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ABSTRACT 

This study deals with the compensation of gravity loads in parallel kinematics machines as a 
possible strategy for enhancing their working performance. In particular, the paper focuses on 
the static balancing of the Orthoglide 5-axis, a prototypal parallel robot with Linear-Delta 
architecture for machining operation. Gravity compensation is analytically carried out and a 
feasible design, based on tension springs and a simple additional linkage, is presented to 
implement the proposed strategy. Simulation results prove that the balancing device may 
provide an appreciable enhancement of the mechanism energy efficiency.  
Keywords: static balancing, gravity compensation, Parallel Kinematics Machine, Linear-Delta 

 
1. INTRODUCTION 

A mechanism is statically balanced (or gravity compensated) if its total potential 
energy is constant for any admitted configuration. In such an instance, no motor actions 
are required to sustain the weight of the mechanism moving parts.  

The compensation of gravity loads in industrial serial manipulators is a common 
practice and numerous balancing strategies have been investigated [1-5]. Conversely, 
static balancing of closed-loop mechanisms is still rare, even if this topic has been widely 
studied and several different approaches have been proposed, the majority of which are 
based on the introduction of counterweights and/or springs. While many techniques are 
suitable for planar closed-loop linkages [6-9], only relatively few solutions are available 
for spatial parallel manipulators, which is generally more challenging. The application of 
balancing counterweights normally entails a remarkable increment in the robot inertia 
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[10, 11]; when actuated prismatic joints are present, complex devices for making the 
counterweights translate are also required  [12, 13]. The use of compensation springs 
often requires the introduction of auxiliary linkages or even additional passive (not 
actuated) legs, which may interfere with the motion of other robot components [10, 11, 
14]. In some cases, an approximate compensation is preferred, in order to limit the 
complexity of the balanced robot [15, 16]. 

Parallel robots are frequently adopted in industrial applications for high-speed 
manipulation (e.g. pick and place tasks). In such an instance dynamic loads are 
predominant and the implementation of dynamic balancing techniques (rather than the 
mere compensation of gravity loads) is of primary interest. However, complete 
compensation of both shaking force and shaking moment (namely the resultant vector 
and the resultant moment of inertia actions) can be extremely difficult to achieve, and 
only the former is often compensated for in practice, thus achieving force balancing. 
Force balanced mechanisms are inherently statically balanced, since their overall center 
of mass (c.o.m.) is required to be stationary, and they were widely investigated [17]. 
Studies dealing with force balancing provide useful information concerning possible 
critical issues related to the introduction of balancing counterweights [18-21].  

Static balancing is expected to bring about significant benefits to applications 
characterized by a heavy moving platform, long working periods in rest position and 
operations at low/moderate dynamics, since these features reasonably cause gravity 
loads to significantly affect the required actuator loads. Examples of parallel 
mechanisms characterized by the mentioned design features and functioning conditions 
are systems for robotically assisted surgery, flexible fixturing devices for assembly lines 
and Parallel Kinematics Machines (PKMs) for machining tasks. Indeed, studies 
concerning the implementation of gravity compensation strategies for improving the 
overall performance of such mechanical systems, particularly in terms of energy 
efficiency and safety, can be found in the literature [15, 22-25]. Nonetheless, a thorough 
investigation of the mechanism behavior in real working conditions is advisable, in order 
to verify the actual enhancement of the system operation as well as the presence of 
potential critical issues [20, 21]. 

This paper studies the static balancing of a prototypal PKM characterized by a 
Linear-Delta architecture, namely the Orthoglide 5-axis [26]. The mechanism is a 5-DOF 
machine tool (simply referred to as Orthoglide hereafter) featuring a 2-DOF spherical 
wrist installed on the moving platform of a 3-DOF translational closed chain. The study 
focuses on the compensation of the gravity loads acting on the motors of the 3-DOF 
translational chain. 

Gravity compensation is analytically achieved by using an approach based on 
constant-force generators [13, 27]. Mechanical implementation is obtained by tension 
springs and a simple auxiliary linkage, and a practical design is presented that 
implements only commercial components. Since no balancing counterweights are used, 
no significant additional inertias are introduced. 

The suitability of the proposed solution is investigated by testing numerical 
models of the unbalanced robot and its balanced variant. The dynamic operation is 
examined by simulating the execution of a number of reference trajectories and 



  

common machining tasks by means of inverse-dynamics analysis. A sensitivity analysis is 
performed for testing the robustness of the proposed design against the inaccuracies 
that could possibly affect its actual implementation (e.g. discrepancies between 
theoretical and actual values of the balancing parameters). 

The structure of the paper is as follows. Section 2 describes the studied robot. 
Sections 3 and 4 present, respectively, the gravity-compensation strategy and the 
mechanical design of a feasible solution. Sections 5 and 6 report the numerical 
investigation. Section 7 draws some conclusions. 
 
2. THE ORTHOGLIDE 5-AXIS 

The Orthoglide 5-Axis is a prototypal 5-DOF hybrid PKM primarily conceived for 
milling operations [26]. A schematic is illustrated in Fig. 1. Three actuated legs, arranged 
according to a Linear-Delta architecture, drive a 3-DOF translating platform (Fig. 1a), on 
top of which an active 2-DOF spherical wrist controls the spindle orientation (Fig. 1b). 
Each leg (Fig. 1c) is connected to the fixed base by an actuated prismatic joint. The 
actuated-joint axes are mutually orthogonal, with the slider of one leg (leg2) moving 
parallel to the gravity vector. Leg2 is therefore also referred to as vertical leg, whereas 
leg1 and leg3 are referred to as horizontal legs. Each horizontal leg features a planar 
parallelogram linkage made up of two links of length L (whose value is the same for all 
parallelograms), and two links (roughly) five times shorter. Revolute joints connect the 
parallelogram shorter links to the slider and to the platform, with the rotational axes 
being parallel and lying on the parallelogram plane. The joint sequence is shown in Fig. 
1c, where P, R and Pa stand, respectively, for prismatic joint, revolute pair and 
parallelogram linkage. Leg2 features two distinct parallelograms. At the mechanism 
reference configuration, the leg2 parallelograms lie on mutually-orthogonal vertical 
planes, whereas the parallelograms of leg1 and leg3 lie on the same horizontal plane. 

Each horizontal leg prevents 2 rotations of the platform, whereas the vertical leg 
constrains all rotational freedoms. As a result, the platform admits 3 translational DOFs, 
and the mechanism is overconstrained [28]. 

For the j-th leg (j=1,2,3), points Oj and Dj, respectively attached to the slider and 
the platform,  and lying on the revolute joint axes, are defined as the median points 
between the parallelogram joint axes. A fixed coordinate system, Σ = XYZ, is established 
as in Fig. 1a. It is centered in O, i.e. the intersection point of vectors rj =(Dj –Oj) , j=1,2,3, 
at the home configuration, with axes x, y and z passing through points Oj. P is a 
reference point on the platform that coincides with the intersection of the axes of the 
spherical wrist. The reference point P also coincides with the origin of Σ at the reference 
configuration. The translating platform is characterized by a cubic workspace (edges of 
0.5 m, parallel to the axes of Σ), whose center point, C, does not coincide with the origin 
O. 

The spindle c.o.m., Gsp, is located very close to the intersection of the axes of the 
spherical wrist. Due to such a design feature, the static torques loading the wrist 
actuators are very small for any admissible spindle orientation, and may be reasonably 
neglected. For this reason, this study focuses on the compensation of the gravity loads 
acting on the translational kinematic chain, and static balancing of the spherical wrist is 



  

not performed. Accordingly, the variables describing the wrist pose, θ1 and θ2 (Fig. 1b), 
are neglected in the equations derived hereafter. Furthermore it may be proven that 
gravity compensation of the 3-DOF translational chain is not affected by the spindle 
orientation (see Sec. 3.3). 

 
 
 

 
 

 

 

Fig. 1. Schematics of (a) the Orthoglide 5-axis at the reference configuration, (b) the spindle and  
(c) the kinematic chain of a horizontal leg. 
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The solution of the inverse kinematics for a generic position vector (px,py,pz) of 
the platform reference point P is given by [28] 

2 2 2

2 2 2

2 2 2

x x y z

y y x z

z z x y
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where the scalar parameters ρx, ρy, ρz describe the position of the slider points Oj on the 
corresponding axis of Σ, and the scalar constants Δx, Δy, Δz are the offsets of points Dj 
with respect to the reference point P. 
 
3. THE GRAVITY-BALANCED ORTHOGLIDE 5-AXIS 

The approach adopted for the static balancing of the Orthoglide is based on the 
concept of constant-force generators. Firstly, a set of constant forces (more precisely, 
constant-magnitude forces with fixed orientation), exerted by the legs on the moving 
platform, is determined by imposing the neutral equilibrium of the platform. Then, 
suitable balancing devices (typically comprising springs and/or counterweights) are 
introduced in each leg so that the constant forces computed at the previous step may 
be actually generated. The parameters characterizing the balancing devices are 
determined by imposing the invariance of the total potential energy of the leg, which is 
given by the contribution of all conservative forces, i.e. gravity loads, spring forces and 
the required constant force. 

Carricato and Gosselin [13] derived the necessary and sufficient conditions for 
the neutral equilibrium of a rigid body arbitrarily moving in space and acted upon by its 
own weight and by a number of constant forces. Such conditions assume a particularly 
simple form for the moving platform of the Orthoglide, which has a purely translational 
motion. In this case, a sufficient condition for static balancing is the equilibrium of the 
platform own weight (Fp) and the constant forces applied by the legs (fj), i.e. 

3

1

0p j
j

 F f  (2) 

A mass distribution which is analytically equivalent to the real one from the 
static-balancing point of view is adopted. Indeed, only four lumped mass parameters3 
may be used to describe the Orthoglide gravity loads: mp, located at point Gp of the 
platform, which accounts for the total mass of the platform, including the spindle, the 
spherical wrist and half the mass of each parallelogram; and msj, j=1,2,3, located at the 
slider point Gsj, which accounts for the total mass of the slider and the remaining mass 
of the parallelogram belonging to the corresponding leg. 

The sliders of the horizontal legs translate orthogonally to the gravity vector, so 
that the potential energy of masses ms1 and ms3, is constant. Hence, the static balancing 
of the Orthoglide may be achieved by transforming its vertical leg into a constant-force 
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the slider, since their c.o.m. are fixed with respect to such components. Half the mass of each longer link 
is added to both the platform and the slider, since the c.o.m. is located at the link median point. 



  

generator that exerts a force equal and opposite to the platform weight (i.e. f2 = Fp), 
while leaving the horizontal legs unaltered, i.e. f1= f3=0.  

In such an instance, a condition of invariant total potential energy can be 
achieved by adding two convenient devices to leg2: 
- a balancing device that compensates for the potential-energy variations induced by 

the relative motion between the platform and the slider of the vertical leg, referred 
to as distal balancing device; 

- a balancing device that compensates for the relative motion between the slider of 
the vertical leg and the fixed base, referred to as proximal balancing device. 

 
3.1. Distal balancing device 

A zero-free-length tension spring may be adopted as the distal balancing device 
(Fig. 2). The spring, with stiffness KD, acts between the slider and the platform, with A 
and B being its anchor points on the slider and the platform, respectively. Points A and B 
are defined by constant vectors a=(ax, ay, az) and b=(bx, by, bz) from points O2 and D2 
respectively. a and b have equal components along the X-axis and Z-axis, i.e. bx=ax and 
bz=az. 

 

Fig. 2. Schematic of the platform and the leg2 slider for a generic configuration, 
 with coordinate systems Σ, Σ' and Σ". 
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For balancing purposes, the configuration of the Orthoglide can be described by 

a set of independent variables related to the configuration of leg2, i.e. ρy, 1 and 2. Two 
floating coordinate systems, Σ' = X'Y'Z' and Σ" = X"Y"Z", both centered in O2, are 
established as shown in Fig. 2. Σ' is attached to the slider of leg2 and oriented like Σ. Σ" is 
arranged so that Y" is aligned with r2, with opposite direction, and Z" is perpendicular to 

the X'Y"-plane. Euler angles 1 and 2 define the orientation of Σ" with respect to Σ' and 

describe the relative motion between the platform and the slider: 1 is the rotation 

around the X'-axis, whereas 2 is the rotation around the Z"-axis, i.e. the new Z'-axis 

after rotation 1. The rotation matrix that gives the components in Σ' of a vector 
described in Σ" is: 
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where si and ci stand for sine and cosine of the angle i (i=1,2), respectively. The unit 
vector û = (0,-1,0) describes the orientation of vector r2 in Σ". The position vectors 
relevant for potential-energy computation are: 
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where δy=ay − by, and (ux, uy, uz)=Rû=(s2, − c1c2, − s1c2) are the components of û 
expressed in Σ'. 

If friction is neglected, only the gravitational and the spring forces act on the 
platform and leg2. Their contributions to the total potential energy of the Orthoglide 
are, respectively: 

 
2 2

2 1 2

gD s Gs p Gp

s p y p

V m m

g m m m Lc c 
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where ψ =[ms2 q2y + mp (qy − Δy)] and λ =[KD (δy
2 + L2)/2] are constants, and g = (0,− g, 0) 

is the gravity vector. 
 
 



  

3.2. Proximal balancing device 
A schematic of the proximal balancing device is shown in Fig. 3. The component 

referred to as spring support is connected to the base by means of two parallel links, i.e. 
link1 and link2, and to the slider by means of link3. All these links have length H. The 
planar mechanism made up by link1, link2, link3, the spring support, the vertical slider 
and the base has 1 DOF, which can be described by the variable ρy. A zero-free-length 
tension spring is connected to the spring support and to the slider, at points N2 and N1, 
respectively. N1 and N2 are defined by constant vectors n1=(n1x, n1y) and n2=( n2x, n2y), 
which have equal components along the X-axis, i.e. n1x = n2x.   

The linkage presented here is an evolution a device commonly used to achieve 
the static balancing of 2-DOF planar open chains, a device that consists of two 
parallelograms connected in series and two springs [29]. Since, in the case at hand, the 
slider is constrained by a prismatic joint, one link can be removed from one 
parallelogram, and a single spring may be used. The proposed solution achieves gravity 
compensation with a rather limited increment of dimensions. Moreover, by connecting 
the balancing spring directly to the slider and to the spring support, only 
traction/compression loads act on each linkk. Hence, these components may be 
designed as slender elements, thus entailing little inertia increment.  

Similarly to the procedure adopted for the legs, an equivalent mass distribution 
of linkk (k=1,2,3) is considered for gravity-compensation purpose, by concentrating half 
the mass of linkk in the center point of each one of its pivots.  Two lumped masses are, 
thus, adopted to describe the gravity loads of the balancing device: mw, equal to half the 
mass of link3 and located at the pivot Gw of link3 on the vertical slider; and mt, located in 
the c.o.m. of the spring support, Gt, given by both the total mass of the spring support 
and the contributions of link1, link2 and link3. 

 
Fig. 3. Schematic of the proximal balancing device. 
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The position vectors relevant for potential-energy calculation are: 
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where εy = n2y – n1y is a constant, and s and c stand, respectively, for sine and cosine of 

the auxiliary angle , which is related to ρy by the equation 
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 The contributions to the system potential energy, given by gravity loads and 
spring actions are, respectively: 

1
2

t
gP t Gt w Gw w y

m
V m m g m  

  
         

  
g r g r  (9) 

 
2 1

2

2

1 1

2 2
eP P N N P y yV K r K        (10) 

where the terms μ1=[mt(e+vy+2qty)/2+mwe] and μ2={KP[εy
2+ Hy

2 – εy(e–vy)]/2} are 
constants.  
 
3.3. Computation of the parameters of the balancing devices 

The total potential energy of the balanced Orthoglide is 
    TOT gD eD gP eP gHV V V V V V  (11) 

where VgH represents the gravitational potential energy related to masses ms1 and ms3, 
which remains constant during motion. 

In order to obtain gravity compensation, VTOT must be constant for any set of 
parameters describing the mechanism configuration. Accordingly, the following 
conditions 
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must be satisfied for any admissible value of 1, 2 and ρy, and thus: 
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Since the system formed by Eqs. (15) and (16) has four unknowns (namely the constants 
KD, δy, KP and εy), a solution can be found by arbitrarily choosing two parameters. In 
particular, by recalling that 

2 1,      y y y y y ya b n n      (17)
 

the springs anchor points (which affect δy and εy
4) may be arbitrarily located on the 

platform, on the vertical slider and on the spring support, in order to meet the design 
specifications and constraints of the Orthoglide, whereas the spring rates may be 
computed as   
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KD defines the stiffness of the tension spring comprised in the distal device, which 

compensates for energy variations related to variables 1 and 2, whereas KP defines 
the stiffness of the tension spring comprised in the proximal device, which compensates 
for energy variations related to variable ρy. Since the parameters δy, and εy are constant 
values, the spring rates KD and KP are constant as well. As a result, the gravity 
compensation of the Orthoglide can be achieved by means of tension springs 
characterized by constant stiffness parameters, KD and KP, and connected to the 
platform, the vertical slider and the additional spring support at fixed anchor points. No 
counterweights are needed, and the overall inertia of the system is not significantly 
affected. 

It is worth observing that the exact position of the platform c.o.m. Gp may 
depend on the orientation of the spindle, since the mass of the spindle is taken into 
account for determining the platform mass properties and the spindle c.o.m. may not 
exactly coincide with the wrist center (Sec. 2). However, it may be shown that the 
position of Gp does not affect the equilibrium of the platform, due to its translational 
motion, and thus the exact gravity compensation of the 3-DOF parallel chain is granted 
for any spindle pose. 
 
4. MECHANICAL DESIGN OF THE BALANCING DEVICES 

The introduction of cables and pulleys for transmitting the spring forces to the 
spring anchor points theoretically determined in Section 3 is advisable [14]. Indeed their 
use brings about the following advantages: 

                                                 
4
 The components of vectors a, b, n1 and n2 along the X-axis and Z-axis have no effect on balancing, since 
δy and εy are only determined by the Y-axis components. 



  

- common tension springs with non-zero free-length L0 may be adopted [29]; 
- the range of suitable springs is widened, since actual spring dimensions must not fit 

the distance between the theoretical anchor points; 
- cables and pulleys allow elastic elements to be arranged in more convenient 

locations, in particular near the mechanism base. 
The CAD design of a practical solution for the balanced Orthoglide is presented in 

Fig. 4. Two tension springs, one for each balancing device, are mounted on the fixed 
base. The spring forces are transmitted to the theoretical anchor points on the slider 
and the platform by means of cables and pulleys. The red cable (and its corresponding 
pulleys) is used for the distal device and is connected to the moving platform; the blue 
cable (and its pulleys) is used for the proximal device and is attached to the vertical 
slider. The correct orientation of the final sections of cables between the theoretical 
anchor points is granted by the two pivoting pulleys. The balancing error introduced by 
the finite radius of the pivoting pulley on the distal device is expected to be negligible 
for practical purpose. However, if needed, it may be precisely cancelled adopting a 
pulley configuration similar to that proposed in [30], which exploits a second pulley 
installed at the cable anchor point. As for the distal device, one further pivoting pulley 
may be installed on the moving platform for replacing the fixed anchor point of the 
cable. 

The presented solution allows the balancing springs to be mounted on the base 
rather than on the moving links. The springs undergo neither transverse motions nor 
rotations, thus significantly limiting potential elastodynamic issues. However the use 
cables and pulleys is known to possibly generate friction-related issues that should be 
carefully assessed in order to implement the device in practice. 

 

 
Fig. 4. Preliminary CAD representation of the balancing devices attached to the vertical leg. 
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Table 1 Required balancing parameters. 

spring type 

distal device proximal device 

δy 
[mm] 

KD 
[N/mm] 

fD,max 
[N] 

εy 
[mm] 

KP 
[N/mm] 

fP,max 
[N] 

theoretical 150.00 2.510 2321 130.00 11.131 4470 

off-the-shelf 150.30 2.505 2318 131.52 11.002 4424 

 
In order to achieve a better distribution of loads, each balancing device may be 

doubled, thus installing two identical mechanisms working in parallel and arranged in a 
symmetric layout with respect to the vertical slider. Each one of the two symmetric 
mechanisms would be subject to half the loads, so that the force acting on each cable 
would also be halved. However, doubling cables and pulleys may also worsen possible 
issues concerning friction.  

Different sets of parameters allowing the gravity compensation of the Orthoglide 
with the proposed balancing devices were examined. As described in Section 3.3, the 
spring anchor points can be arbitrarily set, thus obtaining the required spring rates, KD 
and KP, from Eqs. (18) and (19). A suitable set of balancing parameters is shown in the 
first row of Table 1. For the sake of simplicity, the selected locations of the spring 
anchor points are reported only in terms of parameters δy and εy. Table 1 also reports 
the peak magnitude of the forces acting on the cables of the distal and proximal devices, 
fD,max and fP,max respectively, which is reached when the corresponding springs undergo 
their maximum elongations (thus depending on both the Orthoglide workspace 
specifications and the geometry chosen for the balancing devices). The values reported 
in the first row of Table 1 are referred to as theoretical since a further tuning is required 
to match the spring rates of commercial springs available in practice.  

In order to meet the specifications of commercial springs, two expedients may 
be considered. On one hand, block and tackle systems (Fig. 5) may be used to, 
respectively, reduce by half and increase four times the spring elongation, Δxs, and the 
spring stiffness, Ks, with respect to the values Δxeq and Keq available at the cables (which 
coincide with the theoretical values to be achieved). On the other hand, clusters of 
smaller tension springs working in parallel may be used in the place of single springs, 
with the additional advantage of reducing the influence of the statistical uncertainty 
that normally affects the specifications of commercial springs. A convenient 
combination of clusters of off-the-shelf springs and block-and-tackle systems is reported 
in Table 2. Parameters Ks and fs,max represent the spring rate and the maximum force of 
each spring of the cluster, respectively. The equivalent spring rates available at the 
cables with the chosen arrangement of off-the-shelf springs, as well as the adjusted 
locations of the spring anchor points, are reported in the second row of Table 1. 

The selected set of balancing parameters allow potential interferences between 
the cables and the mechanism moving parts (in particular with the double parallelogram 
of the vertical leg) to be avoided. Moreover, it allows relatively large pulleys to be 
adopted, thus avoiding small-radius effects on cables. Finally, it entails a limited 
increment of the robot dimensions. 

 
 



  

Table 2 Parameters of a possible device implementation. 

device 
Ks 

 [N/mm] 
fs,max  
[N] 

# springs 
per cluster 

# moving 
 pulleys 

total spring 
 mass [Kg] 

distal 5.009 1159 8 2 8.087 

proximal 5.501 1105 8 1 8.450 

 

 
Fig. 5. Block and tackle solution applied to the proximal balancing device. 

 
The proposed balancing devices do not require any actuator and completely 

compensate the static loads. They neither limit the mechanism workspace nor 
significantly modify the its overall dimensions, and they may be implemented with 
relatively simple modifications of the original system. Moreover, only small inertias are 
added, since the springs (which could be rather heavy) can be conveniently installed on 
the fixed base and no balancing counterweights are introduced, thus limiting the raise of 
dynamic loads [20, 21]. 

The presented solution for gravity compensation may be applied to other 
parallel mechanisms characterized by Linear-Delta architecture. Applying the method to 
manipulators featuring more than one leg with a translational axis parallel to gravity is 
straightforward. However, it is not difficult to extend this technique also to robots 
exhibiting legs with a generic orientation of the base-mounted prismatic joint. Details 
are omitted due to space limitations.  
 
5. DYNAMIC ANALYSIS 

The numerical models of the unbalanced Orthoglide and its balanced variant are 
implemented inside a multibody software environment (MSC ADAMS). The geometric 
and inertial properties are derived from the robot CAD model. In order to assess motor 
loads, a simplified kinematic chain, obtained by removing redundant constraints, is 
used. Simplified balancing devices are considered as well. Indeed, since the high cable 
stiffness and the low inertia of both cables and pulleys are expected to marginally 
influence the mechanism elastodynamic behavior, these parameters are not taken into 
account at this stage of the study. Accordingly, springs are modeled as massless and 
directly acting between the theoretical anchor points defined in Secs. 3.1 and 3.2  

The dynamic operations of the unbalanced and the balanced robot are 
investigated by means of inverse-dynamics simulations, i.e. motion laws are imposed on 
the actuated prismatic joints, and the corresponding motor actions and joint reactions 
are computed. 
 
5.1. Simulated trajectories  

Two different groups of trajectories are tested. 
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The first group, comprising Paths A and B, aims at examining the mechanism 
behavior when the Orthoglide spans its workspace with velocities and accelerations in 
the upper range of its potentialities. Path A prescribes point P of the platform to follow,  
with constant velocity magnitude, a helix with radius 0.245 m and axis parallel to the y-
axis and passing through point C (i.e. the center of the workspace). Two velocity profiles, 
#1 and #2, are tested, corresponding to different values of the tangential velocity, 
respectively 0.8 and 1.2 m/s. The vertical velocity is set at 1/6 of the tangential speed. 
Path B is conceived to test both high speeds and frequent accelerations and 
decelerations. The platform moves along the edges and the diagonals of the workspace 
with a maximum acceleration of 1.5 g along each axis and two velocity profiles, #1 and 
#2, namely 0.6 and 1.0 m/s.  

The second group of tests, comprising Paths C through F, is conceived to 
simulate machining tasks. Four different cycles are simulated, namely rough-milling 
(Path C), finishing (Path D), deburring (Path E) and drilling (Path F), which are 
characterized by different dynamics and working loads. The first three cycles reproduce 
the machining of two rectangular pockets on horizontal planes, including rapid 
movements for tool positioning before and after each machining operation 
(characterized by maximum velocity and acceleration of, respectively, 1 m/s and 1.5 g). 
The fourth cycle simulates the execution of a sequence of holes, with rapid movements 
being performed before and after each drilling operation.  

The tested velocities and accelerations (in particular relative to the rapid 
movements for tool positioning) are comparable to the maximum values characterizing 
the operation  of commercially available machine tools with working specifications 
similar to the Orthoglide. 

Cutting actions on the tool are modeled as forces proportional to the 
instantaneous platform velocity (i.e. the feed velocity). Their magnitudes are computed 
by using simplified relations normally adopted to estimate the spindle power 
requirements in aluminum machining operations [31]. For both roughing and finishing 
milling cycles, two equal-magnitude force components are taken into account, i.e. a 
tangential force orthogonal to both the feed direction and the vertical axis, and a radial 
force opposed to the feed velocity (which is a rather unfavorable case). An additional 
vertical force with the same magnitude of the other two is considered when deburring. 
In drilling simulations, only a thrust force opposite to the vertical feed is taken into 
account. The magnitudes of the feed velocity, vf, and of the total cutting force, Fc, 
adopted in the simulations are provided in Table 3. 
 
Table 3 Machining parameters adopted in simulations. 

Task 
Machining parameters 

vf [m/s] Fc [N] 

Path C: roughing 0.10 1098 

Path D: finishing 0.10 101 

Path E: deburring 0.04 43 

Path F: drilling 0.04 500 

 



  

5.2. Results 
The motor actions required to accomplish the two groups of operations are 

reported in Table 4 (Paths A and B) and Table 5 (Paths C through F), in terms of both rms 
and maximum absolute values, for the unbalanced (subscript “Un”) and the statically-
balanced mechanism (subscript “SB”). The percentage variations induced by gravity 
compensation are expressed as:  

% 100 SB Un
rms

Un

rms rms

rms


  ,            

% 100 SB Un
max

Un

max max

max


    

(20) 

Since each motor acts along an axis of the global reference frame, motor forces 
are referred to by means of their corresponding axes. 

Since the rms value provides an evaluation of the energy requirements of an 
actuator, it may also be adopted as a metric for a rough estimation of the global energy 
efficiency. To this purpose the overall rms of loads required for each tested trajectory 
(obtained by summing the rms values of the three motor loads) is computed and 
reported in both Table 4 and Table 5. 
 
5.2.1. Rapid positioning operations 

The motor actions required in the unbalanced robot are affected by both inertial 
and static loads. The contribution of static loads appears preponderant, since the force 
exerted by the vertical actuator is considerably greater than the horizontal actions and, 
due to the Orthoglide architecture, most of the gravity loads are sustained by the 
vertical leg. Consequently, the estimated overall energy requirements appear primarily 
ascribable to the vertical actuator. Indeed, the rms value of the force acting along the y-
axis is about five times higher than the others in Path A, and three times higher in Path 
B, even in tests featuring greater inertia forces (velocity profile #2).  

 
 

Table 4 Computed motor actions for rapid positioning operations. 

Path 
Vel. 

profile 

Dynamic motor loads [N] 

axis rmsUn rmsSB Δrms% maxUn maxSB Δmax% 

A 

# 1 

x 56 96 +72 150 190 +26 

y 743 87 -88 1887 1070 -43 

z 83 99 +19 264 405 +53 

tot 882 283 -68       

# 2 

x 148 214 +45 341 427 +25 

y 743 114 -85 1834 1016 -45 

z 163 222 +36 436 578 +33 

tot 1054 550 -48       

B 

# 1 

x 267 296 +11 1189 1368 +15 

y 843 342 -59 2188 1565 -28 

z 266 297 +12 1189 1368 +15 

tot 1375 935 -32       

# 2 

x 309 347 +12 1172 1347 +15 

y 861 401 -53 2165 1537 -29 

z 308 348 +13 1172 1347 +15 

tot 1477 1095 -26       

 



  

The statically balanced mechanism presents a remarkably less onerous load of 
the vertical actuator. In all cases, the rms of the vertical driving force is reduced by more 
than 50%, and its maximum absolute value is reduced by roughly 1/3. Conversely, an 
increment in the loads of both horizontal motors is observed for all simulated 
conditions, and it is particularly large for Path A. Nonetheless, the motor loads along the 
x- and z- axes remain relatively low, since they do not exceed 30% of the vertical force 
experienced in the unbalanced case, in terms of rms values. A reduction of the benefits 
brought about by gravity compensation is observed when the velocity grows, reasonably 
due to an increment in the inertial effects. Such a behavior is consistent with the results 
of other works (e.g. [13]). However also in the worst conditions, due to the remarkable 
decrease in the vertical motor force, static balancing results in a global reduction in the 
estimated energy requirements, as confirmed by the decrement of the overall rms.  
 
5.2.2. Machining operations  

The comparison between the motor loads of the unbalanced and the balanced 
mechanism, for all machining tasks, is reported in Table 5, as well as in Fig. 6 and Fig. 7, 
where the trends of the forces along the y- and the z-axis  are plotted as functions of 
time. Since the horizontal actuators behave similarly, the trend of the forces along the x-
axis is not reported. 

The vertical motor of the unbalanced mechanism still appears considerably 
affected by static loads (Fig. 6), with a high non-zero mean value being observed. 
However, inertial loads are also remarkable, in particular those associated with rapid 
movements for tool positioning. In addition, cutting forces cause significant oscillations 
of all motor loads. 

 
 

Table 5 Computed motor actions for machining operations. 

Task 

Dynamic motor loads [N] 

axis rmsUn rmsSB Δrms% maxUn maxSB Δmax% 

Path C: 
roughing 

x 569 574 +1 1014 1142 +13 
y 813 326 -60 1719 997 -42 
z 765 758 -1 1381 1216 -12 

tot 2148 1659 -23 
   

Path D: 
finishing 

x 134 131 -2 863 858 -1 
y 777 159 -80 1719 946 -45 
z 197 157 -21 867 861 -1 

tot 1108 447 -60       

Path E: 
deburring 

x 159 154 -3 863 857 -1 
y 771 220 -71 1744 973 -44 
z 193 181 -6 869 880 +1 

tot 1123 555 -51       

Path F: 
drilling 

x 206 208 +1 1021 947 -7 
y 627 355 -43 1768 1029 -42 
z 136 139 +2 977 940 -4 

tot 970 702 -28       

 

 



  

 
 

Fig. 6. Machining operations, comparison between motor loads of  
the unbalanced (Un) and the balanced (SB) robot along the y-axis 

 

 

 
 

Fig. 7. Machining operations, comparison between motor loads of  
the unbalanced (Un) and the balanced (SB) robot along the z-axis. 
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In all machining operations, gravity compensation significantly decreases the 
vertical motor loads with respect to the unbalanced system, in terms of both rms and 
maximum absolute values. Conversely the forces of the horizontal actuators are only 
marginally affected by compensation, and both their rms and maximum absolute values 
remain essentially unvaried. 
 
5.2.3. Discussion  

It emerges from Secs. 5.2.1 and 5.2.2 that the overall rms value of motor loads 
appear significantly reduced by gravity compensation for all tested working conditions, 
in both rapid positioning operations and typical machining tasks. Since such parameter 
is used for approximately estimating the energy requirements over the working cycles, 
the simulations results confirm that an appreciable increment in energy efficiency 
should be reasonably expected, at least for the tested functioning conditions.   

The numerical simulations do not reveal any critical drawback possibly 
associated with the balancing device, even if a further assessment of potential 
elatodynamic or friction-related issues may be advisable.    

Even if analyses were performed over specific imposed motions, the simulated 
conditions are fairly representative of the majority of the working cycles that may 
characterize the Orthoglide operation, including the most onerous tasks. Hence, the 
results drawn from simulation are believed to possess a wide validity for the robot at 
hand, showing that static balancing may be a viable strategy for enhancing the 
Orthoglide working performance. 

 
6.  SENSITIVITY ANALYSIS  

A sensitivity analysis is carried out in order to assess the robustness of the 
proposed gravity-compensation approach, with respect to possible inaccuracies 
affecting the parameters of the balancing devices. The variations of the following 
parameters are taken into account: 
1. mass of the moving platform, mp, which may change due to the installation of 

different cutting tools; 
2. mass of the vertical translating slider, ms2, which may be inaccurately estimated 

due to partial data available for commercial actuators; 
3. stiffness, Kr and Kt, of the tension springs used in the distal and proximal 

balancing devices (discrepancies between actual and nominal values can be 
normally found in off-the-shelf springs); 

4. location of the cable anchor point on the platform, rB = (rBx, rBy, rBz), possibly 
affected by manufacturing or assembly inaccuracies. 
The effects induced by modifications of these parameters with respect to their 

nominal values are investigated by means of static simulations. The parameters 1-3 of 
the balanced model are altered by ± 10% of their rated value, whereas an absolute 
deviation of ± 5 mm is imposed on each component of the parameter 4. For each value 
assigned to a single parameter, the platform is driven across the complete workspace in 
static conditions, i.e. all inertial actions are neglected. The residual motor loads (i.e. the 
motor actions required for maintaining neutral equilibrium after compensation) are  



  

Table 6 Results of the sensitivity analysis. 

Static motor loads [N] 

 
unbalanced 

statically balanced 

 case 1 (mp) case 2 (ms2) case 3 (Kr) case 4 (Kt) case 5 (rB) 

axis rms max rms Δrms% max Δmax% rms Δrms% max Δmax% rms Δrms% max Δmax% rms Δrms% max Δmax% rms Δrms% max Δmax% 

x 88 243 9 -90 24 -90 0 -100 0 -100 3 -97 8 -97 0 -100 0 -100 16 -82 31 -87 

y 728 907 3 -100 19 -98 72 -90 72 -92 13 -98 19 -98 27 -96 27 -97 7 -99 19 -98 

z 88 243 9 -90 24 -90 0 -100 0 -100 3 -97 8 -97 0 -100 0 -100 16 -82 31 -87 

 
monitored in a grid of reference points. The rms and maximum absolute values are 
computed and compared with the values obtained from static simulations of the 
unbalanced model (performed by considering the same positions in the workspace and 
without modifying the model parameters). The simulation results are summarized in 
Table 6.  

Since identical absolute values are obtained for both the positive and the 
negative variations of each parameter, results are shown only for positive variations. 
Percentage variations Δrms% and Δmax% of the driving-force rms and maximum absolute 
values with respect to the unbalanced case are also shown. 

Static loads of the unbalanced mechanism are dominated by the vertical 
component. Indeed, due to the system architecture, the weight of all moving parts is 
almost completely sustained by the vertical actuator.  

In the balanced mechanism, static loads are significantly lowered, in spite of the 
modified parameters, with the reduction being about 90% in both the rms and the 
maximum absolute values.  

Based on these results, gravity compensation appears to be effective within the 
entire range of the analyzed parameters, thus the robustness of the proposed design 
proving satisfactory. 

 
7. CONCLUSIONS 

This paper studied the static balancing of the Orthoglide 5-axis, a prototypal PKM 
for machining applications that features a Linear-Delta architecture. Gravity 
compensation was achieved by attaching tension springs and a simple auxiliary linkage 
to the robot vertical leg. The mechanical design of a solution for implementing balancing 
in practice was presented. A suitable arrangement of cables and pulleys was defined to 
apply the spring forces. The main features of the proposed design are the following:  
- only relatively simple modifications of the original robot are needed in order to 

properly install the balancing devices, with negligible increment of the overall robot 
dimensions; 

- the effectiveness of the balancing devices is weakly influenced by possible 
inaccuracies affecting the design parameters (as proven by a sensitivity analysis), 
thus allowing design tolerances to be relieved; 

- the use of cables and pulleys allows the balancing springs to be installed on the fixed 
base, thus limiting both the additional inertia on the moving parts and the motion of 
the springs (which may lead to elastodynamic issues); 



  

- the proposed devices operate passively, i.e. they do not require additional actuators 
that would entail additional power consumption. 

The results provided by numerical simulations of the Orthoglide operation in 
typical working conditions showed that:  
- the introduction of the balancing devices causes only a small increment in the 

moving inertias, which do not significantly affect the robot dynamic performance; 
- a significant reduction in the overall motor loads, as well as a more uniform loading 

of the actuators, is achieved when the robot performs common machining tasks.  
Based on the results presented in this work, gravity compensation appears as a 

viable strategy for enhancing the operation of the Orthoglide and, to a certain extent, of 
PKMs for machining applications characterized by similar functioning conditions. 

The proposed balancing approach, although developed for the specific case of 
the Orthoglide 5-axis, may be extended to other machines featuring a Linear-Delta 
architecture. 
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