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Abstract. We introduce a storage scheme that allows the representation and 

management of the evolving hierarchical structure of a multi-version ontology 

in a temporal relational database. The proposed scheme is aimed at supporting 

ontology-based personalization and temporal access to large collections of re-

sources (data, documents, procedures etc.) stored in a dynamic environment. 

Whereas in previous works we considered tree-shaped ontologies only, in this 

work we consider ontologies with a class hierarchy structured as a general di-

rected graph, that is also supporting multiple inheritance and intersection clas-

ses. We will also show how multi-version ontologies must be dealt with for the 

processing of ontology-based personalization queries. 

Keywords: Ontology, tree, graph, temporal database, evolution, versioning, 

personalization 

1 INTRODUCTION 

In the age of big data, when large amounts of potentially interesting and useful re-

sources are published online day by day, the availability of semantics-aware search 

engines and intelligent personalization services becomes a key factor for a fruitful 

exploitation of such resources. In particular, the adoption of reference ontologies and 
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their deployment for the personalization of multi-version resources has been recently 

proposed by several authors in the medical domain [1,2,3,4] and other application 

fields (e.g., e-Government [5]). The considered resources range from descriptive data 

to textual documents, from Web pages to the specification of processes and services. 

References to ontology classes are added to the computer encoding of resources (e.g., 

for which an XML [6] format can conveniently be used) to introduce a sort of seman-

tic indexing of contents representing their applicability, relevance or eligibility with 

respect to ontology classes. Hence, starting from a user-supplied list of ontology clas-

ses, a suitable query engine can exploit semantic indexing to retrieve the relevant 

contents only and produce a personalized version of the desired resources. 

However, in a dynamic environment, the management of this kind of semantic ver-

sioning is interleaved with temporal aspects. For example, we can choose as resources 

clinical guidelines [7], that is “best practices” encoding and standardizing health care 

procedures, in textual or executable format, and consider their personalization with 

respect to an ontology of diseases, patients or available hospital facilities they are 

applicable to [1]. Personalization will then produce guideline versions tailored to a 

specific use case. The fast evolution of medical knowledge and the dynamics involved 

in clinical practice imply the coexistence of multiple temporal versions of the clinical 

guidelines stored in a repository, which are continually subject to amendments and 

modifications. Therefore, it is crucial to reconstruct —borrowing the term from the 

legal domain— the consolidated version of a guideline as produced by the application 

of all the modifications it underwent so far, that is the form in which it currently be-

longs to the state-of-the-art of clinical practice and, thus, must be applied to patients 

today. However, also past versions are still important, not only for historical reasons: 

for example, a physician might be called upon to justify his/her actions for a given 

patient at a past time on the basis of the clinical guideline versions applicable to the 

pathology of patient and which were valid at that time (as well as, in the legal domain, 

a Court might be called to judge today on a crime committed several years ago and 

for which the normative framework that was in force then has to be applied). 

Moreover, in a dynamic environment, the definition of domain ontologies them-

selves is also subject to modification and, thus, ontologies come out versioned as a 

consequence of updates periodically effected by domain experts and knowledge engi-



neers, or even by standardization committees. As we showed in [8] for the legal do-

main (but it also happens for the medical field), personalization of a resource with 

respect to a past point in time must be effected by taking into account, in order to 

consider semantic indexing of the desired temporal version of the resource, the ver-

sion of the reference ontology that was valid at the same time point. In other words, 

the selected resource version and the ontology version used for personalization must 

be mutually temporally consistent, in order to reconstruct the exact framework in 

which the resource had been utilized. Since clinical guidelines have also been recently 

proposed to be used as evidence of the legal standard of care in medical malpractice 

litigation [9], enforcement of temporal consistency is crucial to assess a posteriori the 

responsibility of physicians having followed the guidelines in the past. 

Therefore, in this work we will show how temporal multi-version ontologies can 

be represented and maintained in a relational setting and how they can be used during 

the processing of a personalization query. The rest of the paper is organized as fol-

lows: in Sec. 2, the ontology-based personalization method proposed in [1,5] is briefly 

recalled; in Sec. 3, we present our storage scheme and manipulation primitives for 

temporal versioning of an ontology class hierarchy which is necessary to support such 

personalization method. Section 4 is devoted to personalization query processing in 

the presence of a multi-version ontology.  Related work is discussed in Sec. 5 and 

conclusions can finally be found in Sec. 6. 

2 A FRAMEWORK FOR ONTOLOGY-BASED 

PERSONALIZATION 

The personalization method proposed in [1,5] is based on the adoption of reference 

domain ontologies and the introduction of semantic indexing of resource contents 

with respect to ontology classes. For example, in the medical domain, reference on-

tologies to be used to this purpose can be derived from the ICD-102 international clas-

sification of diseases or from the UMLS3 or SNOMED-CT4 comprehensive biomedi-
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cal and healthcare terminologies. Semantic indexing can then be used by personaliza-

tion services to adapt generic resources to specific use cases, for example, to derive 

and enact individual care plans as proposed in [1,2,3]. Notice that, as a consequence 

of the information flooding we have been experiencing in recent years, personaliza-

tion becomes a practical necessity when the huge availability of potentially interesting 

resources tends to be overwhelming. 

Full ontology features, including properties, axioms, expressions and individuals, 

can be exploited in a processing step, which precedes the personalization process, in 

order to formalize the personalization context as a set of relevant ontology classes that 

define a specific use case. For example, in the medical domain, during this phase 

(called classification phase in [5]), a suitable reasoning facility can be used to match 

the medical records of a patient with the qualifying classes in an ontology of diseases. 

Then, such ontology classes are used as input of the personalization engine, which 

retrieves the data resources which are applicable, relevant or eligible with respect to 

such classes. The only ontology feature which is necessary for the considered person-

alization approach, on which [1,5,8,10,22] and this paper are focused, is the hierarchy 

of classes induced by the IS-A relationship and, thus, we do not consider in this work 

properties or other ontology features including the presence of instances. We initially 

follow the simplified assumption made in the application papers [1,5] and in the pre-

liminary version of this work [10] that the class hierarchy underlying the ontology is 

tree-shaped, that is each node in the class hierarchy (but the root) has a single parent. 

However, in this work we will finally remove such limiting hypothesis and also con-

sider general ontologies starting from Sec. 3. Owing to the tree structure, nodes can be 

assigned a preorder and a postorder code, corresponding to the sequence in which 

nodes are visited during a preorder or postorder traversal of the tree, respectively. 

Hence, preorder and postorder codes can be used for characterizing the descendants of 

a node [11,12]: 

 N is a descendant of M iff M.Pre < N.Pre and N.Post < M.Post 

  

            (1) 



with obvious meaning of the used dotted notation. As we will see in Sec. 4, efficient 

testing of the descendant relationship is a key feature of personalization query pro-

cessing [1]. 

 

 

 

 Id Pre Post  

 A 1 7  

 B 2 1  

 C 3 4  

 D 4 2  

 E 5 3  

 F 6 6  

 G 7 5  
 

 

Fig. 1. A sample ontology class hierarchy and its tabular representation 

 

For example, we can consider the sample ontology depicted in the left part of 

Fig.1, where the corresponding preorder and postorder code of nodes can be found in 

the table to the right. The structure of the class hierarchy is completely defined by the 

information present in the table, which, thus, can enable storage of the ontology struc-

ture definition in a relational database.  

Once defined and stored the ontology structure in this way, node identifiers can be 

used as a reference to ontology classes for semantic indexing of the resources which 

are the object of personalization. In [1,5], preorder codes are directly used as node 

identifiers, whereas as in [10] we will keep them distinguished and associate preorder 

and postorder codes to time-invariant class identifiers (Id) in order to support ontolo-

gy versioning. Hence, if the same class belongs to two ontology versions, the class Id 

is the same in both of them, while the preorder and postorder codes are very likely 

different as long as the two ontology versions have a different structure. In this way, 

the proposed encoding scheme implies an indirect reference from class identifiers 

A
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used for semantic indexing of resources to preorder and postorder codes used for que-

ry processing. 

In this work, like in [1,5] and [10], we consider personalization of resources with 

an inner hierarchical organization (e.g., a text organized with chapters, sections, sub-

sections and paragraphs), which, thus, can be easily represented and stored as XML 

documents [6]. Each XML element in the resource encoding can be represented by 

means of multiple versions of its contents, each of which can be assigned a temporal 

validity by means of timestamps [13], and a semantic pertinence by means of refer-

ences to ontology classes [5]. 

Owing to the hierarchical organization of resources, temporal validity and semantic 

applicability properties of an element are inherited by its subelements, unless locally 

redefined. Considering applicability properties, because of the IS-A semantics (e.g., 

an individual which is instance of C is also instance of A in Fig.1), if we are looking 

for all the resource portions that qualify for an instance of an ontology class, we 

should retrieve the resource portions which are directly applicable to the ontology 

class itself and also the resource portions which are applicable to its superclasses. For 

example, if a query retrieves resources concerning an individual belonging to the 

ontology class E, then the returned resources should be those applicable to class E but 

also those applicable to the ancestor classes of E (i.e., classes C and A in Fig. 1). 

Whichever is the most specific class to which our individual of interest belongs, the 

query results would include all the resource portions applicable to all its ancestor 

classes up to the ontology root class, which may come out too generic to be of real 

interest for a specific use case and imply the retrieval of the whole repository, giving 

up any query selectivity. For instance, considering a repository of resources concern-

ing animals indexed via the “classical” biological taxonomy 5  Domain-Kingdom-

Phylum-Class-Order-Family-Genus-Species, this would mean to also retrieve all re-

sources generically applicable to “eukariotes” (i.e., Domain: Eukarya), that is the 

whole repository, when looking for resources concerning “lions” (i.e., Species: Pan-

thera leo). In such a case, as proposed in [1,5], using a optional depth parameter in 

order to focus on the most interesting resources only, the user can limit the applicabil-
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ity scope of a query to the ancestors located up to depth steps above the most specific 

class our individual of interest belongs to in the class hierarchy. Hence, we can speci-

fy a depth value “0” in order to focus on resources specifically concerning lions only, 

or a depth value “1” to retrieve resources concerning lions and also other animal spe-

cies in the lions' superclass (i.e., Genus: Panthera). 

For example, let us consider the sample chunk in Fig. 2 of a multi-version resource 

encoded in XML. It is made of an element “foo” with two versions, the former (ver-

sion 1) valid from T1 to T2 and applicable to class B of the ontology in Fig. 1 and the 

latter (version 2) valid from T2 on and applicable to class C of the ontology in Fig. 1. 

The special time value UC (Until Changed [14]) is used to represent the To value of a 

right-unlimited time interval. The second version of element “foo” contains a subele-

ment “bar”, which inherits the validity of its parent element  (i.e., from T2 on) and 

extends the applicability inherited from its parent also to class G of the ontology in 

Fig. 1 (i.e., the applicability of “bar” is C or G). The only version (version 1) defined 

for “bar” is necessary in order to redefine the inherited semantic pertinence (notice 

that the “pertinence” XML element is defined as a subelement of the “version” XML 

element). 

 

    … 
    <foo> 

    <version number=”1”> 

      <pertinence> 

        <valid from=”T1” to=”T2”/> 

        <applies to=”B”> 

      </pertinence> 

                  Contents of  foo–version 1 
    </version> 

    <version number=”2”> 

      <pertinence> 

        <valid from=”T2” to=”UC”/> 

        <applies to=”C”> 

      </pertinence> 

                  Contents of  foo–version 2 
      <bar> 

      <version number=”1”> 

        <pertinence> 

          <applies also=”G”> 

        </pertinence> 

                       Contents of  bar–version 1 
      </version> 



      </bar> 

    </version> 

    </foo> 

    … 

Fig. 2. A chunk of multi-version XML resource. 

 

The XML encoding of multi-version resources exemplified in Fig. 2, which has 

been proposed in [1,5], has also been adopted in [10] and in this work for the reasons 

which follow: 

 is general enough to be applied to any kind of resources (as it is independent on the 

non versioned resource schema) and to allow the seamless adoption of an arbitrary 

number of temporal and semantic versioning dimensions; 

 its simplicity allows a self-contained presentation; 

 efficient algorithms implemented in a prototype processor are available for person-

alization query support [1,5] (required extensions to this query engine will be pre-

sented in Sec. 4). 

However, as far as semantic markup is concerned, other encoding schemes proposed 

for linking resource contents to ontological information, from the ones proposed as 

standards like RDFa6 and microformats7 to the more exotic ones customary in specific 

application domains (e.g., biomedical domain), could also be adopted. In such a case, 

simple modifications, which are beyond the scope of this work, have to be introduced 

to the personalization query processing methods presented in Sec. 4. 

Notice that, in this paper and in [10] we make use of a symbolic example in order 

to emphasize the generality of our ontology-based personalization approach without 

sticking to a specific application domain. However, concrete examples of such an 

approach for personalized access to clinical guidelines in the medical field and to 

norm texts in the legal field can be found in [1] and [5], respectively. 
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3 TEMPORAL ONTOLOGY EVOLUTION 

In this section, we will introduce primitive operations that can be used for applying 

structural changes to an ontology and producing a new version, and show how they 

can be defined in order to maintain a multi-version ontology structure represented and 

stored as a valid-time relation in a temporal database [13]. In this paper, differently 

from [10] where we dealt with tree-like ontologies only, we consider general graph 

ontologies, where each class is allowed to be the child of more than one parent in the 

class hierarchy, so that intersection classes can be defined and multiple inheritance is 

allowed. To this aim, we extend our approach presented in [10] to the adoption of the 

GRIPP numbering scheme used in [15], which provides for the introduction of non-

tree edges in order to apply the preorder/postorder numbering scheme of trees also to 

general directed acyclic graphs. The only difference between the numbering scheme 

adopted here and the original one in [15] is that we assume codes start from 1 (which 

is, thus, the preorder code of the root node) rather than 0. In practice, we will use a 

preoder/postorder numbering schemes slightly different from the “classical” scheme 

used in [11,12], exemplified in Fig. 1, which we also followed in [10] and which was 

used in the base personalization approach we contributed to in [1,5]. In that case, 

preorder/postorder codes are incremented only when they are assigned to nodes dur-

ing the tree visit (as a consequence, they assume all the values in the range range from 

1 to the number of nodes N). Indeed, in the GRIPP numbering scheme, visit codes are 

incremented each time a node is traversed and assigned as preorder/postorder codes to 

nodes when the traversal is in the right order (hence, maximum preorder/postorder 

codes are usually greater that N, as all nodes but the leaves are traversed two —once 

downwards and once upwards— or more times —when they have multiple children— 

during the visit). For instance, in the ontology structure of Fig. 3, the order in which 

nodes are visited is A:1 B:2 A:3 C:4 D:5 C:6 E:7 C:8 A:9 F:10 Ē:11 F:12 G:13 F:14 

A:15 (Ē denotes the node E reached from the non-tree edge); in practice, Pre and Post 

codes correspond to the first and last positions, respectively, in which each node can 

be found in such a sequence. Notice that, in the preliminary work [10], dealing with 

tree-like ontologies only, we used the “classical” preorder/postorder encoding because 

it was the numbering scheme adopted in our previous approaches to personalization 



and exploited by the implemented prototype [1,5]; therefore, the extension presented 

in [10] could be applied to such approaches in a straightforward way (the available 

prototype is currently being upgraded in this direction). Although also the classical 

numbering scheme can easily be extended to the support of non-tree edge, in this 

work we preferred to opt for the new numbering scheme, because it gives rise to a bit 

simpler and more efficient evolution algorithms (e.g., they do not require the evalua-

tion of the maximum preorder code in a subtree as the algorithm in [10; Sec. 3.1.1]); 

as to the prototype upgrade, the deployment of general graph ontologies in the func-

tionalities of our previous personalization architecture has anyway a big impact on its 

organization, which also justifies the change of the underlying numbering scheme. 

Hence, the table schema used for the representation of an evolving ontology has to 

be extended with a further attribute, Type, whose admitted values are “T” and “N” to 

represent a tree or non-tree edge leading to the node identified by Id, respectively. In 

this way, a general graph can be represented as an underlying spanning tree, contain-

ing tree edges only, augmented with non-tree edges.  

 

 

 

Id Pre Post Type Lev  

A 1 15 T 1  

B 2 2 T 2  

C 4 8 T 2  

D 5 5 T 3  

E 7 7 T 3  

F 10 14 T 2  

E 11 11 N 3  

G 13 13 T 3  
 

 

Fig. 3. General graph ontology structure and its tabular representation 

 

The class hierarchy of a sample general ontology and its tabular representation are 

displayed in Fig. 3, where the non-tree edge has been drawn with a dotted red line. In 
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particular, the ontology structure displayed in Fig. 3 corresponds to the one intro-

duced in Fig. 1 to which a non-tree edge between class F and class E has been added, 

so that E becomes a subclass either of class C and of class F.  

Furthermore, the table schema has also been augmented by a level attribute, Lev, 

representing the distance of the node from the top, assuming level 1 for the root node. 

Actually, level values are not strictly necessary to define the structure of the class 

hierarchy, but they can conveniently be used for speeding up ontology evolution op-

erations (as described in the subsection that follows) and personalization query pro-

cessing (as described in Sec. 4). 

3.1 General Ontology Structure Evolution Support 

In order to support the evolution of an ontology class hierarchy in tabular representa-

tion, we introduce five primitive change operations, which can be used in sequence 

and combination to make arbitrary changes to the ontology structure, and present 

algorithms to implement their action on the tabular representation exemplified in Fig. 

3. For further reference, operations are numbered as (Oi), which stands for Operation 

number i. Primitives from (O1) to (O3) represent extensions of the corresponding 

operations proposed in [10] for three-shaped ontologies, whereas brand new opera-

tions (O4) and (O5) are introduced to manipulate non-tree edges. We assume that all 

the procedures listed in this subsection work on a table with schema GraphTable(Id, 

Pre, Post, Type, Lev), corresponding to the tabular representation in Fig. 3, and re-

ceive as input parameter a data structure with type GraphRow, that is representing a 

row of the GraphTable, already containing the Id, Pre, Post, Type and Lev data of the 

node directly involved by the modification. Starting from the node identifier I, it is 

straightforward to retrieve such information from the only row with Id=“I” and 

Type=“T” in the ontology tabular representation. The same applies to operation (O4) 

involving the creation of a new non-tree edge, for the retrieval of the information 

concerning the nodes to be connected starting from their identifiers. For operation 

(O5) involving the deletion of an existing non-tree edge, which is defined by the node 

it connects, the information concerning the edge origin node can still be retrieved 

from its identifier I in the same way. The information concerning the edge destination 



node indeed, starting from its identifier J, can be retrieved from the rows with Id=”J” 

and Type =“N” in the tabular representation with the additional constraint that the 

destination node is a direct descendant of the origin node (notice that, since any on-

tology node can receive more than one incoming non-tree edge, more than one row 

can satisfy the condition Id=”J” and Type =“N”). Being M and N the data structures 

representing the origin and destination nodes, enforcing the additional constraint cor-

responds to test that condition (1) holds and that N.Lev=M.Lev+1 (i.e., N is a de-

scendant of M directly connected by a single edge). 

(O1) Insertion of a leaf node. The operation InsertUnder(N) can be used to create a 

new leaf node as child of the existing node N. If the node N already has children, the 

new node is created as the rightmost child (the order of siblings does not matter for 

personalization query processing, as the ancestor-descendant relationships only are 

relevant). Owing to the definition of preorder, postorder and level codes, the action of 

the insertion reflects on their values as explained in the following. All the nodes 

which were visited after N in postorder and N itself must have their postorder code 

increased by 2 (as they will be visited after the new node and after its parent is trav-

ersed upwards). Notice that, being created as the rightmost child of N, the new node 

will be visited in preorder right after all the nodes in the subtree rooted on N (which 

satisfy the descendant relations Pre>N.Pre and Post<N.Post). Hence, the nodes which 

must have their preorder code only increased by 2 are all the nodes which were visited 

after N both in preorder and in postorder (i.e., nodes visited after N in preorder but not 

belonging to the subtree rooted on N). The new node must be assigned a preorder and 

postorder code both equal to the postorder of N plus 1 and a level equal to the one of 

N plus 1 (type of the new node is obviously “T”). A slightly optimized algorithm for 

updating the tabular representation is the following: 



InsertUnder(N:GraphRow) 

   NewPP:=N.Post+1; 

   ForEach Node in GraphTable Do 

      If Node.Post>=N.Post 

      Then Node.Post+=2 

           If Node.Pre>N.Pre  

           Then Node.Pre+=2 EndIf 

      EndIf 

   EndFor 

   AddRow(NewId(),NewPP,NewPP,’T’,N.Lev+1) 

Return 

The function NewId() is assumed to create an unused identifier, which acts like a 

time-invariant key, for the newly added node. Alternatively, the identifier of the new 

node could be supplied by the user and the procedure has to check that it has not been 

used yet. The variable NewPP is used to store the value to be eventually assigned both 

to the preorder and postorder code of the new node, computed before the postorder of 

N is changed by the rest of the algorithm.  

For instance, starting from the ontology in Fig. 3, the execution of the operation 

InsertUnder(F) produces the new ontology version shown in Fig. 4 with the new 

node created as H. 

 

 

Id Pre Post Type Lev  

A 1 17 T 1  

B 2 2 T 2  

C 4 8 T 2  

D 5 5 T 3  

E 7 7 T 3  

F 10 16 T 2  

E 11 11 N 3  

G 13 13 T 3  

H 15 15 T 3  
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Fig. 4. General graph ontology and its tabular representation 

 

(O2) Insertion of an intermediate node. The operation InsertOver(N) can be used 

to create a new node in the path between the node N and its parent (i.e., the new node 

becomes the new parent of N and a child of the former parent of N). If N is the tree 

root node, the created node will become the new root. The action of the insertion re-

flects on the preoder, postorder and level values as explained in the following. All the 

nodes which were visited after N both in preorder and in postorder must have their 

preorder and postorder codes increased by 2 (since before they will be reached in both 

visit orders, the new node will be traversed either downwards and upwards causing a 

double increment of preorder and postorder codes). All the nodes which were ances-

tors of N must have their postorder increased by 2 (as they will be reached after the 

new node is traversed either downwards and upwards causing a double increment of 

the postorder code). All the nodes which were in the subtree rooted on N (inclusive) 

must have their preorder, postorder and level increased by 1. The new node inherits 

the preorder code and the level from N and must be assigned a postorder code equal 

to the postorder code of N plus 2 (as it is visited after itself is traversed downwards 

and N is traversed upwards, in addition to the initial postorder of N). A slightly opti-

mized algorithm for accordingly updating the tabular representation is the following: 

InsertOver(N:GraphRow) 

   NewPre:=N.Pre; NewPost:=N.Post+2; NewLev:=N.Lev; 

   ForEach Node in GraphTable Do 

      If Node.Post>N.Post 

      Then Node.Post+=2 

           If Node.Pre>N.Pre  

           Then Node.Pre+=2 EndIf 

      Else If Node.Pre>=N.Pre  

           Then Node.Pre++ 

                Node.Post++ 

                Node.Lev++ 

           EndIf 



      EndIf 

   EndFor 

   AddRow(NewId(),NewPre,NewPost,’T’,NewLev) 

Return 

The variables NewPre, NewPost and NewLev are used to compute the codes to be 

assigned to the new node before the data of N can be changed by the rest of the algo-

rithm. 

For instance, starting from the ontology in Fig. 4, the execution of the operation 

InsertOver(C) produces the new ontology version shown in Fig. 5 with the new node 

created as I. 

 

 

 

Id Pre Post Type Lev  

A 1 19 T 1  

B 2 2 T 2  

C 5 9 T 3  

D 6 6 T 4  

E 8 8 T 4  

F 12 18 T 2  

E 13 13 N 3  

G 15 15 T 3  

H 17 17 T 3  

I 4 10 T 2  
 

 

Fig. 5. General graph ontology and its tabular representation 

 

(O3) Deletion of a node. The operation DeleteNode(N) can be used to delete node N 

from the ontology (former children of N become children of the former parent of N). 

The DeleteNode procedure can be applied to the tree root node only if it has a single 

A

C

B F

D E

G H

I



child (which becomes the new root). Moreover, a node cannot be deleted if it has 

incoming non-tree edges (which, thus, must be removed before the node can be delet-

ed). All the nodes which were visited after N both in preorder and in postorder must 

have their preorder and postorder codes decreased by 2 (since before they were 

reached in both visit orders, N were traversed either downwards and upwards causing 

a double increment of preorder and postorder codes). All the nodes which were in the 

subtree rooted on N must have their preorder, postorder and level decreased by 1. All 

the nodes which were ancestors of N must have their postorder decreased by 2 (since 

before they were reached in postorder, N were traversed either downwards and up-

wards causing a double increment of the postorder code). An algorithm for updating 

the tabular representation is the following: 

DeleteNode(N:GraphRow) 

   DeleteRow(N.Id,N.Pre,N.Post,N.Type,N.Lev) 

   ForEach Node in GraphTable Do 

      If Node.Pre>N.Pre  

      Then If Node.Post<N.Post  

           Then Node.Pre-- 

                Node.Post-- 

                Node.Lev-- 

           Else If Node.Post>N.Post  

                Then Node.Pre-=2  

                     Node.Post-=2 

                EndIf 

           EndIf 

      Else If Node.Post>N.Post 

           Then Node.Post-=2 

      EndIf 

   EndFor 

Return  

For instance, starting from the ontology in Fig. 5, the execution of the operation 

DeleteNode(B) produces the new ontology version shown in Fig. 6.  

 

 



 

Id Pre Post Type Lev  

A 1 17 T 1  

C 3 7 T 3  

D 4 4 T 4  

E 6 6 T 4  

F 10 16 T 2  

E 11 11 N 3  

G 13 13 T 3  

H 15 15 T 3  

I 2 8 T 2  
 

 

Fig. 6. General graph ontology and its tabular representation 

 

(O4) Insertion of a non-tree edge. The operation InsertEdge(M,N) can be used to 

create a new non-tree edge from node M to node N. Before adding it, it must be 

checked that the two nodes are not already connected and also that the new edge does 

not close a cycle in the ontology graph. For the last check, verifying that M is not a a 

descendant of N, either tree and non-tree edges already present have to be considered. 

All the nodes which were visited after M in postorder and M itself must have their 

postorder code increased by 2 (as they will be visited, thanks to the new edge, after N 

and after M is traversed upwards). Node N is visited from M through the new edge 

from M in preorder right after all the nodes in the subtree rooted on M (which satisfy 

the descendant relations Pre>M.Pre and Post<M.Post). Hence, the nodes which must 

have their preorder code only increased by 2 (as they will be visited, thanks to the 

new edge, after N and after M is traversed upwards) are all the nodes which were 

visited after M both in preorder and in postorder (i.e., nodes visited after M in preor-

der but not belonging to the subtree rooted on M). The new tuple representing the new 

non-tree edge  must be assigned a preorder and postorder code both equal to the 

postorder of M plus 1 and a level equal to the one of M plus 1 (the assigned type is 
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obviously “N”, to represent that N is reached through a non-tree edge here). A slightly 

optimized algorithm for updating the tabular representation is the following: 

 

InsertEdge(M,N:GraphRow) 

   NewPP:=M.Post+1; NewLev:=M.Lev+1; 

   ForEach Node in GraphTable Do 

      If Node.Post>=M.Post 

      Then Node.Post+=2 

           If Node.Pre>M.Pre  

           Then Node.Pre+=2 EndIf 

      EndIf 

   EndFor 

   AddRow(N.Id,NewPP,NewPP,’N’,NewLev) 

Return 

The variables NewPP and NewLev are used to compute the codes to be assigned to 

the new node before the data of M can be changed by the rest of the algorithm. 

 

For instance, starting from the ontology in Fig. 6, the execution of the operation In-

sertEdge(D,G) produces the new ontology version shown in Fig. 7.  

 

 



 

Id Pre Post Type Lev  

A 1 19 T 1  

C 3 9 T 3  

D 4 6 T 4  

E 8 8 T 4  

F 12 18 T 2  

E 13 13 N 3  

G 15 15 T 3  

H 17 17 T 3  

I 2 10 T 2  

G 5 5 N 5  
 

 

Fig. 7. General graph ontology and its tabular representation 

 

(O5) Deletion of a non-tree edge. The operation DeleteEdge(M,N) can be used to 

remove the non-tree edge connecting node M to node N. Obviously, before deleting 

it, it must be verified that a non-tree edge from M to N actually exists and the tuple 

which encodes it (which has Id=N.Id, Pre<M.Pre, Post<M.Post, Type=“N” and 

Lev=M.Lev+1) must be found. Its effects are, in practice, the reverse of the operation 

(GO4). An algorithm for updating the tabular representation is the following: 

DeleteEdge(M,N:GraphRow) 

   DeleteRow(N.Id,N.Post,N.Post,N.Typ,N.Lev) 

   ForEach Node in GraphTable Do 

      If Node.Post>=M.Post 

      Then Node.Post-=2 

           If Node.Pre>M.Pre  

           Then Node.Pre-=2 EndIf 

      EndIf 

   EndFor 

Return 
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Starting from the ontology version in Fig. 7, we exemplify the effects of this opera-

tion with the execution of DeleteEdge(F,E), which produces the final ontology ver-

sion displayed in Fig. 8. 

 

 

 

Id Pre Post Type Lev  

A 1 17 T 1  

C 3 9 T 3  

D 4 6 T 4  

E 8 8 T 4  

F 12 16 T 2  

G 13 13 T 3  

H 15 15 T 3  

I 2 10 T 2  

G 5 5 N 5  
 

 

Fig. 8. General graph ontology and its tabular representation 

 

3.2 Storing a Multi-version Ontology in a Temporal Relation  

In this subsection, we show how the whole structural evolution of a general ontology 

can be represented and maintained as a temporal relation storing all the time-stamped 

ontology versions. As we did in [10], we assume valid time [13] is used as time di-

mension, which allows ontology designers to also apply retro- and pro-active modifi-

cations. However, the adoption of transaction time [13] (in a transaction-time or 

bitemporal relation) would require simple modifications to the proposed management. 

Hence, a multi-version ontology can be stored in a temporal relation with schema: 

GraphRelation(Id, Pre, Post, Type, Lev, From, To) 
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where tuples like the ones considered in Sec. 3.1 are augmented with the timestamp-

ing attributes From and To, representing the boundaries of a right-open time interval 

[From,To), which embodies the validity of the tuple. Such relation can be stored in a 

relational database and manipulated via SQL statements [16]. Although we adopted 

valid time, when ontology modifications are applied, we allow users to only specify 

the validity start of the modification itself. The validity end is assumed by default to 

be UC, which can be interpreted as a currently unknown time greater than the validity 

start, so that the newly created ontology version is always the last one on the time 

line. In practice, this corresponds to use valid time almost as if it were transaction 

time, with the added value of a degree of freedom concerning the validity start of the 

new ontology version, which does not necessarily coincide with the system time when 

the modification is applied. Hence, we can work today on the modifications which 

produce a new ontology version which will be put in operation, for example, at the 

beginning of the next week (proactive modification)8. In case the modification is ret-

roactive, that is valid from a time T in the past, the new ontology version will super-

sede the version valid at T and all the versions which possibly followed such version. 

Notice that retroactive modifications are sometimes required for instance in the legal 

field, where a new law may state the retroactive modification of other previous laws, 

but might be necessary also in other application domains including the medical field 

(e.g., when maintainers cannot help but delay the execution of updates after the date 

they should have become effective). 

Before applying any other modification, an empty GraphRelation temporal table 

must be initialized via the creation of the ontology root node by means of a call to the 

following procedure: 

  CreateRoot(T:TimePoint) 

     { INSERT INTO GraphRelation 

       VALUES (NewId(),1,1,1,’T’,T,’UC’) } 

                                                           

8 Although other authors [14] proposed to use “Now” as the endpoint of a right-unlimited valid 

time interval and reserve “UC” for transaction time, we prefer to use “UC” for valid time 

too, in order to correctly represent the effects of proactive modifications. It would not make 

much sense indeed to represent the validity of some fact as [T,Now) when T is a future va-

lidity start. 



  Return 

The type “T” assigned to the first node makes it the root of the spanning tree structure 

underlying the ontology (not to be confused with T, which is the time value to be 

assigned as validity start to the first ontology version). 

The algorithms presented in Sec. 3.1 for the maintenance of ontologies in their tab-

ular representation translate into the procedures which are listed in the rest of this 

subsection, where embedded SQL statements are also used to manage the ontology 

stored in the GraphRelation temporal table. Whereas we need a database relation to 

store all the versions of an ontology, we assume all the tuples making up a single 

ontology version can reasonably be kept in a buffer pool and, thus, further manipulat-

ed in main memory. For example, we will make use of a kind of snapshot query [13]: 

   SELECT * INTO GraphCursor 

   FROM GraphRelation WHERE To=’UC’ 

which extracts the current snapshot from the temporal relation GraphRelation to fetch 

all the tuples belonging to the ontology consolidated version, which can then be ac-

cessed through a cursor GraphCursor in main memory, for further processing by the 

modification procedures, via SQL statements, or one tuple at a time within a ForEach 

loop (for simplicity, we do not enter into the detail of cursor operations). 

The five procedures corresponding to the ontology maintenance algorithms pre-

sented in Sec. 3.1 are listed in the following (using pseudo-code with embedded SQL 

statements). Procedures have a second argument, T, representing the validity start of 

the modification. 

For the insertion of a new leaf node, the algorithm presented in Sec. 3.1 for opera-

tion (O1) becomes as follows: 

InsertUnder(NId:Id,T:TimePoint) 

  { SELECT * INTO GraphCursor FROM GraphRelation  

     WHERE To=’UC’; 

    SELECT * INTO N FROM GraphCursor  

     WHERE Id=NId AND Type=’T’; 

    INSERT INTO GraphRelation 



    VALUES (NewId(),N.Post+1,N.Post+1,’T’, 

            N.Lev+1,T,’UC’) } 

  ForEach Node in GraphCursor Do 

     New.Pre:=Node.Pre; 

     New.Post:=Node.Post; 

     If Node.Post>=N.Post 

     Then Node.To:=T; New.Post+=2; 

          If Node.Pre>N.Pre Then New.Pre+=2 EndIf 

     EndIf 

     If Node.To=T 

     Then { UPDATE GraphRelation SET To=T 

             WHERE Id=Node.Id AND Type=’T’  

               AND From=Node.From; 

            INSERT INTO GraphRelation 

            VALUES (Node.Id,New.Pre,New.Post,’T’, 

                    Node.Lev,T,’UC’) } EndIf 

  EndFor  

Return 

Notice that, in the ForEach loop, testing of the condition Node.To=T in the last If 

statement of the loop body is made to check whether Node has been modified, in 

order to apply the modifications to the GraphRelation (the modified tuple representing 

the old node version is assigned T as validity end and a new tuple representing the 

node new version is appended). After the ForEach loop, the tuple representing the 

newly created node is also appended. 

For the insertion of an intermediate node within the class hierarchy, the procedure 

introduced in Sec. 3.1 as (O2) becomes: 

InsertOver(NId:Id,T:TimePoint) 

  { SELECT * INTO GraphCursor FROM GraphRelation  

     WHERE To=’UC’; 

    SELECT * INTO N FROM GraphCursor  

     WHERE Id=NId AND Type=’T’; 

    INSERT INTO GraphRelation 

    VALUES (NewId(),N.Pre,N.Post+1,’T’, 



            N.Lev,T,’UC’) } 

  ForEach Node in GraphCursor Do 

     New.Pre:=Node.Pre; 

     New.Post:=Node.Post; 

     New.Lev:=Node.Lev; 

     If Node.Post>N.Post 

     Then Node.To:=T; Node.Post+=2 

       If Node.Pre>N.Pre Then Node.Pre++ EndIf 

     Else If Node.Pre>=N.Pre  

     Then Node.To:=T; Node.Pre++; Node.Post++; Node.Lev++ 

     EndIf 

     If Node.To=T  

     Then { UPDATE SET To=T 

             WHERE Id=Node.Id AND Type=’T’  

               AND From=Node.From; 

            INSERT INTO GraphRelation 

            VALUES (Node.Id,New.Pre,New.Post,’T’ 

                    New.Lev,T,’UC’) } EndIf 

  EndFor 

} 

Return 

The procedure deriving from the algorithm in Sec. 3.1 to be used for the deletion of a 

node (O3) is as follows: 

DeleteNode(NId:Id,T:TimePoint) 

  { SELECT * INTO GraphCursor FROM GraphRelation  

     WHERE To=’UC’; 

    SELECT * INTO N FROM GraphCursor  

     WHERE Id=NId AND Type=’T’; 

    UPDATE GraphCursor SET To=T 

     WHERE Id=N.Id AND To=’UC’ } 

  ForEach Node in GraphCursor Do 

     New.Pre:=Node.Pre;New.Post:=Node.Post; 

     New.Type:=Node.Type;New.Lev:=Node.Lev; 

     If Node.Pre>N.Pre  



     Then If Node.Post<N.Post  

          Then Node.To:=T;Node.Pre--; 

               Node.Post--;Node.Lev-- 

          Else If Node.Post>N.Post 

               Then Node.To:=T;Node.Pre-=2;Node.Post-=2  

               EndIf 

     Else If Node.Post>N.Post 

          Then Node.To:=T;Node.Post-=2 EndIf 

     If Node.To=T 

     Then { UPDATE GraphRelation SET To=T 

             WHERE Id=Node.Id and From=Node.From; 

            INSERT INTO GraphRelation 

            VALUES (Node.Id,New.Pre,New.Post,New.Type, 

                    Node.Lev,T,’UC’) } EndIf 

  EndFor 

Return 

The procedure to be used for the creation of a new non-tree edge according to the 

algorithm  (O4) in Sec. 3.3 becomes as follows: 

InsertEdge(MId,NId:Id,T:TimePoint) 

  { SELECT * INTO GraphCursor FROM GraphRelation  

     WHERE To=’UC’; 

    SELECT * INTO M FROM GraphCursor  

     WHERE MId=NId AND Type=’T’; 

    SELECT * INTO N FROM GraphCursor  

     WHERE Id=NId AND Type=’T’; 

    INSERT INTO GraphRelation 

    VALUES (N.Id,M.Post+1,M.Post+1,’N’, 

            M.Lev+1,T,’UC’) } 

  ForEach Node in GraphCursor Do 

     New.Pre:=Node.Pre;New.Post:=Node.Post; 

     If Node.Post>=M.Post 

     Then Node.To:=T; New.Post+=2; 

          If Node.Pre>M.Pre Then New.Pre+=2 EndIf 

     EndIf 



     If Node.To=T 

     Then { UPDATE GraphRelation SET To=T 

             WHERE Id=Node.Id AND Type=’T’  

               AND From=Node.From; 

            INSERT INTO GraphRelation 

            VALUES (Node.Id,New.Pre,New.Post,’T’, 

                    Node.Lev,T,’UC’) } EndIf 

  EndFor 

Return 

Finally, the procedure deriving from the algorithm (O5) in Sec. 3.3 to be used for the 

deletion of a non-tree edge is as follows: 

DeleteEdge(MId,NId:Id,T:TimePoint) 

  { SELECT * INTO GraphCursor FROM GraphRelation  

     WHERE To=’UC’; 

    SELECT * INTO M FROM GraphCursor  

     WHERE Id=MId AND Type=’T’; 

    SELECT * INTO N FROM GraphCursor  

     WHERE Id=NId AND Type=’N’ AND M.Pre<Pre 

       AND Post<M.Post AND Lev=M.Lev+1; 

    UPDATE GraphRelation SET To=T 

     WHERE M.Pre<Pre AND Post<M.Post 

       AND Lev=M.Lev+1 AND Type=’N’} 

  ForEach Node in GraphCursor Do 

     New.Pre:=Node.Pre;New.Post:=Node.Post; 

     New.Type:=Node.Type;New.Lev:=Node.Lev; 

     If Node.Post>M.Post  

     Then Node.To:=T;Node.Post-=2; 

          If Node.Pre>M.Pre 

          Then Node.To:=T;Node.Pre-=2 EndIf 

     EndIf 

     If Node.To=T 

     Then { UPDATE GraphRelation SET To=T 

             WHERE Id=Node.Id and From=Node.From; 

            INSERT INTO GraphRelation 



            VALUES (Node.Id,New.Pre,New.Post,New.Type, 

                    Node.Lev,T,’UC’) } EndIf 

  EndFor 

Return 

For the sake of simplicity, in writing the code, we assumed so far that only one ontol-

ogy version is affected by the modification (i.e., the one with To equal to UC, which 

is part of the consolidated version valid at present time, further assuming that no ver-

sions with From>Now are currently stored in the GraphRelation temporal table). Oth-

erwise, if more than one version can be affected, the SQL SELECT which loads 

GraphCursor at the beginning of the three procedures must be replaced by the SQL 

statements which follow: 

  DELETE FROM GraphRelation WHERE From>T; 

  SELECT * INTO GraphCursor FROM GraphRelation  

   WHERE From<=T AND T<To 

In fact, the creation of a new version valid from T involves all the tuples whose 

timestamp is totally or partially overlapped by the validity of the modification 

[T,UC). The validity start T is less than, equal to or greater than the current time Now 

in case of a retroactive, on time or proactive modification, respectively. In order to 

clarify what happens when a modification is applied to the history of an object in the 

most general case, we can consider the graphical example shown in Fig. 6. 



 

Fig. 9. Effects of a modification in the most general case 

 

In particular, Fig. 9(a) displays the history of an object composed of five versions 

(i.e., Vi valid from ti to ti+1, i=1..4, and V5 valid from t5) and the placement on the 

time axis of a modification which must be applied to the history to produce a new 

version with contents V and validity from T. As shown in Fig. 9(b) presenting the 

history of the object after the application of the modification, the modification left 

versions V1 and V2 untouched, completely overlapped versions V4 and V5 (which 

have been removed) and partially overlapped version V3, whose validity has, thus, 

been restricted to [t3,T). After the deletion of the completely overlapped versions, the 

version affected by the modification is the one whose timestamp contains the validity 

start of the modification (i.e., V3 in Fig. 6(a), as t3≤T<t4). Therefore, the two SQL 

statements listed above accomplish the tasks, respectively, of deleting all the com-

pletely overlapped versions and of putting all the partially overlapped versions into 

GraphCursor for further processing by the procedures. Notice that the code of the 

procedures could indeed be easily changed in order to derive the new ontology ver-

sion by applying the modification to the consolidated version (i.e., V5 in Fig. 9(a)) 

also when the modification is retroactive. 

Finally, the proposed procedures can also easily be adapted in order to apply a se-

quence of primitives all valid from the same time T, so that a new ontology version 
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can be derived from the previous one by “simultaneously” applying more than one 

ontology modifications within a single transaction.  

Coming back to the running example introduced in Sec. 3.1, we can easily store the 

first ontology version depicted in Fig. 1, assuming it has been created with validity 

starting at time T0, in the temporal relation displayed as Table 1. 

Table 1. Temporal relation storing the first version of the ontology as appearing in Fig. 3 

Id Pre Post Type Lev From To 

A 1 15 T 1 T0 UC 

B 2 2 T 2 T0 UC 

C 4 8 T 2 T0 UC 

D 5 5 T 3 T0 UC 

E 7 7 T 3 T0 UC 

F 10 14 T 2 T0 UC 

E 11 11 N 3 T0 UC 

G 13 13 T 3 T0 UC 

 

Then we can consider the application of the following sequence of modifications 

which correspond to the ontology updates exemplified in Sec. 3.1: 

    InsertUnder(F,T1); 

    InsertOver(C,T2); 

    DeleteNode(B,T3); 

    InsertEdge(D,G,T4); 

    DeleteEdge(F,E,T5); 

For instance, Table 2 shows the contents of the GraphRelation temporal table after the 

execution of InsertUnder(F,T1) on the initial state in Table 1. Notice how nodes A 

and F are represented through two tuples each, representing their versions belonging 

to the two ontology versions, respectively (e.g., the first version of A with preorder 1, 

postorder 15 and validity [T0,T1) belongs to the first ontology version, whereas the 

second version of A with postorder changed to 17 and validity [T1,UC) belongs to the 

second ontology version). Nodes represented through a single tuple (e.g., B) have a 

single version with validity [T0,UC) shared by both ontology versions. Obviously, the 

newly created node (H) has a single version with validity [T1,UC) belonging to the 

second ontology version only. We apologize with readers familiar with temporal da-

tabases, for whom such explanations might seem trivial. 



Table 2. GraphRelation after the creation of leaf node H (it contains the first and second versi-

ons of the ontology in Fig. 3) 

Id Pre Post Type Lev From To 

A 1 15 T 1 T0 T1 

B 2 2 T 2 T0 UC 

C 4 8 T 2 T0 UC 

D 5 5 T 3 T0 UC 

E 7 7 T 3 T0 UC 

F 10 14 T 2 T0 T1 

E 11 11 N 3 T0 UC 

G 13 13 T 3 T0 UC 

A 1 17 T 1 T1 UC 

F 10 16 T 2 T1 UC 

H 15 15 T 3 T1 UC 

 

We skip intermediate steps and show as Table 3 the contents of GraphRelation af-

ter the execution of the last DeleteEdge(F,E,T5) operation. The final state of the 

GraphRelation displayed as Table 3 contains all the six ontology versions, fully ex-

emplifying the storage of our multi-version ontology in a single temporal relation. 

Table 3. GraphRelation after the execution of all the five modifications (it contains all the six 

versions of the ontology in Fig. 3) 

Id Pre Post Type Lev From To 

A 1 15 T 1 T0 T1 

B 2 2 T 2 T0 T3 

C 4 8 T 2 T0 T2 

D 5 5 T 3 T0 T2 

E 7 7 T 3 T0 T2 

F 10 14 T 2 T0 T1 

E 11 11 N 3 T0 T2 

G 13 13 T 3 T0 T2 

A 1 17 T 1 T1 T2 

F 10 16 T 2 T1 T2 

H 15 15 T 3 T1 T2 

A 1 19 T 1 T2 T3 

C 5 9 T 3 T2 T3 

D 6 6 T 4 T2 T3 

E 8 8 T 4 T2 T3 

F 12 18 T 2 T2 T3 

E 13 13 N 3 T2 T3 

G 15 15 T 3 T2 T3 

H 17 17 T 3 T2 T3 

I 4 10 T 2 T2 T3 

A 1 17 T 1 T3 T4 

C 3 7 T 3 T3 T4 

D 4 4 T 4 T3 T4 

E 6 6 T 4 T3 T4 



F 10 16 T 2 T3 T4 

E 11 11 N 3 T3 T4 

G 13 13 T 3 T3 T4 

H 15 15 T 3 T3 T4 

I 2 8 T 2 T3 T4 

A 1 19 T 1 T4 T5 

C 3 9 T 3 T4 UC 

D 4 6 T 4 T4 UC 

E 8 8 T 4 T4 UC 

F 12 18 T 2 T4 T5 

E 13 13 N 3 T4 T5 

G 15 15 T 3 T4 T5 

H 17 17 T 3 T4 T5 

I 2 10 T 2 T4 UC 

G 5 5 N 5 T4 UC 

A 1 17 T 1 T5 UC 

F 12 16 T 2 T5 UC 

G 13 13 T 3 T5 UC 

H 15 15 T 3 T5 UC 

 

Considering then the execution of a classical snapshot query [13] (retrieving the re-

lation snapshot valid at time T and projecting out the timestamping attributes): 

  SELECT Id,Pre,Post,Lev FROM GraphRelation 

  WHERE From<=T AND T<To 

over the temporal relation in Table 3, we can notice that:  

─ if T∈ [T0,T1), the retrieved snapshot coincides with the table in Fig. 1 (version 1);  

─ if T∈ [T1,T2), the retrieved snapshot coincides with the table in Fig. 3 (version 2);  

─ if T∈ [T2,T3), the retrieved snapshot coincides with the table in Fig. 4 (version 3);  

─ if T∈ [T3,T4), the retrieved snapshot coincides with the table in Fig. 5 (version 4);  

─ if T∈ [T4,T5), the retrieved snapshot coincides with the table in Fig. 6 (version 5);  

─ if T>T5, the retrieved snapshot coincides with the table in Fig. 7 (version 6).  

This clearly highlights how the temporal relation in Table 3 is actually both a com-

prehensive and compact representation and a suitable storage scheme for the class 

hierarchy structure of a multi-version ontology. 

As far as indexing of multi-version resources by means of references to ontology 

classes is concerned, we can underline the fact that the solution —used for the sake of 

simplicity in [1,5]— based on the bookkeeping of a single ontology version (i.e., the 



consolidated version) to index all resource versions is very inefficient from a practical 

point of view, besides being simplistic and rather incorrect from a semantic and appli-

cation requirement point of view [8]. As a matter of fact, a reference ontology might 

have to be used to index a very large repository of multi-version resources in a realis-

tic environment. Hence, when even small changes (e.g., addition or deletion of a sin-

gle class) are applied to an ontology in this scenario, where preorder codes are used 

as class identifiers, a large number of classes in the ontology might have their identi-

fiers changed as a consequence of the update.Thus, such a change in class identifiers 

has to be propagated to all resources in order to preserve the correct semantic index-

ing, which would require to access and rewrite a large fraction of the whole resource 

repository (say, terabytes of data) to update class identifiers. With the indirect refer-

ence solution proposed in this work, ontology changes only affect the corresponding 

GraphRelation table (say, a few kilobyes of data) and do not require any changes to 

be applied to the resource repository. 

4 PERSONALIZATION QUERY PROCESSING WITH 

MULTI-VERSION ONTOLOGIES 

The semantic indexing of resources which link their contents to reference ontologies, 

as shown in Sec. 2, is designed to support personalization queries [1,5]. For this pur-

pose, and in order to show how query processing works in the presence of a multi-

version ontology, we consider the XQuery-like [17] query template which follows: 

  FOR $x IN resources.xml 

  WHERE TEXT_CONSTRAINT(XP,Key) 

    AND VALID(T) AND APPLICABLE(Cx:depth) 

  RETURN $x 

which is a slightly simplified form of the template introduced in [1,5] and for which a 

query engine has been implemented in a prototype system. The function 

TEXT_CONSTRAINT() applies textual constraints to the contents of the resources to 

be retrieved. Textual constraints can include both structural and lexical constraints, 

involving an XPath expression [18] which can be used for matching keywords within 



the resource structured contents. For instance, the expression 

“TEXT_CONSTRAINT(′//foo/bar/text()′,′baz AND qux′)” selects 

the XML documents containing anywhere an element “foo” having a subelement 

“bar” whose contents include both the keyword “baz” and the keyword “qux”. The 

function VALID() effects a temporal slicing of the resources by selecting the content 

versions valid at time “T”. The function APPLICABLE() effects a sort of semantic 

slicing of the resources by selecting the content versions that are applicable to in-

stances of ontology class “Cx” and of its ancestors up to “depth” levels. The meaning 

of the depth parameter has been also briefly recalled in Sec. 2. In [1,5], the expression 

“Cx:depth” has been called a navigational pattern with respect to the reference ontol-

ogy. 

In the presence of multi-version ontologies, the first step in query processing is the 

determination of the ontology classes denoted by the navigational pattern “Cx:depth” 

and of the preorder and postorder codes of such classes in the ontology version of 

interest. This information can be retrieved from the GraphRelation temporal table 

which stores the encoding of the multi-version ontology structure. For this purpose, 

first of all we assume to retrieve, for further processing, the ontology version valid at 

time “T” into a cursor OntologyCursor by means of the SQL snapshot query which 

follows: 

  SELECT Id,Pre,Post,Lev INTO OntologyCursor 

  FROM GraphRelation  

  WHERE From<=T AND T<To 

Efficient execution of such preliminary operation can be supported by means of a 

suitable temporal access structure (like the RABTree index we proposed in [19]). 

Then, as in Sec. 3.2, we further assume that the whole contents of OntologyCursor 

can be kept in a buffer pool and, thus, further operations effected on its tuples, via 

formal SQL queries or cursor manipulation primitives, are fast operations working in 

main memory.  

Hence, the next step of query processing takes two different ways according to the 

fact that non-tree edges of the underlying ontology are involved or not. In fact, if the 



user-supplied navigation pattern does not involve nodes with incoming non-tree edg-

es, query processing follows the same lines as described in [10] for tree-like ontolo-

gies. We will illustrate such a case first, in Sec. 4.1, since it is preliminary to the most 

general case also involving the traversal of non-tree edges which will be dealt with in 

Sec. 4.2. 

4.1 Query Processing not Involving Non-tree Egdes 

Assuming the navigational pattern “Cx:depth” denotes a set of nodes only connected 

by tree edges in the ontology graph, we can omit testing of the Type attribute in the 

SQL statements which can be used to search the OntologyCursor temporal table dur-

ing personalization query processing. Hence, as done in [10] with tree-shaped ontolo-

gies, the retrieval of CX data can be effected by means of the the SQL query which 

follows: 

  SELECT * INTO CX FROM OntologyCursor  

  WHERE Id=Cx; 

In fact, the query retrieves the data of the class CX whose identifier is “Cx” in the 

ontology version valid at time “T” which has been stored into OntologyCursor. Ow-

ing to the hypothesis of “Cx:depth” being free of non-tree edges, class CX has a sin-

gle ancestor CY, that can be reached in “depth” steps starting from CX. Hence, mak-

ing use of the level information associated to nodes, we can retrieve the CY data by 

means of the following SQL query from the ontology snapshot valid at time “T”: 



  SELECT * INTO CY 

  FROM OntologyCursor AS Node 

  WHERE Node.Pre<CX.Pre AND Node.Post>CX.Post 

    AND CX.Lev-Node.Lev=depth 

The two ontology classes CX and CY retrieved in such a way must be used, in the 

second query processing step, to select the qualifying resource contents through their 

preorder and postorder codes. In particular, a resource version qualifies if its semantic 

pertinence implies the query navigational pattern [1,3,5]. Thanks to the properties of 

the preorder/postorder encoding, this notion of implication translates into verifying 

whether at least one of the ontology classes which make up the semantic pertinence of 

the resource is contained in a rectangular region defined in the preorder/postorder 

plane by the navigational pattern [1,5] (under the hypothesis of being free of non-tree 

edges, the “Cx:depth” navigational pattern individuates a single rectangular region in 

the preorder/postorder plane). Such rectangular region, in which all and only the 

nodes in the inheritance path from CY to CX fall, can be determined as the Cartesian 

product [CY.Pre,CX.Pre] x [CX.Post,CY.Post] (i.e., the lower right corner of the 

rectangle is CX, whereas the upper left corner is CY). Owing to the fact that preorder, 

postorder and level codes associated to the same classes are different in different on-

tology versions, we will have a different containment relationship to be checked for 

each ontology version. Notice that, in case the parameter “depth” is “0”, the region 

denoted by the navigational pattern “Cx:0” reduces to a single point CX in the preor-

der/postorder plane and the containment tests reduce to equality tests.  

For example, let us consider the multi-version ontology stored in our sample 

GraphRelation displayed in Table 3 and the query navigational pattern “D:2”. De-

pending on the time “T” of interest, the CX and CY values retrieved by the above two 

queries navigating the ontology will be as summarized in Table 4. 

Let us further consider the resource chunk in Fig. 2. The element foo(v1) is appli-

cable to class B in [T1,T2); the element foo(v2) is applicable to class C in [T2,UC); 

the element foo/bar(v1) is applicable to class C or class G in [T2,UC). The relative 

positioning of such resource pertinences with respect to the regions individuated by 



the navigational pattern “D:2” in the preorder/postorder plane for different time val-

ues is displayed in Fig. 10. 

Table 4. Evaluation of the navigational pattern “D:2” in different temporal versions of the 

ontology stored as in Tab. 3 

 CX CY 

Time Id Pre Post Id Pre Post 

[T0, T1) D 5 5 A 1 15 

[T1, T2) D 5 5 A 1 17 

[T2, T3) D 6 6 I 4 10 

[T3, T4) D 4 4 I 2 8 

[T4, T5) D 4 6 I 2 10 

[T5, UC) D 4 6 I 2 10 

 

Hence, at any time T∈[T0,T1) there are no contents in the considered resource 

chunk which can qualify (the navigational pattern “D:2”, from CX=D to CY=A up-

wards, translates into the [CY.Pre,CX.Pre] x [CX.Post,CY.Post] = [1,5] x [5,15] re-

gion, owing to the data in the first row of Tab. 4). At any time T∈[T1,T2) the only 

valid element is foo(v1), which does not qualify since its semantic pertinence is class 

B (which has coordinates (2,2) in the preorder/postorder plane), which lays outside of 

the region individuated by the navigation pattern “D:2” (which is [1,5] x [5,17] in the 

plane, according to the second row of Tab. 4). At any time T∈[T2,UC), valid elements 

are foo(v2) whose semantic pertinence is class C and its subelement foo/bar(v1) 

which inherits the applicability class C from its parent and also has applicability class 

G. Hence both foo(v2) and foo/bar(v1) qualify for the query in [T2,UC) as their perti-

nence class C is contained in the region individuated by the navigational pattern 

“D:2” (whereas the other applicability class G of foo/bar(v1) lays outside). In particu-

lar, the coordinates of C and the region individuated by “D:2” are, respectively, (5,9) 

and [4,6] x [6,10] in [T2,T3), (3,7) and [2,4] x [4,8] in [T3,T4), (3,9) and [2,4] x 

[6,10] in [T4,UC). Therefore, considering the chunk in Fig. 2 as the only available 

resource, a query with navigational pattern “D:2” returns an empty result if the tem-



poral selection condition involves a time T<T2 and retrieves the second version of the 

element foo (inclusive of the only version of the subelement foo/bar) if the temporal 

selection involves a time T≥T2. 

 

4.2 Query Processing with General Graph Ontologies 

In general, in the presence of general graph ontologies also containing non-tree 

edges, the evaluation of a navigational pattern “Cx:depth” is a bit more complicate. In 

fact, there can be multiple paths that can be followed moving from CX “depth” steps 

upwards in any ontology version, taking into account both tree and non-tree edges. 

Whereas, as exemplified in the previous subsection, the path composed of tree edges 

only gives rise to a single rectangular region in the preorder/postorder plane, other 

paths also containing non-tree edges may exist and give rise to multiple rectangular 

regions in the preorder/postorder plane. Let us still identify a preorder/postorder re-

gion be means of the pair (CX,CY) of its lower right and upper left corners, respec-

tively. Hence we have, for instance, that the upward path C1, C2, C3, C4, C5 gives rise, 

if C3 is linked to C2 by means of a non-tree edge (while the other ones in the path are 

tree edges), to two rectangular regions: (C1,C2) and (C3,C5). Thanks to the assumption 

that OntologyCursor can be manipulated in main memory and thanks to the fact that 

the “depth” parameter is a small number in any reasonable personalization query (e.g., 

we can assume with a very high confidence that “depth” usually ranges from 0 to 2), 

we can simply employ an iterative search method to retrieve all the desired regions. 

At each iteration, we navigate upwards one level of the ontology to locate direct an-

cestors (i.e., parents), either through tree or non-tree edges. Being (N0,N) a region in 

the current set of working regions (RWork) and N' the direct ancestor of N in the 

ontology, if N is reached from N' via a tree edge, then the region can be extended as 

(N0,N') to also include N' in the path; on the contrary, if it is reached via a non-tree 

edge, then a new region (N',N'), initially made of a single node, can be added to the 

current set of regions RWork. Obviously, if N' has been previously reached via anoth-

er path, there is no point in continuing the extension of the current path from it (oth-

erwise, we would redundantly have overlapping paths in the final result set). Hence, 



the algorithm also takes into account, by means of the Visited node set, of the previ-

ously reached nodes in order to locally stop the path search. The current region is 

moved from RWork to the final result set Regions when it must not be extended fur-

ther. At the end of the main loop, also the Regions left in RWork, which cannot be 

extended just because we run out of the “depth” steps, are added to the result set. 

Thus, the desired Regions set can be iteratively constructed as follows: 

  { SELECT * INTO CX FROM OntologyCursor  

     WHERE Id=Cx AND Type=’T’ } 

  Regions:={}; RWork:={(CX,CX)}; Visited:={CX} 

  For Step:=1 To depth Do 

    ForEach Node In OntologyCursor Do 

      ForEach (N0,N) In RWork Do 

        If Node.Pre<N.Pre And N.Post<Node.Post 

           And Node.Lev=N.Lev+1 And Node.Type=’T’ Then 

             RWork-={(N0,N)}; 

             If Node In Visited  

             Then Regions+={(N0,N)} 

             Else RWork+={(N0,Node)}; Visited+={Node} 

             EndIf 

        EndIf 

        If Node.Id=N.Id And Node.Type=’N’ Then 

           { SELECT * INTO Node’ FROM OntologyCursor 

              WHERE Node’.Pre<Node.Pre AND 

Node.Post<Node’.Post 

                AND Node’.Lev=Node.Lev+1 AND 

Node’.Type=’T’ } 

           If Node’ Not In Visited Then 

              RWork+={(Node’,Node’)}; Visited+={Node’} 

EndIf 

        EndIf 

      EndFor 

    EndFor 

  EndFor 

  Regions+=RWork 



Notice that multiple tuples with the same Id may be present in OntologyCursor (re-

member, e.g., Fig. 8): one tuple with type “T”, which contains preorder, postorder and 

level data of the node representing the ontology class identified by Id, and zero or 

more tuples with type “N”, which actually represent the non-tree edges incoming in 

the ontology class identified by Id. This is the reason why the first SQL query looks 

for the only T-type tuple identified by Cx in order to initialize Regions, RWork and 

Visited variables. Then, at each step of the for loop on “depth”, tuples involving pre-

decessor nodes of N are initially determined as Node, owing to the ancestor-

descendant relationship (1) and the condition that their levels differ by 1. If it can be 

reached from a tree-type edge (i.e., Node.Type=“T”), then the tuple in Node repre-

sents a real ancestor node and can be processed as it is. If it has been reached from a 

non-tree-type edge (i.e., Node.Type=“N”, representing a hop node in the terminology 

of [15]), then the tuple representing the real node with the same Id of Node must be 

found (as Node' by the second SQL query) to be further processed. 

For instance, considering the ontology structure stored in Tab. 3, the navigational 

pattern “E:2” is evaluated by the above algorithm as denoting the regions {(E,A), 

(F,A)} in [T0,T2), {(E,I), (F,A)} in [T2,T5) and {(E,I)} in [T5,UC). In fact, when 

T∈[T0,T1), the ontology version stored into OntologyCursor is the same as in Fig. 3; 

RWork is initializerd to {(E,E)} and Visited to {E}; in the first step of the algorithm, 

RWork and Visited become {(E,C)} and {C,E} due the execution of the first If (when 

Node=C) and then {(E,C),(F,F)} and {C,E,F} due to the execution of the second If 

(Node=C and Node'=F); in the second and last step Rwork and Visited become 

{(E,A),(F,F)} and {A,C,E,F} due to first If and then {(E,A),(F,A)} and {A,C,E,F} 

due to the second If (when Node'=A, already belonging to Visited). In practice, with 

reference to the graph in Fig. 3, the region (E,A) is constructed from E by navigating 

the hierarchy two steps upwards via tree edges only, the hop node F is reached from E 

in one step upwards via the non-tree edge and gives rise to the region (F,A) by navi-

gating the hierarchy from F in another step upwards via a tree edge. In a similar way, 

the regions corresponding to “E:2” can be constructed also when T belongs to other 

time intervals. 

After all the preorder/postorder rectangular regions involved by the navigational 

pattern “Cx:depth” have been determined by the above procedure and stored into 



Regions in such a way, the second step of query processing, which requires to select 

the qualifying resource versions if their semantic pertinence implies the query naviga-

tional pattern, translates into verifying whether at least one of the ontology classes 

which make up the semantic pertinence of the resource is contained in at least one of 

the rectangular regions in Regions. Therefore, the only difference with respect to the 

previous case exemplified in Fig. 10, is that multiple rectangular regions to test inclu-

sion may be present in this case, for any considered temporal version. 

As far as the impact of non-tree edges on the overall query processing costs is con-

cerned, it is unlikely to be sensibly relevant. First of all, the ontologies used in our 

personalization approach usually contain a limited number of non-tree edges. For 

instance, in the medical domain, the reference ontologies are mainly made of several 

independent taxonomies interconnected by some extra IS-A links [20] (the study [21] 

on SNOMED-CT evidenced that 27% only of the ontology classes have multiple 

parents). Ontologies used for personalization are semantically circumscribed subsets 

(e.g., diseases, hospital facilities, physician specialties) of general reference ontolo-

gies, including a few interconnected taxonomies isolated from the rest. Hence, due to 

the limited number of non-tree edges, to the fact that evaluation of a navigational 

pattern is performed in main memory and, in particular, to the usually short depth to 

be navigated, there is no need to resort to smart navigation algorithms and optimiza-

tions as those presented in [15] for general graphs. 
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Fig. 10. Query processing in the preorder/postorder plane. Placement of candidate resources is 

shown with blue circles 

 

Id Pre Post Type Lev  

A 1 15 T 1  

B 2 2 T 2  

C 4 8 T 2  

D 5 5 T 3  

E 7 7 N 3  

F 10 14 T 2  

E 11 11 T 3  

G 13 13 T 3  
 

 

Fig. 11. A different representation of the ontology structure in Fig. 3 

 

Moreover, owing to the possible existence of multiple spanning trees in a graph, 

the same class hierarchy can be represented in different ways owing to different 

placements of the non-tree edges, which depend on the history of changes sequential-

ly applied to build the ontology. For example, the same class hierarchy of Fig. 3 could 

be represented as shown in Fig. 11 indeed, with a non-tree edge connecting class C to 
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class E and a tree edge connecting class F to class E. Hence, one might question 

whether such diversity could have a noticeably impact on query costs. If a class C has 

n parents, one of them is connected by a tree edge and n-1 by non-tree edges. Thus, 

regardless of which incoming edge is the tree one, always one edge and n-1 non-tree 

edges have to be followed to navigate one level upwards. The actual placement of 

non-tree edges only influences the order in which nodes are visited and the way they 

are grouped in regions by the algorithm above (the same number of regions is anyway 

generated). For instance with the non-tree edge from C to E as in Fig. 11, regions 

{(E,A), (C,A)} would be generated for “E:2” in [T0,T2) instead of {(E,A), (F,A)}. 

As outlined in [1; Sec. 3.6], in order to obtain a fully fledged efficient and scalable 

personalization engine, the selection of resource contents based on the semantic in-

dexing described above can be combined with the holistic technology described in 

[1,22] and relying on the holistic temporal slicing techniques presented in [23]. In a 

few words, the holistic technology relies on a four-level architecture on which stack-

based algorithms can be executed for efficient path and twig matching in querying an 

XML file [24]. For details on such an approach to personalization and for better char-

acterization of usefulness of the personalization approach in the medical and legal 

domains, readers are referred to [1] and [22], respectively. 

Finally, we can observe that the query template considered at the beginning of this 

section can easily be extended to support other temporal selection operators (e.g., to 

test overlap or containment of intervals) and to retrieve data valid over temporal in-

tervals (i.e., also belonging to more than one temporal version of the resource) like in 

the more general formulation presented in [1]. Furthermore, also the applicability 

constraint can be extended to the general form presented in [1], where combinations 

with “AND” and “OR” logical operators of several navigational patterns in positive or 

negated form can be specified (in order to qualify for a negated navigational pattern, a 

resource must have its representative point outside the region defined by the naviga-

tional pattern in the preorder/postorder plane). Also applicability constraints involving 

multiple reference ontologies can be specified in the same query and processed as 

shown in [1]. 



5 RELATED WORKS 

Information overload when searching a large repository for useful resources is a 

problem that can discourage, lead astray or at least hamper end users. Recommender 

systems [25,26], information filtering [27,28], personalized search [29,30] are exam-

ples of solutions, built upon the concept of user profile, which have been proposed to 

alleviate such problem, by increasing the quality and reducing the quantity of re-

trieved information and, thus, improving the search efficiency. In this context, per-

sonalization can be defined as the ways in which information and services can be 

tailored to match the unique and specific needs of an individual or a community [31]. 

Personalization is about understanding the needs of individuals and helping satisfy a 

goal that efficiently and knowledgeably addresses their  needs in a given context [32]. 

Pretschner [33] presents a thorough discussion of ontology-based user profiling tech-

niques and systems. More recent proposals, also in various application fields, include 

[34,35,36,37,38,39,40,41]. 

For details on the ontology-based personalization of (non-ontological) multi-

version resources method we followed in this paper, or very similar approaches in the 

medical domain, we refer the reader to the already cited papers [1,2,3,4,5]. In fact, in 

such approaches, ontological information (e.g., concerning patient profiles or diagnos-

tic facilities) is used to provide a selective access to a large repository of resources to 

produce a resource version tailored to a specific use case. Once the user interest has 

been focused on some ontology class(es), information on the class hierarchy can be 

used for selective access to annotated resources. When temporal resources are ac-

cessed, the necessity of also versioning the ontology has been identified (for the legal 

domain) in [8]. However, the technical problems which must be solved to efficiently 

support a full temporal perspective were not addressed before this work and its pre-

liminary version [10]. 

The number of works dealing with ontology evolution and management of multiple 

ontology versions is quite large, as witnessed by the annotated bibliography intro-

duced in [42]. Most relevant ones are referenced in the “Temporal Extensions of the 

Semantic Web” and “Versioning Issues” Sections of such a bibliography and careful-

ly discussed in the “Ontology versioning approaches” Section of the excellent survey 



[43]. Notice that, in this work, we do not deal with ontology evolution in a strict 

sense. We rather deal with evolution of an accessory data structure, embodying (or 

duplicating) the class IS-A hierarchy extracted from the ontology, which is necessary 

to support the personalized access to data resources. No other features of the underly-

ing ontologies, including individuals and properties, are of interest for the (XML) data 

management problem considered here. This means that, in the presence of a fully 

fledged ontology, we assume its evolution can be managed, for instance, by means of 

one of the frameworks described in [43]; then the modifications involving the class 

hierarchy, which are the only of interest in our personalization approach, are collected 

(e.g., a list of them can be saved as a byproduct of the ontology evolution process, or 

they can even be extracted a posteriori by means of some change detection tool [42; 

Sec. 3.4, 43; Sec. 7.1.2]) to be applied to our accessory data structure, as it has been 

described in this work. 

In order to efficiently manage the evolution of the ontology class hierarchy, we 

proposed to use a temporal relation. Several papers proposed efficient storage of on-

tologies in a relational database, including the SOR [44], Minerva [45] and ROSM 

[46] approaches. As far as those approaches are concerned: all of them can be adapted 

to store multi-version ontologies by making temporal all the relations in their pro-

posed relational schema; they also provide relations for the storage and management 

of ontology instances, whereas the ontologies used for personalization as considered 

in this work (e.g., derived from the SNOMED-CT terminologies) are not equipped 

with instances; the only table, out of the fourteen in the schema of [46] and more than 

three dozens used in [44,45], which is relevant for the personalization method consid-

ered in this work is the one storing the “SubClassOf” information. The GraphRelation 

considered in this paper substitutes (or complements) the information stored in a 

“SubClassOf” relation made temporal. Hence, our approach in Section 3 can be 

thought as aimed at mapping high-level operations acting on the ontology class hier-

archy onto low-level operations on time-stamped tuples encoding the ontology struc-

ture as stored in the GraphRelation. 

On the other hand, several works deal with the representation and storage of tem-

poral ontologies and propose, for instance, temporal extensions of RDF or OWL on-

tology languages [47,48,49,50,51]. Whereas the target of such approaches is the man-



agement of temporal versions of an evolving complete ontology (i.e., also including 

properties and instances), we once again emphasize that this work is complementary 

to such approaches, as it is focused on an accessory temporal data structure represent-

ing the evolution of the class hierarchy only, extracted from the ontology. Such data 

structure accompanies the main ontology, evolving in parallel and for which any of 

the proposed temporal RDF/OWL representation formats can be used, and is managed 

separately in order to efficiently support our proposed personalization method by 

means of the relational storage and management algorithms presented in Sec. 3 and 4. 

6 CONCLUSIONS 

In this paper, which extends the approach of [10] to general graph ontologies, we 

introduced a storage scheme which can be used to represent and manage in a temporal 

database the evolution of the class hierarchy of an ontology used for personalization. 

A multi-version ontology structure stored in a temporal relational table according to 

the proposed representation scheme can be manipulated via standard SQL queries. 

The definition of primitive operations, which can be used for the maintenance of the 

ontology structure in such a framework, has also been provided. Moreover, it has 

been shown how the query processing method described in [1,22] has to be augment-

ed in order to deal with multi-version ontologies in the presence of the storage scheme 

presented in this work. Notice that previous approaches on ontology-based personali-

zation did not take into account the availability of multiple ontology versions, where-

as their exploitation to reconstruct a consistent past perspective on personalization is a 

necessity of advanced applications (e.g., in the legal and medical domains). We also 

released for the first time in this work the simplifying assumption of dealing with 

tree-shaped ontologies, on which our previous approaches to personalization [1,5], 

including [10], were built. In fact, we have shown, in Sec. 3, how the evolution of 

general graph ontologies can be managed and, in Sec. 4, how their adoption for per-

sonalization can also be supported.  

In future work, we will also consider more thoroughly performance aspects of the 

proposed solutions. In particular, we will experimentally test the efficiency of the 

approach in the presence of very large ontologies, with thousands of classes and doz-



ens of versions each. In such a case, the adoption of a temporal index structure like 

the RABTree [19], which is a lean secondary index I/O-optimal in the absence of data 

duplication, might reveal crucial in order to cope with the size growth of the 

GraphRelation temporal table in the long run, with versions continuing to pile up at a 

stable rate. The impact of a multi-version ontology on personalization query pro-

cessing costs will be also extensively studied on a future release of the prototype de-

scribed in [1,5]. Preliminary results [52] (with tree-like ontologies) have shown that 

the solutions presented in this paper allow, with a minimal impact on the efficiency of 

the personalization engine, a very efficient management of ontology updates and con-

sequent adaptation of indexed resources. 
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