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SUMMARY

We propose tests for nonlinear serial dependence in time series under the null hypothesis of 
general linear dependence, in contrast to the more widely studied null hypothesis of indepen-
dence. The approach is based on combining an entropy dependence metric, which possesses 
many desirable properties and is used as a test statistic, with a suitable extension of surrogate 
data methods, a class of Monte Carlo distribution-free tests for nonlinearity, and a smoothed 
sieve bootstrap scheme. We show how, in the same way as the autocorrelation function is used 
for linear models, our tests can in principle be employed to detect the lags at which a significant 
nonlinear relationship is present. We prove the asymptotic validity of the proposed procedures 
and the corresponding inferences. The small-sample performance of the tests in terms of power 
and size is assessed through a simulation study. Applications to real datasets of different kinds 
are also presented.

Some key words: Entropy; Nonlinearity; Smoothed sieve bootstrap; Surrogate data; Test; Time series.

1. INTRODUCTION
The literature on tests for nonlinear serial dependence in time series is extensive, but the estab-

lishment of a unified mathematical framework that encompasses all aspects of nonlinearity has 
proven elusive. Even though departures from linearity can occur in many directions, testing for 
nonlinearity is often a test for a specific nonlinear feature or form, making it difficult to com-
pare existing proposals. Nonlinear features have arisen in many different areas; for instance, 
some concepts from nonlinear dynamics and chaos theory, such as initial value sensitivity, frac-
tal dimensions and nonuniform noise amplification, have motivated the introduction of new tools 
and tests. In other situations, nonlinearity is inferred from the failure of a linear model. Thus, the
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2 S. GIANNERINI, E. MAASOUMI AND E. BEE DAGUM

problem of assessing the nonlinear character of a series reduces to a diagnostic test, usually per-
formed on the residuals of a linear model, or a specification test between models. For a recent
review, see Giannerini (2012).

Almost all tests for nonlinearity are based on specific moments or features of the distribution
of the process, and focus on the null hypotheses of linearity, or of no dependence. The latter is
a rather big straw man unless the process has been filtered. Furthermore, many such tests are
designed to work with a restricted class of models. Since the true model is never known, the
reported performance of such tests may not reflect the real performance, which depends on the
degree of modelling misspecification.

In this paper we address the above-mentioned issues by introducing a general purpose test for
nonlinear serial dependence based on the whole pairwise distribution of the process through its
entropy. Previously, this type of test had been advocated for the null hypothesis of independence,
for which it is easier to derive the asymptotic and resampling distributions. While our test is diag-
nostic, it is designed to identify different aspects of nonlinearity. Furthermore, it does not require
the specification of a specific model and, in principle, can help to identify the lags at which a
nonlinear relationship is expected, similarly to the autocorrelation function for linear models.

Our null hypotheses are consistent with the formal definition of linear processes. In particu-
lar, H0 assumes that the data-generating process {Xt } is a zero-mean linear Gaussian stationary
process,

H0 : Xt =
∞∑
j=1

φ j Xt− j + εt ,
{
εt
}

independent and identically distributed as N (0, σ 2
ε ), (1)

where
∑∞

j=1 φ2
j < ∞ and E(X4

t ) < ∞. The second null hypothesis is that {Xt } is a zero-mean
linear stationary process,

H ′
0 : Xt =

∞∑
j=1

φ j Xt− j + εt ,
{
εt
}

independent and identically distributed as f (0, σ 2
ε ), (2)

where the error process {εt } has mean zero and variance σ 2
ε . The alternative hypothesis H1 states

that {Xt } does not admit an infinite autoregressive representation as in (1) or (2). As discussed
in Tong (1990, p. 202), any stationary process with a continuous spectrum admits a linear two-
sided moving average representation with uncorrelated error terms. The one-sided moving aver-
age representation requires additional integrability conditions on the spectral density function
of the process. In turn, under the assumption of invertibility of the moving average terms, we
obtain the one-sided autoregressive representation adopted here. This narrows the range of pro-
cesses implied by the moving average representation only slightly. Indeed, even though different
authors implicitly define linear processes as being infinite autoregressive (see, e.g., Hjellvik &
Tjøstheim, 1995), the closure of the class of linear processes that satisfy Wold’s representation
theorem is surprisingly broad and can include also nonergodic Poisson sum processes (Bickel &
Bühlmann, 1997). Now, assume we are given a time series x = (x1, . . . , xn) and we would like to
test whether x might be operationally considered as a realization of the process (1) or (2). The test
statistics we propose are functionals of a metric-entropy measure of dependence for time series.
This measure possesses many desirable properties and has been shown to be powerful in other
settings (see, e.g., Granger et al., 2004; Maasoumi & Racine, 2009). We will show that under the
null hypothesis (1), the entropy measure reduces to a nonlinear function of the correlation coef-
ficient. Hence, we construct a test statistic from the quadratic divergence between the parametric
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Testing for nonlinear serial dependence 3

estimator of the entropy measure under H0 and the corresponding unrestricted nonparametric
estimator. The same metric-entropy statistic, estimated nonparametrically, is used to test the null
hypothesis of generic linearity, i.e., H ′

0. We derive the asymptotic distributions of the test statistics
under H0 and H ′

0. Typically, these approximations depend on unknown quantities and rely upon
the specification of a model, a shortcoming that we explicitly wish to avoid; also, they require
large samples in order to be valid. To overcome these issues, we propose two resampling schemes
and prove the asymptotic validity of the proposed procedures and the corresponding inferences.
The first scheme is based on surrogate data methods, while the second uses the smoothed sieve
bootstrap.

2. A NONLINEAR AUTOCORRELATION FUNCTION

2·1. Introduction and definition

There are many proposed measures of dependence, which were motivated by different needs
and designed to characterize specific aspects of the process under study. An important class
of such measures is based on entropy functionals (see, e.g., Joe, 1989; Maasoumi, 1993). For
instance, Shannon mutual information and the Kullback–Leibler divergence became popular in
nonlinear dynamics. Such measures have also been used in time series analysis (Robinson, 1991;
Granger & Lin, 1994; Tjøstheim, 1996; Hong & White, 2005). However, most of these entropies
are not metrics, because they either do not obey the triangle inequality or are not commutative
operators. While these shortcomings may not seem immediately consequential for most tests,
they have been shown to have an impact on their performance; moreover, they affect our ability
to assess and quantify degrees of dependence or departures from points of interest, or to search
for minimum-distance/optimal solutions or models (Granger et al., 2004). The measure we dis-
cuss here is the metric entropy Sρ , a normalized version of the Bhattacharya–Hellinger–Matusita
distance:

Sρ(k) = 1

2

∫ +∞

−∞

∫ +∞

−∞

[{
f(Xt ,Xt+k)(x1, x2)

}1/2 − { fXt (x1) fXt+k (x2)
}1/2
]2

dx1 dx2,

where fXt (·) and f(Xt ,Xt+k)(· , ·) denote the probability density functions of Xt and the vector
(Xt , Xt+k), respectively. This measure is a particular member of the family of symmetrized gen-
eral relative entropies, which includes as a special case the nonmetric relative entropies often
referred to as Shannon information or Kullback–Leibler divergence. The measure Sρ(k) can be
interpreted as a nonlinear autocorrelation function and possesses many desirable properties. In
particular, it is a metric and is defined for both continuous and discrete variables; it is normal-
ized and takes the values zero if Xt and Xt+k are independent and unity if there is a measurable
exact relationship between continuous variables; it reduces to a function of the linear correlation
coefficient in the case of jointly Gaussian variables; and it is invariant with respect to continuous,
strictly increasing transformations. The above-mentioned properties of the metric entropy can be
seen as part of a general discussion regarding measures of dependence given by Rényi (1959) and
further studied in Maasoumi (1993) and Granger et al. (2004); see the Supplementary Material.
A key result from the perspective of testing for nonlinearity concerns the relationship with the
correlation coefficient in the Gaussian case; the following correction to Granger et al. (2004) is
in order.

PROPOSITION 1. Let (Xt , Xt+k) ∼ N (0, 1, ρ) be a standard normal random vector with joint
probability density function f(Xt ,Xt+k)(· , · , ρ) where ρ is the correlation coefficient at lag k.



145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

4 S. GIANNERINI, E. MAASOUMI AND E. BEE DAGUM

Then

Sρ(k) = 1 − 2
(
1 − ρ2

)1/4

(4 − ρ2)1/2
. (3)

For the sake of brevity, below we write Sk in place of Sρ(k).

2·2. The parametric estimator under H0

Equation (3) allows us to obtain an estimator for Sk based on the sample autocorrelation ρ̂k

under the null hypothesis (1) of a linear Gaussian process. We denote such a parametric estimator
by Ŝp

k , where the superscript stands for parametric. In the next two results we derive the asymptotic
distribution of Ŝp

k and prove its consistency. To this end, define the function g : [−1, 1] → [0, 1]
by g(x) = 1 − 2(1 − x2)1/4(4 − x2)−1/2. The function g is differentiable on (0, 1) and its i th
derivative g(i)(x) is not equal to zero for x |= 0.

PROPOSITION 2. Let {Xt } be the zero-mean stationary process under H0 as in (1). Also,
let ρ̂k be the sample autocorrelation function of {Xt } at lag k, and let Ŝp

k = 1 − 2(1 − ρ̂2
k )1/4

(4 − ρ̂2
k )−1/2 be the corresponding sample estimator of Sρ at lag k based on (3). Then, for

every k = 0, 1, . . . we have n1/2(Ŝp
k − Sk) → N (0, σ 2

p ) in distribution, where σ 2
p = [g′(ζ )]2, with

ζ =∑∞
i=1{ρ(i+k)ρ(i−k) − 2ρiρk}2 being the asymptotic variance of ρ̂k (Brockwell & Davis,

2009, pp. 221–2).

In the case of no correlation, we have g′(ρk) = 0, and the approximation is driven by higher-
order derivatives, in particular the even-order ones. Now we show that Ŝp

k is a mean-square-
consistent estimator for Sk .

PROPOSITION 3. Under the hypotheses of Proposition 2, Ŝp
k → Sk in L2 as n → ∞.

2·3. Unrestricted nonparametric estimator

Nonparametric estimation of Sk and related entropy measures, under conditions that allow
us to construct tests for the null hypothesis of serial independence, has been studied by
Robinson (1991), Skaug & Tjøstheim (1996), Tjøstheim (1996), Granger et al. (2004), Hong
& White (2005) and Fernandes & Néri (2010). Here we adapt the relevant theory to test the null
hypothesis (2) of linear serial dependence and derive the asymptotic distribution of the nonpara-
metric estimator for Sk :

Ŝu
k = 1

2

∫ +∞

−∞

∫ +∞

−∞

[{
f̂(Xt ,Xt+k)(x1, x2)

}1/2 −
{

f̂ Xt (x1) f̂ Xt+k (x2)
}1/2

]2

w(x1, x2) dx1 dx2.

We use kernel density estimators for fXt , fXt+k and f(Xt ,Xt+k), namely

f̂ Xt (x) = n−1
n∑

i=1

h−1
1 K

{
(x − Xi )/h1)

}
,

f̂(Xt ,Xt+k)(x1, x2) = (n − k)−1
n−k∑
i=1

(h1h2)
−1K

{
(x1 − Xi )/h1, (x2 − Xi+k)/h2

}
,
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Testing for nonlinear serial dependence 5

where K is a kernel function and h1 and h2 are bandwidths. In the expression for Ŝu
k , w(x1, x2) is

a continuous weight function that is needed both to exclude outlying observations and to facilitate
the asymptotic analysis. We assume the following regularity conditions.

Condition 1. The process {Xt } is strictly stationary and β-mixing with exponentially decay-
ing coefficients.

Condition 2. The densities fXt , fXt+k and f(Xt ,Xt+k) are continuously differentiable up to
order s, and their derivatives are bounded and square-integrable. Also, the joint density function
of (Zk1, . . . , Zkς ), where Zt = (Xt , Xt+k), is Lipschitz-continuous, i.e., | f (Zk1 + δ, . . . , Zkς +
δ) − f (Zk1, . . . , Zkς )| �D(Zk1, . . . , Zkς ) ‖δ‖, whereD is an integrable function and 1 � ς � 4.

Condition 3. The kernel function K (u) is continuous, differentiable up to order s, and
such that

∫
uK (u) du = 0,

∫
u2K (u) du < ∞, K (x) = ∫ K̄ (u) exp(iηx) dη, eK = ∫ K 2(u) du

and vK = ∫ {∫ K (u)K (u + v) du}2 dv, where i2 = −1 and K̄ (u) is a real function satisfying∫ |K̄ (u)| dη < ∞.

Condition 4. The bandwidths h1 = h1(n, Xt ) and h2 = h2(n, Xt+k) satisfy hi → 0 and
nhi → ∞ as n → ∞. Also, hi = o(n−1/(2s+1)) for i = 1, 2.

Condition 5. The weight function w(x1, x2) = I{(x1, x2) ∈ D}, where I denotes the indicator
function, is nonnegative and separable, i.e., w(x1, x2) = w(x1)w(x2), for D = D1 × D1 with D1
a closed real interval.

These conditions lead us to the following result.

PROPOSITION 4. Under Conditions 1–5, as n → ∞, Ŝu
k → Sk in L2 and n1/2(Ŝu

k − Sk) →
N (0, σ 2

u ) in distribution, where σ 2
u is the asymptotic variance that depends on w(x1, x2).

Conditions 1–5 can be relaxed to some extent without affecting the results. For instance,
one could assume α-mixing processes and less restrictive conditions on the kernels. While the
choice of kernel function has a limited impact on the performance of the test presented in the
next section, the choice of bandwidth plays a crucial role. In this paper we investigate two
methods for selecting the bandwidth. The first method is maximum likelihood crossvalidation:
we choose the bandwidth h that maximizes the score function CV(h) = n−1∑n

i=1 log f̂−i (Xi ),
where f̂−i (Xi ) = (n − 1)−1h−1∑

j |= i K {h−1(Xi − X j )} is the leave-one-out kernel density
estimate of Xi . The second method is the normal reference method, for which we take either
h = 1·06 σ̂ n−1/5 in the univariate case, or hi = 1·06 σ̂i n−1/6 for i = 1, 2 in the bivariate case.
For further details on these two methods, see Silverman (1986).

The implementation of Ŝu
k requires the computation of a double integral, for which adaptive

quadrature methods have been employed. Details of the software implementation are given in the
Supplementary Material. An alternative estimator of the measure that uses summation instead of
integration can be used; however, as remarked in Granger et al. (2004), this can lead to degrada-
tion in the performance of the tests.
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3. THE TEST STATISTICS

To test the null hypotheses of linearity, H0 and H ′
0, we propose the following test statistics:

T̂k = (Ŝu
k − Ŝp

k

)2
for H0, Ŝu

k for H ′
0.

The statistic T̂k is the squared divergence between the unrestricted nonparametric estimator and
the parametric estimator of Sk . The following theorem establishes strong convergence and the
asymptotic distribution of T̂k under the null hypothesis H0.

THEOREM 1. Under H0 and the assumptions of Propositions 2 and 4, T̂k → 0 in L2 as n → ∞.
Moreover, (σ 2

a )−1nT̂k → χ2
1 in distribution, where σ 2

a is the asymptotic variance of T̂ 1/2
k .

Theorem 1 shows that the test statistic will converge to zero in L2 if the process is linear
and Gaussian. Hence, large values of T̂k will indicate departure from H0. The derivation of the
asymptotic approximation for the significance level and power of the test depends on the estima-
tor of the asymptotic variance σ 2

a , which in turn depends on σ 2
u and σ 2

p . Such approximation is
feasible only for a few specific cases and is of little practical relevance since it requires the spec-
ification of a model. Furthermore, preliminary investigations show that very large sample sizes
are required to obtain meaningful results. The same problems have been reported previously (see
Hjellvik & Tjøstheim, 1995; Tjøstheim, 1996; Hjellvik et al., 1998; Hong & White, 2005).

As regards the general null hypothesis of linearity H ′
0, we propose using the nonparametric

estimator Ŝu
k . Proposition 4 ensures that under mild conditions, which include the class of linear

processes defined by H ′
0, the statistic Ŝu

k is consistent for Sk and asymptotically Gaussian. In
this case also, the issues relating to the asymptotic approximations remain, so we study two
resampling schemes which, when used together with our test statistics, lead to valid inferences
and deliver good performance for finite samples. The first scheme is based on surrogate data
methods and is suited to testing H0, while the second scheme relies on a smoothed version of the
sieve bootstrap and is suitable for testing the null hypothesis of generic linearity, H ′

0.

4. SURROGATE DATA APPROACH

The method of surrogate data, introduced in the context of nonlinear time series analysis, moti-
vated by chaos theory, can be regarded as a resampling approach to building tests for nonlinearity
in the absence of distribution theory. Although the use of tests based on simulations was com-
mon long before 1990, in the literature on nonlinear dynamics Theiler et al. (1992) is usually
viewed as the seminal paper on the subject. The main idea can be summarized as follows: a null
hypothesis regarding the process that has generated the observed series is formulated, e.g., H0:
the generating process is linear and Gaussian; a set of resampled series consistent with H0, called
surrogate series, is obtained through Monte Carlo methods; then, a suitable test statistic known
to have discriminatory power against H0 is computed on the surrogates, yielding the distribution
of the test statistic under H0, from which the significance level and p-values can be derived.

In Theiler et al. (1992), a null hypothesis of linearity is tested by generating surrogates hav-
ing the same periodogram and same marginal distribution as the original series. It is assumed
that the generating process is a linear Gaussian process as in (1) and that the process admits
a spectral density function that forms a Fourier pair with the autocovariance function. Given
an observed series x = (x1, . . . , xn)

T, we can define its discrete Fourier transform ζx(ω) =
(2πn)−1/2∑n

t=1 xt exp(−iωt) (−π � ω � π) and sample periodogram I (x, ω) = |ζx(ω)|2. In
general, it can be shown that ζx(ω) = (2π)−1/2 Pnx, where Pn is an orthonormal matrix. Hence,
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Testing for nonlinear serial dependence 7

assuming n is odd, the series x can be uniquely recovered from the sample mean, the peri-
odogram values I (x, ω j ) ( j = 1, . . . , (n − 1)/2) and the phases θ1, . . . , θ(n−1)/2 through the

formula xt = x̄ + (2π/n)1/2∑(n−1)/2
j=1 2I (x, ω j )

1/2 cos(ωt j + θ j ). This allows one to obtain a
surrogate series x∗ = (x∗

1 , . . . , x∗
n )T by randomizing the phases as follows:

x∗
t = x̄ +

(
2π

n

)1/2 m∑
j=1

2I (x, ω j )
1/2 cos(ωt j + θ j ),

where θ1, . . . , θm are independent and identically distributed as Un[0, 2π ]. The surrogate series
will have the same sample mean and periodogram as the original series. Chan (1997) proved
that the phase randomization method described above is exactly valid under the null hypothesis
that the generating process is a stationary Gaussian circular process; by valid it is meant that
tests based on the method are similar, i.e., they have a Neyman structure. Chan also proved the
asymptotic validity of the tests for the null hypothesis of a stationary Gaussian process with fast-
decaying autocorrelations (Chan & Tong, 2001, § 4.4). With the exception of Chan (1997), and
despite the large literature on surrogate data methods, to our knowledge comprehensive studies
on the theoretical properties of such tests are still lacking.

The approach we propose in this paper is an extension of the scheme that fits within the uni-
fied framework of an optimization problem solved by means of simulated annealing (Schreiber,
1998). The procedure can be summarized as follows: (i) define one or more constraints in terms
of a cost function C , which reaches a global minimum when the constraints are fulfilled; (ii) min-
imize the cost function C among all possible permutations of the series through simulated anneal-
ing. In our case, we generate surrogate series having the same autocorrelation function and the
same sample mean as the original series. In the following proposition we show that under H0,
the surrogate approach combined with our test statistics yields valid inferences.

PROPOSITION 5. Under the null hypothesis H0 that the data-generating process is linear and
Gaussian, the constrained randomization approach, together with T̂k or Ŝu

k , leads to asymptoti-
cally valid inferences in that the associated p-value follows a uniform distribution on (0, 1).

The procedure and implementation are described in the Supplementary Material.

5. THE BOOTSTRAP APPROACH

The second approach we consider is a smoothed version of the sieve bootstrap. The sieve
bootstrap relies on the Wold decomposition of a stationary process. In fact, under mild assump-
tions, a real-valued purely nondeterministic stationary process admits a one-sided infinite-order
autoregressive representation. The sieve approximates a possibly infinite-dimensional model
through a sequence of finite-dimensional autoregressive models. The nonsmoothed version of
this approach has been investigated in a number of studies (see, e.g., Kreiss & Franke, 1992;
Bühlmann, 1997, 2002). In particular, Bühlmann (1997) shows that the scheme leads to valid
inferences for smooth functions of linear statistics. Since our test statistics have components
based on kernel density estimators, we use the smoothed sieve bootstrap proposed in Bickel &
Bühlmann (1999). Such a scheme is asymptotically valid for estimators that are compactly dif-
ferentiable functionals of empirical measures. The idea of resampling from a smooth empirical
distribution ensures that the bootstrap process inherits the mixing properties needed to prove
asymptotic results.
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8 S. GIANNERINI, E. MAASOUMI AND E. BEE DAGUM

In brief, the smoothed sieve scheme can be adapted to our situation in the following way:
(i) fit an autoregressive model to the data; (ii) resample from the kernel density estimate of the
residuals of the fit; (iii) generate a new series by driving the fitted model with the residuals
obtained in step (ii). The full implementation of the scheme and further details are provided in
the Supplementary Material.

Bühlmann (1997) showed that if AIC is used for model selection, then consistency is achieved
for the arithmetic mean and a class of nonlinear statistics. Moreover, the method adapts automat-
ically to the decay of the dependence structure of the process. The performance of the method is
quite insensitive to the choice of criterion used for model selection, as long as the order chosen is
reasonable. In the following proposition, we prove the validity of inference based on combining
our test statistics with the smoothed sieve bootstrap scheme.

PROPOSITION 6. Given the assumptions of Theorem 4.1 of Bickel & Bühlmann (1999):

(i) under H0, supx | pr∗{n1/2(T̂ ∗
k − T ∗

k ) � x} − pr{n1/2(T̂k − Tk � x)}| = op(1) as n → ∞;

(ii) under H ′
0, supx | pr∗{n1/2(Ŝu∗

k − S∗
k ) � x} − pr{n1/2(Ŝu

k − Sk � x)}| = op(1) as n → ∞.

6. FINITE-SAMPLE PERFORMANCE: A SIMULATION STUDY

In this section we assess by simulation the performance of the tests in finite samples. The 24
models used are listed in Table 1, where the innovation processes are independent and identically
distributed with εt ∼ N (0, 1) and ζt following Student’s t with three degrees of freedom.

Models 1–6 are linear Gaussian processes, so the rejection percentages give an indication of
the sizes of the tests. Models 7–12 are the same processes but with Student’s t innovations, so
the tests based on T should reject the null while those based on S should not. Models 13–24
are nonlinear processes that do not admit an infinite-order linear autoregressive representation.
In particular, Models 13 and 14 are bilinear processes, Models 15 and 16 are nonlinear moving
average processes, Models 17 and 18 are generalized autoregressive conditional heteroscedas-
tic processes, Models 19–21 are threshold autoregressive processes, and Models 22 and 23 are
exponential autoregressive processes; finally, Model 24 is the logistic map at a chaotic regime.
The parameters of Models 13 and 14 are taken from Hjellvik et al. (1998), those of Models 17,
21 and 24 from Rusticelli et al. (2009), and those of Models 19, 22 and 23 from Tsay (2000), so
that comparisons are possible.

The null hypothesis of linearity and Gaussianity in (1) is tested by means of T̂k coupled with
the surrogate approach and the crossvalidation criterion, whereas the general null hypothesis of
linearity in (2) is tested through Ŝu

k coupled with the bootstrap scheme and the reference crite-
rion. In all the experiments the number of surrogates or bootstrap replicates is set to B = 999.
The results are given in terms of rejection percentages of the tests at α = 0·05 over 1000 Monte
Carlo replications. We have chosen n = 50, 100 and 200. In analogy with tests based on auto-
correlations and those proposed in Hjellvik & Tjøstheim (1995) and Hjellvik et al. (1998), our
procedures depend on the choice of the lag k. This means that the null depends on k, so we adopt
the combination function Hkmax

0 =⋂kmax
k=1 Hk

0 ; see also Fernandes & Néri (2010). In other words,
the null of linearity is rejected if the test rejects for at least one in kmax lags, where kmax = 5.
Since this approach mirrors what is usually done with correlograms in time series analysis, and
because the results below confirm that for Ŝu

k this approach can indeed be followed, we have
chosen to retain it and report the results here. However, a more rigorous approach would require
a correction for multiple testing; see the Supplementary Material. Measuring the performance
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Table 1. Time series models used in the simulation study

Model Model

1: xt = 0·8 xt−1 + εt 13: xt = 0·7 εt−1 xt−2 + εt

2: xt = −0·8 xt−1 + εt 14: xt = 0·5 − 0·4 xt−1 + 0·4 εt−1 xt−1 + εt

3: xt = 0·8 εt−1 + εt 15: xt = 0·8 ε2
t−2 + εt

4: xt = −0·8 εt−1 + εt 16: xt = 0·5 ε2
t−2 + εt

5: xt = 0·6 xt−1 + 0·4 εt−1 + εt 17: xt = σtεt

σ 2
t = 0·0108 + 0·8516 σ 2

t−1 + 0·1244 x2
t−1

6: xt = −0·6 xt−1 − 0·4 εt−1 + εt 18: xt = σtεt

σ 2
t = 0·1 + 0·6 x2

t−1

7: xt = 0·8 xt−1 + ζt 19: xt =
{

1 − 0·5 xt−1 + εt if xt−1 � 0

−1 − 0·5 xt−1 + εt if xt−1 > 0

8: xt = −0·8 xt−1 + ζt 20: xt =
{

0·8 xt−1 + εt if xt−1 � −1

−0·8 xt−1 + εt if xt−1 > −1

9: xt = 0·8 ζt−1 + ζt 21: xt =
{

−0·5 xt−1 + εt if xt−1 � 1

0·4 xt−1 + εt if xt−1 > 1

10: xt = −0·8 ζt−1 + ζt 22: xt = 0·3 + 10 exp{−x2
t−1} xt−1 + εt

11: xt = 0·6 xt−1 + 0·4 ζt−1 + ζt 23: xt = 0·3 + 100 exp{−x2
t−1} xt−1 + εt

12: xt = −0·6 xt−1 − 0·4 ζt−1 + ζt 24: xt = 4 xt (1 − xt )

of the tests for α � 0·01 may require either more bootstrap replicates or adaptive nonparametric
density estimators (Silverman, 1986).

Table 2 shows the results; the left columns refer to T̂k and the null H0 of a linear Gaussian
process, and the right columns refer to Ŝu

k and the null H ′
0 of a generic linear process. The standard

error of the Monte Carlo estimates is at most of the order of 0·7% for Models 1–12 and 1·7% for
Models 13–24. The rejection percentages show high power in almost every situation, even for
n = 50. Compared with other proposals (Tsay, 2000; Rusticelli et al., 2009), our tests are almost
invariably an improvement. The test based on surrogates and T̂k is oversized and needs at least
200 observations to perform sensibly and also detect linear non-Gaussian processes. We managed
to reduce this problem to some extent by fine-tuning the cost function of the annealing algorithm.
Our conjecture is that the different convergence rates of the estimators of the two components
of Tk play a role. The test based on Ŝu

k coupled with the smoothed sieve bootstrap has small size
even for short series when it comes to linear Gaussian processes. In some instances of linear non-
Gaussian processes, the test tends to over-reject the null, especially for models 7, 9 and 11, which
are characterized by positive parameters. As mentioned above, this is due to the multiple testing
approach, and the test does not show any over-rejection once the significance level has been
corrected; see the Supplementary Material. The test based on Ŝu

k appears to be rather conservative
and would lead to sensible decisions without any correction. The results shown are fairly robust
with respect to the parameter values of the 24 processes. The case of threshold nonlinearity is
partly an exception, since the results are more variable for different parameter settings. As pointed
out by a referee, this could be due to the discontinuity of the autoregression at the threshold, so
that its value would seem to exert an influence over the performance of the tests. Investigations
involving smooth threshold processes might shed further light on this issue.

As also reported in Hjellvik et al. (1998), the choice of bandwidth plays an important role in the
performance of the tests. Overall, our experiments indicate that the reference criterion should be
paired with the bootstrap scheme, while the crossvalidation criterion should be preferred when
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Table 2. Rejection percentages at the nominal level α = 5%: the left columns
refer to T̂k and the null H0 of a linear Gaussian process; the right columns

refer to Ŝu
k and the null H ′

0 of a generic linear process

T̂k Ŝu
k

n 50 100 200 n 50 100 200

Model 1 74·8 14·0 7·8 Model 1 10·4 4·4 0·8
Model 2 70·4 11·6 6·8 Model 2 2·2 1·0 0·2
Model 3 60·2 17·0 8·2 Model 3 1·8 2·2 4·4

Linear Model 4 56·8 15·0 8·4 Model 4 1·6 1·8 2·2
Gaussian Model 5 76·6 12·2 5·2 Model 5 5·2 1·8 2·2

Model 6 81·3 11·6 6·7 Model 6 1·6 0·8 1·4
Model 7 86·3 35·0 52·6 Model 7 19·2 11·0 6·6
Model 8 83·4 42·3 58·4 Model 8 6·8 1·8 2·2

Linear Model 9 80·4 32·9 45·2 Model 9 11·4 12·0 15·0
non-Gaussian Model 10 78·7 44·3 57·9 Model 10 6·6 8·6 10·2

Model 11 86·3 34·6 48·8 Model 11 10·6 10·6 9·4
Model 12 80·9 36·1 46·3 Model 12 5·0 3·6 4·0
Model 13 68·8 57·6 83·0 Model 13 36·0 62·6 87·6
Model 14 80·4 70·8 94·6 Model 14 35·2 57·2 89·8
Model 15 81·3 83·2 96·6 Model 15 52·4 88·0 99·0
Model 16 86·3 73·8 97·2 Model 16 51·2 85·4 98·6
Model 17 83·4 33·6 51·0 Model 17 18·6 37·4 62·8

Nonlinear Model 18 84·4 66·6 86·4 Model 18 44·6 70·6 92·6
Model 19 78·7 83·0 98·0 Model 19 29·0 51·0 91·2
Model 20 86·3 68·0 81·4 Model 20 29·8 47·0 73·2
Model 21 89·9 67·0 96·0 Model 21 31·2 69·2 96·2
Model 22 98·8 100·0 100·0 Model 22 84·2 100·0 99·6
Model 23 90·5 99·2 100·0 Model 23 75·6 99·6 100·0
Model 24 97·4 100·0 100·0 Model 24 100·0 100·0 100·0

using the surrogate-based test. In particular, the reference bandwidth leads to severe oversize
when used with surrogate data, whereas the bootstrap approach has low power when paired with
likelihood crossvalidation, perhaps due to the residual-based nature of the sieve bootstrap. The
computational complexity of the bootstrap-reference implementation is linear with respect to the
sample size n. The surrogate-crossvalidation implementation has a complexity which is quadratic
with respect to n.

7. REAL-DATA APPLICATION

The two series analysed here are described in detail in Tsay (2010), and were taken from
the companion R package FinTS (Graves, 2014; R Development Core Team, 2015). In both
cases we have applied the surrogate test with the crossvalidated bandwidth criterion and the
bootstrap test with the reference bandwidth criterion. The first series contains the monthly log
returns in percentages of IBM stock from January 1960 to December 1998, consisting of n = 468
observations. The series has white noise type ACF and PACF. The data are shown in Fig. 1(a), while
the plot of T̂k at lags 1 to 12 is shown in Fig. 1(b).

The second series consists of daily exchange rates between the U.S. dollar and Japanese yen
from 3 January 2000 to 26 March 2004. The series has n = 1063 observations and has been
differenced and log-transformed. Such a series has white noise type correlogram, while the partial
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Fig. 1. (a) Monthly log returns in percentages of IBM stock from 1960 to 1999. (b) Plot of T̂k
for the IBM series at lags 1 to 12 with rejection bands at 95% (dashed) and 99% (dash-dot).
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Fig. 2. (a) Differenced and log-transformed daily exchange rates between the U.S. dollar and
Japanese yen from 3 January 2000 to 26 March 2004. (b) Plot of T̂k for the exchange rate series

at lags 1 to 14 with rejection bands at 95% (dashed) and 99% (dash-dot).

correlogram is significant at lag 1. The data are displayed in Fig. 2(a), and the plot of T̂k at lags
1 to 14 is shown in Fig. 2(b).

The evidence against linearity is clear in both series, as the two tests give the same outcome in
each case. In particular, for the IBM data there are possible nonlinear effects at lags 3 and 5; see
Fig. 1(b). For the daily USD-YEN exchange rate, the tests suggest a significant effect at lag 1.
If we compare the plots of T̂k for the two series with those obtained from the simulation study,
we notice similarities with the bilinear process for the IBM series and with a nonlinear moving
average for the USD-YEN series. Even if in principle it would be infeasible to perform a model
identification solely on the basis of such plots, the information conveyed by our test can help
considerably. In this instance, the results point to a complex dependence upon past shocks that is
consistent with findings reported in the literature.
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8. CONCLUSIONS

Our tests, being based on pairwise comparisons, can be applied in situations where other tests
may fail. For instance, high-frequency time series may show periodicities at distant lags due to the
sampling rate. In such cases it would be infeasible to apply tests that require the specification of
a nonlinear model or a Volterra series expansion involving many lags. Moreover, Sρ is a measure
of dependence that involves the whole bivariate distribution function, and this offers a potential
advantage over tests based on specific moments or aspects of the distributions. Our procedures
have a high computational burden, so we have created an R package that implements a parallel
version of them. The package can be found at www2.stat.unibo.it/giannerini/software.html and
is forthcoming on CRAN.
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APPENDIX

Proof of Proposition 2

The result follows directly from applying the delta method to Ŝp
k = g(ρ̂k).

Proof of Proposition 3

Let ρ̂k = γ̂k/γ̂0 be the sample estimator of ρk , where γ̂k = n−1
∑n−k

t=1 Xt Xt+k . From Theorem 6.3.5
of Fuller (1996), ρ̂k → ρk in probability. Now, since g : [−1, 1] → [0, 1], g(x) = 1 − 2(1 − x2)1/4(4 −
x2)−1/2 is a continuous bounded function, from Theorem 5.1.4 of Fuller (1996) it follows that
Ŝp

k = g(ρ̂k) → g(ρk) = Sk in probability. Furthermore, since 0 < Ŝk < 1 almost surely for all k, from
Theorem 6.2.4 of Sen et al. (2009) it follows that Ŝp

k −→ Sk in L2.

Proof of Proposition 4

(i) Conditions 1–5 enable us to apply the framework of Tjøstheim (1996). The quantity to be estimated
can also be written as

Sk = 1 −
∫ ∫

B
{

u(x1, x2)
}

w(x1, x2) dF(x1, x2)

where

u(x1, x2) = { fXt , (x1) fXt+k (x2), fXt ,Xt+k (x1, x2)
}

,

B
{

u(x1, x2)
}= { fXt (x1) fXt+k (x2)

}1/2 {
fXt ,Xt+k (x1, x2)

}−1/2
,
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so that

Ŝu
k = 1 −

∫ ∫
B
{

û(x1, x2)
}

w(x1, x2) dF̂(x1, x2).

Now we have

Ŝu
k − Sk =

∫ ∫
B
{

u(x1, x2)
}

w(x1, x2)
{

dF(x1, x2) − dF̂(x1, x2)
}

(A1)∫ ∫ [
B
{

u(x1, x2)
}− B

{
û(x1, x2)

}]
w(x1, x2) dF̂(x1, x2). (A2)

By the ergodic theorem, (A1) → 0 in L2 as n → ∞. To prove that (A2) → 0 in L2, note that there
exists an integer N such that for n � N we have Kn = pr{u(x1, x2) ∈ A} = 1, where A is an open
set that includes the support of u(x1, x2). Now, by the mean value theorem, there exists a random
function u′(x1, x2) such that

Kn

∣∣B {u(x1, x2)
}− B

{
û(x1, x2)

}∣∣� 3∑
i=1

Kn

∣∣∣∣∣∂ B
{

u′(x1, x2)
}

∂ui

∣∣∣∣∣
∣∣ui (x1, x2) − ûi (x1, x2)

∣∣.
The result then follows directly from the boundedness of |∂ B{u′(x1, x2)}/∂ui | and the strong con-
sistency of the kernel density estimators.

(ii) The regularity assumptions, Conditions 1–5, allow us to apply the theoretical framework out-
lined in Tjøstheim (1996). The proof then follows from that of Tjøstheim (1996) by tak-
ing u(x1, x2) = { fXt , (x1) fXt+k (x2), fXt ,Xt+k (x1, x2)} and B{u(x1, x2)} = { fXt (x1) fXt+k (x2)}1/2 ×
{ fXt ,Xt+k (x1, x2)}−1/2.

Proof of Theorem 1

(i) The results follow directly from Propositions 3 and 4 and from the algebra of convergence in L2.
(ii) From Propositions 3 and 4 and the algebra of convergence in distribution it follows that n1/2(Su

k −
Sk) − n1/2(Sp

k − Sk) = n1/2(Su
k − Sp

k ) → N (0, σ 2
a ) in distribution, where σ 2

a = σ 2
p + σ 2

u . Hence, in
distribution,

n1/2(Su
k − Sp

k )

σa
= (nT̂k)

1/2

σa
→ N (0, 1),

nT̂k

σ 2
a

→ χ2
1 .

Proof of Proposition 5

Since the sample periodogram I (x, ω) = (2π)−1
∑n−1

k=−(n−1) γ̂k exp(−ikω) and the sample autocovari-
ance function γ̂k of x at lag k are related through an invertible function, the preservation of the sample
autocorrelation in the surrogate series is equivalent to preservation of the sample periodogram. In fact,
V = {x̄, γ̂k, k = 1, 2, . . .} is a joint sufficient statistic for a linear Gaussian process. Moreover, it is easy
to show that the test statistics Ŝu

k and T̂k are asymptotically independent of any finite set of Xt for which
t ∈ N. To this end, consider the statistic T̂k = (Ŝu

k − Ŝp
k )2 and let I = i1, . . . , iN be a finite subset of indices

in N. We can write

Ŝu
k = 1

2

∫ ∫ ⎡⎣
{

(n − k)−1
∑
i∈I

h−1
1 h−1

2 K12

}1/2

−
(

n−1
∑
i∈I

h−1
1 K1 × n−1

∑
i∈I

h2
−1 K2

)1/2
⎤
⎦

2

+

⎡
⎢⎣
⎧⎨
⎩(n − k)−1

∑
i∈{N−I}

h−1
1 h−1

2 K12

⎫⎬
⎭

1/2

−
(

n−1
∑

i∈{N−I}
h−1

1 K1 × n−1
∑

i∈{N−I}
h−1

2 K2

)1/2

⎤
⎥⎦

2

× w(x1, x2) dx1 dx2,
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where K1 = K {(x1 − Xi )/h1}, K2 = K {(x2 − Xi )/h2} and K12 = K {(x1 − Xi )/h1, (x2 − Xi )/h2}. Now,
since the first term of the integrand vanishes as n → ∞ and the estimator Ŝu

k is asymptotically Gaus-
sian with limiting variance that does not depend on any finite subset of observations, the result follows
immediately. The same argument holds for Ŝp

k . In fact, let ρ̂k be the sample autocorrelation function of
{Xt } at lag k and let Ŝp

k = 1 − 2(1 − ρ̂2
k )

1/4/(4 − ρ̂2
k )

1/2. Then we have that ρ̂k = n−1
∑

i∈{I} Xi Xi+k +
n−1
∑

i∈{N−I} Xi Xi+k . Again, since the first of the two terms in the sum vanishes as the sample size
diverges and since ρ̂k is asymptotically Gaussian with limiting variance ζ =∑∞

i=1{ρ(i+k)ρ(i−k) − 2ρiρk}2,
the asymptotic independence holds. In turn, since Ŝp

k is a piecewise monotone function of ρ̂k , the result
follows.

Proof of Proposition 6

In Bickel & Bühlmann (1999) it is shown that the sieve scheme is valid under the assumption
of an underlying infinite-order autoregressive process; this covers both H0 and H ′

0. The statistic
T̂k = (Ŝu

k − Ŝp
k )

2 has two components. The parametric component can be written as Ŝp
k = g1{(n −

k)−1
∑n

t=k+1 h(Xt , Xt−k)}, i.e., it is a nonlinear differentiable function of the linear statistic ρ̂k , where

h(X1, X2) = X1 X2 and g1 is the function in (3). The second component Ŝu
k , being based on kernel density

estimators, can be seen as a functional of the distribution of (Xt , Xt+k). This component can be written as

Ŝu
k = 1 −

∫ ∫ {
f1(x1) × f2(x2) × f12(x1, x2)

}1/2
dx1 dx2 = 1 − const

(n − k)1/2

∑
x∈R2

g2(Xt , Xt+k),

where f1 = f̂ Xt , f2 = f̂ Xt+k and f12 = f̂(Xt ,Xt+k ) are the kernel density estimators defined above, ‘const’
is a real constant that depends on n, k, h1 and h2, and g2(x1, x2) = { f1(x1) f2(x2) f12(x1, x2)}1/2. From
Conditions 2 and 3, g2 is a continuous bounded function and has bounded first derivative on the open
interval (0,∞). Hence, Assumption 3.1 of Bickel & Bühlmann (1999) is satisfied and the functional T̂k

fulfils the assumptions of Theorem 4.1 in Bickel & Bühlmann (1999); so the result follows directly from
the consistency of the smoothed sieve bootstrap process. The parametric estimator Ŝp

k also satisfies the
conditions of Theorem 3.3 in Bühlmann (1997).
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