condition at least one
of the hp(w) for w ∈ W has to be a prefix of a correct δ-name q of f (x). Hence, for this w we have f (x) ∈ δ(hp(w)NN)

and hence we obtain for a := α(hp(w)(k + 1))

d(α(i), f (x)) ≤ d(α(i),a) + d(a, f (x)) ≤ 2−k−1 + 2−k−1 = 2−k.

If we proceed with the above algorithm for k = 0, 1, 2, . . . and each fixed given input p, then we obtain a computable
realizer F of f with respect to the representation δ on the output side. �

In general we obtain h(n) from h :⊆ X ⇒ Y by replacing the representation δ of X by its n-fold jump δ(n) on the input
side. Since h(n) ≡sW h ◦ δ(n) , we obtain the following corollary of Theorem 13.2.

Corollary 13.3 (Majority vote). Let X be a represented space, let Y be a computable metric space and let f : X → Y be a single-valued
function. If

f ≤W
1

2
-WWKL(n)

for some n ∈N, then f is computable.

Theorem 13.2 and Corollary 13.3 automatically also hold true for all ε > 1
2 instead of 1

2 . It is easy to see that
LPO≤W ε-WWKL′ for every ε < 1

2 and LPO is single-valued (with the computable metric space {0, 1} on the output side).
Hence Theorem 13.2 and Corollary 13.3 cannot be generalized to the case of ε < 1

2 .
Corollary 13.3 analogously holds for 1

2 -WWKL� instead of 1
2 -WWKL′ . Since LPO≤W CN ≤W WWKL� by Theorem 11.4, we

obtain the following.

Corollary 13.4. 1
2 -WWKL� <W WWKL� .

This shows that Theorem 11.4 can in general not be improved to the statement that WWKL� is equivalent to (ε-WWKL)� .
Since LPO≤W WWKL� is single-valued, we also get the following corollary.

Corollary 13.5. WWKL� �W
1
2 -WWKL(n) for all n ∈N.

14. Probabilistic degrees

In this section we would like to capture the non-uniform content of probabilistic computability. Intuitively, we want
to call a Weihrauch degree probabilistic, if it can be computed with some random advice, irrespectively of any failure
recognition mechanisms that Las Vegas machines come equipped with. A suitable notion of random advice has already been
introduced and studied by the first author and Arno Pauly in [14]. We repeat the definition for our setting.

Definition 14.1 (Probabilistic degrees). Let (X, δX), (Y , δY) be represented spaces. A multi-valued function f :⊆ X ⇒ Y is
called probabilistic, if there exists a computable function F :⊆ NN × 2N → NN such that μ({r ∈ 2N : δY F (p, r) ∈ f δX (p)}) > 0
for all p ∈ dom(f δX). A Weihrauch degree is called probabilistic, if it has a probabilistic member.

We emphasize that the condition in this definition implies that the sets A p := {r ∈ 2N : δY F (p, r) ∈ f δX (p)} have to be
measurable, but they are not required to be closed and they do not need to depend on p in any uniform way (in contrast
to the sets S p in Definition 3.1). It follows from results below that Cantor space 2N could be equivalently replaced by Baire
space NN in the above definition. The following characterization of probabilistic degrees follows from [14, Theorem 11]. We
also give a direct proof.

Proposition 14.2 (Probabilistic degrees). A multi-valued function f on represented spaces is probabilistic, if and only if f ≤W g for
some g :⊆ NN ⇒ 2N such that μ2N(g(p)) > 0 for all p ∈ dom(g).

Proof. Let f :⊆ X ⇒ Y be a multi-valued function on represented spaces (X, δX) and (Y , δY) and let g :⊆ NN → 2N be as
stated above. Let f ≤W g be witnessed by computable H, K . We define Ap := g K (p) for all p ∈ D := dom(f δX). Without loss
of generality, we can assume that H has minimal domain, i.e., dom(H) = {〈p, r〉 : p ∈ D, r ∈ A p}. We define F :⊆ NN × 2N →
NN by F (p, r) := H〈p, r〉. Then F is computable and by assumption we have μ2N (Ap) > 0 and δY F (p, r) = δY H〈p, r〉 ∈
f δX (p) for all p ∈ D and r ∈ Ap . Hence, f is probabilistic. If, on the other hand, f is probabilistic, then there is a computable
F :⊆ NN × 2N → NN such that Ap := {r ∈ 2N : δY F (p, r) ∈ f δX (p)} satisfies μ2N (Ap) > 0 for all p ∈ D := dom(f δX). If we
define g :⊆NN ⇒ 2N by g(p) := Ap for all p ∈ D , then we obtain f ≤W g . �

It is clear that it follows from this proposition that probabilistic degrees are closed downwards with respect to Weihrauch
reduction.

Proposition 14.3. If f ≤W g and g is probabilistic, then f is probabilistic.

The case of Baire space can be reduced to Cantor space in the non-uniform setting due to the following lemma.

Lemma 14.4 (Embedding of Baire into Cantor space). The following map is a computable embedding with a measure preserving inverse:

ι : NN → 2N, p �→ 1p(0)01p(1)01p(2)....

Proof. It is clear that ι and its partial inverse are computable. For w ∈ N∗ we obtain

μ2N(ι(wNN)) = 2− ∑|w|−1
i=0 (w(i)+1) =

|w|−1∏
i=0

2−w(i)−1 = μNN(wNN).

By Lemma 2.8 this proves that μ2N (ι(A)) = μNN (A) holds for all measurable A ⊆ NN . �
We point out that this embedding does not have a closed range and it does not preserve closedness. Hence it cannot be

used in a uniform setting. The following lemma provides a fully uniform reduction in the opposite direction for sets. We use
the signum function sgn : N → N, defined by sgn(0) := 0 and sgn(n + 1) = 1 for all n ∈ N and its extension sgn : NN → 2N ,
defined by sgn(p)(n) := sgn(p(n)) for all p ∈NN and n ∈ N.

Lemma 14.5 (Signum). The map

J : 2(2N) → 2(NN), A �→ sgn−1(A)

has the property that μNN(J (A)) = μ2N (A) for all measurable A ⊆ 2N and its restriction J : A−(2N) → A−(NN) to closed sets is
computable.

Proof. Since sgn : NN → 2N is computable, it follows that J maps measurable sets to measurable sets and closed sets to
closed sets and that the restriction of J to closed sets is computable. The claim on the measure can be proved by induction.
We claim that μNN (J (w2N)) = μ2N (wNN) holds for all w ∈ {0, 1}∗ . This is clear for the empty word w . Suppose it holds
for a given word w . Then we obtain

μNN(J (1w2N)) =
∞∑

i=1

2−i−1μNN(J (w2N)) = 1

2
μ2N(w2N) = μ2N(1w2N)

and likewise μNN (J (0w2N)) = μ2N (0w2N). Hence the claim follows by structural induction. This implies that μNN (J (A)) =
μ2N (A) for all measurable A ⊆ 2N by Lemma 2.8. �

Lemma 14.4 and 14.5 show that we could equivalently use functions g :⊆ NN ⇒ NN in Proposition 14.2. The following
result, which follows from Proposition 14.2 shows that being probabilistic is a necessary criterion for being probabilistically
computable in any sense that we consider here.

Theorem 14.6 (Las Vegas computability and probabilistic degrees). If there is a g with f ≤W PCNN ◦ g, then f is probabilistic.

By Lemma 14.5 and due to the fact that the signum function sgn : NN → 2N is computable, we obtain PC2N ≤sW PCNN .
By a slight variant of this result we also obtain PCN×2N ≤sW PCNN and hence

PCN ≤sW PCN×2N ≤sW PCNN .

Altogether, we get the following corollary.

Corollary 14.7 (Probabilistic degrees). If f ≤W PC(n)
R for some n ∈N and R is among N, 2N, N × 2N or NN , then f is probabilistic.

The core observation in this context is that Weak Kőnig’s lemma is not probabilistic [14, Theorem 20].

Proposition 14.8. WKL is not probabilistic.

The proof is essentially based on an earlier result of Jockusch and Soare (see [29, Theorem 5.3]) which shows that the
set of those points in Cantor space from which one can compute a separating set for two given disjoint c.e. sets that
are computably inseparable has measure 0. Since the separation problem is equivalent to Weak Kőnig’s Lemma by [23,
Theorem 6.7], one obtains Proposition 14.8.

As a consequence it follows with Proposition 14.3 that everything above WKL is also not probabilistic. This applies, in
particular, to the limit map lim. Corollary 14.7 and Proposition 14.8 yield the following.

Corollary 14.9. WKL�W PC(n)

NN
and, in particular, WKL�W WWKL(n) for every n ∈N.

An important classical result that yields further insights into non-uniform randomized computations is the Theorem of
Sacks (see [42] and for recent presentations see [36, Theorem 5.1.12], [20, Corollary 8.12.2]).

Theorem 14.10 (Sacks 1963 [42]). Let A ⊆ 2N be a set such that μ(A) > 0 and let q ∈ NN be such that q ≤T r for every r ∈ A. Then q
is computable.

In a certain sense Theorem 13.2 captures the uniform content of the Theorem of Sacks. An early predecessor of the
Theorem of Sacks is the Theorem of de Leeuw, Moore, Shannon and Shapiro [18] that makes a corresponding statement
with respect to c.e. sets (see also [20, Theorem 8.12.1]).

Theorem 14.11 (de Leeuw, Moore, Shannon and Shapiro 1956 [18]). Let A ⊆ 2N be a set such that μ(A) > 0 and let B ⊆ N be such
that B is c.e. in r for every r ∈ A. Then B is c.e.

The Theorem of de Leeuw, Moore, Shannon and Shapiro also holds true in a relativized version that states that if
μ(A) > 0 and B is c.e. in p ⊕ r for every r ∈ A, then B is c.e. in p. Here we use this relativized version in order to prove
the following result that shows that certain single-valued probabilistic functions map computable inputs to computable
outputs.11

In fact, using the notion of representation reducibility introduced by Joseph Miller [32], one can even express a stronger
result. We recall that for represented spaces (X, δX) and (Y , δY) and x ∈ X and y ∈ Y we say that y is representation reducible
to x, if there exists a partial computable function g :⊆ X → Y such that g(x) = y. In symbols this is denoted by y ≤r x.12

We recall that a T0-space X with countable basis (Ui)i has a standard representation δX given by δX (p) = x : ⇐⇒ {n ∈ N :
n + 1 ∈ range(p)} = {n ∈N : x ∈ Un} (see [47]). In other words, p is a name of x if it encodes a list of all basic properties Un

of x.

Theorem 14.12 (Single-valued probabilistic degrees). Let X be a represented space and let Y be a T0-space with countable base and
standard representation. If a single-valued function f : X → Y is probabilistic, then f maps computable inputs to computable outputs.
In fact, even f (x) ≤r x holds for all x ∈ X in this case.

Proof. Let δX be the representation of X and let δY be a standard representation of Y with respect to a countable base
(Ui)i . Let f : X → Y be single-valued and probabilistic. Then there is a computable function F :⊆ NN × 2N → NN such that
the sets Ap := {r ∈ 2N : δY F (p, r) = f δX (p)} satisfy μ(Ap) > 0 for all p ∈ D := dom(f δX). We fix some δX -name p of some
x ∈ X . Then F (p, r) is a δY -name of f (x), i.e., F (p, r) is an enumeration of B := {n ∈ N : f (x) ∈ Un}. Hence, B is c.e. in
p ⊕ r for every r ∈ Ap . By the relativized version of the Theorem of de Leeuw, Moore, Shannon and Shapiro 14.11 we obtain
that B is c.e. in p. This means that δ−1

Y (f (x)) is Muchnik reducible to δ−1
X (x) and hence f (x) ≤r x by [32, Corollary 4.3]. In

particular, f maps computable inputs to computable outputs. �
15. Zeros of continuous functions with sign changes

In this section we would like to prove that there is no Las Vegas algorithm for computing zeros of continuous functions
with changing signs (not even one with additional finitely many mind changes). There is, however, a probabilistic algorithm
of second order for finding such zeros.

By IVT we denote the Intermediate Value Theorem, i.e., the problem: given a continuous function f : [0, 1] → R that
changes its sign (i.e., f (0) · f (1) < 0), find an x ∈ [0, 1] with f (x) = 0. In [10, Theorem 6.2] it was proved that IVT≡sW CC[0,1] ,
where CC[0,1] denotes choice for closed sets A ⊆ [0, 1] restricted to connected sets (i.e., closed intervals). We now prove
that CC[0,1] cannot be reduced to probabilistic choice PC[0,1] . For that purpose we use a finite extension construction to
obtain a name of a connected closed set that is mapped to a set of measure zero (given a potential reduction).

Proposition 15.1. CC[0,1] �W PC[0,1] .

Proof. By Proposition 8.2 it suffices to show CC[0,1] �W WWKL. Let us assume for a contradiction that CC[0,1] ≤W WWKL.
Then there are computable H, K such that H〈id, F K 〉 is a realizer of CC[0,1] for every realizer F of WWKL. Without loss of
generality, we can assume as usual that H, K have minimal domains. Let now p0 be a name of the unit interval I0 := [0, 1].
Then K (p0) is a name of a tree T0 such that the set of infinite paths A0 = [T0] satisfies μ(A0) > 0. Since H is uniformly
continuous on the compact set {p0} × A0, it follows that there is a finite prefix w0 � p0 such that H〈w0NN, q〉 produces its
output in [0, 1] with precision smaller than 1

3 (i.e., any two outputs x, x′ named in that set satisfy |x − x′| < 1
3), uniformly

for all names q of points in A0. Since K is continuous, we can also assume that w0 is long enough such that K (w0NN)

only contains names of trees with closed sets B ⊆ 2N of infinite paths with μ(B \ A0) ≤ 1
2 (1 − μ(A0)). Now there are

11 We thank Mathieu Hoyrup for pointing out that the Theorem of de Leeuw, Moore, Shannon and Shapiro 14.11 can be used to generalize our initial
version of Theorem 14.12, which was originally only formulated for certain metric spaces Y . At the same time its use simplified the proof.
12 This can also be rephrased such that δ−1

Y (y) is Medvedev reducible to δ−1
X (x). Miller proved that for computable metric spaces X and Y this is

equivalent to δ−1
Y (y) being Muchnik reducible to δ−1

X (x), see [32, Corollary 4.3].

names r0 and r1 of the intervals J0 := [0, 13] and J1 := [2
3 , 1], respectively such that w0 � r0 and w0 � r1. Hence K (r0) and

K (r1) are names of infinite trees S0 and S1 with sets of infinite paths B0 = [S0] and B1 = [S1], respectively. We claim that
A0 ∩ B0 ∩ B1 = ∅. For if q ∈ A0 ∩ B0 ∩ B1, then H〈r0, q〉 and H〈r1, q〉 have to be names of points x0, x1 ∈ [0, 1], respectively
with |x0 − x1| < 1

3 according to the choice of w0. On the other hand, there is a realizer F of WWKL with F (r0) = F (r1) = q

and thus x0 ∈ J0 = [0, 13] and x1 ∈ J1 := [2
3 , 1], which is impossible. Hence A0 ∩ B0 ∩ B1 = ∅ and there is an i ∈ {0, 1} with

μ(Bi ∩ A0) ≤ 1
2 μ(A0) and we obtain

μ(Bi) = μ(Bi ∩ A0) + μ(Bi \ A0) ≤ 1

2
μ(A0) + 1

2
(1 − μ(A0)) = 1

2
.

We now choose I1 := J i , p1 := ri and A1 := Bi and we continue the construction inductively. If at stage n > 0 the interval
In with diam(In) = 1

3n , the sequence pn and a set An with μ(An) ≤ 1
2n have been determined, then we continue as follows.

There exists a prefix wn � pn such that H on wn guarantees precision 1
3n+1 and K guarantees measure μ(B \ An) ≤ 1

2 (1
2n −

μ(An)) in an analogous way as above. We select the left and right third J0 and J1 of In together with corresponding names
r0 and r1, respectively, such that wn � r0 and wn � r1. By B0, B1 we denote the sets named by K (r0), K (r1), respectively.
As above, An ∩ B0 ∩ B1 = ∅ and there exists i ∈ {0, 1} such that μ(Bi ∩ An) ≤ 1

2 μ(An). Analogously to above, we obtain
μ(Bi) ≤ 1

2 μ(An) + 1
2 (1

2n − μ(An)) = 1
2n+1 . For the next stage we choose In+1 := J i , pn+1 := ri and An+1 := Bi .

Altogether, this construction yields a strictly increasing sequence wn of prefixes of names pn of closed intervals In with
diam(In) = 1

3n that are mapped to names K (pn) of closed sets An with μ(An) ≤ 1
2n . These names pn converge to a name p

of a singleton interval {x} ⊆ [0, 1] and by continuity of K this name p is mapped to a name K (p) of a tree T with a set
A = [T] of infinite paths such that μ(A) = 0. This is a contradiction to the assumption. �

It is easy to see that the inverse reduction is also not possible. This is because CC[0,1] has some computable outputs for
any computable input and PC[0,1] does not (for instance a universal Martin-Löf test yields examples of co-c.e. closed subsets
A ⊆ [0, 1] of positive measure without computable points).

Proposition 15.2. PC[0,1] �W CC[0,1] .

This can also be proved in a topological way that does not refer to computable inputs and outputs and such a proof will
follow from Proposition 17.4. Altogether we obtain that connected and probabilistic choice on [0, 1] are incomparable.

Corollary 15.3 (Connected and probabilistic choice). CC[0,1] |W PC[0,1] .

This means, in particular, that there is no Las Vegas algorithm that computes zeros of continuous functions with changing
sign. Next we want to show that it does not help to have finitely many mind changes additionally to a Las Vegas algorithm
or, in other words, there is also no Las Vegas algorithm over the probability space N × 2N . This follows from Corollary 15.3
using the following choice elimination principle that was proved in [31] by Le Roux and Pauly and is based on the Baire
category technique introduced in [10].

Theorem 15.4 (Discrete choice elimination). f ≤W g ∗ CN implies f ≤W g for total fractals f .

We recall that a fractal f is a multi-valued function on represented spaces such that there exists a g :⊆ NN ⇒ NN with
non-empty domain and such that g|A ≡W f for every clopen A ⊆ NN for which A ∩ dom(g) is non-empty. Moreover, f is
called a total fractal if g can be chosen to be total. It is implicit in the proof of [10, Proposition 4.9] that CC[0,1] is a total
fractal and we include the proof here for completeness.

Lemma 15.5. CC[0,1] is a total fractal.

Proof. In [10, Proposition 3.6] it was proved that CC[0,1] ≡W BI , where

BI :⊆ R< ×R> ⇒R, (a,b) �→ [a,b]
is the boundedness principle that maps a left real number a and a right real number b with a ≤ b to the closed interval
[a, b], i.e., dom(BI) = {(a, b) ∈ R< × R> : a ≤ b}. It is easy to see that dom(BI) is co-c.e. closed. We assume that R< and
R> are represented by ρ< and ρ> , which are the representations of reals by strictly increasing and decreasing sequences
of rational numbers, respectively. We represent R by the usual Cauchy representation ρ . Let G :⊆NN ⇒NN be the function
that maps every pair 〈p, q〉 ∈ NN to all names of r with ρ<(p) ≤ ρ(r) ≤ ρ>(q). By definition this G is partial, but since the
domain is co-c.e. closed, one can easily extend it to an equivalent total F :⊆ NN ⇒ NN: as soon as a prefix 〈p|n+1, q|n+1〉
of the input is inconsistent, since the represented sequences of rational numbers are either not increasing in case of p or
not decreasing in case of q or since the rational number given by p(n) is not smaller than the one given by q(n), F just

maps 〈p, q〉 to the value G〈p′, q′〉 where p′ and q′ are some canonical consistent extensions of p|n and q|n , respectively. This
guarantees that F ≡W G ≡W BI ≡W CC[0,1] . Moreover, it is easy to see that F |A ≡W F for every non-empty clopen A ⊆NN . It
suffices to consider A of the form A = wNN with w ∈ N∗ . Given a prefix w of a [ρ<, ρ>]-name of an interval [a, b], the
interval is only described by w up to some rational numbers c, d with c < a ≤ b < d. Now any other given interval [a′, b′]
can be mapped by a computable affine transformation T : R → R to an interval [T (a′), T (b′)] with c < T (a′) ≤ T (b′) < d
and given a point x ∈ [T (a′), T (b′)] one can easily recover a point T −1(x) ∈ [a′, b′]. This proves F wNN ≡W F . Altogether, this
shows that CC[0,1] is a total fractal. �

Using Corollary 15.3 we obtain the following result.

Theorem 15.6. CC[0,1] |W PCR .

Proof. Since PC[0,1] ≤W PCR we obtain PCR�W CC[0,1] by Proposition 15.2. Now we prove CC[0,1] �W PCR . For one we
have PCR ≡W PC2N ∗ CN ≡W PC[0,1] ∗ CN due to Corollaries 6.4, 7.3 and Proposition 7.4. If we assume for a contradiction
CC[0,1] ≤W PCR , then CC[0,1] ≤W PC[0,1] ∗ CN follows and hence CC[0,1] ≤W PC[0,1] follows with Theorem 15.4 on discrete
choice elimination since CC[0,1] is a total fractal by Lemma 15.5. This contradicts Proposition 15.1. �

On the other hand, it is easy to see that there is a probabilistic algorithm of second order that can compute zeros of
functions with sign change. We first give an intuitive description of this algorithm before we formulate the result using
choice:

1. A continuous function f : [0, 1] →R with f (0) · f (1) < 0 is given as input.
2. Guess a binary sequence or, equivalently, a bit b ∈ {0, 1} and a point x ∈ [0, 1].
3. Interpret the guess b = 1 such that the zero set f −1{0} contains no open intervals and use the trisection method to

compute a zero z ∈ [0, 1] with f (z) = 0 in this case (disregarding x).
4. Interpret the guess b = 0 such that the zero set f −1{0} does contain an open interval and check whether f (x) = 0 in

this case. Stop after finite time if this test fails and output x otherwise.

This is not a Las Vegas algorithm, since the failure of the algorithm in case of b = 0 cannot be recognized computably.
However, the algorithm succeeds with a positive probability in any case since x is disregarded in case b = 0 and there is a
set of successful guesses of positive measure in case b = 1. Additionally, even in case b = 0 it is not too difficult to recognize
failure, even though it is not computable. We prove that this algorithm is probabilistic of second order and for simplicity
we express this using choice again.

Proposition 15.7. CC[0,1] ≤W PC′[0,1] .

Proof. By Proposition 8.2 it suffices to prove CC[0,1] ≤W WWKL′ . Given a name p of a closed interval I ⊆ [0, 1] we compute
a sequence (Tn)n of trees that converges to a tree T with a set A := [T] ⊆ {0, 1}N of infinite paths with μ(A) > 0. Firstly,
we can compute a tree T I ⊆ 0{0, 1}∗ such that the binary representation ρ2 maps [T I] to 1

2 I . By mn we denote the measure
of the approximation of I that is determined by p|n , the prefix of p of length n. Without loss of generality, we can assume
that we can compute mn as a positive rational number. Now we can compute a sequence (Tn)n of trees

Tn := T I ∪ 1{0,1}k

where k is maximal with mn < 2−k . Then the sequence (Tn)n clearly converges to a tree T with

[T] =
{ [T I] if I is not a singleton

[T I] ∪ 1{0,1}N otherwise

Let us denote by K the computable map that maps p to a sequence of names of the trees (Tn)n . Given an infinite path
q ∈ [T] and the original name p we can reconstruct a point x ∈ I as follows: if the path q starts with q(0) = 0, then we
compute x = 2 · ρ2(q) and if the path q starts with q(0) = 1, then we know that I must be a singleton and we use p to
compute x with I = {x}. This describes a computable function H such that H〈id, F K 〉 is a realizer of CC[0,1] whenever F is
a realizer of WWKL′ . �

One can also ask whether Proposition 15.7 can be strengthened to the statement CC[0,1] ≤sW PC′[0,1] . However, for mere
cardinality reasons this is not possible. Since there cannot be an uncountable number of pairwise disjoint sets A ⊆ [0, 1] of
positive measure it follows that #PC(n)

[0,1] = |N| (see Proposition 3.8), while obviously #CC[0,1] = |R|. We obtain the following
consequence of Proposition 3.6.

Corollary 15.8. CC[0,1] �sW PC(n) for all n ∈N.
[0,1]

Another interpretation of our results is that Weak Weak Kőnig’s Lemma does not compute the Intermediate Value Theo-
rem (nor the other way around), but the jump of Weak Weak Kőnig’s Lemma does.

Corollary 15.9 (Intermediate Value Theorem and Weak Weak Kőnig’s Lemma). IVT |W WWKL and IVT≤W WWKL′ .

We note that the results of this section also yield another proof of the fact that WKL�W WWKL (see Corollary 14.9),
since IVT≤W WKL.

16. Robust division

In this section we would like to prove that there is a Las Vegas algorithm for robust division

RDIV : [0,1] × [0,1] ⇒ [0,1], (x, y) �→
{ { x

max(x,y)
} if y �= 0

[0,1] otherwise

Robust division can be used for solving linear equations and inequalities in compact domains and it has been defined and
studied by Arno Pauly [38,40]. For instance it is easy to see that robust division can be used to find solutions of linear
equations ax = b for a, b ∈R in a compact domain. Robust division is related to all-or-unique choice that we define next.

Definition 16.1 (All-or-unique choice). Let X be a represented space. Then by AUCX we denote the all-or-unique choice oper-
ation of X , which is CX restricted to

dom(AUCX) := {X} ∪ {{x} : x ∈ X},
i.e., the entire set or singletons.

One readily verifies the following result (see [40, Proposition 5.2.1.3]).

Proposition 16.2 (Robust division). RDIV≡sW AUC[0,1] .

Now we will further study the relation of all-or-unique choice AUC[0,1] to probabilistic choice.

Theorem 16.3 (All-or-unique and probabilistic choice). AUC[0,1] <W PCC[0,1] .

Proof. Given a name p of a set A ⊆ [0, 1], which is either the whole interval or a singleton, we compute the name q of a
proper closed interval I ⊆ [0, 1] as follows: as long as p does not contain any negative information (i.e., p is still compatible
with a name of the full interval), we just copy p to q. If the first negative information in p appears at position n, then we
continue to read p until we know the singleton A = {x} given by it up to precision 2−n . At that point we have rational
numbers a, b with x ∈ [a, b] and b − a ≤ 2−n and we just extend the output q to a name of the interval I = [a, b]. This
describes a computable function K that maps p to q. The output produced by K is a name for an interval of the form
I = [a, b], where I = [0, 1] if and only if p is a name of [0, 1]. Given a name of a point y ∈ I and the original input p, we
can recover a point x ∈ A as follows: we read p and produce an approximation of y up to precision 2−n as long as p|n does
not contain any negative information. In the moment where we find some negative information in p, we stop using y and
we just compute an output x with A = {x} by inspection of p. Note that this is always possible, since the approximation of
y that we have produced so far can always be extended to x. This describes a computable function H such that H〈id, F K 〉
is a realizer of AUC[0,1] whenever F is a realizer of PCC[0,1] .

It is clear that PCC[0,1] �W AUC[0,1]: while AUC[0,1] ≤W LPO can be computed with one mind change, C∗
2 ≤W PCC[0,1]

(which holds by [13, Proposition 7.2]) implies that PCC[0,1] cannot be computed with any finite number of mind
changes. �

In other words, we have proved that robust division can be reduced to Weak Weak Kőnig’s Lemma.

Corollary 16.4. RDIV<W WWKL.

This means that there is a Las Vegas algorithm for robust division. Now one can ask whether there is a Las Vegas
algorithm for robust division with a fixed positive success probability. We will show that this is not the case and we start
with an observation that follows from Lemma 10.7.

Corollary 16.5. AUC[0,1] is join-irreducible.

Now we can conclude that no fixed positive success probability is sufficient for robust division.

Theorem 16.6. AUC[0,1] �W ∗-WWKL.

Proof. Let us assume for a contradiction that AUC[0,1] ≤W ∗-WWKL. Since AUC[0,1] is join-irreducible by Corollary 16.5, we
obtain that there exists an n ∈ N with AUC[0,1] ≤W 2−n-WWKL. Let H, K be computable functions such that H〈id, F K 〉 is a
realizer of AUC[0,1] for every realizer F of 2−n-WWKL. Let p be a name of [0, 1], which is mapped to a name K (p) of a tree
T with a set A = [T] of infinite paths such that μ(A) > 2−n . Now we consider 2n + 1 distinct points x0, x1,, x2n ∈ [0, 1]
and let m ∈ N be such that 2−m < min{|xi − x j | : i, j ∈ {0, . . . , 2n}, i �= j}. Since H is uniformly continuous on the compact
set {p} × A, there is some prefix w � p such that all names in H〈wNN, q〉 determine their results with precision better
than 2−m−1 for all q ∈ A. Since K is continuous, we can assume that w is long enough such that K (wNN) contains only
names of trees S with sets B = [S] of infinite paths such that μ(B \ A) ≤ 2−n(1 − μ(A)). Now we consider extensions
p0, p1, . . . , p2n of w which are names of the singletons {x0}, {x1}, . . . , {x2n }, respectively. Then K (p0),. . . ,K (p2n) are names
of trees T0, . . . , T2n with sets of infinite paths A0, . . . , A2n , respectively. Since μ(Ai) > 2−n for all i = 0, . . . , 2n , it is clear
that there are distinct k, j ∈ {0, . . . , 2n} such that A j ∩ Ak ∩ A �= ∅, since otherwise we obtain for some i = 0, . . . , 2n

μ(Ai) = μ(Ai ∩ A) + μ(Ai \ A) ≤ 1

2n + 1
μ(A) + 2−n(1 − μ(A)) < 2−n

in contradiction to the assumption. Let now q ∈ A j ∩ Ak ∩ A. Then H〈p j, q〉 is a name of x j and H〈pk, q〉 is a name of xk
and hence |x j − xk| < 2−m according to the choice of w . This is in contradiction to the definition of m. �

Together with Theorem 16.3 this gives us an alternative proof of Proposition 10.9. Theorem 16.6 also implies
AUC[0,1] �W C∗

2, which was proved in a different way by Arno Pauly in [40, Theorem 5.2.1.4].
Similarly as before for Corollary 15.8 we can ask whether Theorem 16.3 can be strengthened to the statement

AUC[0,1] ≤sW PCC[0,1] . However, again for mere cardinality reasons this is not possible. As above we note that #PC(n)
[0,1] = |N|,

while obviously #AUC[0,1] = |R|. We obtain the following consequence of Proposition 3.6.

Corollary 16.7. AUC[0,1] �sW PC(n)
[0,1] for all n ∈N.

17. Nash equilibria

In this section we would like to prove (based on results of Arno Pauly) that there is a Las Vegas algorithm to compute
Nash equilibria. We recall from [38,37] that a pair A, B ∈ Rm×n of m × n-matrices is called a bi-matrix game. Any vector
s = (s1, . . . , sm) ∈ Rm with si ≥ 0 for all i = 1, . . . , m and

∑m
j=1 s j = 1 is called a mixed strategy. By Sm we denote the set of

these mixed strategies of dimension m. Then a Nash equilibrium is a pair (x, y) ∈ Sn × Sm of strategies such that

1. xT Ay ≥ wT Ay for all w ∈ Sn and
2. xT B y ≥ xT Bz for all z ∈ Sm .

John F. Nash [35] proved that for any bi-matrix game there exists a Nash equilibrium. By NASHn,m :Rm×n ×Rm×n ⇒Rn ×Rm

we denote the corresponding problem

NASHn,m(A, B) := {(x, y) ∈Rn ×Rm : (x, y) is a Nash equilibrium for (A, B)}
of finding a Nash-equilibrium for an m × n bi-matrix game and by NASH := �n,m∈N NASHn,m we denote the coprod-
uct of all such games for finite m, n ∈ N. By [38, Theorem 28] it follows that NASH is strongly idempotent, i.e.,
NASH × NASH≤sW NASH. Like in [38, Theorem 24] we will use a variant of the well-known matching pennies game (see
[37]), which has a unique Nash equilibrium, in order to prove the following result.

Lemma 17.1. NASH is a cylinder.

Proof. Since NASH is strongly idempotent and idNN ≡sW id[0,1] , it suffices to prove id[0,1] ≤sW NASH. Given some input
a ∈ [0, 1], we can compute the bi-matrix game (A, B) given by

A :=
(

1 −1
−1 a

)
, B :=

(−1 1
1 −1

)
.

We claim that the unique Nash equilibrium (x, y) of the game (A, B) is given by x = (x1, x2) := (1
2 , 12) and y := (y1, y2)

with y1 := 1+a
3+a and y2 := 1 − y1. This yields the desired reduction, since a can be recovered from the unique output (x, y) =

NASH2,2(A, B) by a = 2y1
1−y1

− 1. It remains to prove the claim, which amounts to check that the above pair (x, y) ∈ S2 × S2

is the unique pair that satisfies

1. (y1 − y2)x1 + (ay2 − y1)x2 ≥ (y1 − y2)w1 + (ay2 − y1)w2 and
2. (x2 − x1)y1 + (x1 − x2)y2 ≥ (x2 − x1)z1 + (x1 − x2)z2

for all w = (w1, w2), z = (z1, z2) ∈ S2. If we consider the case y1, y2 /∈ {0, 1}, then the only way to satisfy the second
constraint (2) is by balancing both addends, i.e., x2 − x1 = x1 − x2, which yields x1 = x2 = 1

2 . This is because an unbalanced
pair x2 − x1 �= x1 − x2 would always allow to increase the weight y1 or y2 of the larger component of the pair, which
is possible if both weights y1 and y2 are smaller than 1. The corresponding modified pair of weights z1, z2 would then
violate (2). Likewise, if we consider the case x1, x2 /∈ {0, 1} balancing the addends in the first constraint (1) yields y1 − y2 =
ay2 − y1, which implies y1 = 1+a

3+a after the substitution y2 = 1 − y1. Now we still need to consider the case where we
allow x1, x2, y1, y2 ∈ {0, 1}. For instance, if y2 = 1, then y1 = 0 and the second constraint (2) can only be satisfied if
x1 −x2 ≥ x2 −x1, which means if x1 ≥ x2. In this case the first constraint can only be satisfied if −1 = y1 − y2 ≥ ay2 − y1 = a,
which is impossible for a ∈ [0, 1]. Likewise, the other cases with values in {0, 1} can be ruled out. What remains is the above
unique Nash equilibrium (x, y). �

Arno Pauly proved that the problem NASH is Weihrauch equivalent to the idempotent closure AUC∗[0,1] of all-or-unique
choice on the unit interval (see [38]).

Theorem 17.2 (Nash equilibria, Pauly 2010 [38]). NASH≡sW AUC∗[0,1] .

The proof of NASH≡W RDIV∗ can be found in [38, Corollary 40]. Moreover, the equivalence RDIV∗ ≡sW AUC∗[0,1] holds by
Proposition 16.2. It is easy to see that AUC∗[0,1] is a cylinder and hence we obtain by Lemma 17.1 that even strong Weihrauch
equivalence holds as stated in the previous result. Since WWKL is idempotent, we obtain the following immediate conclusion
of Theorem 16.3.

Corollary 17.3. NASH≤W WWKL.

This means that there is a Las Vegas algorithm for computing Nash equilibria. In terms of RDIV this algorithm is quite
involved and can be found in [38], while we have shown how RDIV can be computed in Las Vegas style (see the proof
of Theorem 16.3 and Corollary 16.4). An obvious question is whether Corollary 17.3 can be improved to the reduction
NASH≤W PCC[0,1] , which would mean that there is a Las Vegas algorithm, whose random guesses can always be organized
in a connected interval. We will see that this is not the case and we will even obtain NASH�W CC[0,1] . We start with the
following result, which improves [13, Proposition 7.1].

Proposition 17.4. C2 × AUC[0,1] �W CC[0,1] .

Proof. Let us assume for a contradiction that C2 ×AUC[0,1] ≤W CC[0,1] . Then there are computable H, K such that H〈id, F K 〉
is a realizer of C2 ×AUC[0,1] whenever F is a realizer of CC[0,1] . Without loss of generality, we can assume that we represent
[0, 1] with the following signed-digit representation:

ρ :⊆ {−1,0,1}N → [0,1], p �→
∞∑

n=0

p(n)2−n.

Let now p be a name of {0, 1} × [0, 1]. Then K (p) is the name of an interval I and H is uniformly continuous on the
compact set {p} × N , where N is the set of all names of points in I (this set is compact, since we are using a signed-digit
representation).

(a) Hence there is a number n ∈ N such that all points in H〈p|nNN, q|nNN〉 with q ∈ N have a fixed first discrete component
in {0, 1}. Since we use the signed-digit representation ρ for [0, 1], each q|n = q(0)...q(n − 1) determines a point x ∈ I
up to precision 2−n+1, more precisely, if x, y ∈ I are points with |x − y| ≤ 2−n+1, then x, y have names r, s, respectively,
with r|n = s|n .

(b) There is also a number k ≥ n such that all second components of the points H〈p|kNN, q|kNN〉 with q ∈ N determine
values in [0, 1], which are identical up to precision 2−n−2; more precisely, if r, s ∈ π2 H〈p|kNN, q|kNN〉 for some q ∈ N ,
then r, s are names of points x, y ∈ [0, 1] with |x − y| < 2−n−2.

We now choose 2n+2 equi-distant points x1, . . . , x2n+2 ∈ [0, 1] including the endpoints 0, 1. In particular, |xi − x j | > 2−n−2

for all i, j with i �= j. Let now qa, qb be names of the two endpoints of I and let a, b ∈ [0, 1] be the value of the second
components of H〈p, qa〉 and H〈p, qb〉, respectively. We fix some x ∈ [0, 1]. Let Ax = {0, 1} × {x}. Then due to continuity of
K there is a name pi of Ax for every i ∈N such that p|k+i is a prefix of pi and K (pi) is a name of an interval Ii such that
supy∈Ii

distI (y) < 2−i (where distI (y) := inf{|z − y| : z ∈ I}). We note that pi → p for i → ∞. Let us assume that Ii � I◦ for
all i (where I◦ denotes the interior of I). Then there is a sequence of points (yi) with yi ∈ Ii and a corresponding sequence

of names (qi) such that qi → qa or qi → qb for i → ∞. Without loss of generality, we assume qi → qa . Due to continuity of
H we obtain

H〈p,qa〉 = H

〈
lim

i→∞ pi, lim
i→∞ qi

〉
= lim

i→∞ H〈pi,qi〉.

Since the second component of H〈p, qa〉 is a name for a and the second components of all the H〈pi, qi〉 are names for x,
we obtain x = a. Hence, in the general case we have x ∈ {a, b}. In other words, if x /∈ {a, b}, then Ax has a name px with
prefix p|k such that K (px) is a name of an interval Ix with Ix ⊆ I◦ . Among the 2n+2 points xi there are at least 2n+1, which
are different from a, b. Let us assume, without loss of generality, that the points x1, . . . , x2n+1 are all different from a, b. Now
we claim that

1. Ixi ∩ Ix j = ∅ for different i, j ∈ {1, . . . , 2n+1},

2. λ(Ixi) > 2−n for all i ∈ {1, . . . , 2n+1}.

Together this is clearly a contradiction since

2n+1∑
i=1

λ(Ixi) > 2n+12−n > 1 = λ([0,1]).

We first prove (1). Let us assume that z ∈ Ixi ∩ Ix j for i �= j and q is a name of z. It follows that the second components
of H〈pxi , q〉 and H〈px j , q〉 are names of xi and x j , respectively, and since pxi and px j have the prefix p|k in common, we
obtain |xi − x j | < 2−n−2 in contradiction to the choice of these points xi, x j . We now prove (2). Let i ∈ {1, . . . , 2n+1}. Due to
continuity of K we can choose some m ≥ k such that all intervals J named in K (pxi |mNN) satisfy supy∈ J distIxi

(y) < 2−n−1

and J ⊆ I (the latter is possible since Ixi ⊆ I◦). Now the two sets {0} × {xi} and {1} × {xi} have names p0, p1 that share
the common prefix pxi |m . Let J0 ⊆ I and J1 ⊆ I be the intervals named by K (p0) and K (p1), respectively and let x ∈ J0
and y ∈ J1. If |x − y| ≤ 2−n+1, then there are names q, r ∈ N of x, y, respectively, such that q|n = r|n and hence H〈p0, q〉
and H〈p1, r〉 must name identical first components, which is a contradiction to the choice of p0, p1. Hence we obtain
inf{|x − y| : x ∈ J0, y ∈ J1} ≥ 2−n+1. But this implies

λ(Ixi) = sup{|x − y| : x, y ∈ Ixi } > 2−n+1 − 2 · 2−n−1 = 2−n.

This completes the proof. �
Since C2 × AUC[0,1] ≤W AUC∗[0,1] we obtain the following corollary.

Corollary 17.5. AUC∗[0,1] �W CC[0,1] .

This means that a method to compute zeros of continuous functions with changing signs cannot help to compute Nash
equilibria.

Corollary 17.6. NASH�W IVT.

We mention that Proposition 17.4 together with C2 × AUC[0,1] ≤W PC[0,1] also yields another proof of Proposition 15.2.
Since C2 ≤W AUC[0,1] ≤W PCC[0,1] ≤W CC[0,1] we also obtain the following corollary of Proposition 17.4.

Corollary 17.7. AUC[0,1] , PCC[0,1] and CC[0,1] are not idempotent.

The first fact can also easily be deduced from the number of mind changes required and the latter fact was already
proved in [13, Theorem 7.3] in a slightly different way. We mention that the situation also yields another instance of a
difference between suprema and products, since we obtain

C2 � AUC[0,1] <W C2 × AUC[0,1].

In particular, Corollary 17.5 implies that AUC∗[0,1] �W PCC[0,1] . As a final result in this section we would like to clarify the
inverse relation between PCC[0,1] and AUC∗[0,1] . The separation can be achieved using the concept of a level (as introduced
by Hertling [24,25]), which is preserved downwards by Weihrauch reducibility (i.e., if f ≤W g , then the level of f is less or
equal to the level of g). Since AUC∗[0,1] ≤W LPO∗ , it follows that AUC∗[0,1] has at most the level of LPO∗ , which is ω (the
first transfinite ordinal), while PCC[0,1] has no level, since its entire domain consists of points of discontinuity. This implies
PCC[0,1] �W LPO∗ and altogether we obtain the following result.

Fig. 1. (Probabilistic choice in the Weihrauch lattice). All solid lines indicate strong Weihrauch reductions ≤sW against the direction of the arrow, i.e., if
f ≤sW g , then the arrow points from g to f (which corresponds to the direction of logical implication). All dashed lines indicate that we only have ordinary
Weihrauch reductions f ≤W g in those cases. The diagram is complete (with regards to ordinary Weihrauch reducibility) up to transitivity.

Corollary 17.8. PCC[0,1] |W AUC∗[0,1] .

In particular, we obtain the following corollary.

Corollary 17.9. IVT |W NASH.

18. Conclusions

In Fig. 1 we illustrate the fragment of the Weihrauch lattice that we have studied in this paper.
We emphasize that many separations presented in this paper hold for purely topological reasons. That is, we get anal-

ogous results if we replace (strong) Weihrauch reducibility by its topological counterpart that is defined analogously, but
with continuous H, K instead of computable H, K . In particular, Propositions 7.5, 15.1, and 17.4, as well as Theorems 10.1
and 16.6, hold analogously for the topological variant of Weihrauch reducibility.

There are numerous structural questions that we have not addressed or answered in our study. We mention some
examples:

1. Is WWKL′ closed under composition?
2. Or is WWKL′ ∗ WWKL′ ≡W WWKL′′?
3. Is WWKL′ ≤W PCNN?

The techniques used to prove WKL′ ∗ WKL′ ≡W WKL′′ in [12] cannot be directly transferred to the case of WWKL, since
the proofs crucially exploit that WKL is a cylinder, which WWKL is not according to Corollary 3.9.

Of course, it would be very interesting to find out whether further concrete problems (besides determining zeros or
computing Nash equilibria) admit Las Vegas algorithm or other types of randomized algorithms. In one forthcoming paper
we will study the Vitali Covering Theorem and other results from measure theory from this perspective and in a second
paper we will investigate the relation between Martin-Löf randomness and Weak Weak Kőnig’s Lemma.

Acknowledgments

We would like to thank the anonymous referees for their detailed and helpful remarks. We are also grateful to Mathieu
Hoyrup and Arno Pauly for their comments on an earlier draft of this article.

References

[1] Charalambos D. Aliprantis, Owen Burkinshaw, Principles of Real Analysis, third edition, Academic Press Inc., San Diego, CA, 1998.
[2] László Babai, Monte-Carlo algorithms in graph isomorphism testing, Technical Report No. 79-10, Université de Montréal, Département de Mathématique

et de Statistique, 1979.
[3] Heinz Bauer, Measure and Integration Theory, Walter de Gruyter, Berlin, 2001.
[4] V.I. Bogachev, Measure Theory, vols. I, II, Springer-Verlag, Berlin, 2007.
[5] Bosserhoff Volker, Computable functional analysis and probabilistic computability, PhD thesis, University of the Armed Forces, Munich, 2008.
[6] Bosserhoff Volker, Notions of probabilistic computability on represented spaces, J. Univers. Comput. Sci. 14 (6) (2008) 956–995.
[7] Vasco Brattka, Computable invariance, Theor. Comput. Sci. 210 (1999) 3–20.
[8] Vasco Brattka, Effective Borel measurability and reducibility of functions, Math. Log. Q. 51 (1) (2005) 19–44.
[9] Vasco Brattka, Matthew de Brecht, Arno Pauly, Closed choice and a uniform low basis theorem, Ann. Pure Appl. Log. 163 (2012) 986–1008.

[10] Vasco Brattka, Guido Gherardi, Effective choice and boundedness principles in computable analysis, Bull. Symb. Log. 17 (1) (2011) 73–117.
[11] Vasco Brattka, Guido Gherardi, Weihrauch degrees, omniscience principles and weak computability, J. Symb. Log. 76 (1) (2011) 143–176.
[12] Vasco Brattka, Guido Gherardi, Alberto Marcone, The Bolzano–Weierstrass theorem is the jump of weak Kőnig’s lemma, Ann. Pure Appl. Log. 163

(2012) 623–655.
[13] Vasco Brattka, Stéphane Le Roux, Arno Pauly, Connected choice and the Brouwer fixed point theorem, preliminary version available at http://arxiv.org/

abs/1206.4809, June 2012.
[14] Vasco Brattka, Arno Pauly, Computation with advice, in: Xizhong Zheng, Ning Zhong (Eds.), Proceedings of the Seventh International Conference on

Computability and Complexity in Analysis, CCA 2010, in: Electronic Proceedings in Theoretical Computer Science, 2010, pp. 41–55.
[15] Vasco Brattka, Arno Pauly, On the algebraic structure of Weihrauch degrees, unpublished draft, 2014.
[16] Vasco Brattka, Gero Presser, Computability on subsets of metric spaces, Theor. Comput. Sci. 305 (2003) 43–76.
[17] Matthew de Brecht, Akihiro Yamamoto, Mind change complexity of inferring unbounded unions of restricted pattern languages from positive data,

Theor. Comput. Sci. 411 (7–9) (2010) 976–985.
[18] K. de Leeuw, E.F. Moore, C.E. Shannon, N. Shapiro, Computability by probabilistic machines, in: Automata Studies, in: Annals of Mathematics Studies,

vol. 34, Princeton University Press, Princeton, NJ, 1956, pp. 183–212.
[19] François G. Dorais, Damir D. Dzhafarov, Jeffry L. Hirst, Joseph R. Mileti, Paul Shafer, On uniform relationships between combinatorial problems, Trans.

Am. Math. Soc. (2015), submitted for publication, preliminary version available at http://arxiv.org/abs/1212.0157.
[20] Rodney G. Downey, Denis R. Hirschfeldt, Algorithmic Randomness and Complexity, Theory and Applications of Computability, Springer, New York, 2010.
[21] Cameron E. Freer, Daniel M. Roy, Computable de Finetti measures, Ann. Pure Appl. Logic 163 (5) (2012) 530–546.
[22] Peter Gács, Uniform test of algorithmic randomness over a general space, Theor. Comput. Sci. 341 (2005) 91–137.
[23] Guido Gherardi, Alberto Marcone, How incomputable is the separable Hahn–Banach theorem?, Notre Dame J. Form. Log. 50 (4) (2009) 393–425.
[24] Peter Hertling, Topological complexity with continuous operations, J. Complex. 12 (1996) 315–338.
[25] Peter Hertling, Unstetigkeitsgrade von Funktionen in der effektiven Analysis, Dissertation Informatik Berichte, vol. 208, FernUniversität Hagen, Hagen,

November 1996.
[26] Peter Hertling, Klaus Weihrauch, Random elements in effective topological spaces with measure, Inf. Comput. 181 (1) (2003) 32–56.
[27] Kojiro Higuchi, Arno Pauly, The degree structure of Weihrauch reducibility, Log. Methods Comput. Sci. 9 (2:02) (2013).
[28] Mathieu Hoyrup, Cristóbal Rojas, Computability of probability measures and Martin–Löf randomness over metric spaces, Inf. Comput. 207 (7) (2009)

830–847.
[29] Carl G. Jockusch Jr., Robert I. Soare, �0

1 classes and degrees of theories, Trans. Am. Math. Soc. 173 (1972) 33–56.
[30] Alexander S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, vol. 156, Springer, Berlin, 1995.
[31] Stéphane Le Roux, Arno Pauly, Closed choice for finite and for convex sets, in: Paola Bonizzoni, Vasco Brattka, Benedikt Löwe (Eds.), The Nature of

Computation. Logic, Algorithms, Applications, 9th Conference on Computability in Europe, CiE 2013, Milan, Italy, July 1–5, 2013, in: Lecture Notes in
Computer Science, vol. 7921, Springer, Berlin, 2013, pp. 294–305.

[32] Joseph S. Miller, Degrees of unsolvability of continuous functions, J. Symb. Log. 69 (2) (2004) 555–584.
[33] Rajeev Motwani, Prabhakar Raghavan, Randomized Algorithms, Cambridge University Press, Cambridge, 1995.
[34] Mylatz Uwe, Vergleich unstetiger Funktionen: “Principle of Omniscience” und Vollständigkeit in der C -Hierarchie, PhD thesis, Faculty for Mathematics

and Computer Science, University Hagen, Hagen, Germany, 2006.
[35] John Nash, Non-cooperative games, Ann. Math. (2) 54 (1951) 286–295.
[36] André Nies, Computability and Randomness, Oxford Logic Guides, vol. 51, Oxford University Press, New York, 2009.
[37] Noam Nisan, Tim Rougarden, Éva Tardos, Vijay V. Vazirani (Eds.), Algorithmic Game Theory, Cambridge University Press, Cambridge, 2007.
[38] Pauly Arno, How incomputable is finding Nash equilibria?, J. Univers. Comput. Sci. 16 (18) (2010) 2686–2710.
[39] Pauly Arno, On the (semi)lattices induced by continuous reducibilities, Math. Log. Q. 56 (5) (2010) 488–502.
[40] Pauly Arno, Computable metamathematics and its application to game theory, PhD thesis, University of Cambridge, Computer Laboratory, Clare College,

Cambridge, 2011.
[41] Nazanin Roshandel Tavana, Klaus Weihrauch, Turing machines on represented sets, a model of computation for analysis, Log. Methods Comput. Sci.

7 (2:19) (2011) 21.
[42] Gerald E. Sacks, Degrees of Unsolvability, Princeton University Press, Princeton, NJ, 1963.
[43] Stephen G. Simpson, Subsystems of Second Order Arithmetic, second edition, Perspectives in Logic, Association for Symbolic Logic, Cambridge University

Press, Poughkeepsie, 2009.
[44] Thorsten von Stein, Vergleich nicht konstruktiv lösbarer Probleme in der Analysis, Diplomarbeit Fachbereich Informatik, FernUniversität Hagen, 1989.

http://refhub.elsevier.com/S0890-5401(15)00020-6/bib41423938s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib4261623739s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib4261623739s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib426175303161s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib426F673037s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib426F73303866s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib426F73303862s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib4272613939s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib4272613035s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib4242503132s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib4247313161s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib42473131s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib42474D3132s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib42474D3132s1
http://arxiv.org/abs/1206.4809
http://arxiv.org/abs/1206.4809
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib42503130s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib42503130s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib42503033s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib6442593130s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib6442593130s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib644C4D53533536s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib644C4D53533536s1
http://arxiv.org/abs/1212.0157
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib44483130s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib46523132s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib4761633035s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib474D3039s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib486572393662s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib4865723936s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib4865723936s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib48573033s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib48503133s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib48523039s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib48523039s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib4A533732s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib4B65633935s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib4C503133s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib4C503133s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib4C503133s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib4D696C3034s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib4D523935s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib4D796C3036s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib4D796C3036s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib4E61733531s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib4E69653039s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib4E5254563037s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib5061753130s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib506175313061s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib5061753131s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib5061753131s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib5254573131s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib5254573131s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib5361633633s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib53696D3039s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib53696D3039s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib5374653839s1

[45] Klaus Weihrauch, The degrees of discontinuity of some translators between representations of the real numbers, Technical report TR-92-050 Interna-
tional Computer Science Institute, Berkeley, July 1992.

[46] Klaus Weihrauch, The TTE-Interpretation of Three Hierarchies of Omniscience Principles, Informatik Berichte, vol. 130, FernUniversität Hagen, Hagen,
September 1992.

[47] Klaus Weihrauch, Computable Analysis, Springer, Berlin, 2000.
[48] Klaus Weihrauch, Computational complexity on computable metric spaces, Math. Log. Q. 49 (1) (2003) 3–21.
[49] Martin Ziegler, Real hypercomputation and continuity, Theory Comput. Syst. 41 (1) (2007) 177–206.
[50] Martin Ziegler, Revising type-2 computation and degrees of discontinuity, in: Douglas Cenzer, Ruth Dillhage, Tanja Grubba, Klaus Weihrauch (Eds.),

Proceedings of the Third International Conference on Computability and Complexity in Analysis, CCA 2006, Gainesville, Florida, USA, November 1–5,
2006, in: Electronic Notes in Theoretical Computer Science, vol. 167, Elsevier, Amsterdam, 2007, pp. 255–274.

http://refhub.elsevier.com/S0890-5401(15)00020-6/bib576569393261s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib576569393261s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib576569393263s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib576569393263s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib5765693030s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib5765693033s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib5A6965303761s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib5A69653037s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib5A69653037s1
http://refhub.elsevier.com/S0890-5401(15)00020-6/bib5A69653037s1

	Probabilistic computability and choice
	1 Introduction
	2 Preliminaries
	3 Las Vegas computability and probabilistic choice
	4 Products of probabilistic choice
	5 Intervals that are closed under product
	6 Las Vegas computability with ﬁnitely many mind changes
	7 Changes of the probability space
	8 Weak Weak Kőnig's Lemma
	9 Jumps of Weak Weak Kőnig's Lemma
	10 Changes of the probability values
	11 The Lebesgue Density Lemma
	12 Probability ampliﬁcation
	13 Majority vote
	14 Probabilistic degrees
	15 Zeros of continuous functions with sign changes
	16 Robust division
	17 Nash equilibria
	18 Conclusions
	Acknowledgments
	References

