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Abstract

Pervasive computing systems can be modeled e↵ectively as populations of in-
teracting autonomous components. The key challenge to realizing such mod-
els is in getting separately-specified and -developed sub-systems to discover
and interoperate with each other in an open and extensible way, supported by
appropriate middleware services. In this paper, we argue that nature-inspired
coordination models o↵er a promising way of addressing this challenge. We
first frame the various dimensions along which nature-inspired coordination
models can be defined, and survey the most relevant proposals in the area.
We describe the nature-inspired coordination model developed within the
SAPERE project as a synthesis of existing approaches, and show how it
can e↵ectively support the multifold requirements of modern and emerging
pervasive services. We conclude by identifying what we think are the open
research challenges in this area, and identify some research directions that
we believe are promising.
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models, self-organization.

1. Introduction

The multitude of pervasive computing devices that populate our every-
day environments – embedded sensors and actuators, smart phones, per-
sonal see-through displays, interactive public displays, and smart objects, to
mention only a few – are leading to the emergence of a dense, decentral-
ized infrastructure, which can provide a wealth of services in an un-intrusive
manner [1, 2, 3]. This infrastructure will necessarily be open to contribu-
tions from a range of vendors and other users, and will be used to deliver
and access services for interacting with the surrounding physical world and
with the social activities occurring within it [4, 5, 6, 7].

To support such a vision, a great deal of research activity in pervasive
computing has been devoted to addressing the problems associated with the
development of e↵ective pervasive service ecosystems. The research issues
include supporting context-aware composition of service components [8, 9];
enforcing self-adaptability and self-organization in services [10]; and ensuring
that service frameworks can be flexible enough to tolerate service diversity
and evolution [11]. While a general-purpose approach to support the devel-
opment of such systems is still missing [12], the key requirements that such
an approach should support have been extensively analyzed [11]. They can
be re-formulated as follows:

Situatedness — Pervasive services are typically time- and space-dependent,
and feature physically- or socially-situated activities. Components of
pervasive systems should be able to interact with the surrounding phys-
ical and social world by adapting their behaviour accordingly.

Autonomy and self-adaptivity — While individual components should
be autonomous in the face of the inherent dynamics of their operational
environment [13], pervasive systems should also feature system-level
autonomy to deal globally with the unpredictability of the environment,
providing properties such as self-adaptation, self-management, and self-
organization [14].

Prosumption and diversity — Infrastructures for pervasive systems
must promote open models of component integration, to be able to
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take advantage of the injection of new services and components [15].
This is particularly true in the context of socio-technical systems [16],
where human users and software agents act as prosumers – both con-
sumers and producers – of devices, data, and services.

Eternity — As well as short-term adaptation, a pervasive systems infras-
tructure should allow for the long-term evolution of organizations, com-
ponents, and patterns of usage, in order to accommodate technological
advances as well as the mutable needs of users without requiring ex-
tensive re-engineering e↵ort [17]. In fact, pervasive systems are better
conceived as eternal systems, engineered for continuous, unlimited ser-
vice, upgrading, and maintenance over time.

The way to identify suitable approaches for the engineering and development
of complex pervasive service systems is to state the problem in terms of engi-
neering the coordinated activities of a multitude of decentralized autonomous
components : that is, as a dynamic coordination problem for multi-agent
systems [15] (MAS from now on). The di↵erent hardware and software com-
ponents that provide pervasive services are decentralized and embedded in
a dynamic environment, that is typically controlled by multiple stakeholders
(municipalities, industries, private users) and is intrinsically dynamic due to
mobility and intermittent availability. Accordingly, their behaviour cannot
be subjected to a predictable flow of control, and they should be rather mod-
eled in terms of components exhibiting observable autonomous behaviour,
that is as agents [15, 18]. The same considerations clearly apply to those
components that by their very nature have autonomous internal decision-
making, such as mobile robots, self-driving cars, and humans. Consequently,
composite services cannot be engineered on the basis of static patterns of or-
chestrated activities such as happens in the business process domain. Rather,
they must base their activities on a suitable coordination model [19] that cap-
tures the appropriate dynamic composition patterns, adaptable to the con-
text and situations the system finds itself in, and o↵ering fully decentralized
orchestration, within an associated coordination infrastructure. Coordination
has been defined as the science of managing the space of interaction [20]. Co-
ordination models and their associated middleware infrastructures provide
the basic abstractions and technologies for dealing with the engineering of
complex component interactions, especially in large-scale, open MASs [21, 22]
such as are found in pervasive systems.
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Among the variety of possible approaches to coordination in modern per-
vasive systems [12, 19, 23, 24], a very promising one is to take inspiration
from nature. Indeed – given the very di↵erent kinds of natural systems that
e↵ectively coordinate the activities of their components in a context-aware,
self-adaptable, and flexible way [11] – one could argue that a coordination
model that uses natural metaphors to express distributed algorithms and
coordination patterns provides a “natural” way to think about distributed
computation.

In recent years a variety of nature-inspired algorithmic solutions and pat-
terns have been applied to deal with specific aspects of self-adaptability and
openness in specific distributed and pervasive contexts [14, 25, 26]. Yet a
comprehensive framework defining a general-purpose coordination approach
to pervasive systems is still missing.

Against this background, this paper presents the following contributions
and insights. In Section 2 we introduce the key concepts underlying coordina-
tion models and infrastructures, and analyze the suitability of nature-inspired
coordination models for the engineering of complex pervasive multi-agent
ecosystems. We survey the most relevant proposals in the area of nature-
inspired coordination models, and the associated proposals for middleware
infrastructures in Section 3. Section 4 presents the SAPERE approach [27],
that synthesizes and generalizes existing approaches and was specifically con-
ceived to engineer and support the execution of complex pervasive MASs. As
discussed in Section 5, SAPERE makes it possible to easily program a vari-
ety of nature-inspired self-organization patterns. We identify some remaining
open challenges in Section 6, and identify some promising research directions,
before o↵ering some overall conclusions in Section 7.

2. Towards Nature-Inspired Coordination

In this section we introduce the key concepts behind coordination models
and infrastructures, focusing in particular on tuple-based coordination mod-
els, and motivate the suitability of nature-inspired coordination models for
pervasive MASs.

2.1. Coordination Models, Languages, and Technologies

Expressive models, technologies, and methodologies are required to al-
low programmers and designers to command the complexity and diversity
of today’s computational systems, which nowadays typically consist of large,
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dynamic ensembles of distributed components that are heterogeneous in na-
ture, structure, and behaviour. These include socio-technical components,
humans, mobile and embedded devices. Building coherent and dependable
systems in such environments is the main concern of research on coordination
models and languages [28, 29, 30].

Most of the complexity in computational systems comes from interac-
tion [20, 31, 32], from harnessing the relations and inter-dependencies be-
tween the various system components (humans included). Coordination mod-
els [24] provide the basic abstractions for harnessing system interaction [33].
Sitting on top of such a model, coordination languages and coordination in-
frastructures provide the basic mechanisms and the necessary middleware
to implement and deploy coordinated systems. Clearly, coordination mod-
els, languages, and technologies have the potential to play a key role in the
engineering of pervasive systems [34].

It is worth noting that other meaningful definitions of coordination model
have been proposed, each highlighting some key issue of coordination:

• A coordination model is the glue that binds separate activities into an
ensemble [19];

• A coordination model provides a framework in which the interaction of
active and independent entities called agents can be expressed [24]. A
coordination model should cover the issues of creation and destruction
of agents, communication among agents, and spatial distribution of
agents, as well as synchronization and distribution of their actions over
time.

According to the simple meta-model presented by Ciancarini [24], a co-
ordination model defines:

• the coordination entities, whose mutual interaction is ruled by the
model, also called the coordinables ;

• the coordination media, the abstractions enabling and ruling agent in-
teractions; and

• the coordination laws, the rules that govern the space of interaction,
controlling the observable behaviour of coordinables, and the compu-
tational behaviour of coordination media as well;
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In a coordinated MAS, agents play the role of the coordinables, and the
coordination media play the role of the social abstractions governing agent
interaction, and enforcing coordination laws.

Nowadays, tuple-based coordination models [35] – deriving from the com-
mon ancestor of the original Linda [23] model – represent the most prominent
and widespread coordination models, with several implementations from both
academia and industry including T Spaces [36], JavaSpaces [37], TuCSoN [38],
and GigaSpaces1. In a tuple-based coordinated MAS, agents synchronize,
co-operate, and compete based on tuples, which are simple data structures
representing information chunks. Tuples are made available in tuple spaces,
which are non-indexed shared information spaces working as the coordina-
tion medium. Computation occurs by accessing, consuming, and producing
tuples in an associative way, relying on the actual content of tuples and not
on any form of naming, addressing, or indexing. An interesting survey of
the technologies and platforms for tuple-based coordination by Menezes and
Tolksdorf [39] analyzes the suitability of tuple-based coordination systems
in supporting openness, unpredictable changes in distributed environments,
and several aspects related to adaptiveness: requirements that are of primary
importance in pervasive systems.

Most importantly for the current discussion, tuple-based coordination
forms an e↵ective basis for nature-inspired coordination.

2.2. Nature-inspired Coordination for Pervasive Systems

As many of the most characteristic human artifacts are not nature-
inspired, the first question to be answered is: why should we care about
nature-inspired models when building computational systems? – and perva-
sive systems in particular. Nature-inspired computing researchers provide a
simple yet powerful answer [26, 40]: Natural systems are good in dealing with
the complexity of coordinating large-scale systems of autonomous agents [41].
Equally important, many properties of complex coordinated natural systems
– such as physical, chemical, biochemical, biological, and ethological systems
– are essential for computational systems: notably openness, robustness, fault
tolerance, and self-adaptation. The issue of properly modeling the dynamics
of the interactions to tame the complexity of a system [32] does not only arise
in computational and natural systems, but span across many other domains,

1
http://www.gigaspaces.com
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from economics to sociology and organization sciences [42].
Yet it is in natural systems that the most suitable answers to the issues

of pervasive systems can be found. For instance Grassé [43] notes that in ter-
mite societies the coordination of tasks and the regulation of constructions
are not directly dependent from the workers, but from the specific mechanism
by which workers indirectly coordinate with each other, and that such mech-
anisms provided for openness, adaptiveness and situatedeness. Many other
works on social insects [44] and on biochemical and physical systems [11]
show that nature has found elegant solutions to coordination models and
mechanisms supporting situatedness openness, and adaptiveness – mecha-
nisms over and above those of long-term evolution through natural selection.

Research activities in the field of natural models reveal some common
characteristics that nature-inspired coordination models for pervasive sys-
tems should feature: autonomy, at the component level to preserve openness;
spontaneous context-aware triggering of interactions between components;
supporting situated behaviour; and leading to an overall self-organising and
self-adaptive behavior at the system level [45]. In spite of the fact that tuple-
based coordination is definitely not a nature-inspired model per se [23], it
exhibits the characteristics that make it suitable as a basic building block
to transpose natural coordination models in computational terms. These
include full support for autonomy of components, associative access to tu-
ples by components to support spontaneous triggering of interactions, and
support for distributed and context-aware (situated) implementation [46].

3. Overview of Nature-inspired Coordination Models

A number of di↵erent nature-inspired models have been proposed in the
literature, inspired by a variety of di↵erent natural metaphors through which
to express coordination patterns suitable for solving some specific coordina-
tion problems. Typically, these nature-inspired patterns can be supported
either by o↵-the-shelf middleware or – better – by specifically-developed lan-
guage and middleware infrastructures, typically realized by extending tuple-
based coordination models.

3.1. Stigmergy

The notion of stigmergy represents the first acknowledged mechanism of
spatial coordination in natural systems, introduced by Grassé [43] as the fun-
damental coordination mechanism in termite societies. Nowadays, the most
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widely-studied example of stigmergic coordination in insect societies is prob-
ably that of ant colonies [47]. The basic mechanism is based on pheromones
that are released in the environment by the ants that find food on their way
back to the nest, thus building pheromone trails towards food that other ants
are then stimulated to follow. The pheromones act as environment markers
for specific social activities, driving both the individual and the social be-
haviour of ants.

In the computer science literature, the term “stigmergy” refers to a
set of nature-inspired coordination mechanisms mediated by the environ-
ment [48, 49]. Agents deposit data into a distributed, shared, environ-
ment so as to collectively (yet implicitly) build distributed data structures
that can help them navigate in such environments. For instance, digital
pheromones [50, 51] have been fruitfully exploited as the basic mechanism
for coordinating the movements of robot swarms and modular robots [52],
and for helping people find directions in an unknown environment [53]. In the
area of networking, stigmergy has been exploited to realize e↵ective routing
mechanisms in dynamic networks [54, 55].

In terms of middleware infrastructures, stigmergic coordination can be
e↵ectively supported by distributed shared network technologies, and in par-
ticular distributed tuple spaces [38, 46, 12]. Indeed, middleware infrastruc-
tures for distributed network environments have been proposed that extend
tuple-based model with the the specific aim of facilitating the expression of
stigmergic features (for example through pheromone evaporation and di↵u-
sion) [52]. In the case of pervasive systems, stigmergic coordination has also
been supported by exploiting pervasive devices such as sensor networks [56]
or RFID tags [53, 57].

3.2. Chemical coordination

Another early source of inspiration for coordination was provided by
chemistry. Chemical reactions can be seen as simple laws regulating the
evolution of extraordinarily complex physical phenomena, in some way co-
ordinating the behaviours of a huge number of components, along with the
global evolution of complex systems such as biological organisms and mete-
orological systems.

Gamma [58] was the first and the most prominent example of a
chemically-inspired coordination model. In Gamma, coordination is con-
ceived as the evolution of a space governed by chemical-like rules, globally
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working as a rewriting system [59]. In the CHAM (chemical abstract ma-
chine) model [60], states are interpreted as chemical solutions, where floating
molecules (representing coordinated entities) interact according to some re-
action rules, and where membranes constrain the execution of reactions.

Beside having been conceived as general computational model,
chemically-inspired computing can be an e↵ective starting point to realize
schemes of dynamic service composition [61] or knowledge aggregation [62].
Network protocols for data distribution and aggregation according to chem-
ical models have also been explored, as in the Fraglets approach [63, 64].

Several proposals exist to support service composition based on chemical
models [65], including proposals specifically conceived for adaptive pervasive
services [66], or to support the adaptive organization of knowledge [62].

3.3. Physical coordination

Inspired by the way in which physical masses and particles move and self-
organize according to gravitational and electromagnetic fields, new models of
coordination have recently been proposed using a field-based metaphor [67].
In field-based coordination models, computational “force fields” – generated
either by coordinated components or by the coordination middleware – prop-
agate across a spatial environment, leading to distributed data structures
that a↵ect the actions and motions of the agents in that environment.

Co-fields [68] proposes exploiting composite computational fields to coor-
dinate the motion of users and robots in an environment. Other approaches
suggest the adoption of virtual force fields to control the shape of self-
assembly material [69]. From the perspective of middleware infrastructures,
TOTA is a tuple-based middleware explicitly conceived to support field-based
coordination for adaptive context-aware and spatially-aware activities in per-
vasive computing scenarios [70]. The Proto language and middleware [71] ex-
ploits field-based coordination to orchestrate the activities of sensor-actuator
networks, and the “field calculus” proposed in [72] is accordingly used as a
ground for formally studying properties of self-organisation.

3.4. Biochemical coordination

The chemical nature of Gamma is flawed in principle: while their struc-
ture is reminiscent of chemical reactions, their behaviour is that of a rewriting
system that is far from resembling real chemical laws. This is not the case
with chemical tuple space models [73]: in these systems, data, devices, and
software agents are uniformly represented in the form of chemical reactants,
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and system behaviour is expressed by means of full-fledged chemical-like laws
that are both time-dependent and stochastic, thereby more accurately captur-
ing the essential properties of chemical processes. Chemical tuple spaces can
then also embed probabilistic coordination laws, thus promoting stochastic
behaviour in coordinated MASs.

More specifically, biochemical tuple spaces [74] enhance chemical tuple
spaces by shaping coordination through distribution and topology. They in-
troduce compartments and di↵usion (somehow borrowing from physical co-
ordination models) as first-class notions for coordination, along with a notion
of neighbourhood, making it possible to structure the coordination topology
by making local spaces available for the execution of chemical reactions.

Biochemical coordination models appear very flexible in enabling the
spatial formation of both localised and distributed activity patterns, and
have been exploited in many special-purpose pervasive frameworks, includ-
ing crowd mobility management [75] and participatory sensing [76]. The
amorphous computing model can be considered an example of biochemical
coordination model [77].

However, to the best of our knowledge no general-purpose middleware
infrastructure has previously been developed to support a biochemical coor-
dination model. The SAPERE model and infrastructure supply this, mak-
ing also possible to support stigmergic, chemical, and physical coordination
within a single model and framework.

4. The SAPERE Approach

SAPERE2 is a nature-inspired coordination model and framework to sup-
port the design and development of composite pervasive service systems.
Its reference architecture and coordination model synthesize from existing
nature-inspired approaches, and is based on an assumption of spatial, local
interactions (to be realized via a network of distributed tuple spaces), which
is in line with all nature-inspired approaches. Its coordination laws make it
possible to express and deploy general nature-inspired distributed algorithms
and coordination patterns.

2
The model was developed as part of an EU-funded research project. See http://www.

sapere-project.eu/.
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Figure 1: The SAPERE Reference Architecture.

4.1. Reference Architecture and Model Overview

SAPERE abstracts a pervasive environment as a non-layered spatial sub-
strate deployed upon a dense network of connected heterogeneous ICT de-
vices (Figure 1). SAPERE acts as a shared coordination medium embody-
ing the basic laws of coordination. These coordination laws govern the in-
teractions between SAPERE agents: we call them eco-laws, in line with a
nature-inspired terminology. SAPERE agents include all those autonomous
components that can provide or request resources and services.

In SAPERE spatial substrate, agents can interact and combine with each
other to serve their own individual needs as well as those of the overall
environment, so as to define a computational ecosystem. Interactions are
mediated through the eco-laws that typically take into consideration the
spatial relationships between agents. Users can access the ecosystem in a
decentralized way to use and consume data and services, and they can also
act as “prosumers” (that is, as both producers and consumers of services) by
injecting new agents (data or service components) into the ecosystem.

For the agents in the ecosystem, SAPERE provides common modeling
and common treatment. All agents (whether sensors, actuators, services,
users, data, or resources in general) have an associated semantic representa-
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tion, which is a basic ingredient for enabling dynamic interactions between
components. Such annotations, called Live Semantic Annotations or LSAs
for short, are tightly associated to the agent they describe, and are capable of
dynamically reflecting in their values its current situation and context (hence
their “liveness”). LSAs act as observable interfaces of resources as well as
the basis for enforcing semantic forms of dynamic interactions both for ser-
vice aggregation and composition, and for data and knowledge management.
From a nature-inspired viewpoint, the LSAs of an agent express the stigma
(analogously to a pheromone or chemical/physical trace) reflecting the ex-
istence of an agent in an environment and its current (and possibly past)
activities.

The eco-laws define the basic coordination laws driving the virtual “bio-
chemical” interactions among the LSAs of the various agents of the ecosys-
tem. In particular, the idea is to limit interaction on a spatial basis, and rely
on di↵usive mechanisms to get longer-range networking and composition of
data and services. The set of eco-laws includes:

Bonding is the basic mechanism for local interactions and exchange of infor-
mation between agents. This eco-law acts as a virtual chemical bond
(based on semantic pattern-matching) between two LSAs (and thus,
between their associated agents);

Spreading di↵uses LSAs on a spatial basis, and is necessary to support the
propagation of information and interactions among remote agents and
to realize coordination structures such as fields and chemical gradients;

Aggregation provides catalysis among LSAs, to support distributed data
aggregation;

Decay mimics chemical evaporation to garbage collect data.

It is perhaps surprising that these four eco-laws are su�cient to realize a wide
variety of nature-inspired coordination schemes, including those physically-,
chemically-, and biologically-inspired, within the same framework and with
the same basic programming approach.

Following its natural inspiration, adaptivity in the SAPERE approach
is not in the capability of individual components, but rather in the overall
self-organizing dynamics of the ecosystem. In particular, any change in the
system, and any change in its components or their context, are reflected by
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dynamic changes in their LSAs and so will be reflected in the firing of new
eco-laws. This can lead to new bonds or aggregations, and/or to the breaking
of existing bonds between components.

4.2. The SAPERE Middleware

To turn this reference architecture and model into an operational one,
a middleware infrastructure needs to provide an active space in which to
store the continuously-updating LSAs of agents, and to support the matching
process that triggers eco-laws that allow the components of the system to
interact.

At its lowest level, the SAPERE middleware is formed by a network
of nodes, each hosting a local LSA space, with neighbor relations typically
shaped by spatial or network relations. The LSA space is a local tuple
space which hosts LSAs represented as tuples. The shape of the actual
network of connections is determined by a reconfigurable component, which
can be based on a strategy that connects nodes based on spatial proximity,
social proximity or both [78]. The shape of such a network determines the
paths along which LSAs on a node can propagate and di↵use to other nodes:
nothing fundamentally precludes long-range, non-spatial neighborhoods.

Whenever an agent (corresponding to a device, a sensor, a service, or
an application agent) is executed in a node, its own LSA is automatically
injected into the LSA space of that node, making the component part of that
space and of its local coordination dynamics. The LSA can also indicate its
desire to propagate and di↵use through the network of LSA spaces. When an
agent is removed from a node, its LSA is automatically removed from that
space.

In the current implementation of the middleware (available under open-
source licence for desktop and server Java platforms3, and for Android4) any
device with su�cient computational power to handle an LSA space can serve
as a node of the network. A network can therefore consist of personal com-
puters, tablets or smartphones, interactive displays, or embedded sensors
(of adequate power). From the operational perspective all SAPERE nodes
are at the same level, since the middleware code they run can support the
same services and provide the same set of functions. Despite such notional

3
http://bitbucket.org/gcastelli/saperemiddleware-javase

4
http://bitbucket.org/gcastelli/saperemiddleware-android
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equality, for practical purposes nodes might implement di↵erent behaviours
to account for particular service requirements, hardware capabilities or limi-
tations. For example, a node on a mobile device might assume a behaviour
accounting for constrained power supply and computational power, setting
device sensors to tolerable sample rates.

For individual agents, the middleware provides a simple API to let agents
advertise themselves via an LSA and support its continuous updating. In ad-
dition, the API enables agents to detect local events, such as the modification
of LSAs or the triggering of eco-laws.

From the viewpoint of the underlying infrastructure, the middleware
transparently absorbs dynamic changes caused by the arrival and departure
of the devices without a↵ecting the perception of the spatial environment by
individual agents. The middleware is also able to detect events on LSAs and
trigger the applicable eco-laws. Coordination therefore occurs when a change
in LSA causes an eco-law to fire and bring about an interaction concerning
one or more LSAs in the local LSA space.

Eco-laws are realized as a set of rules embedded in SAPERE nodes. For
each node, the same set of eco-laws applies. Eco-laws’ computations will be
described more in detail in the following section.

We emphasize that the SAPERE middleware can host additional libraries
in the forms of agents to be installed in the nodes to enrich services o↵ered
by the middleware. Such library agents access the system by means of the
same API and in terms of LSAs, at the same level as any other agent.

4.3. A Coordination Model Based on Eco-laws

The eco-laws support self-adaptive and self-organising activities in the
ecosystem. Eco-laws operate on a pattern-matching schema: they are trig-
gered by the presence of LSAs matching with each other, and manipulate
the matching LSAs (and the fields within them) according to a mechanism
of artificial chemistry [11, 79].

We now describe the structure of LSAs, the middleware API, and the
principles underlying the set of basic eco-laws.

4.3.1. LSAs and API

Any component or agent that takes part in a SAPERE ecosystem is
represented by one or more LSAs, a representation that is strictly linked
to its corresponding agent. On the one hand, the LSA reflects in real time
the internal state of its associated agent, enabling the entity to actively take
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part to the system dynamics and ecosystem evolution over time. On the
other hand, LSAs are manipulated by the eco-laws running the ecosystem
that can (for instance) establish or dissolve connections with other LSAs.

LSAs are realized as descriptive tuples made up of a number of fields
in the form of name/value pairs. For instance, the following LSA:
LSA1(sensor-type = temperature; accuracy = 0.1; temp = 45) could
represent the LSA of a temperature sensor, expressing the actual temperature
value and its accuracy.

By building on and extending tuple-based models [23], the values in an
LSA can be actual (yet possibly dynamic and changing over time, as it is
the case with the temp field in LSA1, which makes LSAs live) or formal,
not tied to an actual value and representing a dangling connection (typically
represented with a “?”).

The fields in an LSA can be organized in a hierarchical fashion: the
value of a property can be a set of properties again. Also, in the actual
SAPERE system, field names and values can be expressed using ontologies.
We omit these details for clarity, and forward the reader to [80] for a detailed
description.

In the SAPERE model, the idea is that each agent takes care of initializing
at least one LSA, injecting it into the LSA space, and keeping the values of
the LSAs fields updated to reflect its current state. Each agent can modify
only its own LSAs, but can read any LSAs which have been linked to its own
LSAs by the bonding eco-law. LSAs can also be manipulated by eco-laws,
as explained in the following sections.

Pattern matching between LSAs – which is the basis for triggering eco-
laws – happens when the values of properties with corresponding names
match. As in classical tuple-based approaches, a formal value matches with
any corresponding actual value.

As an example, the presented LSA1 could match an LSA2 of the kind
LSA2(sensor-type = temperature; temp = ?), which expresses a request
for acquiring the current temperature value. Any additional properties
present in LSA1 (e.g., accuracy) are not taken into account by the matching
function because it considers only an inclusive match.

At the middleware level, an API is provided to agents to let
agents inject an LSA into the tuple space (injectLSA(LSA myLSA));
to let agents atomically update some fields of an LSA to keep it
alive (updateLSA(field = new-value)); and to execute event handlers
(onEcoLawEvent(...)) to sense whatever events occur on its LSAs (spe-
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AgentTemperatureSensor {

init() {

float tl = sample();

injectLSA(sensor-type = temperature; accuracy = 0.1; temp = t1)

}

run() {

while(true) {

sleep (100);

float tl = sample();

updateLSA(temp = tl)

}

}

}

Figure 2: An agent that acts as a temperature sensor, injects an LSA with the temperature

level during initialization, and periodically updates it.

cialized in di↵erent ways such as the onBond(LSA mylsa) method to detect
when an LSA is being bonded to another). As an example, Figure 2 repre-
sents the code (simplified for the sake of readability) of a temperature-sensing
agent that injects the LSA with the temperature level and periodically up-
dates it.

Unlike Linda, SAPERE does not distinguish between tuples and anti-
tuples (or templates). Consequently, the injectLSA() operation subsumes
Linda’s rd and the out operations thanks to the specific operation of the
bond eco-law, described next.

4.3.2. The Bonding Eco-law

Bonding is the primary form of interaction among co-located agents
(within the same LSA space) in SAPERE. In particular, bonding can be
used to locally discover and access information, as well to get in touch with
and access local services – all of which is achieved by a single, versatile mech-
anism. The bonding eco-law realizes a virtual link between LSAs whenever
two LSAs (or sub-descriptions within) match.

The bonding eco-law is triggered by the presence of formal values in at
least one of the LSAs involved. Upon a successful pattern-match between the
formal values of an LSA and actual values of another LSA, the eco-law creates
the bond between the two. The link established by bond in the presence of
“?” formal fields is bi-directional and symmetric. Once a bond is established
both the agents holding the LSAs are notified of the new bond and can trigger
actions accordingly. After bond creation, the two agents holding the LSAs
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Agent AccessTemperatureInformation {

init() {

injectLSA(sensor-type = temperature; temp = ?);

}

onBond(LSA b) {

float tl = b.temp;

print("current temperature = "+ tl);

}

}

Figure 3: An agent that injects an LSA which matches with that of the temperature sensor

and enables it to access the corresponding temp information.

can read each other’s LSAs. This implies that once a formal value of an LSA
matches with an actual value in an LSA it is bound to, the corresponding
agent can access the actual values associated with the formal ones as well as
any other properties in the bonded LSA.

As an example, and recalling the temperature-sensing agent of Figure 2,
the agent in Figure 3 injects an LSA that matches the LSA in Figure 2, thus
enabling it to access the corresponding temperature information.

In the same way that bonding is automatically triggered upon match
presence, bond disruption takes place automatically whenever a change in
the “live” values of a bonded LSA mean that the match conditions no longer
hold.

In addition to the “?” formal field, which establishes a one-to-one bidirec-
tional bond between components, SAPERE also makes it possible to express
a “*” formal field, which leads to a one-to-many bond with multiple matching
LSAs.

Finally, the “!” formal field expresses a field that is formal unless the
other “?” field has been bonded. This makes it possible for an LSA to
express a parameterised services, where the “?” formal field represents the
parameter of the service, and the “!” field represents the answer that it is
able to provide once it has been filled with the parameters.

As a very simple example, consider an agent that is able to classify tem-
perature values into labels expressing the comfort level, such as “cold” an
“warm”. To do that, the agent would need a temperature value as input
and would return a label as output. This could be expressed by the LSA
LSA3(agent-type = temp-converter; temp = ?; comfort = !). In the
presence of a matching LSA, such as the presented LSA1, LSA3 would bind
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with LSA1. Consequently, the agent holding LSA3 would automatically turn
the comfort field into an actual value on the basis of the information read
in LSA1.

The bonding eco-law mechanism enables two agents to discover each other
spontaneously and exchange information, all with a single operation after
both have injected an LSA into the space, and without any prior information
about each other’s existence other than a shared ontological space of field
names. Unlike in traditional discovery of data and services [81], bonding
makes it possible to compose services without distinguishing between the
roles of the involved agents, and subsumes the traditionally separated phases
of discovery and invocation.

4.3.3. The Aggregation Eco-law

The ability to aggregate information to produce high-level digests of some
contextual or situational facts is a fundamental requirement for adaptive and
dynamic systems. In fact, in open and dynamic environments, one cannot
know a priori which information will be available: some information sources
may disappear, others may appear. Providing a means to extract a summary
of all available information without having to explicitly discover and access
the individual information sources is therefore very important.

The aggregation eco-law is intended to aggregate LSAs together to form
summaries of the current system’s context. An agent can inject an LSA
with aggregation op and type properties. The aggregation op property
identifies a function to base aggregation upon. The type property identifies
which sorts of LSAs to aggregate. In particular it identifies a numerical
property of LSAs to be aggregated.

For example, the LSA LSA4(aggregation op = max; type = temp) will
trigger the aggregation eco-law that selects all the LSAs having a temp type;
computes the maximum value among them; and modifies the LSA with the
result (i.e., creating a new field in the LSA space, aggregation result = 57

– 57 being the computed value). In the current implementation, the aggre-
gation eco-law is capable of performing most common order- and duplicate-
insensitive (ODI) aggregation functions [82].

The aggregation eco-law supports separation of concerns and allows the
re-use of previous aggregations. On the one hand, an agent can request an
aggregation process without dealing with the actual code to perform the
aggregation; on the other, the LSA resulting from an aggregation can be
read (by means of bonding) by any other agent that wishes to acquire the
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pre-computed result.
Beside ODI functions, which can be performed by the aggregation eco-

law in isolation, other forms of distributed computations can be realized by
properly combining the activities of eco-laws and agents.

4.3.4. The Decay Eco-law

The decay eco-law enables the removal of components from the
SAPERE environment. The decay eco-law applies to all LSAs
that specify a decay property, updating their time-to-live accord-
ing to a specific decay function, and removing LSAs that, based
on this decay property, have expired. For instance, the LSA
LSA5(sensor-type = temperature; temp = 10; decay = 10000) will
expire and be deleted ten seconds (10000ms) after injection.

The decay eco-law is the basis for a garbage collector capable of remov-
ing LSAs that are no longer needed in the ecosystem or that are no longer
maintained by a component, for instance because they have been copied into
an LSA space through spreading.

4.3.5. The Spread Eco-law

The eco-laws presented so far act on a local basis, on LSAs within a single
LSA space. As the SAPERE model is based on a network of spaces, it is
fundamental to enable interactions between spaces, specifically by providing
a mechanism to send information to remote LSA spaces and make it possible
to distribute information and results across LSA spaces, and consequently to
promote coordination of activities among distributed agents.

In SAPERE design, we wanted to avoid direct actions in remote spaces,
which introduces semantic and implementation problems that seem resistant
to a clean and nature-inspired solution. To this end, in SAPERE we designed
a spread eco-law to di↵use LSAs to remote spaces. One of the primary
usages of the spread eco-law is to enable searches for components that are
not available locally, and conversely to enable the remote advertisement of
components.

For an LSA to be subject to the spread eco-law, it has to
include a diffusion field, whose value (along with additional pa-
rameters) defines the specific type of propagation. The SAPERE
framework implements two di↵erent types of propagation: direct
propagation used to spread an LSA to a specified neighbor node,
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LSA6(...diffusion op=direct; destination=node x; ...); and gen-
eral propagation to propagate an LSA to all neighboring nodes,
LSA7(...diffusion op=general; hop = 10; ...), where the hop value
can be specified to limit the distance of propagation of the LSA from the
source node.

Clearly, the nature of the relations between the LSA spaces (whether
related to spatial proximity, or social proximity, or other relations that can
be supported by the middleware [78]), determine the actual semantic of the
“hops” that determine the extent to which an LSA spreads.

Concerning scalability, it is clear that not giving any bound (or giving
too large bound) to the distance at which LSAs could spread, may induce
scalability problems: the resulting patterns of coordination would involve
too many agents and too far from each other. However, the spatial nature
of pervasive applications typically suggests the adoption of coordination pat-
terns relying on spatial proximity and, consequently, reasonable limits on the
spreading distance for LSAs.

General di↵usion of an LSA to distances greater than one is a multicast
that induces a large number of replicas of the same LSA to reach the same
nodes multiple times from di↵erent paths. To prevent this, general di↵usion
is typically coupled with the aggregation eco-law so as to merge together
multiple copies of the same LSA that arrive on a node from di↵erent paths,
and/or with decay to remove replicas after some time.

5. From Eco-laws to Nature-inspired Patterns, Self-awareness, and
Applications

The eco-laws form a necessary and su�cient core to support a large set
of self-organizing, nature-inspired interactions [10].

On the one hand, our experience and analysis show that the four eco-laws
are necessary to express known self-organization patterns. Bonding is the el-
ementary mean to support adaptive local service interactions in SAPERE,
subsuming the necessary phases of discovery and invocation of traditional ser-
vice systems. Spreading is necessary to di↵use information in a distributed
environment to enable distributed interactions. Aggregation and decay are
necessary to support decentralized adaptive access to information without
being forced to dynamically deploy code on the nodes of the system, which
may not be possible in decentralized environments. Such informal consid-
erations supply the lack of formal proofs that we will try to build in the
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future.
On the other hand (and again relying on extensive experience rather than

on formal arguments) the eco-laws are su�cient. That is, they are expressive
enough to support a large variety of self-adaptive and self-organizing coor-
dination schemes, including nature-inspired interactions in open pervasive
service ecosystems and “unnatural” advanced forms of distributed situation
awareness [83, 84]. This does not mean that only nature-inspired algorithms
can be implemented. On the contrary, binding and spreading can be trivially
used to realize local and distributed client-server interaction schemes, includ-
ing those used to dynamically connect to sources of contextual information,
as well as asynchronous models of interaction and information propagation.
By coupling spreading with aggregation and decay it is possible to realize
distributed data structures that e↵ectively support all patterns of nature-
inspired adaptive and self-organizing behaviour. Most of these patterns,
in fact, rely on the possibility of computing distributed data structures to
express virtual physical fields, or digital pheromones, or virtual gradients:
structures that can be built quite intuitively as LSAs and eco-laws.

In this section we exemplify how, by combining eco-laws, it is possible to
realize some exemplary nature-inspired self-organizing patterns, as well as a
variety of self-awareness patterns, and that can ultimately be used to develop
several applications.

5.1. Self-organization Patterns

The bonding eco-law is the basic interaction mechanism for composing
local data and service structures. On top of it, the other three eco-laws can be
used to compose distributed structures [10]. The aggregation and spreading
eco-laws can be combined in di↵erent ways to form a variety of structures.

As a first example, aggregation applied to the multiple copies of di↵used
LSAs can reduce the number of redundant LSAs so as to form a distributed
gradient structure, also known as computational force field. In general field
data-structures are a useful tool to encode and spread information in a dis-
tributed system. The main point of using them is that they e↵ectively provide
adaptive spatial awareness to agents. Fields in fact provide both a measure
of distance in the network (by means of hop count from the source) and a
measure of the direction from where the information comes from (by con-
sidering the slope of the hop counts). Such information is very useful in a
number of pervasive applications that are closely coupled with the location
of the agents.
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For example, a field data structure can be used to coordinate the motion of
people in an environment [85], where agents running on users’ smart phones
give directions by accessing the information on LSAs that are spread as fields
in the environment. Considering the example in Figure 4, the Display agent
spreads a field with the hop number expressing distance (in terms of network
hops) from it. The User agent can then follow the gradient of the Display

LSA to reach the location of the display. This approach is based on strictly
local information – the local shape of the field – and is adaptive to changing
conditions – a moving display or a corridor made inaccessible – as the field
of the Display would reshape itself accordingly.

As a second example, spreading and aggregation can be used together
to produce distributed self-organized aggregation, dynamically computing
some distributed property of the system (e.g., some value of sensors spread
in the systems and represented as a set of distributed LSAs) and making
the results of such computation available at each and every node of the
system [82]. Distributed aggregation is a basic mechanism by which to realize
forms of distributed coordination such as consensus-finding, distributed task
allocation, and behaviour di↵erentiation. As an example, Figure 5 shows how
an agent X can trigger a distributed aggregation of temperature sensors, so
as to determine what is the maximum value of the temperature sensed in the
surroundings.

As a third example, gradients and fields can be the basis for building
pheromone-like data structures driving agent activities [25]. These data
structures, mimicking pheromone trails in natural systems like ant colonies,
are deployed by mobile agents, and provide local information on how to
explore the distributed environment. In particular, while general di↵u-
sion and progressive decay can be used to realize di↵usible and evaporating
pheromone-like data structures, direct propagation can be used to navigate
by following pheromone gradients. For example, in a trade fair scenario
with multiple displays providing information, a user agent finding some in-
teresting information can start spreading a pheromone trail to allow other
agents to easily reach the source (display) of that information by following
the trail. Pheromones can be realized as LSAs locally deposited by agent as
they move across the network: accordingly, such LSAs would be deployed
along the agent’s path. Pheromone LSAs would also be associated with the
decay eco-law to emulate pheromone evaporation.

Finally, in a more general way, these patterns are provided as services [86]
that can be combined with each other to provide more powerful services. A
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Agent Display {

init() { injectLSA(name = display, diffusion_op = general,

hop = 1, aggregation_op = min, previous = local)

} }

Agent User {

init() { injectLSA(name = display, hop = *) }

onBond(LSA b) { float d = computeDistanceFromHop(b.hop)

print("display distance = "+d)

print("go toward "+b.previous)

} }

Figure 4: Generating and navigating distributed data structures. The agent Display uses

the spread eco-law combined with aggregation to create field-like data structures, that

agent User can then detect and follow downhill.

23



temp = 0

Aggregator

Sensor

Spread 
eco-law

Aggregation 
eco-law

Sensor

temp = 50

temp = 48

temp = 48

Spread 
eco-law

Aggregation 
eco-law

temp = 50

temp = 50

temp = 50

Agent X {

init() { injectLSA(aggregation_op = max, property = temp, diffusion = general,

hop = 1, previous = local)

} }

Sensor 1....N {

init() { float t = sample()

injectLSA(temp = t)

}

run() { while(true) { float t = sample()

updateLSA(temp = t)

} } }

Figure 5: Distributed aggregation. Many temperature sensors (1...N) exist in the ecosys-

tem. An agent X can inject an LSA that, by combining spreading and aggregation, can

adaptively compute the maximum temperature of sensors.
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typical example is provided by a remote query and retrieval information ser-
vice, which uses a combination of a gradient spreading (static or dynamic)
followed by chemotaxis (itself implemented as a pattern using the four core
eco-laws, and described in more detail below). This service has been de-
veloped and used on several occasions within the SAPERE infrastructure:
for progressive self-aggregation of context information [87], for progressive
self-aggregation of situation information [80], and for semantic resource dis-
covery [88].

5.2. Situation-aware Coordination

The previous coordination patterns rely on exploiting eco-laws to self-
organize adaptive distributed data structures upon which to base the coordi-
nation of distributed SAPERE agents. From a di↵erent viewpoint, one can
view eco-laws (and the possibility of building self-organized data structures)
as a means to manipulate and process contextual information so as to en-
able agents to reach higher levels of self-awareness in their individual and
coordinated activities.

At the most basic level, the bonding eco-law provides agents with the
means to expand the boundaries of their personal information space, and
inspect (but not modify) the static and dynamic information embedded in
the LSAs of co-located individuals to which they are bonded. This provides
the simplest form of perception and spatial awareness through local inter-
actions. Similarly, the spread eco-law works by replicating an LSA across
neighbor devices, bounded by a metric such as hop distance or physical po-
sition. From the awareness viewpoint, the spread eco-law allows agents to
project their state across a region of the environment by setting spreading
and hop-distance properties in their LSAs to trigger the reaction. An agent
may bind with LSAs being spread from a distant source (as they would any
local LSAs) to perceive their content, including the distance from the original
source, thus making the gradient pattern an e↵ective mechanism to express
advanced forms of location awareness.

In addition, the contextual information embedded in LSAs – other than
made locally available to other agents through bonding and spreading – can
also be processed, pruned, and aggregated in distributed and self-organizing
ways, by properly combining the di↵erent eco-laws. It is also possible to
provide forms of distributed reasoning and overall to increase the ability
of distributed agents to become aware of the situations of which they are
part [89, 90].
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Figure 6: Context acquisition interactions: (A) a request gradient is spread, (B) replies as-

cend the gradient, (C) optional aggregation – and possibly distributed reasoning – reduces

transmission costs and resolves conflict.

An example of particular relevance consists in exploiting the chemotaxis
pattern [10] mentioned earlier. This can be thought of as a directed form
of spreading, and provides a mechanism to perform routing of information
based on established gradients. Information is routed towards the source
agent of a gradient along the shortest accessible path from within the gra-
dient’s extent. A typical usage scenario (Figure 6) sees a situation classifier
agent seeking inputs through a set of requests each embedded in an LSA in
which to set the necessary properties to trigger the construction of a gra-
dient: (A) spreading and aggregation patterns iteratively fire, establishing
a gradient data structure in which each LSA has a pointer to the node in
which it was created, which is also the node indicating direction to the source
following shortest path; (B) where a request gradient LSA reaches a node
with a matching LSA, a reply LSA is generated pointing towards the request
and routed towards the classifier agent using chemotaxis; (C) as the LSAs
that contain the information move amongst the SAPERE nodes by climbing
the gradient, data can be dynamically aggregated via the aggregation eco-
laws [87], and it can also be processed on the fly by applying reasoning and
classification techniques in a fully distributed way [88].

5.3. Developing SAPERE Applications

Developing a SAPERE application consists of programming a set of
agents (according to templates and guidelines provided in the SAPERE mid-
dleware package) encoding specific functionalities and services, and express-
ing LSAs that makes it possible for them to coordinate with each other and
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with the agents (devices, components, resources) that already exist in the
ecosystem.

More specifically, accessing pervasive services in SAPERE, e.g., from a
smart phone, firstly implies launching a specific SAPERE app. The SAPERE
app puts a local instance of the SAPERE middleware in execution that will
start looking for other SAPERE nodes to connect to in order to enter the
overall pervasive ecosystem. The app presents the users with GUI elements
that abstract the concept of an LSA but make available the services o↵ered by
the ecosystem. To add new services on a node, the developer has to design
an agent that implements the service and a set of LSAs that describe the
location and interface to the o↵ered service. Once the local node is part of
a neighbourhood of devices, the LSAs are automatically propagated through
the ecosystem.

SAPERE naturally suits application scenarios in which users with a
smartphone (or, more generally, a smart device) that are moving in an en-
vironment (e.g, a city, an exhibition, some event) can access the SAPERE
ecosystem and its services to get a richer and more informed experience of
interacting and understanding such environments. Within that general con-
text, to test the soundness and applicability of the SAPERE approach, we
have focused on “ecosystems of displays” scenarios – i. e., scenarios in which
we have an environment densely populated by privately owned display de-
vices (such as smartphones) but also by interactive public displays (such as
wall mounted displays enriched with the sensing capabilities to detect users
and devices). Such displays can become SAPERE nodes and can, in a coor-
dinated way, e↵ectively provide adaptive information and steering proposals
to users.

This was demonstrated in the context of the 2013 Vienna City Marathon
(VCM) – a real-world instantiation of a SAPERE ecosystem in the city centre
of Vienna, Austria in the spring of 2013 – involving (see Figure 7): a SAPERE
app to be downloaded by runners and spectators that instantiates a SAPERE
node on the phone, and a number of public displays distributed over VCM
hotspots, each implementing a dedicated SAPERE node, that are capable of
interacting amongst themselves and with the SAPERE nodes on users’ mobile
phones. The entire ecosystem that was created for this instantiation consisted
of 5192 mobile SAPERE nodes that exchanged LSAs amongst themselves as
well as with 7 public SAPERE nodes that were propagating information at
key locations along the marathon course.

The challenges of developing a SAPERE ecosystem on this scale mostly
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related to the design of agents, services and their respective LSAs. Due to
the nature of SAPERE nodes, LSAs were exchanged as a result of the spatial
collocation of devices – i. e., if a SAPERE node detected another node in its
proximity it propagated its service and data LSAs to this node and vice versa.
As a result, the ecosystem topology was fully decentralized and – over the
course of the event – 594.702 messages were exchanged and propagated in an
opportunistic fashion. This system topology required agents to be able to:
(i) deal with potentially outdated information, (ii) account for circles in the
current topology, (iii) process LSAs and forward them to their neighbours in
the available time frame as well as (iv) notify the users about the generated
information and displaying it using the developed SAPERE app and the
public displays.

During the event, the instantiated ecosystem was used to provided adap-
tive services to marathon users relating to: exploiting public SAPERE nodes
to deliver contextually relevant, personalized information to passing-by users;
help people to find like-minded individuals in their immediate surroundings;
computing, by means of the the distributed public display nodes, the esti-
mated density of people around the VCM track, and providing this informa-
tion to security forces and marathon organizers to avert potential crowd dis-
asters (the VCM is usually frequented by around 200.000 spectators). These
services were implemented using the introduced SAPERE nodes which host
agents that inject and propagate LSAs containing (or requesting) informa-
tion about (i) the local node’s context (e.g., location, users’ interests, current
neighbours) as well as (ii) about the information and services available on the
public displays (advertising, suggesting locations and directions, information
about other people).

The VCM demonstration, along with other applications that we have
implemented and tested (see [77] and [78] for details) have helped us verify
the e↵ectiveness and versatility of the SAPERE approach and technology.

6. Open Issues and Research Directions

Despite the promises of nature-inspired approaches to coordination for
pervasive systems, and despite the sound synthesis promoted by the SAPERE
approach, a number of fascinating research challenges are still to be met to
make nature-inspired coordination a widespread and easy-to-adopt approach.
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Figure 15: A maximum of 548 users accessed the service simultaneously in the

marathon finish area at Heldenplatz.

Figure 16: The SAPERE app interested a wide variety of users.

The SAPERE comprehensive application scenario (CAS) TR.WP5.2013.1
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Figure 6: SAPERE public display in VIP lounge.
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TR.WP5.2013.1 The SAPERE comprehensive application scenario (CAS)

Figure 7: The SAPERE mobile phone app (left) and a SAPERE public display in the VIP

lounge (right)

6.1. Assessing the Advantages of Nature-inspired Coordination

Any new approach to software development must come along with proper
software engineering methodologies and tools to support the activities of
designers and developers, as well as to facilitate control over the execution
of pervasive MAS.

In the SAPERE project, we have extensively worked towards the elab-
oration of a specific SAPERE methodology [91], with the aim of defining
guidelines for application development, and have also tried to analyze and
compare the key di↵erences and the pros and cons of developing applica-
tions using a nature-inspired coordination model rather than more traditional
message-based interaction protocols [92].

From our analysis, it appears that nature-inspired coordination can be in-
deed simpler to program in the presence of dynamic environment and a large-
number of components. Yet, we think there will be need of more practical
experience with SAPERE and, in general, with nature-inspired approaches,
to get a real understanding of the implications of programming with such
approaches, and of their advantages over more traditional ones.
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6.2. Top-Down vs. Bottom-Up Adaptation

Another key challenge in the engineering of nature-inspired coordination,
is understanding the trade-o↵s between the power of top-down adaptation
versus bottom-up one.

A relevant thrust of research on self-adaptive and evolvable software sys-
tems – rather that looking for inspiration from the area of natural systems,
with the aim of reproducing the emergent self-adaptation capabilities emerg-
ing in a bottom-up way from local interactions [25] – is focussing on integrat-
ing adaptation in software systems according to the most assessed approaches
of software engineering, that is, by explicitly encoding adaptation in system
designed and coordinated in a top-down way [93].

The key question that arises, in this context, is how it is possible to
define methodologies to smooth the tension between the two approaches, i.e.,
identifying how the two approaches can co-exist and possibly conflict in future
systems. The ultimate goal would be to tolerate development methodologies
in which the bottom-up endeavor of nature-inspired coordination can become
part of a more traditional top-down approach to software engineering.

6.3. Predicting and Controlling Emergent Behaviors

The process of emergent bottom-up self-organization in natural systems,
leading to self-adaptive properties, is by definition non-deterministic and ir-
reducible. Although it is possible to design a system that will probabilistically
behave as desired, it is impossible to exactly predict its final configuration
but by executing the system itself.

Probabilistic non-determinism may be satisfactory in some non-critical
cases (e.g., in gossip-based di↵usion of non-critical information in P2P sys-
tems [94] – where the existence of some nodes not reached by the information
is not critical). However, in other cases it is not acceptable (e.g., exploration
of an environment by a swarm of robots in a rescue operation [95] – where
one cannot tolerate the swarm to ignore some portion of the environment).
Accordingly, a key issue is to compensate such unpredictability by defining
control tools to dynamically tune on-the-fly the coordination laws of self-
organizing systems whenever heading toward undesirable states [96].

Some research in software engineering and distributed systems explicitly
addresses this general issue, and mostly at the level of simple simulations
for multi-agent systems or cellular automata. Yet, a general understanding
of how to control emergent behaviors in complex software systems is still to
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be reached. In our opinion, the work on regulated norm-based multi-agent
systems and electronic institutions [97, 98] can be an e↵ective starting point.

6.4. Coordination for Simulation Frameworks

The role of computational simulation in the engineering of complex artifi-
cial systems – and complex computational systems specifically – is nowadays
widely acknowledged [99]. What is yet to be clearly understood, is the po-
tential role of coordination models and technologies to work as the core of
non-trivial simulation frameworks.

Modeling the interaction among system components, in fact, is a fun-
damental issue in complex system simulation [100]. Simulation frameworks
based on coordination models – that is, handling interaction with first-class
coordination abstractions – would then suit well complex system simulation;
those based on nature-inspired coordination models would be particularly
well-suited for the simulation of complex natural systems.

Accordingly, a challenge for forthcoming agent-based simulation frame-
works will be integrating suitable (nature-inspired) coordination abstrac-
tions, capable of capturing the full articulation of system interaction, possibly
including complex stochastic behaviours: in [100], for instance, biochemical
tuple spaces are applied to the simulation of complex interaction patterns of
intracellular signalling pathways. Along this line, we can envision future re-
search scenarios where coordination models and technologies – in particular,
nature-inspired ones [101] – play a central role in the development of rich
agent-based simulation frameworks.

7. Conclusion

In this paper, we have argued that nature-inspired coordination mod-
els can be well-suited to meeting the challenging requirements of pervasive
environments. We have surveyed a number of nature-inspired coordination
approaches that have been proposed so far, and have presented the SAPERE
approach to coordination as a general-purpose synthesis that provides a com-
mon platform on which to develop nature-inspired pervasive service systems
according to a variety of nature-inspired approaches.

Our experience with SAPERE represents a first solid building block to-
wards the widespread exploitation of nature-inspired coordination for perva-
sive systems. Still, there remain a number of research challenges to tackle,
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each of which will help paving the way towards a fascinating nature-inspired
pervasive computing future.
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[100] P. P. González Pérez, A. Omicini, M. Sbaraglia, A biochemically-
inspired coordination-based model for simulating intracellular sig-
nalling pathways, Journal of Simulation 7 (3) (2013) 216–226, special
Issue: Agent-based Modeling and Simulation.

[101] A. Omicini, Nature-inspired coordination models: Current status, fu-
ture trends, ISRN Software Engineering 2013, article ID 384903, Re-
view Article.

42


