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Uneven illumination affects every image acquired by a microscope. It is often overlooked, 

but it can introduce considerable [AU: Use of “significant” is reserved for the statistical sense; 
instances in the paper have been changed to “considerable” or “substantial.”] bias to image 

measurements. The most reliable correction methods require special reference images, and 

retrospective alternatives do not fully model the correction process. Our approach 

overcomes these issues for most optical microscopy applications without the need for how 

No optical system is ideal. Inhomogeneous illumination is present in every image acquired by a 
microscope. Many factors, including misaligned optics, dust, nonuniform light sources and 
vignetting, contribute to uneven illumination1. 

It is increasingly common for light microscopes to be used as quantitative instruments 
even though seemingly minor shifts in illumination can corrupt measurements and invalidate 
subsequent analyses. For example, we found that uneven illumination increased the false 
detections and missed detections by CellProfiler2 on images of yeast cells by 35% when 
illumination correction was neglected (Supplementary Fig. 1c–f). Other routine measurements 
can be affected as well. Uneven illumination substantially reduced the measurements of the mean 
intensity and mean area of GFP-stained HeLa cells in the corner of the image relative to the 
center (Supplementary Fig. 1g–l). 

The consequences of ignoring uneven illumination are often underestimated, as reflected 
in our survey of microscope users (Supplementary Note 1). The magnitude of intensity loss 
attributed to vignetting, that is, falloff of intensity from the center of the image, is often 
substantially stronger than assumed. Data from 11 ordinary microscope setups revealed that 
between 10% and 40% less light is typically recorded at the dimmest region of the image 
(Supplementary Note 2). Intensity loss is even more severe for cameras with large sensor areas 
or wide apertures, such as scientific complementary metal-oxide semiconductor (sCMOS) 
devices, which can experience a falloff greater than 50% (Supplementary Note 2).  

The most common approach for correcting uneven illumination reverses the image 
formation process, attempting to recover the true image, I, from the image observed by the 
sensor, I0. Distortions to the observed image are modeled by a linear intensity gain function v and 
an additive term z; I0(x) = I(x)v(x) + z(x), where I0(x) is the intensity observed at location x. The 
intensity gain models attenuations to the signal (Fig. 1a). An additive or zero-light term models 
contributions present even if no light is incident on the sensor, mainly camera offset and fixed-
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pattern thermal noise. It is usually nearly uniform, varying by only a few intensity values. The 
uncorrupted image is recovered by reversing the image formation process 
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Although simple at first glance, in practice v and z cannot be known exactly, which has 
prompted the development of a variety of correction methods (Supplementary Note 3). 
Prospective methods estimate the correction surfaces from special reference images collected 
during acquisition3,4, whereas retrospective methods rely on the actual image data5,6. Prospective 
methods are regarded as more reliable because they empirically estimate the terms in equation 
(1), whereas retrospective methods are more practical because they do not require special 
acquisitions. 

We introduce a new retrospective method, corrected intensity distributions using 
regularized energy minimization (CIDRE), which achieves correction quality similar to that of 
prospective methods. Unlike existing retrospective methods, CIDRE estimates both v and z. The 
key insight to our approach is that the distribution of intensities from a single location across 
many images is related to an underlying distribution common to all locations by a linear 
transform. This assumes that objects may appear anywhere in the image with equal probability. 
Local-intensity distributions from a finite set of observed images are simply linear transforms of 
a sampling of the underlying distribution (Fig. 1b). The parameters of the transform can be 
visualized in a quantile-quantile plot, where v corresponds to the slope and b corresponds to the y 
intercept. 

CIDRE estimates v, b and z simultaneously for all locations by minimizing a regularized 
energy function composed of several terms (Fig. 1c). The first term is a robust regression that 
ensures v and b fit the data (Fig. 1d). The second term reduces noise and guarantees a smooth 
correction surface, encouraging neighboring distributions to agree on similar values for v (Fig. 

1e). The third term estimates z by finding the common point where all regression lines intersect 
(Fig. 1f). Corrected images are obtained using equation (1) (Fig. 1g). A complete explanation is 
provided in Supplementary Note 4. 

We compared our approach to 12 commonly used methods in a series of tests on 12 data 
sets. Eleven of these data sets represent typical microscopy setups with various microscopes, 
sample preparations, staining, light sources, magnifications and sensors (Supplementary Table 

1 and Supplementary Note 2). As a gold standard, we used prospective correction in which v is 
estimated as the average of several reference images or empty images and z is estimated as the 
average of several dark-frame images. To measure correction quality, we collected hundreds of 
pairs of overlapping images for each data set, precisely aligned them and reported the mean of 
absolute differences for each pair of corresponding pixels in the overlapping regions 
(Supplementary Note 5). The scores are normalized by the mean score of the uncorrected pairs 
(Fig. 2). Although this provides a reasonable estimate of the correction quality, unavoidable 
differences between image pairs may cast some doubt on our measure. To address this, we 
generated a twelfth data set of synthetic images and distorted them using a known model 
(Supplementary Note 6), allowing us to directly measure the disagreement between the true and 
corrected images. 
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Our tests highlight the inadequacies of current illumination-correction practices. Single-
image retrospective methods generally made the illumination more uneven instead of correcting 
it. Multi-image retrospective methods showed some improvement, but no method consistently 
achieved satisfactory performance. The gold-standard prospective methods performed best 
among existing methods, but their reliance on reference images limits their usefulness. 

CIDRE is a retrospective method and thus does not require calibration images; therefore, 
it can always be applied to previously collected data. Unlike other retrospective methods, it is 
capable of estimating the z term, which helped it to perform well consistently on every data set. 
In terms of correction quality, it surpassed all tested methods including the gold standard, and it 
also substantially reduced errors in cell counting, cell intensity and cell area measurements 
(Supplementary Fig. 1). CIDRE is available as open-source software in Matlab 
(http://www.github.com/smithk/cidre/) and as an ImageJ plug-in (Supplementary Software). 

Although CIDRE is useful for many applications, it is not suitable in certain conditions. 
The key assumption is violated if the images are highly correlated. In time-lapse images, for 
example, this may cause artifacts in the correction, although combining images from different 
sites can help reduce this danger. Like other retrospective methods, CIDRE performs best with 
many images containing ample intensity information. With 1,000 images or more, CIDRE was 
substantially better than the gold standard on average (Fig. 2 and Supplementary Fig. 2). Fewer 
images or sparse intensity information reduced correction quality. We found that for most 
applications, ten images were sufficient to ensure an improvement in illumination quality, 
whereas approximately 100 images were necessary to match the gold standard (Supplementary 

Fig. 3). 

Uneven illumination is a common but misunderstood phenomenon, and results reported 
by many researchers have undoubtedly been affected by it. Proper illumination-correction 
procedures should be followed whenever acquiring images for quantitative microscopy, and 
CIDRE is a simple, freely available tool that can help ensure the quality of such measurements. 

METHODS 

Methods and any associated references are available in the online version of the paper. 

Note: Any Supplementary Information and Source Data files are available in the online version of the paper. 
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Figure 1 | Summary of illumination correction using CIDRE. (a) The observed image is 
corrupted by misaligned optics, vignetting, dust, etc., and this corruption is modeled as a linear 
intensity gain function v. The observed image also contains contributions from camera offset and 
thermal sources, modeled as an additive term z. (b) To recover the true image, we consider the 
local distributions of observed intensities (red and blue) collected from many images. Each is 
related to the true underlying distribution of the specimen (gray, upper plot) by a linear transform 
parameterized by v and b, which correspond to slope and y intercept, respectively, in a quantile-
quantile plot between the true distribution and the local distribution. (c) The plot shows an 
estimation of the parameters in b simultaneously for all locations by minimizing a regularized 
energy function composed of several terms. (d–f) Terms composing the energy function in c. 
The plot in d shows a robust regression term that ensures parameter values fit the data. The plot 
in e shows a regularization term that reduces noise and guarantees smoothness of the correction 
surface, forcing neighboring distributions (green and blue) to agree on similar parameter values. 
The plot in f shows how z, a nearly uniform-intensity surface representing the intensity recorded 
when no light is present, is estimated by finding the common point where all regression lines 
intersect. (g) When we apply the reverse transform using estimates of v and z, local-intensity 
distributions (red and blue) take the shape of the true distribution (gray, upper and lower plots), 
and the uncorrupted images can be recovered. 

Figure 2 | Comparison of 13 illumination correction methods, averaged over 12 image 
collections. Scores are the mean absolute differences between pairs of overlapping test images 
after correction, computed pixelwise and normalized by the disagreement between uncorrected 
image pairs. A score of 1 implies equivalent disagreement to the uncorrected image pairs, 
indicated by dashed lines. A score of 0 implies a perfect correction, though it is not achievable in 
practice. †Prospective methods. *Single-image methods. ‡Gold-standard methods. Methods and 
data sets are described in the Online Methods. 

ONLINE METHODS 

Software. Our software, CIDRE, is available as an ImageJ plug-in and as a Matlab script. The 
open-source code for CIDRE is available as Supplementary Software and for download at 
http://www.github.com/smithk/cidre/. Compiled versions of the code and updates are available at 
http://www.scopem.ethz.ch/research/software/cidre.html.  

Microscopy data sets. We collected 11 data sets designed to represent a variety of microscopy 
setups commonly used for research to evaluate illumination-correction methods 
(Supplementary Table 1). Misaligned optics, dust, scratches, vignetting, and nonuniform light 
sources contribute to uneven illumination in these data sets. The most common source of uneven 
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illumination is vignetting, a radial intensity falloff from the center of the image7 caused by 
blockages of extreme light paths, varying angular sensitivity of the sensor, and natural geometric 
falloff1. Images were acquired with eight different microscopes and one conventional SLR 
camera. We varied the microscope itself, sample preparation, staining, mounting, objectives, 
light sources, type of sensor, image resolution, and bit depth. In addition, we generated a set of 
synthetic images to form a twelfth data set allowing us to directly measure correction quality. 
Each data set contains several sets of images: approximately 100 images of a reference material 
(for example, fluorescent slide), 10–100 ‘empty’ images (for example, the culture medium or the 
glass slide), 10–100 dark-frame images where no light is incident on the sensor (acquired with 
the light source switched off or otherwise blocked), 10–100 images in a series with increasing 
exposure times, 100–200 pairs of images used to test the correction models, 1,000–3,000 images 
used to train the correction models, and 1,000–3,000 segmentations of the training images 
obtained with CellProfiler2. Below we give a brief description of each data set (Supplementary 

Note 2). 

HCS-DNA: this data set contains propidium iodide (P3566 Invitrogen)-stained ATCC 
HeLa cells from a high-content screen. The compound stains DNA and RNA, visualizing the 
nuclei and cytoplasm as well as clumps of Semliki Forest virus. Images were collected on the 
RFP channel of a fluorescence wide-field microscope using 384-well plates with a plastic-air 
interface. The microscope was a Molecular Devices ImageXpress Micro with a 20×/0.75-NA 
objective with a LED-liquid light guide (Lumencor Spectra X). A CCD sensor (Photometrics 
CoolSNAP HQ) acquired 1,392 × 1,040 12-bit images. The mean signal intensity in the images 
was low (219). Reference images were acquired at various locations on a plastic fluorescent 
reference slide and empty wells containing fluorescent medium. The intensity attenuation 
measured as the difference between the 99th percentile and 1st percentile intensities computed 
from the mean of the reference images was 42.6%. The confluency, measured as the percentage 
of the image area occupied by cells, was 21.5%. 

HCS-NUC: this data set contains DAPI-stained MRC5 human fetal lung fibroblasts 
(SV40 immortalized) from a high-content screen. Images were collected using a second 
microscope with a similar setup to that of HDC-DNA but with a DAPI-adapted filter set. The 
mean signal intensity was moderate (549), intensity attenuation was 18.7%, and cell confluency 
was low (2.7%). 

HCS-ACTIN: this data set contains actin-stained HeLa cells from a high-content screen. 
Images were collected using the same microscope and setup as for HCS-NUC, except that a 
different filter set and light source were used (Lambda LS arc lamp, Sutter Instruments, with a 
300-W xenon bulb, PerkinElmer). The mean signal intensity was bright (1,776), intensity 
attenuation was 23.3%, and confluency was high (88.2%). 

MICROFLUID: this data set contains yeast cells in a synthetic medium containing 
glucose and dextran coupled with Alexa Fluor 680, used to study regulation of the PKA pathway 
through V-ATPase. A microfluidic setup was used (CellAsic Microfluidic plate Y04C), and 
images were acquired using a Nikon Ti-Eclipse microscope with a 60×/1.4-NA objective and 
LED-liquid light guide (CoolLED pE-2). A high-resolution sCMOS sensor (Hamamatsu Orca 
Flash 4.0) was used to acquire 2,048 × 2,048 16-bit images. Reference images were acquired 
from various locations on a plastic fluorescent reference slide and empty wells containing 
fluorescent medium. The mean signal intensity was bright (1,086), intensity attenuation was very 
strong 50.4%, and cell confluency was very low (0.6%). 
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FLUO-ACTIN: this data set contains muntjac skin fibroblast cells on a glass slide 
(FluoCells prepared slide F36925). The prominent filamentous actin in these cells was labeled 
with Alexa Fluor 488. Images were collected using a fluorescence wide-field microscope with a 
glass-oil interface. The microscope model was a Zeiss 200M with a 63×/1.4-NA objective and a 
HBO-direct light source with a 100-W Mercury arc lamp. A CCD sensor (Hamamatsu C8484) 
acquired 1,344 × 1,024 12-bit images. Reference images were acquired at various locations on a 
plastic fluorescent reference slide. The mean signal intensity was low (213), intensity attenuation 
was weak (7.5%) and cell confluency was moderate (32.5%). 

FLUO-MITO: this data set contains bovine pulmonary artery endothelial (BPAE) cells on 
a glass slide (FluoCells prepared slide F36924). Mitochondria were labeled with red fluorescent 
MitoTracker Red CMXRos. Images were collected using a fluorescence wide-field microscope 
with a glass-air interface. The microscope model was an Olympus IX81 with a 20×/0.75-NA 
objective and a Lambda LS arc lamp (Sutter Instruments) with a 175-W xenon bulb 
(PerkinElmer). The CCD sensor (Hamamatsu Orca ER) acquired 1,344 × 1,024 12-bit images. 
Reference images were acquired at various locations on a plastic fluorescent reference slide. The 
mean signal intensity was low (338), intensity attenuation was strong (40.3%), and cell 
confluency was low (13%). 

FLUO-EMCCD: this data set contains bovine pulmonary artery endothelial (BPAE) cells 
on a glass slide (FluoCells prepared slide F14781). Anti-bovine alpha-tubulin mouse monoclonal 
in conjunction with goat anti-mouse antibodies label the microtubules. Images were collected 
using a fluorescence wide-field microscope with a glass-air interface. The microscope model was 
a Leica DMI6000B with a 40×/0.7-NA objective and a 100-W metal-halide lamp. An EMCCD 
sensor (Andor iXon 885) acquired 1,004 × 1,002 16-bit images with the EM gain set at a 
medium setting (3). Reference images were acquired at various locations on a plastic fluorescent 
reference slide. The mean signal intensity was bright (2,155), intensity attenuation was 38%, and 
cell confluency was moderate (34.3%). 

HIST-CONFOCAL: this data set contains a 16-µm cryostat section of mouse kidney on a 
glass slide stained with Alexa Fluor 488 to label elements of the glomeruli and convoluted 
tubules (FluoCells prepared slide F24630). Images were collected using a fluorescence confocal 
microscope with a glass-air interface. The microscope model was a Zeiss LSM 510 with a 
10×/0.3-NA objective and a 30-mW argon 488-nm laser with an optical fiber light guide. A 
Hamamatsu photomultiplier tube (PMT) sensor acquired 512 × 512 12-bit images. Reference 
images were acquired at various locations on a plastic fluorescent reference slide. The mean 
signal intensity was medium (614), intensity attenuation was strong (43.9%), and confluency was 
high (54%). 

HIST-BRIGHT: this data set contains a sagittal section of mouse brain on a glass slide 
labeled with hematoxylin and eosin (HE) stain. Bright-field images were collected using a wide-
field microscope with a glass-oil interface. The microscope model was an Olympus IX81 with a 
40×/1.3-NA objective and Lambda LS arc lamp (Sutter Instruments) with a 175-W xenon bulb 
(PerkinElmer). A CCD sensor (Hamamatsu Orca ER) acquired 1,344 × 1,024 12-bit images. 
Reference images were acquired using empty locations on the glass slide. The mean signal 
intensity was bright (614), and intensity attenuation was 32%. 

PHASE: this data set contains native epithelial cells from oral mucosa on a glass slide. 
Phase-contrast images were collected using a wide-field microscope with a glass-air interface. 
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The microscope model was an Olympus IX81 with a 10×/0.3-NA objective and 100-W halogen 
lamp. A CCD sensor (Hamamatsu Orca ER) acquired 1,344 × 1,024 12-bit images. Reference 
images were acquired using empty locations on the glass slide. The mean signal intensity was 
moderate (923), intensity attenuation was 12.4%, and cell confluency was low (7.1%). 

PHOTOGRAPHY: this data set contains conventional photographs of projections of 
paintings and drawings from the National Gallery of Art. A consumer digital SLR camera was 
(Nikon D90) was used with an 18- to 105–mm zoom lens (set at 50 mm). Reference images were 
acquired using empty sheets of white paper. A CMOS sensor (Nikon DX format) acquired 1,072 
× 712 8-bit images. The mean signal intensity was bright (150), and intensity attenuation was 
17%. 

SYNTHETIC: this data set contains synthetically generated images of HeLa cells. 
Uncorrupted 1,392 × 1,040 12-bit images were synthetically generated and artificially subjected 
to illumination distortions using a physically plausible model (Supplementary Note 6). 
Reference images were synthetically generated in a similar manner. Because the corruption 
process is known and the image pairs are perfectly aligned, this data set allows us to directly 
measure differences between corrections and uncorrupted images. 

Baseline illumination-correction methods. We compared our method to 12 commonly used 
prospective and retrospective approaches for illumination correction (Supplementary Note 3). 
Each method is summarized below, starting with prospective correction methods, which require 
special calibration images to be acquired along with the data. 

CALIB-ZERO models the illumination gain v as the average of a set of images of a 
plastic fluorescent reference slide8 at various locations. The zero-light term z is modeled by 
averaging a set of images taken at various locations with the shutter closed, the light source 
turned off or otherwise blocked. Image correction follows equation (1), reversing the image 
formation process. This approach is considered a gold standard because it empirically models 
both correction terms. However, it has several drawbacks (Supplementary Note 3). 

CALIB models the illumination gain v as above but ignores the zero-light term8. Image 
correction is done by normalizing the image by the gain I(x) = I0(x)/v(x). This is an incomplete 
model, but it can give reasonable results when the zero-light term is small relative to the 
calibration intensity. 

EMPTY-ZERO models the illumination gain v as the average of empty' images taken at 
various locations3. In our experiments, this includes either the culture medium without any cells 
or the glass slide. The zero-light term z is modeled by averaging a set of images taken with the 
shutter closed. Image correction reverses the image formation process (equation (1)). This 
approach also serves as a gold standard because it empirically models the correction terms, but it 
suffers from the same drawbacks as CALIB-ZERO (Supplementary Note 3). This method is 
appropriate for bright-field images or fluorescence imaging when the medium fluoresces. 

EMPTY models the illumination gain v as above but ignores the zero-light term8. Image 
correction is done by normalizing the image by the gain I(x) = I0(x)/v(x). Although flawed, this 
approach can give reasonable results when z is small. 

SIGAL uses a specially acquired set of images of a homogeneous medium captured with 
increasing exposure times to build the correction model9. Estimates of v and z are obtained by 
performing a least-squares fitting on data from the exposure series, giving additional weight to 
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data from zero exposure time to anchor the zero-light level. Image correction reverses the image 
formation process (equation (1)). Because the exposure series often contains only a few data 
points (7 in the original paper9, 13–100 in our data) and are not regularized, estimates of v and z 
tend to be noisy and non-smooth. 

Next, we describe four purely computational retrospective methods that build the 
correction model from more than one image. 

CAN builds a model of the illumination gain by sorting image data by location10. The top 
10th-percentile data are used to fit a polynomial surface in the log-intensity space to estimate v. 
Images are corrected according to I(x) = I0(x)/v(x). This approach ignores the zero-light term, but 
it can give reasonable results when that term is small relative to the signal. 

LJOSA forms the illumination gain estimate v by fitting a polynomial or spline surface to 
an average of the images to be corrected5. The fitted surface is used for correction according to 
I(x) = I0(x)/v(x). This approach ignores the zero-light term, but it can give reasonable results 
when that term is small relative to the signal. 

SCHWARZFISCHER is a method designed to correct time-lapse fluorescence images, 
though it can be used for static images if the background contains illumination information11. 
Each image is broken into overlapping tiles, and each tile is clustered as either background or 
signal on the basis of local statistics. Next, background models are constructed for each image 
using natural-neighbor interpolation to smooth and fill in missing values. A foreground model is 
estimated using least-squares fitting at every location on the background data. The images are 
corrected with a formula similar to (1). This method can compensate for photobleaching as well 
as uneven illumination, but it becomes unreliable for high-confluency images because it depends 
on a large background area (which is sparse when many cells are present). Comparing intensities 
between images corrected with this method is problematic because the correction model is 
adapted to each image. 

SHARIFF is the default method6 used in the software package CellProfiler2, which 
supports several options for illumination correction. The intensity gain is estimated using the 
mean image intensity computed at every location. It is smoothed with a median filter and 
rescaled to an appropriate range. Images are corrected according to I(x) = I0(x)/v(x). 

Finally, we describe three single-image retrospective correction methods. These methods 
are applied independently to every image and do not require any calibration images. Although 
they are useful for improving the appearance of the image, these methods are inappropriate if 
intensity measurements will be made from the image because they nonuniformly alter the signal. 

ROLLINGBALL or the top-hat transform applies a shape filter that subtracts a geometric 
opening of the image from the image12. The ‘ball’ in this case refers to the shape of the filter 
kernel, which is sized to be larger than the diameter of the largest expected object. For each data 
set, we tested several kernel sizes and chose the one with the best performance. 

SMOOTHING also relies on subtracting a filtered version of the image from the 
original13. In this case, a Gaussian smoothing kernel is used, which is sized to be larger than the 
diameter of the largest expected object. 

BABALOUKAS selects locations from the background of the image, fits a polynomial to 
those points, and subtracts the fitted surface from the original image14. In the original paper, 
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background points were selected manually. We automatically selected background points using 
the clustering technique proposed by Schwarzfischer et al.

11. 

Evaluation protocol. To assess the quality of correction (Fig. 2 and Supplementary Figs. 2 and 

3), we defined an evaluation procedure, error measure, and benchmark score. Measuring 
correction quality is difficult because we cannot directly compare against the uncorrupted 
images. Some authors use the coefficient of variation (CV) of corrected reference images15, but 
differences between the reference images and actual data cast doubt on the validity of this 
measure. Our solution was to collect hundreds of pairs of overlapping images for each data set, 
precisely align them, and report the mean of absolute differences for each pair of corresponding 
pixels in the overlapping regions (Supplementary Note 5). We collected 100–200 pairs of test 
images for every data set. The various correction methods were applied to each data set. 
Prospective methods used sets of reference images to train the model, whereas multi-image 
retrospective methods were trained using a collection of 1,000–3,000 images acquired under 
similar conditions as the test set. Single-image retrospective methods operate directly on the test 
images. Each pair of test images was aligned using a subpixel registration technique16. The 
overlapping regions from each test pair were used in the evaluation (Supplementary Note 5). 
Whenever possible, we used a four-quadrant solution wherein quadrant IV of the first image 
overlapped quadrant II of the second image. Our reasoning is that the most dramatic intensity 
difference often occurs between a corner of the image and the center, and this format allowed us 
to directly compare the corner of one image to the center of the other. However, our ability to 
automate the data collection process was limited by the microscope software and size of the 
specimen, so this layout was not always possible. In two cases (FLUO-MITO and PHASE), we 
were forced to overlap the left half of the first image with the right half of the second image. In 
the case of the SYNTH data set, each pair of test images is perfectly aligned, and so the entire 
image overlaps. For a given test pair, the overlap regions are two separate acquisitions of the 
same field of view, denoted IM1 and IM2. The principal sources of disagreement between IM1 
and IM2 are uneven illumination, noise, alignment errors, and photobleaching. The error is the 
mean of absolute differences between all aligned pixel pairs in the overlapping regions. More 
precisely 

( ) ( )1 2

1 n n

n l

e I l I l
N

= -å å  

where e is the error, n indexes the image pair, l indexes locations in the overlapping region, and 
N is the total pixel pairs across all images pairs. To correct for photobleaching, and because the 
outputs of the correction methods have different dynamic ranges (some methods are purely 
multiplicative, some purely subtractive, etc.), we standardized the intensity distributions of the 
images, thus ensuring comparability across correction methods. The median and s.d. of the set of 
test image sets were normalized to those of the uncorrected IM1 image set. Finally, the mean 
error for all image pairs is normalized by the benchmark error, that of the uncorrected image 
pairs, with 

method

method

UNCORRECTED

e
s

e
=  

This yields a score s in the interval [0, ∞), where 0 indicates perfect correction (IM1 and 
IM2 are the same), 1 indicates disagreement equivalent to the uncorrected images, and >1 
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indicates greater disagreement than the uncorrected images (i.e., the correction process increased 
disagreement between image pairs). 

Assumptions. Our correction method makes the following assumption: the probability of the 
specimen appearing at location x in an image is uniform for all x, and there is no correlation 
between the images. In other words, the content of the image can appear anywhere in the image 
with equal probability. For example, a cultured cell or a piece of tissue are just as likely to appear 
in the corner of the image as in the center. A second assumption is based on empirical 
observations: the zero-light noise z(x) should be approximately uniform for all x (flat across the 
image). This is based on evidence from measurements of the zero-light noise from the data we 
collected and reliable sensor manufacturing. To verify this assumption we captured and averaged 
dark frames from each data set. We found that the s.d. of such images was less than 0.1% of the 
dynamic range, and often less than 0.02%. 

Illumination-correction formulation. Our method for illumination correction, CIDRE 
(corrected intensity distributions using regularized energy minimization), operates on a set of 
observed images corrupted by illumination distortion that were acquired under similar 
conditions. CIDRE recovers the uncorrupted images by first estimating the unknown parameters 
v and z through an energy-minimization technique and then applying equation (1) to recover the 
uncorrupted images (Supplementary Note 4). It is assumed that objects may appear anywhere in 
the image with equal probability. If this assumption is valid, then the distribution of intensities at 
a single location taken from infinitely many images is related to an underlying distribution 
common to every location by a linear transform modeling the corruption process. Local-intensity 
distributions from a finite set of observed images are simply linear transforms of a sampling of 
the underlying distribution parameterized by v, b and z. CIDRE estimates these parameters 
simultaneously for all locations by using a quasi-Newton method17 to minimize a regularized 
energy function comprising a robust regression term, a smoothness term, and an offset term. The 
robust regression term ensures v and b fit the data (Fig. 1d). The smoothness term enforces a 
smooth correction surface and reduces noise by encouraging neighboring distributions to agree 
on similar values for v (Fig. 1e). The offset term estimates z by finding the common point where 
all regression lines intersect (Fig. 1f). The results of the optimization are robust estimates for v 
and z, which allow us to apply equation (1) and recover the uncorrupted images. 
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