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Abstract

Segregation of mutant mtDNA in human tissues and through the germline is debated, with no consensus about the nature
and size of the bottleneck hypothesized to explain rapid generational shifts in mutant loads. We investigated two maternal
lineages with an apparently different inheritance pattern of the same pathogenic mtDNA 3243A.G/tRNALeu(UUR) (MELAS)
mutation. We collected blood cells, muscle biopsies, urinary epithelium and hair follicles from 20 individuals, as well as
oocytes and an ovarian biopsy from one female mutation carrier, all belonging to the two maternal lineages to assess
mutant mtDNA load, and calculated the theoretical germline bottleneck size (number of segregating units). We also
evaluated ‘‘mother-to-offspring’’ segregations from the literature, for which heteroplasmy assessment was available in at
least three siblings besides the proband. Our results showed that mutation load was prevalent in skeletal muscle and
urinary epithelium, whereas in blood cells there was an inverse correlation with age, as previously reported. The
histoenzymatic staining of the ovarian biopsy failed to show any cytochrome-c-oxidase defective oocyte. Analysis of four
oocytes and one offspring from the same unaffected mother of the first family showed intermediate heteroplasmic mutant
loads (10% to 75%), whereas very skewed loads of mutant mtDNA (0% or 81%) were detected in five offspring of another
unaffected mother from the second family. Bottleneck size was 89 segregating units for the first mother and 84 for the
second. This was remarkably close to 88, the number of ‘‘segregating units’’ in the ‘‘mother-to-offspring’’ segregations
retrieved from literature. In conclusion, a wide range of mutant loads may be found in offspring tissues and oocytes,
resulting from a similar theoretical bottleneck size.
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Introduction

Human mitochondrial DNA (mtDNA) is assumed to be a clonal

multi-copy genome of 16,5 kb that is strictly maternally inherited.

In each cell, mtDNA may be present either as identical copies

(homoplasmy) or as a mixed population of two or more different

sequences (heteroplasmy or polyplasmy) [1]. Heteroplasmic

mtDNA nucleotide changes, including those causing mitochon-

drial encephalomyopathies [2], segregate in tissues of the

developing embryo as well as in germline cells. Somatic

segregation of pathogenic mutations is relevant for clinical

expression of mitochondrial diseases by affecting energy-depen-

dent tissues that accumulate high, supra-threshold mutant loads

[2,3]. Germline segregation is crucial for maternal transmission of

variable mutant loads to the offspring [3].

Heteroplasmy may be theoretically due to coexistence of

individual organelles containing either exclusively mutant or

exclusively wild-type genomes (inter-mitochondrial heteroplasmy)

or to the coexistence in each mitochondrion of both mutant and

wild-type genomes in different proportions (intra-mitochondrial

heteroplasmy) [4]. The mtDNA molecules are associated with

specific coating proteins in discrete nucleoids, physically attached

to the inner mitochondrial membrane [5], which may themselves

be either homoplasmic or heteroplasmic [6]. Admixture and

complementation of heteroplasmic mtDNA genomes may be

accomplished by mitochondrial fusion events and exchange of

mtDNA between nucleoids [7]. Variable efficiency in comple-

mentation has been observed in cellular models harboring

different mtDNA mutations [8,9] but inter-mitochondrial com-

plementation has been documented in a mito-mouse model

carrying an mtDNA deletion [10]. Recent evidence suggests that
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nucleoids do not exchange genetic material frequently and are

probably homoplasmic [11,12], and may contain up to only one

mtDNA molecule [13].

The load of mutant mtDNA may vary markedly between a

mother and each of her children and a bottleneck mechanism has

been postulated during the germline segregation of mutant

mtDNA to explain rapid shifts of heteroplasmy observed within

one generation [14–16]. However, the nature of the bottleneck

mechanism in humans is still under intense debate. Recent studies

led to several potential mechanisms that are not necessarily

mutually exclusive. These include i) a marked reduction in the

number of mtDNA molecules during the early stages of germline

development [17]; ii) aggregation of identical segregating units

without a reduction of mtDNA copy number, leading to rapid

segregation due to sampling effect [18,19]; iii) preferential

replication of a subpopulation of genomes, implying an active

selection [20]; iv) rapid mtDNA segregation in preimplantation

embryos [21]. Most of the data collected so far have been obtained

by studying animal models segregating clusters of mtDNA

polymorphic variants [22]. The experimental models provided

by animals carrying pathogenic mtDNA mutations (‘‘mutator’’

mouse) suggested a purifying selection for the most severe mtDNA

mutations [23,24]. In humans, the bottleneck model has been

tested only in a few studies, using both neutral polymorphisms and

pathogenic mtDNA mutations segregating in relatively small

pedigrees [25–30]. Apparently, different segregation patterns may

operate depending on the mtDNA pathogenic mutation: the

8993T.G mutation associated with neuropathy, ataxia, retinitis

pigmentosa (NARP) was characterized by skewed segregation in

offspring or oocytes [27], whereas the 3243A.G/tRNALeu(UUR)

mutation associated with mitochondrial encephalomyopathy,

lactic acidosis, stroke-like episodes (MELAS) followed a random

genetic drift model of segregation in a large sample of oocytes from

a single woman [30].

We combined quantitative analysis of mtDNA heteroplasmy in

both oocytes and somatic tissues to study the germline and somatic

segregation of the 3243A.G/tRNALeu(UUR) pathogenic mutation

[31] in two Italian pedigrees.

Materials and Methods

Patients
We studied two previously reported [32] Italian maternal

lineages (Family A in Figure 1 and Family B in Figure 2) carrying

the heteroplasmic 3243A.G/tRNALeu(UUR) mutation. Briefly, the

proband from Family A (II-2, Figure 1) was affected with chronic

progressive external ophthalmoplegia (CPEO), whereas the

proband from Family B (II-4, Figure 2) had the typical MELAS

syndrome. Both probands had ragged-red-fibers (RRF) and/or

cytochrome c oxidase (COX)-negative fibers in skeletal muscle

with different mutation loads.

In family A, the proband’s only daughter (III-2) was asymp-

tomatic excepted for frequent migraine attacks and she lacked

RRF in muscle biopsy. Her son (IV-1) has been treated with

growth hormone for short stature.

In family B, the proband’s mother (I-2) was clinically

asymptomatic, whereas the proband’s only son (III-3) recently

developed the full-blown MELAS syndrome.

After approval by the internal review board (1996–1998,

Institute of Neurological Clinic, University of Bologna, Director

Prof. Elio Lugaresi) and signed informed consent, 20 maternally

related individuals from both families agreed to be enrolled in the

study aimed at assessing the MELAS mutation loads in somatic

tissues. In most cases, we have been able to collect blood samples

(leukocytes- and platelet-enriched pellets or whole blood), muscle

biopsies, urinary epithelium, and hair follicles. The proband’s only

daughter in Family A (III-2), also underwent ovarian stimulation

to allow collection of oocytes for genetic analysis and gave

informed consent for an ovarian biopsy at the time of oocytes

collection. Moreover, two of the proband’s sisters in Family B (II-5

and II-7) became pregnant during the time of our investigation

and consented to prenatal diagnosis on cells recovered from

amniotic fluid.

mtDNA Analysis
Total DNA has been extracted by standard phenol/chloro-

phorm methods from somatic tissues, including amniocytes. Total

oocyte DNA was recovered from single oocytes. Briefly, each

oocyte was placed in an Eppendorf tube with one drop PBS and

1.5 mL proteinase K 10 mg/ml in ice, and centrifuged 30 sec

3000 rpm in an Eppendorf table-top centrifuge. After adding

50 mL sterile mineral oil, the mixture was centrifuged 30 sec as

before, then digested at 37uC for one hour; digestion was blocked

by boiling at 95uC for 15 minutes, followed by 80uC for 20

minutes. Each sample was then frozen and maintained at 280uC
until the PCR amplification.

Heteroplasmy was determined by restriction fragment length

polymorphism (RFLP) analysis after hot-last cycle PCR amplifi-

cation as previously described [32]. The sensitivity of this method

allowed detection of heteroplasmy as low as 1%.

Estimation of Bottleneck Size in Our Families and Review
of Previous Reports

We assessed the bottleneck size in two germline segregations

from unaffected females carriers of the MELAS mutation to their

offspring or oocytes. For the first segregation (Family A; female III-

2 in Figure 1), we were able to estimate the proportion p of mutant

mtDNA from the heteroplasmic load found in four primary

oocytes collected from this woman and in the somatic tissues

available from her only son. For the second segregation (Family B;

female I-2 in Figure 2), the same estimate was obtained by

averaging the loads of mutant mtDNA found in somatic tissues of

five offspring. In both cases, p was taken as an estimate of p, the

true proportion in the sample population. Under the binomial

distribution, the variance was estimated by p(1–p)/n, whereas

confidence intervals for p were estimated solving for the equation

z = (p–p)/!p (1–p)/n. The binomial distribution applies if the levels

of mutant mtDNA are solely determined by a sampling error such

as may occur during a bottleneck. Confidence intervals were used,

in both pedigrees, to test whether the mutant load in a given

progeny was compatible with a random sampling event (i.e. the

bottleneck in the mother).

The number of ‘‘units’’ undergoing the bottleneck was

estimated according to equation (1) in Brown et al. [30] under

the assumption that 24 cell divisions are needed to produce the full

set of primary oocytes. Each segregating ‘‘unit’’ could be an

mtDNA molecule or a nucleoid. We also applied the same

statistical approach to a set of ‘‘mother-to-offspring’’ segregations

reported in the literature, updating the series reviewed by

Chinnery and colleagues [33], and evaluating tissue heteroplasmy

in families in which there were at least three siblings besides the

proband [34–39].

Oocytes and Ovarian Biopsy
The proband’s unaffected daughter in Family A (III-2)

underwent surgical laparoscopy during which oocytes were

retrieved from both ovaries and a biopsy was taken from the
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right ovary. The oocytes were obtained after ovarian stimulation

using a combination of a gonodotrophin-releasing hormone

analogue (Triptoreline, Decapeptyl 3.75; Ipsen Biotec, Paris,

France) and menotrophins (Metrodin HP, 75 IU; Serono, Milan,

Italy) and immediately frozen in liquid nitrogen for DNA analysis

[40].

The ovarian biopsy specimen was frozen in liquid nitrogen-

cooled isopentane for histological and histoenzymatic staining,

following the standard procedure used for muscle biopsies [41].

Ten mM sections were processed for hematoxylin/eosin standard

staining and cytochrome c oxidase/succinate dehydrogenase

(COX/SDH) double histoenzymatic staining. One age-matched

control ovarian biopsy was used for comparison.

Results

The heteroplasmic load of MELAS mutation assessed in various

somatic tissues of maternally related individuals from Families A

and B is summarized in Figures 1 and 2. The mutant mtDNA

segregated only in some individuals along the maternal line of both

families, as previously reported [32].

In Family A, the mutational event most likely occurred between

individual I-2 and the CPEO proband (II-2 in Figure 1),

considering that mutant mtDNA was absent in all other siblings

Figure 1. Pedigree of Family A. Filled symbol indicates the proband (II-2). Shaded symbols indicate asymptomatic individuals carrying the MELAS
mutation. Asterisk indicate all the individuals who underwent molecular investigation. Individual III-2 underwent double samplings for some tissues
(asterisk, in the table).
doi:10.1371/journal.pone.0096663.g001
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of II-2, as well as in two maternal descendants in the third

generation (individuals III-4 and III-5). We relied on the results in

mtDNA from muscle and urinary epithelium, or at least one of the

two tissues. The MELAS mutation was transmitted to the

proband’s daughter, individual III-2 and to her son (IV-1), both

currently unaffected. The mutant load slowly increased through

these three generations, as shown by all tissues tested. In all

individuals, the mutant loads in urinary epithelium and skeletal

muscle were remarkably similar, whereas in blood-derived cells

they were inversely correlated with age, as reported by others [42–

44].

Four MII oocytes were retrieved from the proband’s daughter

(III-2 in Figure 1). Under inverted microscope, the ooplasm had

normal size and perivitelline space. Ultrastructurally, the oocytes

had normally shaped nuclei with finely dispersed chromatin. The

normal morphology of follicles and stromal cells was confirmed by

ultrastructural analysis (data not shown).

On double histoenzymatic staining for cytochrome-c-oxidase

(COX) and succinate dehydrogenase (SDH) activities, oocytes

within follicles were very intensely stained, whereas granulose cells

had a less intense stain (Figure 3). This is compatible with the great

amount of mtDNA copy number and mitochondria in oocytes.

Remarkably, we failed to detect any sign of COX deficiency,

neither in the oocyte cytoplasm nor in the other cell types

(i.e.granulosa cells of the ovarian follicle and other stromal cells).

Figure 4 shows the RFLP analysis in the four oocytes from

individual III-2, which revealed mutant loads ranging from 10%

to 67%.

In Family B, the female founder (I-2 in Figure 2) showed mutant

mtDNA in skeletal muscle and urinary epithelium. This woman

segregated mutant mtDNA only in one of her offspring, the

proband affected with MELAS (II-4). None of the proband’s

siblings had mutant mtDNA in any of the tissues investigated, nor

did two maternal descendants in the third generation (III-1 and

III-2). Furthermore, amniocytes collected during pregnancies of

individuals II-5 and II-7 were also negative for the MELAS

mutation (data not shown). Mutant mtDNA was transmitted from

the proband to her only son, who is affected with MELAS like his

mother. The tissue distribution pattern of somatic mutant loads

was similar to that described for Family A, except that the female

founder of this pedigree had undetectable mutant mtDNA in

blood, only traces in urinary epithelium but a relatively high

amount in skeletal muscle. Remarkably, this woman had had two

Figure 2. Pedigree of Family B. Filled symbol indicates the proband (II-4). Individual II-4 underwent double samplings for some tissues (asterisk, in
the table).
doi:10.1371/journal.pone.0096663.g002
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miscarriages besides the five healthy offspring and the daughter

with MELAS.

To investigate the ‘‘mother-to-offspring’’ germ line segregation

of the MELAS mutation in these two maternal lineages (from

individual III-2 in Family A and from individual I-2 in Family B),

we estimated the percentage of mutant mtDNA in somatic tissues

of each offspring in Families A and B, and in each oocyte in

Family A. The germline segregation was compatible with a

bottleneck event in the mother, according to the binomial

distribution. Thus, different mutation loads in the progeny have

to be ascribed to chance alone. The bottleneck size, based on the

assumption that 24 cell divisions are needed to produce primary

oocytes, consisted of 89 segregating units for Family A and 84 for

Family B, if we consider only the mutant load in skeletal muscle

(Table 1). If we take into account the mtDNA heteroplasmy of

urinary epithelium in both Family A and B, the segregation units

were 108 (Family A, oocytes from subject III-2 plus urinary

epithelium from the only son) and 110 (Family B, urinary

epithelium from all offspring) (Table 1).

We reviewed previously reported families segregating the

MELAS mutation [33–39] and selected those in which the p of

mutant mtDNA was reported for both mother and progeny and

included, besides the proband, at least three siblings. We then

subjected these ‘‘mother-to-offspring’’ segregations retrieved from

the literature to the same test for the binomial distribution that we

have used for the analysis of our Italian families. In all included

cases (see Table I) the p of mutant mtDNA in the progeny was

compatible with a random segregation event in the mother. The

number N of ‘‘segregating units’’ was in the range of 59–120, with

an average number of N = 88 (confidence interval at the 0.95 level

was 75# N #101), remarkably close to the values estimated in our

study, N = 89 for Family A and N = 84 for Family B. These

segregations were calculated using different somatic tissues, such as

Figure 3. Ovarian follicles. A and C show two ovarian follicles (arrows) of individual III-2 (Family A), stained, respectively, with HE and COX/SDH; B
and D, similarly, show three ovarian follicles (arrows), at different stages of maturation, of a control individual (magnification 20x). No evidence of
reduced COX stain was observed in any of the tissues from the ovarian biopsy of the individual III-2, in particular the oocytes, as compared to the
control (asterisks).
doi:10.1371/journal.pone.0096663.g003

Figure 4. Quantification of the 3243A.G/tRNALeu mutation
loads in four primary oocytes from individual III-2 (Family A)
and from five control oocytes.
doi:10.1371/journal.pone.0096663.g004

Bottleneck Size in MELAS Mutation

PLOS ONE | www.plosone.org 5 May 2014 | Volume 9 | Issue 5 | e96663



skeletal muscle, hair follicles, fibroblasts and urinary epithelium

(Table 1).

Overall, these cumulative data show a close relationship

between the tissues analyzed and the relative calculation for

bottleneck size (N): for both a postmitotic tissue, such as skeletal

muscle and oocytes, N resulted similar, despite the resulting

mutation load in offspring was largely distributed in Family A and

skewed to the extremes in Family B. Our literature revision

revealed that in most cases the ‘‘mother-to-offspring’’ transmission

resembled Family A [34,35,36,38,39], whereas only one family

was essentially identical to Family B [37], still with very similar

estimated bottleneck sizes. The overview of the relationship

between mother and offspring mutant loads from our Families A

and B, and those retrieved from literature are graphically

represented in Figure 5, including the theoretical bottleneck

calculated for each of these segregations.

Discussion

This study shows that germline segregation of the 3243A.G/

tRNALeu MELAS mutation may lead to a wide range of

mutational loads in offspring through a similar bottleneck size.

Its estimation in the two Italian families here investigated was

remarkably close to the average number of segregating units

calculated for other ‘‘mother-to-offspring’’ germline segregations

retrieved from the literature. In Family A, individual III-2

transmitted intermediate, largely distributed loads of heteroplas-

mic mutant mtDNA (10% to 75% mutant; Figure 5), as measured

in four of her oocytes and in her only son. This resembled most of

the other segregations retrieved from the literature (Figure 5). In

contrast, in Family B we observed a sharply skewed transmission of

mutant from individual I-2 to only one of her offspring (81%

mutant; Figure 5). All other siblings had only wild-type mtDNA in

the tissues analyzed (0% mutant; Figure 5), including amniocytes

from two pregnancies of individuals II-5 and II-7. This was

paralleled by only one family previously reported by Huang et al.

[37], which had an essentially identical distribution of mutant

loads in skeletal muscle of offspring (Figure 5).

The number of ‘‘segregating units’’ (bottleneck size), calculated

in these two Italian families and in the several cases retrieved from

the literature [28–30] was substantially lower than the 173

segregating units estimated by Brown et al. in the only study that

sampled a large set of oocytes (N = 82) from a female carrier of the

same MELAS mutation [30]. An important limitation of the

current study and those retrieved from the literature is the large

error associated with the variance estimated from a very low

sample number ($4) [45]. This is an obvious drawback by

working with living patients from human pedigrees. A recent study

[46] on the segregation of the MELAS mutation through the

human embryofetal development concluded that random drift

drives germline segregation, similar to Brown’s and colleagues

conclusions [30], but with some appreciable individual-dependent

differences in bottleneck size. Interestingly, in a study based on a

large cohort of individuals carrying the MELAS mutation, the

mothers with a mutation load greater that 50% tended to have

offspring with lower or equal heteroplasmy, whereas the opposite

was true for mothers with less than or equal to 50% mutation load

[47]. These authors concluded that the random genetic drift

model could not fully explain the transmission of the MELAS

mutation [47]. Ascertainment bias has also to be considered. The

recent finding that one in 200 healthy humans harbors a

pathogenic mtDNA mutation out of the ten most frequent,

indicates that there is a large pool of maternal lineages were

probably these mutations segregate silently, and are possibly
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selected out, missing to express any pathology and not being

ascertained at all [48]. Thus, investigation of single pedigrees

identified by an affected proband introduces a bias that may be

resolved by pooling large cohort of families through multi-centric

studies, or by meta-analyses of reported pedigrees.

The analysis of somatic segregation of the MELAS mutation in

our two families confirmed that the mutant load is inversely

correlated with age in blood cells, whereas skeletal muscle is the

tissue of choice, followed by urinary epithelial cells, for detection of

the mutation [42–44]. The pattern of mutational load in somatic

tissues distinguished the two families, which also differed for the

clinical phenotype. In Family A (CPEO), the mutational load in

the unaffected female individual III-2 appeared to be similar in

skeletal muscle (44%) and urinary epithelium (29%–46%), whereas

in the female individual I-2 of Family B (MELAS) the mutational

load in skeletal muscle (40%) was much higher than in urinary

epithelium (1%). This latter observation might be related to the

skewed transmission of mutant mtDNA in the offspring of this

woman, resulting in one MELAS patient (81% mutant mtDNAs in

skeletal muscle), two miscarriages conceivably due to very high

mutant loads, and all remaining unaffected individuals with wild-

type mtDNA.

Many recent studies have tried to tackle the issue of mtDNA

germline segregation testing the bottleneck hypothesis [17–22].

These studies have employed murine and primate heteroplasmic

models and there is no consensus on whether the bottleneck exists,

whether there are one or more bottlenecks, and at what stage of

development the bottleneck(s) operate. These models do not

closely recapitulate the situation of a single mtDNA pathogenic

mutation segregating along the maternal line of human pedigrees

because most heteroplasmic animals were generated by mixing

two mitochondrial genomes that differed for a cluster of

polymorphic variants, which may have no or small functional

relevance [49]. This condition is different from the case of a single

pathogenic mtDNA mutation arising on a clonal mitochondrial

genome, which is typical of humans with mitochondrial disorders.

Important differences between the two situations may include the

nucleoid composition and the level of mtDNA exchange, if any,

between nucleoids. Nucleoids seem to follow the faithful replica-

tion model, without consistent genome exchange [6,11,13].

Furthermore, it has been demonstrated that mtDNA molecules

may recombine within mitochondria [50–52], a phenomenon that

is not relevant when mtDNA is clonal as in most humans, but that

may become important in the case of different coexisting genomes

with clusters of distinct variants, as in the heteroplasmic animal

models or sometimes in humans with multiple heteroplasmies [17–

21,53]. No studies address how frequently mtDNA recombination

may occur, in which cell type, or during which stage of germ line

segregation. Neither heteroplasmic animal models [17–21,49] nor

the few available pathologic mito-mouse models [10,23,24] have

been fully exploited yet to answer all these questions.

One final question concerns the possible selective pressure on

mtDNA pathogenic mutations. The currently available mito-mice

clearly indicated that severe mtDNA mutations undergo purifying

selection over a few generations [23,24]. The segregation of the

MELAS mutation in human tissues has been proposed to be non-

random [54], and in vitro studies using cybrids with different

nuclear backgrounds showed that segregation of the mutant

mtDNA could be driven in opposite directions depending on the

nuclear genome [55–57]. Thus, selection of mutant mtDNA may

occur differently in different somatic tissues, impinging on the

phenotypic expression. Whether such a genotypic selection may

also operate during the germ line segregation for ‘‘mild’’ changes,

including the MELAS mutation, is currently debated, casting

doubts on the random genetic drift mechanism [47]. Staining the

ovarian tissue for the histoenzymatic COX/SDH activities failed

Figure 5. Graphical representation of mother-to-offspring transmission of the MELAS mutation in the two Italian families and the
seven other pedigrees retrieved from literature (see Table 1). The mutant load of MELAS mutation (%) is on the y axis. In all panels, the
leftmost point is the mother’s mutant load, connected to each of the offspring mutant load. The reference, the tissues from which mtDNA mutant
load has been assessed and the bottleneck size are indicated.
doi:10.1371/journal.pone.0096663.g005
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to reveal any COX-deficient oocyte, nor other cell types. This may

indicate that in this particular case there was no oocyte with supra-

threshold loads of MELAS mutation or that a very efficient

complementation occurs within oocytes, which may escape in the

case of MELAS mutation any selection along the germline.

In conclusion, the mechanisms governing the germline segre-

gation and the subsequent somatic distribution of single patho-

genic mtDNA mutations in humans remain far from being

elucidated. Our study of mother-to-oocytes/offspring tissues

transmission of the same pathogenic MELAS mutation shows

how wide may be the range of mutant loads segregating through

the same bottleneck size.
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