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Abstract: We propose a model for the computation of the loss probability distribution allowing to take into
account the not-exchangeable behavior of a portfolio clustered into several classes of homogeneous loans.
These classes are classi�ed as ‘large’ or ‘small’ depending on their cardinality. Thehierarchical hybrid copula-
based model (HHC for short) follows the idea of the clusterized homogeneous copula-based approach (CHC)
and its limiting version or the limiting clusterized copula-based model (LCC) proposed in our earlier work.
This model allows us to recover a possible risk hierarchy. We suggest an algorithm to compute the HHC loss
distribution andwe compare this cdf with that computed through the CHC and LCC approaches (in the Gauss-
ian and Archimedean limit) and also with the pure limiting approaches which are commonly used for high-
dimensional problems. We study the scalability of the algorithm.
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1 Introduction
Copula functions (see [18, 21]) represent a methodology which has recently become the most signi�cant
new tool to describe the co-movement between markets, risk factors and other relevant variables studied in
�nance. This useful technique is applied to several applied mathematical �elds (see [6] for standard applica-
tions of copula in �nance, and [5] for the new frontiers of dynamic copula methods in �nance). For the appli-
cation of copula functions to credit riskmodelingwemention [13, 19, 25]. Since our interest lies in proposing
a new copula-basedmethodology in order to compute the distribution of losses, we recall that in the pure lim-
iting Gaussianmodel (PL Gaussian for short) as suggested by Vasicek [28, 29] the cdf of losses of a large port-
folio was described via the inverse Gaussian distribution function, whose simple closed-form solution was
quickly adopted in practice. In the same spirit, using an algorithm from the theory of the Archimedean copula
function, Schönbucher [24] gave somemore limiting loss distributions,which are driven by randomvariables
with di�erent dependency structures. We observe that this pure limiting distribution (PL Archimedean for
short) may not be useful for portfolio credit risk clustered into classes a�ected by di�erent risk factors, given
the exchangeability property of the Archimedean copula.

Along the same lines of [17, 23], here we propose a new model to compute the loss distribution, which
accounts for risk hierarchy. Choroś-Tomczyk et al. [9] proposed a very �exible model based on hierarchical
Archimedean copulas to value CDOs allowing for non-exchangeable dependency structures. In the sameway
the suggested model is a hierarchical approach since it considers more than one level of risk and can be
considered as an hybrid version of the CHC and the LCC models in [3, 4]. Therefore we point out that the
model is hybrid, that is, at the lowest level of risk, it selects when to determine the loss pdf through a limiting
model or rather through a clusterized one, depending on the cardinality of the risk class. In more detail, we
consider the default event, and we recover the cumulative probability distribution of the variable counting
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the number of events¹ occurred, assuming a portfolio clustered into n sub-portfolios of homogeneous loans,
meaning that the loans of the same class are a�ected by the same risk factor. Once the loss distribution into
each class is computed by the selected method (limiting or CHC), the aggregation between classes is derived
by considering the dependence structure at the highest level. Our problem is strictly linkedwith the literature
on concentration risk composed by a granularity risk and a sector concentration risk. Granularity risk is not
considered into the large sub-portfolio, where we state the in�nite granularity assumption, but is considered
into the small ones; anyway a semi-granularity adjustment (see [15, 16]) may be also considered into the
‘within groups’ setting. On the other hand, here we are interested in the sector concentration risk in the same
spirit of the multi-factor models (see [22, 27]). We focus on a clustered portfolio highlighting another com-
ponent of the sector concentration which comes from the assumption on the a�ecting policy; if we assume a
non-equally a�ected policy but we consider all the possible combinatorial distributions of the percentage of
defaults into the groups, it is then possible to disentangle the impact of a particular concentration scenario
as a relevant factor in order to determine the expected loss distribution.

Following the approach of [3, 4], we focus on the problem to recover the probability distribution of the
counting variable linked to the copula function representing the dependence between the classes, and we
suggest an algorithm to implement it.We do not address here the problems concerning the construction of the
clustered copula function, i.e. the clustering problem concerning the choice of the metric and of the number
of clusters and the homogenization problem, for which we refer to [2]. Nevertheless, we point out that the
necessary reduction of the complexity of an high-dimensional problem, in order to make it tractable, can
be reached through a clusterization into equivalent homogeneous classes; for this reason copulas based on
pair-copula constructions, as vine copulas (see [1]), are not suitable to our aim.

The paper is organized as follows: In Section 2, we present and discuss the HHC approach concerning
the within and the between groups dependence structure to recover the probability distribution of the �rst
level counting variable. In Section 3, we propose some experiments starting from four basic concentration
scenarios of a credit-exposed portfolio. A comparative analysis with respect to the loss cdf computed with
the PL and LCC Gaussian and Archimedean approaches is outlined. The scalability and the precision of the
algorithm implementing the HHC model is analyzed.

2 The hierarchical hybrid copula-based approach
We consider a portfolio credit risk model where we assume that the basket of loans is clustered into a �nite
number n of sub-portfolios or classes a�ected by di�erent risk factors. The basic idea is to introduce a hier-
archical risk structure allowing to take into account the non-exchangeability of the variables and the grains
of such classes. The proposed HHCmodel is composed by three steps: a preparing phase, awithin class com-
puting step and a between classes aggregation step.

2.1 The preparing phase

The starting implementation of the proposed methodology is concerned basically with the reduction of the
complexity of the problem given the dimension of the data set. This aim may be reached by a clusterization
and a homogenization procedure.

We consider a set of data and we assume to partition the given data into so-called homogeneous clusters
such that patternswithin a cluster aremore similar to each other than patterns belonging to di�erent clusters.
The best known andmost widely used algorithm to reach this goal is K-means, which is a semi-unsupervised
approach, and where one needs to choose the distance metric and the number of clusters. Francois et al. [12]
pointed out that all metrics are substantially equivalent in a not randomized data set while the crucial vari-

1 We count a number of a de�ned percentage unit of a variable (losses) attached by the event (of default).
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able is the number of clusters. The choice of this variable involves the consideration of the trade-o� between
the complexity of the problem in term of time of computing and the precision of the method. In particu-
lar, a greater number of groups probably means a greater number of small classes and then a lower error
of granularity; the implied whole loss cdf will be then more conservative as we can observe in the experi-
ments proposed in Section 3. On the other hand, the unsupervised methods, like the SOM approach, choose
automatically the best number of clusters to made. We refer to [2] for a discussion on these choices.

In the experiments proposed in Section 3, we opted for K-means with the Euclidean metric and with a
number of clusters optimal in some sense, i.e. for example minimizing a clustering error de�ned as a sum of
confusions (see [30]). The method proposed here, however, may be implemented by similarly grouping the
data with other clustering methods. Anyway, for a good choice of the number of clusters, the performance
of the semi-unsupervised approaches is comparable with that of the unsupervised methods implying that it
does not substantially a�ect the �nal loss cdf. Nevertheless, the unsupervised methods are more stable than
the semi-unsupervised ones in the randomized data sets.

The clustering method assembles some groups, which must be considered homogenous to simplify the
computation in the case of high-dimensional problems. To this aim we follow a procedure along the lines of
the diversity score approach suggested in [7, 8] and applied in [11, 26]. In order to compensate the homoge-
nous assumption with a change in the number of variables inside the group, we assume the cardinalities of
the groups of the clusterized copula function to be equivalent in the meaning adopted in [2].

2.2 The ‘within classes’ computing step

We consider a portfolio clustered into a �nite number of classes and compute the within classes loss distri-
butions. If the class is large², we compute the corresponding loss distribution by a limiting approach like the
Gaussian or the Archimedean ones. On the other hand, if the class is small, we recover the loss pdf through
the CHC approach.

2.2.1 Large classes

We assume that the j-th large class is characterized by the following assumption:
∙ The class is composed by Ij obligors having the same exposure size and the same loss in default. The

number of obligors Ij is very large implying that the relevant quantity for the portfolio risk is the fraction
Lj of defaulted obligors in the j-th sub-portfolio.

∙ All obligors have the same unconditional default probability pji = pj for all i until a �xed-horizon time T.
These assumptions justify the application of a PL model to compute the j-th loss cdf.
The Gaussian PL model suggested in [28, 29] proposes the following loss cdf within the j-th large group:

F lj(q) = ℙ(L
j ≤ q) = Φ(

1
√ρj

(√1 − ρj Φ−1(q) − Φ−1(pj))), (1)

where pj is the default probability of any individual obligor in the j-th class, Φ(⋅) denotes the cumulative
standard normal distribution function, and ρj is the asset value correlation between any two obligors of j-th
class.

In the limiting Archimedean approach proposed in [24], the loss distribution of the j-th class can be
derivedby conditioningon themixing variable Y j representing the common risk factor a�ecting the j-th loans’
group (see [20]).

2 We say that the class is large if its cardinality is greater than or equal to a �xed bound. Here we justify the assumption of large
portfolio if the group cardinality is greater than the threshold of 20, as suggested in [24].
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The probability of having not more than a fraction q of defaults in the j-th portfolio is

F lj(q) := ℙ(Lj ≤ q) = 1 − Gj(−
log q
ϕj(pj)

), (2)

where Gj(⋅) is the Y j’s cdf and the limiting loss pdf of the j-th group is

f lj (q) =
1

qϕj(pj)
gj(−

log q
ϕj(pj)

),

where gj is the pdf of the mixing variable.

2.2.2 Small classes

If the class is small, we compute the relative loss pdf through the clusterized homogeneous copula approach,
CHC for short (see [3]). We review in the following the essentials about this approach which allows us to
extract the loss pdf from the dependence structure of the elements of a small class. This dependence structure
ismodeled throughaCHC that provides a second level of clusterization inside the smallgroups. CHCapproach
can be seen as a correction of the limiting models for granularity and concentration risk. Granularity risk is
considered into the CHC model since each group is composed by a �nite number of homogeneous variables
while the sector concentration risk is taken into account through the clusterization of the variables. In [3],
we compared the performance of the CHC model for several numbers of groups and showed that it is better
than that of other models. Clearly this model loses a part of information of the true distribution to reduce
the complexity of the problem, but, as expected, the losing information decreases if the number of groups
increases. We can observe that a CHC with unit groups (U-CHC for short) is able to recover the exact loss cdf
and to completely correct for the granularity error. The comparison between a U-CHC loss cdf and a limiting
loss cdf properly gives the dimension of the granularity error while the comparison between a whole U-CHC
and the U-HHC, i.e. an HHC whose small classes are U-CHC, gives the semi-error of granularity since it is
an error a�ecting only large classes. On the other hand, the comparison between a U-HHC and a U-HHC in a
concentration scenariowhere all classes are large de�nes the so-called partial error of granularity.We analyze
the impact of these errors in several scenarios experimented in Section 3.

CHC is a hierarchical copula function where we have only one level of dependence, i.e. where the depen-
dence parameters between the groups are equal to the dependence parameters within the groups. It is useful
to reduce the complexity of the problem also if we have one level dependence structure. In [2], a volume’s
evaluation approach is proposed for a multilevel dependence structure, i.e. for a proper hierarchical copula
function.³

Weassume that the j-th small class is composedby nj elements clusterized into kj homogeneous groups of
equivalent⁴ dimensionmj

s, s = 1, . . . , kj, respectively, such that∑kj
s=1 m

j
s = nj. Themost important ingredient

to extract the loss pdf from a CHC is the volume of this kind of copula. We recall the representation of this
volume proposed in [2] for homogeneous groups.

3 We observe that a proper hierarchical structure a�ects the distribution of the counting variable which could not be recovered
through the combinatorial algorithm training the CHC approach. In this case, we should associate to the compatible combina-
torial distributions a probabilistic distribution, allowing to consider the policy of a�ecting the groups implied by the hierarchy.
The hierarchy imposes a kind of weighting function to the compatible combinatorial distributions transforming the associated
counting variable into an object that is no longer a proper random variable. To determine the probability distribution of this not
properly counting variable linked to a hierarchical structure, we need a new probabilistic instruments. This is a promising �eld
for future research.
4 Here equivalent is used in the meaning of the diversity score approach (see [7, 8]).
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Proposition 2.1 (CHCj volume). Given a CHCj representing the dependence structure of the j-th class, the vol-
ume of the kj-dimensional box S = [u, v] with u, v ∈ [0, 1]kj , u ≤ v, may be represented as:

VCHCj (S) =
nj
∑
i=0

(−1)i
D̂c(i,kj)
∑
z=1

CHCj(c(pi,kj (z))),

where
∙ D̂c(i, kj) denotes the number of compatible combinatorial distributions (c.c.d. for short)⁵ of the integer i into

kj groups;
∙ pi,kj (z) is a kj × max(mj

s , s = 1, . . . , kj) matrix of zeros and ones corresponding to the z-th c.c.d. of i ones
into kj groups of dimensions mj

s, s = 1, . . . , kj;
∙ c(pi,kj (z)) is a k ×max(mj

s , s = 1, . . . , kj) matrix such that cs,w = vs if ps,w = 0 and cs,w = us if ps,w = 1,
where us , vs is the s-th element of u, v, respectively, and cs,w denotes the (s, w)-th element of the corre-
sponding matrix;

∙ CHCj(c(pi,kj (z))) is the clusterized copula computed for the z-th c.c.d. accounting for the permutation of the
elements into the groups.

As pointed out before, we are interested in an event which may involve a basket of variables, composing a
small class, and in de�ning a counting variable on this event that we call second level counting variable⁶. Here
we assume to count some unit of percentage losses. We observe that the second level counting variable counts
the number of unit percentage losses inside the j-th small class and then corresponds to the variable Lj yet
introduced for the large classes.

De�nition 2.2 (Second level counting variable linked to a CHCj). In the same setting of Proposition 2.1, the
counting variable linked to the CHCj(c(pl,kj (z))) is given by r(z) = ♯(pl,kj (z)) which counts the number of
elements equal to one in the matrix pl,kj (z) for the z-th c.c.d. Clearly we have r(z) = l for all z.

Our aim is to extract the loss pdf of the j-th small class from the CHCj representing the dependence structure
of the j-th class. To achieve this, we observe that a number l corresponds, through its probability function,
to a number in [0, 1] by considering all the c.c.d. of l ones into kj groups (we enumerate this c.c.d. with the
index z). The z-th c.c.d., corresponding to the matrix pl,kj (z), generates a pair of coordinates⁷, i.e. the z-th
c.c.d. generates the box Sz for which we compute the volume. The sum of the volumes computed for all the
coordinates generated by all the c.c.d. for the same number of ones, i.e. for the same l ones into kj groups,
represents the probability to count l ones, or better to have l events whose probabilities are the marginal
centroids of the groups.

Proposition 2.3 (Loss cdf linked to the CHCj). In the same setting of Proposition 2.1, the loss cdf linked to the
CHCj, with centroids u ∈ [0, 1]kj , is the function Fsj : [0, nj] → [0, 1] such that

Fsj (i) =
i
∑
l=0

D̂c(l,kj)
∑
z=1

VCHCj (Sz(pl,kj (z)))

where VCHCj (Sz) is the volume of the CHCj computed for the box Sz = [uz , vz] ∈ ℝa × ℝa , max(a) = 2kj,
determined for the z-th c.c.d. of l ones into kj groups, where pl,kj (z) is a kj × max(mj

s , s = 1, . . . , kj) matrix of
zeros and ones corresponding to the z-th c.c.d. of l ones into kj groups of dimensions mj

s, s = 1, . . . , kj, and
�nally accounting for the permutation of the elements into the groups.

5 We refer to D̂(i, kj) as the number of theways inwhich one can distribute the integer i into kj groupswithout taking into account
the order of the groups (c.d. for short). If we take into account the equivalent cardinalities of the groups, then we refer to D̂c(i, kj)
as the number of the compatible (arranged for the group cardinalities) combinatorial distributions.
6 This is a second level counting variable since it is linked to a second level dependence structure or a dependence structurewithin
a class.
7 The rule which explains how the coordinates are generated is presented in [3].
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2.3 The ‘between classes’ aggregation step

We are interested in determining the distribution of the whole loss de�ned as the sum of the classes’ loss,
L = ∑n

j=1 Lj, where n = nl + ns.
Now the problem is to associate a counting variable to the copula function representing the dependence

structure between the classes; this �rst level counting variable, which represents thewhole loss cdf, distributes
the losses to the classes.

Given the vector of the loss cdf within classes, with a threshold of 20 as proposed in [24]⁸,

F(q) = (Fεj (qj), j = 1, . . . , nl + ns , (ε = s)1nj<20 ∪ (ε = l)1nj≥20),

composed by limiting loss cdf for large classes and by CHC-based loss cdf for small classes, we are interested
in aggregating these functions with a dependence structure. By Sklar’s theorem, these functions being uni-
formly distributed, we can represent their dependence structure as a copula C(Fε1(q1), . . . , Fεn(qn)), where
n = nl + ns. This is a hierarchical structure characterizing the highest or the �rst level of dependence.

We consider the default event and the corresponding counting variable on this event, that we call �rst
level counting variable. Here we assume to count some unit of percentage losses.

De�nition 2.4 (First level counting variable linked to an n-dimensional copula function). The �rst level
counting variable linked to the C(F(pl,n(j))), where pl,n(j) is the j-th c.c.d.⁹ of l units percentage losses into n
groups andF(pl,n(j)) is the corresponding vector ofmargins computedwith a limiting or CHC-based approach
depending on the cardinalities of the groups, is given by

wr(j) = ♯(pl,n(j))

which counts the elements of vector pl,n(j) for the j-th c.c.d. Clearly we have wr(j) = l for all j.

Our aim is to recover thewhole loss cdf or the cdf of the �rst level counting variable linked to the n-dimensional
copula function C. To do thiswe observe that a number l corresponds, through thewhole loss cdf, to a number
in [0, 1]; this pdf depends on all the c.c.d. of l ones into n groups (we enumerate this c.c.d. with the index j).
The j-th c.c.d., corresponding to the vector pl,n(j), is related through a copula function to a joint probability.
This joint probability corresponds to the probability to have a loss less than or equal to l percentage units dis-
tributed into the groups in the way explained by the j-th c.c.d. The mean of the joint probabilities computed
for all the c.c.d. for the same number of ones, i.e. for the same l ones into n groups, represents the (mean)
cumulated probability to count l ones, or better to have l events whose probabilities are themarginal cdf com-
puted within the classes, if we assume that the di�erent ways to distribute the events are equally probable.
Anyway, we may consider an expectation corresponding to the assumption related to the a�ecting policy of
the events.

Corollary 2.5 (Expected whole loss cdf linked to the n-dimensional copula). The expected whole loss cdf
linked to the n-dimensional �rst level dependence C, characterized by n homogeneous groups of dimensions
ms, s = 1, . . . , n, respectively, such that∑n

s=1 ms = N, is the function Fwr : [0, N] → [0, 1] such that

Fwr(i) = E(C(F(pl,n(j))), j = 1, . . . , D̂c(i, n)), (3)

whereE is such kind of mean corresponding to the average if the distributions are equally probable, pl,n(j) is an
n-vector counting the ones corresponding to the j-th c.c.d. of l ones into n groups of dimensions ms, s = 1, . . . , n,
whereF(pl,n(j)) is the vector ofmargins corresponding to the j-th c.c.d. of l ones into n groups, andwhere D̂c(i, n)
counts the c.c.d. of i ones into n groups.

8 If we consider a greater threshold, we will obviously have a greater correction for the granularity error.
9 Here the compatibility is with respect to the cardinalities of the groups. These c.c.d. are ordered with respect to some speci�ed
criteria.
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We can observe that the suggested hybrid model is a non-exchangeable model since the classes are repre-
sented by di�erent default probabilities pj, j = 1, . . . , n. This property can be regarded as a correction of the
exchangeable one-factor models (see [10, 14, 15]).

Remark 2.6. We see that in order to de�ne the right weights in (3) it is necessary to de�ne how the defaults
will distribute into the groups. If we assume that the groups are equally a�ected by the defaults’ occurrence or
that the probability that a default attaches a group i is the same as for group j (for all i, j), then the expectation
operator in (3) becomes the arithmetic mean.

3 Some experiments
We consider here a loan portfolio clusterized in a �nite number of classes for which we assume that the event
of default occurs if the losses are greater than a �xed level. We evaluate the marginal probabilities of default
of each loan and we are interested in the cdf of the percentage of default occurring that we call whole loss
distribution.

In this example, we consider a portfolio of dimension N = 60 clusterized¹⁰ into n = 3 classes. These
groups are assumed homogeneous with marginals equal to the centroids of the same group, which repre-
sents the vector of the default probabilities:

centroids = [0.03 0.05 0.07] .

The dependence parameters within the groups correspond to the levels of Kendall τ = 0.6, 0.43, 0.8, while
the parameter between the groups corresponds to a Kendall τ = 0.048. We assume a Clayton dependence
structure between the groups, meaning that the dependence parameter is αbetween = 0.1.

We compare thewhole loss cdf computed in four scenarios characterized by di�erent levels of concentra-
tion. The scenarios considered are the following:
1. equally distributed case, corresponding to three groups each one composed by 20 loans;
2. not perfectly equally distributed case, corresponding to a cardinality vector n2 = (10, 25, 25);
3. concentration on the riskiest class case, corresponding to a cardinality vector n3 = (5, 5, 50);
4. concentration on the safest class, corresponding to a cardinality vector n4 = (50, 5, 5).

We compare the mean whole loss cdf computed following the HHC approach for Gaussian and Clayton
limiting (Gaussian/Clayton HHC for short) with that computed with a pure limiting model (PL for short) cor-
responding to the case of a large number of large classes¹¹. We assume that all small classes are evaluated
with a U-CHC model. We then properly consider U-HHC loss cdfs.

In Figures 1 and 2 we compare the whole loss cdf for the HHC Clayton and Gaussian model, respectively,
and the corresponding PL model with the same Kendall τ into the highest level of dependence, considering
di�erent scenarios. We observe that the Clayton PL model compared to the HHC model approximates better
the mean whole loss cdf in the equally distributed case and that the goodness of approximation decreases
with the increase in concentration toward the riskiest class. This error is composed by a clusterization error,
including the exchangeable error, which corresponds to the sector aggregation risk, and the equally a�ecting
policy error and by a partial error of granularity¹². This last kind of error is avoided in the HHC model since
here we consider a not perfectly �ne-grained assumption or we recover the �ne grain into the small classes.
The impact of the errors is greater for lower level of percentage losses and generally greater for the Gaussian
PL model than for the Clayton one. On the other hand, the clustering error depends on the fact that the PL

10 We assume to group with a clustering method, based on the Euclidean metric with a little tolerance, like δ = 0.09.
11 We observe that the �rst scenario, the mean whole loss cdf computed with the HHC approach, coincides with the LCC mean
whole loss cdf, since in this case all classes are large.
12 We talk about a partial error of granularity since we compare the PL with the HHC whole loss cdf that corrects the granularity
only for small classes. The properly error of granularity can be recovered by a comparison between the PL and the CHC whole loss
cdf.



80 | E. Bernardi and S. Romagnoli, A copula-based hierarchical hybrid loss distribution

models do not specialize the kind of distribution considered, since the loans are assumed exchangeable and
equally a�ected, i.e. are not clustered into the groups.Moreover, we observe that themain error of the Clayton
PL is due to the granularity problem since the bigger divergence seems to be with respect to the concentrated
cases. This means that Clayton PL is riskier because of a big partial error of granularity¹³ which may be cor-
rected with an HHC model. On the contrary, the Gaussian PL approximates better the mean whole loss cdf
in the concentrated cases showing that the main error is due to the clusterization aspect¹⁴ that generates a
too conservative loss cdf; HHC corrects the error with a less conservative loss cdf. Indeed, the comparison
between the loss cdf in case 2 and the aggregated cases can be considered explicative of the impact of the
choice of a greater number of clusters; a lower error of granularity implies a more conservative whole loss
cdf.

Figures 3 and 4 explain the same comparison as before but for a di�erent level of Kendall τ. We observe
that the error of PL cdf is lower for a higher level of Kendall τ, and that the PL Clayton approximates better the
equally distributed case for a lower level of dependence, while the concentrated case, particularly toward the
riskiest class, for a higher level of dependence.We can say that Gaussian PL is less conservative if τ increases,
meaning that the clusterization error is dominated by the partial error of granularity and then implying a mi-
nor correction impact of the HHC. Moreover, we observe that if the dependence between classes increases,
the impact of the partial granularity error becomes the main component also in the Clayton case, implying a
reverse order of the curves in Figure 3. Here Clayton PL is the most conservative approach; a lower clusteri-
zation error means a minor distance from the concentrated cases but a major distance with respect to case 1,
that has no correction for granularity error at all.

Figures 5 and 6 compare the Clayton HHC and the Gaussian HHC mean whole loss cdf with the corre-
sponding cdf computed through the PL model for a particular concentration scenario and for several depen-
dence levels. We observe that if the correlation between classes increases, the HHC loss cdf goes toward the
PL loss cdf where we have a concentration on the same class. The clusterization error of PL models becomes
lower for higher dependence between the clusters implying that also for Clayton PL the granularity error is
preponderant. The e�ect of a decreasing clusterization error is more evident if τ increases; PL loss cdf is in
general more conservative than the HHC one, that however becomes more conservative if τ increases.¹⁵

Figures 7 and 8 compare the Clayton/Vasicek HHC mean whole loss cdf with the Clayton/Vasicek LCC
meanwhole loss cdf and the corresponding PL loss cdf for di�erent concentration scenarios. We observe that
in the analyzed scenarios, the LCC cdf su�ers from a big partial error of granularity that is comparable to the
approximation of the PL cdf. This implies that in this case the clusterization error is quite non-in�uential. The
scenarios analyzed give the same information and the evidences are invariant for the level of dependence
considered. In this scenario, that is the worst one, the HHC approach is more conservative than the others,
while in the best scenario HHC produces a riskierwhole loss cdf correcting for granularity and concentration.

In Figure 9, we plot the meanwhole loss cdf for Clayton HHC, Clayton LCC and PL Clayton models for the
not perfectly equally distributed case and for several levels of Kendall τ. We observe that the PL cdf explains
a clusterization error that is dominant with respect to the partial error of granularity¹⁶. Moreover, the partial
error of granularity decreases and the HHC loss cdf becomes riskier if the dependence level between groups
increases¹⁷.

Figures 10 and 11 compare Clayton and Gaussian HHC and Clayton and Gaussian LCC mean whole loss
cdf, respectively, in several concentration cases. The evidence shows that the partial error of granularity in-
creases with the concentration, independently of the direction of this concentration¹⁸, since the number of

13 This is the dominant error since the Clayton PL diverges mainly with respect to the concentrated cases that correct in a better
way the granularity.
14 In fact, Gaussian PL is nearer to those of concentrated cases where the granularity error is minor.
15 This e�ect is due to a decreasing clusterization error.
16 This e�ect is justi�ed by the fact that the granularity is corrected in one class and then it has not a dominant e�ect.
17 This implies that the clusterization error increases while the partial error of granularity decreases.
18 This means that the evidence explained here is true if we consider a concentration toward the riskiest class but also toward
the safest one.
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Figure 1. Clayton HHC mean whole loss cdf for several concentration scenarios vs PL Clayton loss cdf.
Kendall τ = 0.048 for PL and the highest level of Clayton HHC model.
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Figure 2. Gaussian HHC mean whole loss cdf for several concentration scenarios vs PL Gaussian loss cdf.
Kendall τ = 0.048 for PL and the highest level of Gaussian HHC model.
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Figure 3. Gaussian HHC mean whole loss cdf for several concentration scenarios vs PL Clayton loss cdf.
Kendall τ = 0.43 for PL and the highest level of HHC model.
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Figure 4. Clayton HHC mean whole loss cdf for several concentration scenarios vs PL Clayton loss cdf.
Kendall τ = 0.43 for PL and the highest level of HHC model.
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Figure 5. Clayton HHC mean whole loss cdf vs PL Clayton loss cdf in the concentration on the riskiest class case.
Several levels of Kendall for PL and the highest level of HHC model.
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Figure 6. Gaussian HHC mean whole loss cdf vs PL Gaussian loss cdf in the concentration on the riskiest class case.
Several levels of Kendall for PL and the highest level of HHC model.
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Figure 7. Clayton/Gaussian HHC vs Clayton/Gaussian LCC mean whole loss cdf and PL Clayton loss cdf in the concentration on
the riskiest class case. Kendall τ = 0.048 for PL and the highest level of HHC model.

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

LCC Clayton

LCC Gaussian

HHC Clayton

HHC Gaussian

PL Gaussian

Figure 8. Clayton/Gaussian HHC vs Clayton/Gaussian LCC mean whole loss cdf and PL Gaussian loss cdf in the concentration
on the safest class case. Kendall τ = 0.043 for PL and the highest level of HHC model.
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Figure 9. Clayton HHC vs Clayton LCC mean whole loss cdf and PL Clayton loss cdf in the not perfectly equally distributed case.
Several levels of Kendall τ for PL and the highest level of HHC model.
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Figure 10. Clayton HHC vs Clayton LCC mean whole loss cdf in several concentration scenarios.
Kendall τ = 0.43 for the highest level of HHC and LCC models.
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Figure 11. Gaussian HHC vs Gaussian LCC mean whole loss cdf in several concentration scenarios.
Kendall τ = 0.43 for the highest level of HHC and LCC models.
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Figure 12. Gaussian HHC and Gaussian LCC mean whole loss cdf vs CHC in the not perfectly equally distributed case.
Kendall τ = 0.048 for the highest level of HHC, LCC and CHC models.
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N. groups/conc. CPU time Ts Gaussian/Clayton LCC Ts PL Gaussian/Clayton

2/eq.dist. 0.3 0.027/0.03 0.19/0.22
3/eq.dist. 1.68 0.14/1.05 1.57/1.6

3/np eq.dist. 67.89 66.35/67.26 67.78/67.81
3/conc. 34.8 33.26/34.17 34.69/34.72

Table 1. CPU computation time in seconds and CPU timesaver with respect to the Clayton HHC algorithm of the left queue (till
10 percent) of the mean whole loss distribution with LCC and PL approaches. The dimension of the set is n = 60.

small classes increases. Both �gures show that the more conservative curve is obviously the HHC in the riski-
est scenario for both the Gaussian and the Clayton case.

In Figure 12, we compare the Gaussian HHC and the Gaussian LCC mean whole loss cdf with the cluster-
ized homogeneous Clayton copula-based (CHC for short) loss cdf (see [3]) that we consider as our benchmark,
in the not perfectly equally distributed scenario. The di�erence between the LCC mean whole loss cdf and the
CHC loss cdf represents the properly error of granularity, since in the LCC model all classes are considered
large, i.e. with an in�nity degree of granularity. On the other hand, the di�erence between the HHC mean
whole loss cdf and the CHC loss cdf explains an error of granularity attaching only the classes classi�ed as
large; we call this error semi-granularity error. The scenario considered here contains only one small class,
implying that the improvement of HHCwith respect to the LCC, i.e. the partial error of granularity, is small.We
observe also that the CHC loss cdf is better approximated by the HHC cdf for the concentrated scenarios (to-
ward the riskiest or the safest class) since in this case the HHC model corrects the granularity of two classes.
Anyway, wemay conclude that if our benchmark is the CHCmodel in the not perfectly equally distributed sce-
nario, the granularity aspect seems to be prevailing on the concentration assumptions. In other words HHC
in the worst case is riskier than the CHC one, due to the semi-granularity error a�ecting only large classes.

An interesting question concerns the scalability of the suggested algorithm to compute the mean whole
loss cdf with the HHC model, i.e. the maximum dimension to which our techniques can be extended. We
analyze the scalability of the HHC algorithm with respect to the number of groups and the level of con-
centration. The MatLab™ algorithm was lunched on a Dell Dimension DXP061 workstation, Intel(R) 2CPU,
6400@213GHz, 2.00GBRAM. Table 1 reports the computing time for the �rst 10 percent of thewhole loss cdf
corresponding to the sample of dimension n = 60 for di�erent numbers of groups and concentration assump-
tions and the CPU timesaver of the LCC and the PL approaches with respect to the HHCmethod. We consider
three di�erent concentration scenarios for the case of three clusters: i) the equally distributed scenario for the
cardinalities (20, 20, 20) performs three large classes; ii) the not perfectly equally distributed case for cardi-
nalities (10, 25, 25) or with two large and a small class; iii) a concentration case for cardinalities (5, 5, 50) or
for two small and a large class. We observe that in the equally distributed scenario, the HHCmodel coincides
exactly with the LCC one, since all classes are large implying that the partial error of granularity coincides
with the semi-granularity error attaching the HHC procedure.

We can observe that the number of groups is a critical variable; the CPU time increases exponentiallywith
the number of groups. Indeed, we observe that LCC and PL approaches are faster than the HHC algorithm; the
CPU timesaver corresponds to the price to correct apartial error of granularity as it is shown in Table 2.Herewe
compare the relative errors of the deciles of the whole loss cdf computed with di�erent methods with respect
to our benchmark that is the CHC cdf representing the best approximations for high-dimensional problems
(see [3]) for a Kendall τ = 0.43. We notice that when the number of small groups increases, the performance
of the HHC method is clearly better than that of other models.
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Model AE 3/eq.dist. AE 3/np eq.dist. AE 3/conc.

Clayton HHC 28.01% 26.41% 6.61%
Gaussian HHC 27.94% 26.52% 14.45%

Clayton LCC 28.01% 27.86% 25.85%
Gaussian LCC 27.94% 27.98% 27.25%

PL Clayton 27.7% 27.7% 27.7%
PL Clayton 32.31% 32.31% 32.31%

Table 2. Percentage of absolute errors of the loss distributions’ deciles computed with di�erent models with respect to the
CHC-based whole loss distribution in the equally distributed scenario. Dimension of the set n = 60 and Kendall τ = 0.43.

4 Conclusions
The aimof thiswork is to propose a newmodel to determine the loss distribution allowing to take into account
the non-exchangeable behavior of a portfolio clustered into several sub-portfolios or classes of homogeneous
loans and to recover the �ne-grained assumption of the small classes. The suggested model is hybrid since
it uni�es two di�erent approaches, the limiting (see [24, 28, 29] for the pure limiting models and [4] for
the LCC model) and the CHC-based one (see [3]). In fact, the loss distribution in each class is computed by
a limiting technique if the class is large, or through the CHC model if it is small. Finally, the aggregation is
trained by considering the dependence structure between the classes. The linkage of the loss distributions of
each classes may be seen as the highest level of aggregation into the dependency structure of a hierarchical
copula function.

In the same spirit of themulti-factormodels in the literature on sector concentration risk (see [22, 27]),we
analyze the impact of the clusterization and the properly and semi-granularity errors in several concentration
scenarios emphasizing the correction introduced with the HHC model.
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