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Aggregate Programming for the Internet of
Things

Jacob Beal, Danilo Pianini, Mirko Viroli

Abstract—Embedded pervasive devices are difficult to effectively coordinate using traditional programming methods due to their
rapidly increasing number and density, close ties between functionality and spatial proximity, and the open and ever-changing
nature of the network and its applications. Aggregate programming raises the level of abstraction, bringing bulk programming
capabilities and a sound bottom-up engineering approach to the ill-controlled and heterogeneous environment of complex
Internet of Things applications.

Index Terms—Aggregate programming, pervasive computing, field calculus, distributed systems, domain-specific languages
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1 INTRODUCTION

The “Internet of Things” (IoT) is ushering in a dra-
matic increase in the number and variety of net-
worked devices. Personal smart-devices, car control
systems, intelligent public displays, drones, digital
signs, electronic tags, sensors of various kinds, etc.
are all increasingly pervading our everyday working
and living environment. Proximity-based interactions
between neighboring devices (Figure 1) play a major
role in IoT visions, whether intermediated by fixed
infrastructure (e.g., [1]), or using peer-to-peer inter-
actions (e.g., [2]), which lower latency and increase
resilience to inadequate fixed network infrastructure,
e.g., during mass public events or civic emergencies.
But are software development methods ready to sup-
port such complex and large-scale interactions in an
open and ever-changing environment?

Traditionally, the basic unit of computing has been
an individual device, only incidentally connected
to the physical world through inputs and outputs.
This legacy continues to pervade development tools
and methodologies, causing many aspects of device
interaction—efficient and reliable communication, ro-
bust coordination, composition of capabilities, search
for appropriate cooperating peers, etc.—to become
closely entangled in the implementation of distributed
applications. When such applications grow in com-
plexity, they tend to suffer from design problems, lack
of modularity and reusability, deployment difficulties,
and serious test and maintenance issues.

Aggregate programming provides an alternative that
dramatically simplifies the design, creation, and main-
tenance of complex IoT software systems. Here, the
basic unit is no longer a single device, but instead a
cooperating collection of devices: details of behaviour,
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Fig. 1. In a world filled with smart devices and
networked objects, every device has the possibility
of many opportunistic wireless interactions with other
nearby devices, both mobile and stationary. Some of
these are elements of network infrastructure, but the
vast majority are a heterogeneous mixture of peers.

position and number of devices are largely abstracted
away, replaced with a space-filling computational
environment. Hence, the IoT environment of many
heterogeneous devices becomes less a concern and
more an opportunity to increase the quality (e.g.,
soundness, stability, efficacy) of application services.
This is accomplished by a layered approach to pro-
gramming complex services, building on foundational
work on the composition of distributed systems, then
on general mechanisms for robust and adaptive coor-
dination, to ultimately provide engineers with a rel-
atively simple programming API that still implicitly
guarantees safety and resilience.

Such a framework is particularly useful for large-
scale scenarios with inadequate fixed network infras-
tructure, such as crowd management at mass public
events. In these environments, opportunistic interac-
tions between devices (e.g., people’s smart-phones)
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can smoothly support services such as crowd detec-
tion, crowd dispersal, and crowd-aware navigation.
We illustrate the power of aggregate computing by
showing how simply some examples of such crowd
services can be implemented and composed, empir-
ically demonstrating resilience and adaptivity of the
resulting services using data gathered from an actual
mass public event.

2 AGGREGATE PROGRAMMING

The limits of the single-device viewpoint have been
widely recognised, motivating work toward aggregate
programming in many different domains, as surveyed
in [3]. The main strategies taken are generally: making
device interaction implicit (e.g., TOTA [4]), composing
geometric and topological constructions (e.g., Origami
Shape Language [5]), summarizing data over space-
time regions and streaming it to other regions (e.g.,
TinyDB [6]), automatically splitting computations for
cloud-style execution (e.g., MapReduce [7]), and pro-
viding generalizable constructs for space-time com-
puting (e.g., Protelis [8]). The last are particularly
well suited for an IoT environment, being explicitly
designed for distributed operation in a physical envi-
ronment filled with embedded devices.

The successes and pitfalls of the many prior efforts
suggest some key observations about programming
large-scale situated systems: (i) mechanisms for ro-
bust coordination should be hidden “under-the-hood”
where programmers are not required to interact with
them, (ii) composition of modules and subsystems
must be simple and transparent, and (iii) different
subsystems need different coordination mechanisms
for different regions and times. Aggregate program-
ming aims to address these issues using the following
three principles:

1) the “machine” being programmed is a region of
the computational environment whose specific
details are abstracted away (perhaps even to a
pure spatial continuum);

2) the program is specified as manipulation of
data constructs with spatial and temporal extent
across that region; and

3) these manipulations are actually executed by the
individual devices in the region, using resilient
coordination mechanisms and proximity-based
interactions.

For example, consider the two diagrams of smart-
phone-hosted crowd safety services in Figure 2. In
this example, smart-phones interact to estimate crowd
density and distribution, which is used as input for
several services: one warns people of nearby dan-
gerously dense regions (where there is risk of panic
or trampling), another provides advice for dispersing
from such regions, and a third helps others navi-
gate through the crowd while avoiding dangerous

Dangerous*Density*Warning*

Dispersal*Advice*

Crowd*Es8ma8on*

Conges8on:Aware*Naviga8on*

(a) Device-Centric Programing

Dangerous*Density*Warning*

Dispersal*Advice*

Crowd*Es8ma8on*

Conges8on:Aware*Naviga8on*

(b) Aggregate Programming

Fig. 2. Device-centric programming of distributed algo-
rithms (a) versus aggregate programming (b): with ag-
gregate programming, algorithmic building blocks can
be scoped and composed directly for the aggregate.

areas. With traditional device-centric approaches (Fig-
ure 2(a)), the programmer needs to focus on the
protocol for device interactions while simultaneously
reasoning about how that local interaction will pro-
duce the desired complex global behavior. With ag-
gregate programming, on the other hand, one instead
naturally reasons in terms of incremental construction
from continuum-like data structures and services (Fig-
ure 2(b)): in this example, crowd estimation produces
as output a distributed data structure—a “computa-
tional field” [9], [4]—mapping from location to crowd
density. This then serves as an input for crowd-aware
navigation, which outputs vectors of recommended
travel, and for the warning service, which produces
a map of warnings that are in turn an input for
producing dispersal advice. From this composition
of data structures and services, the precise protocol
details can then be generated automatically. By thus
separating service composition from details of co-
ordination and interaction protocols, aggregate pro-
gramming promotes construction of more complex,
reusable and composable distributed services.

3 BUILDING UP TO AGGREGATE APIS
Aggregate programming hides the complexity of dis-
tributed coordination in IoT network environments
using several layers of abstraction (Figure 3). Its foun-
dation is field calculus [9], a core set of constructs
modeling computation and interaction amongst large
numbers of spatially embedded devices (in particular,
this paper uses Protelis [8], a Java-based field calculus
implementation with support for first-class aggregate
functions). Upon this foundation, we can identify key
“building blocks” for resilient coordination, then com-
bine these to produce APIs for common application
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Fig. 3. Layers implementing practical aggregate pro-
gramming: the software and hardware capabilities of
particular devices are abstracted by using them to im-
plement a small universal calculus of aggregate-level
field calculus constructs. This calculus is then used to
implement a limited set of “building block” coordination
operations with provable resilience properties, which
are then wrapped and combined together to produce a
user-friendly API for developing situated IoT systems.

needs like sensing, decision, and action, creating a col-
lective behavior API for transparent implementation
of complex networked services and applications [10].

This framework enables simple specification of
complex, resilient distributed systems, as we will
see in Section 4. As such a specification is realized,
implicit details are made explicit: first which resilient
coordination operators are used, then how those op-
erators are implemented, how aggregate specification
maps to actions by individual IoT devices, and finally
how those devices actually implement capabilities like
sensing, communication, and localization.

3.1 Field Constructs
Certain interaction patterns appear across many dif-
ferent aggregate programming approaches. Field cal-
culus [9] captures these essential features in a tiny
universal language suitable for mathematical analysis.
This layer (second lowest in Figure 3) is also where ag-
gregate programming interfaces with the open world
of device infrastructure and non-aggregate software
services (together comprising the lowest layer).

The unifying abstraction of field calculus is a field,
inspired by physical concepts like magnetic fields,
which maps each networked device to some local
value. In field calculus every expression, value, or

variable is a field: for example, a collection of tem-
perature sensors produce a field of ambient tempera-
tures, smart-phone accelerometers produce a field of
movement directions, and a notification application
produces a field of messages displayed on phones.
Fields are constructed and manipulated using four
program constructs:
• Functions: b(e1, . . . ,en) applies function b to

arguments e1, . . . ,en. Such “built-in” functions
are stateless mathematical, logical, or algorithmic
functions, sensors or actuators, or user-defined or
imported library methods.

• Dynamics: rep(x<-v){s1; . . . ;sn} defines a lo-
cal state variable x initialized with value v and
periodically updated with the result of executing
its body statements {s1; . . . ;sn}, thereby defining
a field that evolves over time.

• Interaction: nbr(s) gathers a map at each de-
vice (actually, a field) from all neighbors (in-
cluding itself) to their latest value of s. Built-
in “hood” functions then summarize such maps,
e.g., minHood(m) finds the minimum value in
map m.

• Restriction: if(e){s1; . . . ;sn}else{s′1; . . . ;s
′
m}

partitions the network into two regions: where
e is true s1; . . . ;sn is computed, elsewhere
s′1; . . . ;s

′
m is computed instead. Importantly, par-

tition implies branches are encapsulated and can-
not have effects outside their subspace.

Each construct can be interpreted equivalently as
either aggregate-level field manipulation or into pro-
tocols for individual devices implementing such ma-
nipulations. Field calculus is also universal [11], sup-
porting any causal, approximable space-time compu-
tation. As will be demonstrate in Section 4, the field
calculus can express distributed services safely and
predictably composed and modulated.

These constructs also support portability, infras-
tructure independence, and interaction with non-
aggregate services. In fact, aggregate programming
can incorporate any device or infrastructure imple-
menting them, including heterogeneous mixtures of
devices with different sensor, actuator, computation,
and communication capabilities. Likewise, comple-
mentary non-aggregate software services, whether
local or cloud-based, can be integrated simply by
importing their APIs into the aggregate programming
environment [8].

3.2 Building Blocks for Resilient Coordination
The next level of abstraction adds resilience, iden-
tifying a collection of general “building block” op-
erators for resilient coordination applications. This
layer (middle in Figure 3) comprises coordination
mechanisms that are (i) self-stabilizing, meaning they
reactively adjust to changes in network structure or
input values, (ii) scalable to large networks, and (iii)
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def G(source, initial, metric, accumulate) {
rep(dv <- [Infinity, initial]) {
mux(source) {
[0, initial]

} else {
minHood([nbr(dv.get(0)) + metric.apply(),

accumulate.apply(nbr(dv.get(1)))])
}

}.get(1)
}

Fig. 4. Protelis implementation of operator G

preserve these resilience properties when composed
with one another. Any service constructed from these
“building blocks” is thus implicitly resilient as well.

One such collection is identified in [10]: three gen-
eralized coordination operators plus field calculus’ if
and built-ins. The three operators are:
• G(source,init,metric,accumulate): a

“spreading” operation generalizing distance
measurement, broadcast, and projection,
executes two tasks: it computes a field of
shortest-path distances from a source region
(indicated as a Boolean field) using the supplied
metric, then propagates values up the distance
gradient, beginning with value initial
and accumulating along the gradient with
accumulate.

• C(potential,accumulate,local,null):
accumulates information to the source
down the gradient of a potential field.
Beginning with an idempotent null, the
local value is combined with “uphill” values
using a commutative and associative function
accumulate, producing a cumulative value at
the source.

• T(initial,floor,decay): flexible count-
down with a potentially time-varying rate:
function decay strictly decreases its input value,
starting at initial and stopping at floor.

These few operators are general enough to cover,
individually or in combination, many of the com-
mon coordination patterns used in large-scale sys-
tems. Implemented in field calculus (e.g., Figure 4),
these operators provide an expressive programming
environment with strong guarantees of resilience and
scalability. Furthermore, the composability proof is
modular, allowing expansion of the operator collec-
tion by proving a new candidate operator satisfies
the same resilience properties as those already in the
collection.

3.3 Pragmatic General-purpose APIs
To better meet “day-to-day” programming needs, li-
braries developed using “building block” operators
can apply and combine them to form a pragmatic and
user-friendly API that still retains the same properties.
Such libraries form the penultimate layer in Figure 3,
upon which application code is written.

For example, many distributed action and
information diffusion functions can be based on
G. One such common computation is estimating
distance to one or more designated “source” devices,
which can be implemented using G initialized to
zero and a metric (nbrRange) of estimated device-to-
device distance:

def distanceTo(source) {
G(source, 0, () -> {nbrRange}, (v) -> {v + nbrRange})

}

Another common pattern, broadcasting a value from
a source, can be implemented:

def broadcast(source, value) {
G(source, value, () -> {nbrRange}, (v) -> {v})

}

Other G-based operations include Voronoi partition
and a “path forecast” marking paths crossing an
obstacle or region of interest.

Similarly, C supports functions related to
information perception, such as accumulating
the sum of all values of a variable in a region:

def summarize(sink, accumulate, local, null) {
C(distanceTo(sink), accumulate, local, null)

}

or, alternately, computing the variable’s average or
maximum. Likewise, T enables functions of state
and memory, such as remembering a value until a
specified timeout (relying on the dt built-in to track
passage of time):

def limitedMemory(value, timeout) {
T([timeout, value], [0, false],

(t) -> {[t.get(0) - dt, t.get(1)]}).get(1)
}

or implementing a timer or a low-pass filter.
As with any other software library, these API func-

tions can be further combined to create higher level
libraries. For example, a summary shared throughout
a region can be implemented by applying broadcast
to summarize, and state and partition functions can
be combined to organize space into “management
regions” by balanced partition into clusters.

Such developer APIs form a practical interface
for a typical engineer to develop IoT services using
distributed coordination, while building APIs atop
resilient operators and field calculus ensures these ser-
vices are also resilient and safely composable. In par-
allel, development at lower layers can improve and
extend available coordination mechanisms, improve
efficiency of field calculus abstractions, and improve
interface efficacy with particular device hardware or
with non-aggregate applications and services. Lay-
ered aggregate programming thus offers the prospect
of an efficient software ecosystem for engineering
distributed IoT services, analogous to existing ecosys-
tems for web or cloud development.
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4 ENGINEERING LARGE-SCALE, OPPOR-
TUNISTIC IOT SERVICES: THE CROWD DE-
TECTION CASE

These foundations of aggregate programming and
reusable “building block” APIs can greatly simplify
construction and composition of resilient applications
for IoT scenarios. On the one hand, individual dis-
tributed services can be built simply by composition
of API functions; on the other hand, the mathematical
foundations of aggregate programming, particularly
restriction and distributed first-class functions (the
ability to pass and call functions just as any other
kind of data), enable such services to be dynami-
cally deployed, safely composed and preemptively
modulated, just as threads and virtualization enable
composition and modulation of services in individual
machines and data centers.

For example, consider how an IoT environment
might provide services for crowd safety at mass pub-
lic events, such as civic festivals, outdoor concerts,
or marathons. Such events pose challenging safety
issues, because the movement of people in crowded
and constrained environments often creates emergent
zones of dangerous overcrowding where any small
incident can create a panic or stampede that injures
or kills people [12], [13]. Moreover, the large num-
ber of people and large spatial extent often locally
overwhelm the available infrastructure: cell phone
networks drop calls, data communications becomes
unreliable, public safety personnel are not near an
emergent event, etc. In an IoT environment, however,
more people means more personal smart-devices,
which might coordinate with each other and other
IoT devices embedded in their environment, requiring
neither cloud services nor centrally deployed infras-
tructure.

Figure 5(a) shows an ALCHEMIST [14] simulation
of such a crowd safety service running in an IoT en-
vironment. In particular, we simulate 1000 stationary
devices embedded in the environment plus 1479 mo-
bile personal devices, each following a smart-phone
position trace collected at the 2013 Vienna marathon
[15], as discussed in [16], [13], all communicating via
once per second asynchronous local broadcasts with
100 meters range.

This example uses a simple conservative estimate
of dangerous crowding via “level of service” (LoS)
ratings [17] with LoS D (>1.08 people/m2) indicating
crowds and LoS E (>2.17 people/m2) in a group of
at least 300 people indicating potentially dangerous
density. Density is estimated as ρ = |nbrs|

p·πr2·w where
|nbrs| counts neighbors within range r, p estimates
the proportion of people with a device running
the app (about 0.5% of marathon attendees), and
w estimates fraction of walkable space in the local
urban environment. Given this estimate, potential
crowding danger can be detected and warnings

(a) Crowd Density Warnings

(b) Upgrade In Progress

(c) Priority Modulation

Fig. 5. Snapshots from simulation of crowd safety
services in an IoT environment on approximately 2500
personal and embedded devices: (a) A service re-
stricted to run on personal devices (colored) detects
regions of dangerous crowd density (red) and dissem-
inates warnings to nearby devices (yellow). (b) Non-
disruptive upgrade of a running service disseminates
replacement code from injection points: devices run-
ning the old version only (red) receive the new ver-
sion and run encapsulated versions of both (purple)
until the new version is ready to take over entirely
(green). Note the spatial correlations in color, caused
by the progressive spread of the new version outward
from several points of injection (now centers of green
regions) (c) An external policy composed with the
running service prioritizes network resources for the
crowd safety service (hotter colors are higher priority)
near potential emergency situations for all devices,
not just those running the crowd safety service. Note
the correspondence of “hot” regions in (c) with “hot”
regions in (a).
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Fig. 6. Aggregate programming enables lightweight
construction of resilient IoT services, such distributed
crowd estimation (a) and warnings of dangerous
crowding (b). Despite executing on a large number
of highly mobile devices, both services produce esti-
mates (solid lines) that track closely to the true val-
ues (dashed lines). Aggregate-level manipulation of
distributed services further enables a disruption-free
upgrade of these services while running: (c) in this
simulation, a new version of crowd management ser-
vices is injected at the 5-minute mark (vertical grey
dashed line), but both versions are encapsulated to run
concurrently until the new version is ready to take over
smoothly from the old, thereby ensuring that there is
no significant disruption in either service.

disseminated robustly with just a few lines of
Protelis code dynamically deployed and executed
on individual devices by a middleware app [8], [9].
The coordination code is realized using aggregate
programming API elements:

def dangerousDensity(p, r) {
let mr = managementRegions(r*2, () -> { nbrRange });
let danger = average(mr, densityEst(p, r)) > 2.17 &&

summarize(mr, sum, 1 / p, 0) > 300;
if(danger) { high } else { low }

}

def crowdTracking(p, r, t) {
let crowdRgn = recentTrue(densityEst(p, r)>1.08, t);
if(crowdRgn) { dangerousDensity(p, r) } else { none };

}

def crowdWarning(p, r, warn, t) {
distanceTo(crowdTracking(p,r,t) == high) < warn

}

Using the aggregate programing API ensures that this
short program is resilient and adapative, allowing it to
effectively estimate crowding and distribute warnings
(none, low, high) while executing on a large number
of highly mobile devices. Figure 6(a) and 6(b) com-
pare number of crowded and warned devices against
ideal values across a 15-minute simulation: crowding
level tracks very closely, while warnings have a small
overestimate, primarily due to brief persistence of
warnings after devices leave a warned region.

Beyond resilience, aggregate programming also
supports unanticipated composition of processes, a
critical need in the open and dynamic environment of
typical IoT applications. In our approach, a complex
distributed service can be encapsulated and managed
as a single aggregate object, which can be modulated
and composed with other services [9].

For example, crowd estimation can be “wrapped”
with another service for non-disruptive distributed
upgrades, which spreads a new version from peer to
peer from one or more devices where it is injected. To
prevent disruptions, the new version runs alongside
the old for some period of time, each safely encap-
sulated using field calculus’ restriction and alignment
semantics, and switching over when some criterion is
met (e.g., a specified elapsed time). Figure 5(b) shows
such an upgrade in progress. This allows a switchover
from one version to another without disrupting ser-
vices, as shown in Figure 6, without building any
upgrade capability into the services.

Similarly, encapsulation allows management of ser-
vice composition with dynamically specified policies.
For example, Figure 5(c) shows the effect of a pol-
icy prioritizing crowd safety services near dangerous
crowd situations. Again, the policy has been wrapped
around distributed services not designed to support
it, and furthermore acts not just on devices running
crowd estimation, but also on other nearby embedded
devices, ensuring that unrelated services on those de-
vices do not interfere with emergency communication
requirements. Just as with upgrades and resilience,
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adopting an aggregate programming model simplifies
engineering of complex coordination of services in an
open IoT environment.

5 FUTURE DIRECTIONS

We have seen how aggregate programming may help
unlock the true potential of the “Internet of Things”
that is coming to permeate our environment. Field
calculus and resilient “building block” APIs allow
complex distributed services to be specified succinctly,
as well as allowing such services to be treated as
coherent objects to be safely encapsulated, modulated,
and composed with one another.

Aggregate programming thus invites a fundamen-
tal change in how we think about engineering IoT
systems, as well as a plethora of new investigations.
First, hybrid models are needed that take advantage of
the complementary capabilities of aggregate program-
ming and cloud-based architectures. Security also
needs consideration, since IoT environments are open
and involve many actors with different motivations
and capabilities. The “building block” APIs discussed
here also need to be further developed against real
applications to ensure they support a sufficiently wide
range of IoT services. Finally, mechanisms for compo-
sition and modulation need to be further developed
towards a general IoT “operating system,” including
support on various devices, and encapsulation meth-
ods for integrating legacy applications. Together, these
all lead towards a future where complex distributed
systems are just as simple to engineer as individual
computers.
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