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1. Simulation Study 1 - Model Validation. The model validation
is examined under two different perspectives:

1. the robustness of the estimation algorithm; i.e. given k, if there is a
temporal structure, is the algorithm able to recognize it?

2. the quality of the clustering; i.e. if there is a temporal structure that
we do not take into account would the clustering be worsened (i.e. the
algorithm is less able to recover the true classification of the units)?

1.1. Robustness of the estimation algorithm. In order to address the first
point, we conducted a simulation study whom scheme is a full factorial design
of the following characteristics:

e a number k£ of mixture components equal to 3;

e a 4 x 4 unconstrained within covariance matrix €2;

a 6 X 6 between covariance matrix ® with structures equal to GAR(1)
and GAR(3);

e a sample size n equal to 50, 100 and 500.

For each pattern we generated 100 datasets and we fitted 5 different
models, according to different structures for ®: GAR(1), GAR(2), GAR(3),
GAR(4) and GAR(5). The best model was chosen according to the BIC and
the AIC criteria. Results are shown in Table 1.

The two information criteria look equivalent in terms of performance: in
some cases the BIC returns a better model selection, in some other cases
AIC outperforms the BIC. When the true model has a temporal covariance
matrix ® with a GAR(1) structure the algorithm shows a good performance
in recovering it. In fact, even when the sample size is small, i.e. equal to 50,
the algorithm picked up the correct model 89 times over 100; this proportion
increases with the sample size, reaching the 96% when n is equal to 100 and
100% when n equal to 500.
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TABLE 1
Ability in recovering the ‘true’ temporal structure given k: number of times (over 100)
that a model with a particular structure for ® was chosen according to BIC and AIC
criteria. Shaded columns highlight the true model structure.

Sample size  Model Selection Criteria GAR(1) GAR(2) GAR(3) GAR(4) GAR(5)

True Model: GAR(1), k=3, p=4, T=6

- BIC 89 4 2 3 2
n= AIC 85 5 2 2 6
BIC 96 1 2 0 1

n =100 AIC 96 0 2 1 1
BIC 100 0 0 0 0

n =500 AIC 100 0 0 0 0

True Model: GAR(3), k=3, p=4, T=6

- BIC 31 29 34 3 3
= AIC 31 16 45 4 4
BIC 34 17 49 0 0

n =100 AIC 33 15 50 2 0
BIC 34 16 50 0 0

n =500 AIC 34 16 48 1 1
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TABLE 2
Ability in recovering the ‘true’ temporal structure given k: number of times (over 100)
that a model with a particular structure for ® was chosen according to BIC and AIC.
Shaded columns highlight the true model structure.

Model
Sample size  Selection GAR(1) GAR(2) GAR(3) GAR(4) GAR(5) GAR(6) GAR(7)
Criteria
n = 50 BIC 8 30 ) 3 2 0 2
o AIC 5 5 76 7 3 2 2
00 BIC 8 10 73 4 3 1 1
"= AIC 4 4 74 10 5 1
BIC 2 8 80 6 0 3 1
n =500 AIC 2 8 79 6 1 3 1

The performance is not as good when the model that generated the data
has a temporal covariance structure equal to GAR(3). In fact, when the
order of the autoregressive process is higher, the algorithm is less able to
choose the true model: on average it does in about the 45% of the cases. This
less robust result can be due to the fact that there has not been an increase in
the available data as well (i.e. there are only 6 time points), leading to have
the same amount of information to estimate a larger number of parameters.

In order to verify the latter assumption, we performed a simulation study
by considering further 100 data sets (for each sample size, n = 50, 100, 500)
that have an increased number of time points T equal to 8 but with an
autoregressive order is still equal to 3.

Results are showed in Table 2.

As expected, by increasing the number of time points T', the performance
of the model improves. In fact, the algorithm was able to recover the true
model in the 75% of the cases on average; as the sample size n increases,
the proportion increases too.

This last results allows us to conclude that the model is quite good in
recovering the true temporal structure, provided that a fair number of time
points have been observed. Performances improve with larger sample sizes.

1.2. Quality of the clustering. In order to evaluate the quality of the
clustering (i.e. the ability of recovering the true classification of the units
in case we do not take into account a temporal structure), we conducted
another simulation study where we considered the following features:

e a number k£ of mixture components equal to 3;
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TABLE 3
Ability in recovering the ‘true’ classification of the units: average values of MISC over
the 100 dataset generated for each settings; values in brackets represent the corresponding
standard error. Shaded columns highlight the true model structure.

Sample size  GAR(1) GAR(2) GAR(3) GAR(4) GAR(H)

Expected separated clusters
0.009 0.019 0.022 0.019 0.024

n=50 (0.004)  (0.006)  (0.007)  (0.006)  (0.006)
n = 100 0.005 0.006 0.012 0.005 0.006

= (0.003)  (0.003)  (0.005)  (0.003)  (0.003)
n = 200 0.002 0.005 0.002 0.010 0.014

(0.000)  (0.003)  (0.001)  (0.005)  (0.006)

Expected overlapped clusters
0.120 0.148 0.161 0.168 0.164

n=50 (0.013)  (0.014)  (0.014)  (0.014)  (0.014)
n = 100 0.101 0.108 0.112 0.111 0.124

- (0.014)  (0.014)  (0.015)  (0.015)  (0.015)
o0 0073 0101 0101 0095  0.096

(0.012)  (0.014)  (0.015)  (0.014)  (0.014)

a 4 X 4 unconstrained within covariance matrix €2;

a 6 x 6 between covariance matrix ¢ with structure equal to GAR(1);
a sample size n equal to 50, 100 and 200.

expected separation of the mixture components: expected well sepa-
rated (different mean parameters for the three components) vs. ex-
pected overlapped clusters (same mean parameters for the three com-
ponents);

For each setting we generated 100 data sets and we estimated 5 different
models, according to different structures for ®: GAR(1), GAR(2), GAR(3),
GAR(4) and GAR(5). For each data set and model we computed the Mis-
classification Error Rate (MISC). Table 3 contains the average values of
MISC over the 100 data set generated for each settings. Values in brackets
represent the corresponding standard error.

The quality of the classification yielded by the model is very good: the
MISC is indeed low, even when clusters are not expected to be well sep-
arated. Furthermore these results tell us that, in terms of clustering, the
algorithm is robust: deviations from the true temporal structures do not
lead to a totally wrong classification.
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However, the MISC for a GAR(1) temporal covariance structure is lower
than the one referring to a model with an unrestricted covariance structure
(i.e. GAR(5)), which means that modelling the occasions’ variance substan-
tially improves the classification.

2. Simulation Study 2 - Accuracy. Accuracy of the estimated growth
curves within each class is one of the main targets of inference. In order to
measure it, we performed a simulation study by generating several data sets
from different parameterizations and structures (i.e. 100 data sets for each
setting). The model’s parameter values were fixed according to a full facto-
rial design that allowed for examining the impact of the following aspects:

e a number & of mixture components equal to 3;

e expected separation of the mixture components: expected overlapping
clusters (same mean parameters for the three components) vs. ex-
pected non-overlapping clusters (different and fairly spaced mean pa-
rameters for the three components);

e a 4 x 4 unconstrained within covariance matrix €;

e a 6 x 6 between covariance matrix ® with structure equal to GAR(1)
and to GAR(3);

e a sample size n equal to 50, 100 and 500.

From the combination of all these specific features 12 different settings
were obtained; on the so generated data the corresponding mixture model
was estimated and a measure of accuracy v for the covariance matrices is
given by the following expressions:

k 2 k - k A
1 Ui = U 1 | T =T i1 110 — Q]
1 — 7 1” — =1 _ =1
(1) w % =TT s
where
¢_T(T—1) (T —m—1)(T —m)

2 2
The lower 7, the higher the accuracy of the estimates. Accuracy for the
between covariance matrix is not directly measured on & since the latter
is the product of matrices U and D (recall: ®~! = UTD~'U). Table 4
contains the average accuracy over the 100 replications of each setting and
its corresponding standard error. Please note that the accuracy measures s
defined above take into account the number of parameters to be estimated
for each matrix.

Results from Table 4 show that the parameter estimates are fairly accu-
rate. Precision increases as the sample size n increases and as the expected
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TABLE 4
Average accuracy values for the covariance matrices and their corresponding standard
error over 100 replications of each setting.
GAR(1) GAR(3)
Sample size YU YD %y} YU YD aly)

(s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.e.)

Expected overlapping clusters
0.156 0.189 0.027 0.178 0.282 0.034

n=50 (0.011) (0.011) (0.001) | (0.012) (0.018) (0.002)
n = 100 0.121 0.157 0.021 0.117 0.173 0.017
= (0.009) (0.012) (0.001) | (0.015) (0.013) (0.001)
0.081 0.111 0.012 0.071 0.113 0.009

n = 500

(0.007)  (0.011) (0.001) | (0.009) (0.012) (0.001)

Expected non-overlapping clusters
0.092 0.117 0.020 0.111 0.170 0.024

n=50 (0.003) (0.004) (0.001) | (0.008) (0.008) (0.002)
100 0.062  0.079 0014 | 0.065 0105  0.015
= (0.002)  (0.003) (0.001) | (0.003) (0.004) (0.001)
0.032  0.036  0.006 | 0.030 0.048  0.006

n = 500

(0.003)  (0.003)  (0.000) | (0.001) (0.002)  (0.000)
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cluster separation becomes more evident. The accuracy is not worsened by
considering a larger autoregressive order structure for ®, i.e. results for a
GAR(1) and a GAR(3) look equivalent.

3. Simulation Study 3 - Accuracy of the regression coefficients
and of the covariance matrices when the model is misspecified.
Data were generated according to the following features:

k = 3 components;

p = 3 responses;

T = 6 time points;

two different sample sizes: n = 200 and n = 1000;

q = 2 covariates, randomly generated according to a Normal distribu-

tion (with zero mean and standard deviation equal to 2);

e the intercept terms were fixed equal to one, while the regression co-
efficients were randomly generated from a Normal distribution, with
parameters set different according to the mixture components;

e unrestricted within covariance matrices s (i.e. VVV);

e between covariance matrices ® with temporal structure equal to GAR(3).

For each setting 100 data sets were generated. The objective was to eval-
uate how the estimates change when the estimated model is misspecified in
terms of temporal structure for ®. In order to investigate this aspect, on
the generated data 5 different models were estimated, according to different
orders of the autoregressive process: from m equal to 1 to m equal to 5.

In order to measure the changes, the inaccuracy ~ for each estimated
parameter was estimated (see equations 1). Figure 1 shows the boxplot of
the accuracy of © entries across 100 replications, according to the different
temporal specification of matrix ® . The plot shows clearly that a misspecifi-
cation in the temporal structure does not really affect the growth estimates:
accuracy values lie within a fairly small interval that is about the same for
every fitted model.

The distribution of the accuracy for §2 entries when the model is misspec-
ified in terms of ® is plot in Figure 2. Also in this case, there are no evident
differences in the boxplots that correspond to different specification of ®.

Figures 3, 4 show the distribution of the accuracy measured on the tem-
poral components across the different fitted models. Again the model proofs
to provide good estimates of the unknown parameters. However, this is the
only case where the misspecification of ® has a higher, even if limited, im-
pact on the accuracy. In particular, the effect is more important if a much
simpler structure is chosen.
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Fig 1: Accuracy of matrix © entries according to different temporal specifi-

cation for matrix ®
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Fig 2: Accuracy of matrix €2 entries according to different temporal specifi-

cation for matrix ®
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Fig 3: Accuracy of matrix D entries according to different temporal specifi-
cation for matrix ®
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Fig 4: Accuracy of matrix U entries according to different temporal specifi-
cation for matrix ®
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4. Simulation Study 4 - Estimation of the number k of cluster
when the model is misspecified. Another point that we investigated
is how the model misspecification of matrix ® impacts the estimate of the
number of components.

Data were generated according to the following features:

k = 3 components;

p = 3 responses;

T = 6 time points;

a sample sizes n equal to 200;

unrestricted within covariance matrices Qs (i.e. VVV);

unrestricted between covariance matrices ®s (i.e. GAR(5)) and a GAR(3)
structure.

For each setting we generated 100 data sets. In order to investigate the
choice of £ when simpler model are specified we estimated model with smaller
orders of the autoregressive process (i.e. from m=1 to m = 5) and we con-
sidered a different number of mixture components, namely k = 2, k = 3,
k=4.

Table 5 contains the number of times -over 100 replications- that the
information criteria BIC and AIC preferred a particular model in terms of
k over the others.

The right number of component was selected in the majority of cases,
even when the temporal structure of data was misspecified. In the other
cases, the heuristic parsimony of BIC and AIC makes the algorithm select
a smaller number of cluster.
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TABLE 5

Ability in recovering the ‘true’ number k of clusters according to different structures for
®: number of times (over 100) that a model with a particular number k of mizture
components and a specific structure for ® was chosen according to BIC and AIC. Shaded
columns highlight the true number of clusters.

matrix ¢

k=2

k=3

k=4

True structure for ®: GAR(5)

GAR(1)

GAR(2)

GAR(3)

GAR(4)

GAR(5)

BIC
AIC

BIC
AIC

BIC
AIC

BIC
AIC

BIC
AIC

14
10

31
28

42
34

45
37

48
41

85
54

69
54

58
63

54
60

51
58

True structure for ®: GAR(3)

GAR(1)

GAR(2)

GAR(3)

GAR(4)

GAR(5)

BIC
AIC

BIC
AIC

BIC
AIC

BIC
AIC

BIC
AIC

16
12

35
33

45
39

44
41

44
41

82
55

65
60

55
61

55
58

55
58
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