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Abstract

It has previously been shown that non-thermal, €@d) plasma can successfully
decontaminate milk frork. coli. This study investigated the possible biochentbainges to the
protein, free fatty acids and volatiles profilesnfole raw milk samples following application of
cold plasma. Raw milk was treated with a cold plasystem at intervals of 0, 3, 6, 9, 12, 15 and
20 min. Significant changes were observed for aralt(P<0.05), 2 heptanoné>&0.01), 2
hexenal P<0.01), 2 octenalR<0.05), nonanal and benzaldehy®&@.001). Plasma treatment did
not result in significant changes to the lipid carsiion of raw milk. However, exposure to cold
plasma significantly increased the total aldehyalgent following 20 min treatment. No significant

difference was observed in the total ketone ortralttevels.
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1. Introduction

The accomplishment of plasma physicists to genéoatéemperature plasmas at
atmospheric pressure has provided a great chanteefapplication of this phenomenon in areas
where ‘thermal’ or ‘hot plasmas’ cannot be usediSareas include the textile, medical and food
industries. Cold plasmas have been investigatethér potential in many applications (Fridovitch,
1995; Korachi, Turan, Senturk, Sahin, & Aslan, 200&roussi, Alexeff, & Wang, 2000), including
sterilisation and decontamination (Gurol, Ekincsl#n, & Korachi, 2012; Korachi, Gurol, & Aslan,
2010; Korachi et al., 2009; Perni, Liu, Shama, &ligp2008; Ragni et al., 2010). The recent
advances in cold plasma have allowed scientista¢oessfully develop many different systems,
with parameters that can be adjusted to the mitsueh as voltage, gas type and temperature
(Eliasson & Kogelschatz, 1991).

Over the last decade, research in ‘cold plasmatrabspheric pressure has shown
decontaminating properties for various materialduding living cells, meat, poultry, milk, water,
fresh fruit and vegetables, due to its ability ib&wide range of microorganisms, including
bacteria Escherichia coli, Staphylococcus aureus, Pseudosiarauginosa, Streptococcus
mutans, Bacillus subtiljsyeasts Candida albicany fungi (Aspergillus nigerand green algae
(Berardinelli, Vannini, Ragni, & Guerzoni, 2012; ixeet al., 2007; Gurol et al., 2012; Kelly-
Wintenberg et al., 1998; Korachi et al., 2009,@201

The success of such investigations has led toukstmpn of the feasibility of this
technology as an alternative processing systerartert thermal techniques that can be detrimental
to the quality of the food product (Gould, 2000;r&chi et al., 2009). Since consumer demands for
more ‘natural tasting products’ have increasedasthe demand for such cold plasma processing
technologies.

A previous investigation on the biocidal efficadyaoccold plasma system for the

decontamination of liquids has successfully shawmbility to totally eradicate microorganisms
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from water (Korachi et al., 2009). Furthermore, shene system with some adjustments has also
been investigated for its decontaminating abilitynoilk contaminated witle. coli (Gurol et al.,
2012), where a three log cycles decrease was aikerv

Despite many studies on the decontaminating alafiglasma, there are limited
investigations into the effect of cold plasma oa thod product(s) itself. This study aims to
provide further insight into the possible biocheahichanges that may occur following application

of plasma on milk.

2. M aterials and methods

2.1. Milk samples

Raw milk samples of Grey Steppe breed (3.5 % fatevobtained from a local farm in
Istanbul, Turkey. Samples were placed on ice delivered to the laboratory where they were
processed immediately. Confirmation of viable mixzab growth (colony forming units, cfu) was
obtained by inoculating 100 pL of the raw milk saengnto Tryptone Soya Agar (TSA) and violet

red bile agar (VRBA) and incubating at 37 °C forhi8

2.2. Plasma corona discharge setup and application

An atmospheric plasma discharge system previowesdygribed for testing the
decontamination potential &. coliin milk (Gurol et al., 2012) was used in this stuByiefly, the
system consisted of a 9 kV AC power supply, twatien electrodes (0.8 mm radius) and a simple
ballast circuit. A high voltage was applied betwdes upper electrode tip and the liquid surface.
The tip of the electrode was kept at a distand&mim from the milk surface. A current of 90 mA

was measured to flow into in the plasma coronataedemperature was kept below 35 °C. Fifteen
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mL of milk samples were pipetted into sterile pdighes (100 mm % 25 mm) and treated with cold
plasma for exposure times of 3, 6, 9, 12, 15 omi#®as previously described (Gurol et al., 2012).
Experiments were carried out three times with fiyalicates per experiment.

The light emission intensities of the plasma disghavere determined by way of a UV-
visible emission spectrometer and a TCD-1304 T@shiGD sensor (Baki, Istanbul, Turkey),
manufactured by the Laser Technologies LaboratbKooaeli University; Turkey as previously
described (Gurol et al., 2012). The optical resotubf the spectrometer was 1.6 nm and slit
resolution was 600 lines per mm. The integratiaretof the data collection was selected to be 10
ms for each spectroscopic data. The spectroscapecvebs taken by a light falling on the surface of
an optical fibre, where the tip of this fibre waspk at 0.7 cm above the milk surface. At this
distance, the recorded emissions were not affdptedilk surface effects. The emissions were

recorded between wavelengths of 350 and 800 nm.

2.3. Assessment of lipolysis

The presence of free fatty acids (FFAs) in milk ples was determined following plasma
application. Lipid extraction was carried out ackog to the method described by Lopez-Lopez,
Castellote-Bargallo, and Lopez-Sabater (2001) watime modifications and standards used as
previously described by (Lanciotti et al., 2006)cidoromethane-methanol (2:1) (Sigma, Munich,
Germany) was added to milk and the mixture was @@chlly agitated in a shaker (Hotech,
Taipei, Taiwan) and then centrifuged at 300§ After washing with sterile distilled water, the
organic phase was filtered and the solvent was vethin a rotatory evaporator (Heidolph,
Schwabach, Germany).

Lipids were extracted by methylation using n-hex@vierck, Darmstadt, Germany) ana12
potassium hydroxide in methanol (Merck, Darmst&atymany). After evaporation undep fux,

diazomethane (Sigma, Munich, Germany) was adddtl &ad methyl ester analysis was carried
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out using an Agilent Hewlett-Packard 7890GC gasmiatograph (GC) equipped with a mass
spectrometry (MS) detector (Hewlett-Packard 597@MWSA, USA) and a 30 m x 0.32 i.d. fused
silica capillary column coated with a 0.2 um fildh@arbowax (Supelco, Bellefonte, CA, USA) as
the stationary phase. The identification of thevitilial FFAs of milk samples was based on the
comparison of the retention times of the unknowA$-with those obtained from the known FFA
standards (Sigma). The identification of FFAs wias aarried out by computer matching of their
mass spectral data with those of the compoundsicaa in the Agilent Hewlett-Packard NIST 98
and Wiley version 6 Mass spectral data base. Thatgication of FFA level of milk samples was
performed using C11:0 as an internal standardraterdration of 100 puL per 2.5 mg of fatty acid

esters.

2.4. Identification of volatile compounds

Volatile compounds for each milk sample were eviglddy GC-MS/solid-phase micro-
extraction (SPME) analysis as previously descrithedhciotti et al., 2006). A divinylbenzene-
carboxen-polydimethylsiloxane-coated fibre (65 amdl a manual SPME holder (Supelco) were
used for the SPME of volatile compounds in milkr peak detection, an Agilent 7890 gas
chromatograph (Agilent Technologies, Santa Claka\FSA) coupled to an Agilent 5970 mass
selective detector was used. This system was @ekiraklectron impact mode with an ionisation
voltage of 70 eV. The column used was a Chrompdi\&x 52 CB capillary column (50 m x
0.32 mm i.d.; Chrompack, Middetburg, Netherland&ke temperature was adjusted to 50 °C for 2
min and then raised 1 °C every minute up to 65 after that 5 °C per min to 220 °C. The
temperatures of the injector, interface, and iamms® were 250, 250, and 230°C, respectively.
Injections were carried out in splitless mode, tredcarrier gas was helium with a constant flow
rate of 1 mL mift. Volatile compounds were identified using massspedatabases

(NIST/EPA/NIH version 2005). The quantificationtbe main volatile compounds was performed

6



142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

on the basis of calibration curves obtained by mrglgure standards to 5 mL of milk samples and

prepared as previously described for volatile conmgloanalysis.

2.5. Statistical analysis

All experiments were repeated three times withdicates per experiment. Data were
statistically analysed using the Minitab versionsi#istical software. One-way analysis of
variance (ANOVA) was applied to the data to deteersignificant differences among the different

plasma treatment. Tukey test was used for compaggeample (significant levé&l<0.05).

3. Results and discussion

Although several studies have described the useldfplasma for food decontamination
purposes, the effect of such applications on tbd faroduct itself has not been studied. We have
previously reported that, following 3 min of colthpma application on milk, a significant 54%
reduction in the population &:. coliwas observed, with a minimal effect on the colowd pH of
the milk (Gurol et al., 2012). This follow-up studsas carried out to determine whether the cold
plasma treatment of milk resulted in any changekdéachemical composition of cold plasma
treated milk.

Light emission intensity spectroscopy results (Eigshowed identical results to those
shown in our previous study (Gurol et al., 2012)e peaks observed in the spectrum were
identified using the NIST Atomic Spectra Databdal¢henko, Kramida, & Reader, 2008). The
peak locations (A-H in Fig. 1) produced by thecimrge were as follows: A, C-1l (585.22 nm); B,
N-1 (670.48 nm); C, O-1 (700.19 nm); D, O-II (712.8m); E, O-Ill (749.28 nm); F, N-I (760.88

nm); G, N-Il (776.22 nm); H, O-Ill (780.75 nm) wieethe Latin numbers I, 1l and Il next to the



167 “atomic symbols corresponded to singlet, doublet taplet, respectively. The peaks B, D, and G
168 corresponded to maximum intensities of nitrogenaagen.

169 The spectra obtained from the tip of the electiodée air showed peaks identified as

170 oxygen (O), nitrogen (N) and carbon (C). This i®éoexpected since the plasma system operates in
171 air. It has been suggested that these ions acteteraards the liquid surface, creating ozone and
172 other active species with very short lifetimes, #mgb vastly reducing any toxic effects (Lukes,
173 Clupek, Babicky, Janda, & Sunka, 2005).

174 However, although these ions give rise to an astiohial effect, they could also be

175 detrimental to the chemical composition of tredtsmtl products, especially those that are high in
176 nutritious value. Milk is such a product, with angolex structure, which is known to be easily

177 affected by processing treatments.

178

179 3.1. Assessment of lipolysis

180

181 The effect of cold plasma treatment on the FFA aositpn of milk is summarised in Table
182 1. Total saturated chain fatty acids (SFAs) detkutere between C8:0 — C20:0, monounsaturated
183 fatty acids (MUFASs) were C14:1, Clé6cis/trans C18:1, C19:1, C20:gis/trans and

184 polyunsaturated fatty acids (PUFAS) were C18:2,:€20d C20:3.

185 Approximately 64% of FFAs were SFAs and the remairfdUFAs and PUFAs with

186 approximate percentages of 27% and 3%, respectiVely SFA concentration was seen to

187 decrease from 64.4% to 63.6% within the first 346 of plasma application. However, following 5
188 min cold plasma treatment, the total SFAs gradualiyeased to 65.8% (20 min). Despite these
189 observations, no significant changes were obsarvamtal FFAs concentrations compared with
190 control non-treated samples. Application of coldgpha displayed a larger effect on

191 polyunsaturated fatty acids (PUFAS) in milk, whighre seen to decrease from 3.0% to 2.8% after

192 only 3 min treatment and further decreased to Zdbawing 20 min of treatment. Overall, the
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predominant fatty acids observed pre-plasma appicavere hexadecanoic acid (C16:0), oleic
acid (C18:1) and stearic acid (C18:0), which magl@pproximately 32%, 24% and 15% of the
fatty acid content of the whole milk, respectively.

These results are in agreement with previous stutieg found C16:0 to be the major fatty
acid in milk (Guler, Cakmak, Zengin, & Aktumsek,1Z0) Prandini, Sigolo, Tansini, Brogna, &
Piva, 2007). The concentration of hexadecanoic &eisl seen to decrease from 32% to 30% after 3
min application and then increase to 32.5% follarther treatment (20 min). Oleic acid was the
most abundant MUFA, at approximately 24% in sampbkfsre and after plasma treatment. The
amount of oleic acid increased from 23.9% to 24a2fb then 24.7% following 3 and 6 min of
plasma application, respectively, and then dectes23.1% after 20 min. Oleic acid has
previously been documented to be predominant MUtdairy products from Turkey (Guler et al.,
2010; Seckin, Gursoy, Kinik, & Akbulut, 2005). Apgation of cold plasma for 20 min caused a
slight reduction in the amount of stearic acidnir5.3% to 14.1%. The changes in fatty acids may
be attributed the dehydrogenation of stearic aaigsed by the oxygen radicals produced during
plasma treatment, resulting in an increase in @eid. The decrease in oleic acid after 20 min
could be indicative of an opposing or reversiblct®n produced by the H and OH plasma species.

Comparison of levels of C18:0, C12:0, and C10:0ndtbC18:0 to decrease, while short-
chain fatty acids (C10:0 and C12:0) increased falg plasma application. This may suggest that
cold plasma treatment results in a hydrolytic gftaclong-chain SFAs. Conversely, the free
radicals such as hydroperoxyl radicals, superosadecals, and singlet oxygen are described as
attacking PUFAs (Doroszkiewicz, Sikorska, & Jankkiw&994) which generate shorter fatty acids
(Farr & Kogoma, 1991). On the other hand, the acspecies formed during plasma discharge can
initiate lipid peroxidation and produce hydropedxiwhich may be further converted into
secondary oxidation products such as aldehydesaotes chain fatty acyl compounds (Benedetti,
Competi, Fulceri, & Esterbauer, 1984; Kappus, 1988ad, 1976). However, further studies are

needed to elucidate the observed changes to cotifese assumptions.
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Differences between pre- and post-cold-plasmasdeatilk samples were detected.
However, statistical analysis revealed that thengha to the fatty acid profiles at different expesu
times were not significant. This suggests that¢bigl plasma system does not significantly affect

the fatty acid composition of milk for treatmenmhgs up to 20 min.

3.2.  Volatile compounds

More than 50 volatile organic compounds (VOCs) weeatified in control and plasma
treated raw milk samples (Table 2). Ketones, aldek, alcohols and to a lesser extent
hydrocarbons were detected in all pre and posated milk samples.

Overall, a significant change was observed in @al@thyde contenP&0.01), while no
significant changes were observed in the total amsitipon of ketones and alcohoR>0.05). A
marked increase was observed in the level of &bd@hydes (20.8+5.1 pg) following 20 min cold
plasma treatment. Both qualitative and quantitativenges were observed when pre- and post-cold
plasma samples were compared. In particular, afisignt quantitative change was observed in the
presence of 2 hexend&<0.01) and 2 octenalP&0.05) and a highly significant change was
revealed for the presence of nonanal and benzadgeRy0.001). The increase in these aldehydes
could be attributed to the degradation of sevemahturated fatty acids found in milk, e.g., oleic
and linoleic acids (Benedetti et al., 1984; Kapde85; Mead, 1976), by auto-oxidation and/or the
spontaneous decomposition of hydroperoxides, wiéste been found to result in the production of
aldehydes (Vazquez-Landaverde, Torres, & Qian, R@&ch degradation could be a result of the
reactive species seen to be produced by plasma.

The aldehydes detected by GC/MS-SPME analysis wievmilk following cold plasma
were 2-butenal, 2-methyl-propenal, hexanal, hept@Alaexenal, octanal, 2-heptanal, nonanal, 2-
octenal, 3-furaldehyde, 3-cyclohexene-1-carboxaldehdecanal, 2-nonenal, and benzaldeyde.

Aldehydes such as 2-butenal, heptanal, 2-heptar@lclohexane-1-carboxaldehyde, and 2-

10
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nonenal, which were not detected in untreated obséimples, were observed in post treated cold
plasma samples. Other previously present aldehpdesased with exposure time to cold plasma.
The observed increase in the content of aldehydsisgold plasma treatment could be due to the
detrimental effect of the produced reactive spelsiethe plasma system (N and OH, and NO)
(Ragni et al. 2010).

The ketones detected in both pre and post plagatnient were, acetone, 2-butanone, 2-
pentanone, methyl-isobutyl ketone, 5-methyl-3-hexen 4-methyl-2-hexanone, 4-methyl-3-
penten-2-one, 2,6-dimethyl-4-heptanone, 2-heptaroetanone, 2,5-octanedione, 2-nonanone,
3,5-octadien-2-one, and 2-undecanone. Of the kefamdy 2 heptanone was observed to be
significantly different P<0.01) when compared with control, nontreated rsdkiples. Slight
increases were detected in the concentrations thfytrgobutyl-ketone, 4-methyl-3-penten-2-one,
and 2,6-dimethyl-4-heptanone, while a decreaseolvasrved in 4-methyl-2-hexanone, and 2-
nonanone compared with nontreated control sambi@sever, these changes were not found to be
statistically significant.

Overall, in terms of the total volatile compositj@icohols were found in lower amounts
compared with ketones and aldehydes. Ethanol, anwx5-methyl-3-hexanol, 1-octanol and 2-
hexanol were observed as the most predominant@kohcontrol milk samples. Total alcohol
profiles of plasma treated samples displayed arase in concentration from 0.8 pg before cold
plasma application to approximately 2.1 pug post gdhsma treatment (20 min), with a significant
change observed in 1 octanBkQ.05), which increased with increasing exposuretio cold
plasma.

It is of interest that quantitative changes to fabone, dimethyl sulphide, ethanol and 2-
propanone, which are well known to be related &dfi-flavour and degeneration of milk (Gordon,
& Morgan, 1972; Keller & Kleyn, 1972; Reddy, BagseWard, & Dunham, 1967; Shipe et al.,

1962), were found to be not significant in thisdgtueven after 20 min of plasma application.
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4. Conclusion

A cold plasma corona discharge system previouskgtefor its decontamination potential
of E. coliin milk was assessed for its effect on the chehtieaposition of raw milk. No
significant changes were observed to the lipid cositppn of milk, although significant changes
were seen to affect several volatile compounds¥aiig cold plasma treatment. Further studies are
required to confirm the potential of cold plasmaaslternative technology in milk

decontamination.
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Figurelegend

Fig. 1. Emission spectrum of the plasma discharge on milk surface: A, C-11 (585.22 nm); B,
N-1 (670.48 nm); C, O-I (700.19 nm); D, O-l1 (712.89 nm); E, O-111 (749.28 nm); F, N-I

(760.88 nm); G, N-11 (776.22 nm); H, O-111 (780.75 nm).



N

Tablel

Fatty acid composition of milk treated with theaplasma system for different treatment tinfes.

Compound Control Treatment time (min)
3 6 9 12 15 20

C10:0 - 1.97+0.03 0.78+#0.16 1.42+0.04 1.33+0.51 2.11+0.17 1.51+0.72
C11:0 0.71+0.56 0.23+0.09 0.48+0.16 0.30+#0.18 0.64+0.41 0.35#0.04 0.39%0.25
C12:0 2.57+0.66 3.04+0.62 2.56+0.59 2.86+0.66 2.60+1.12 2.90+0.69 2.89+0.83
C13:.0 0.09+0.03 0.12+0.02 0.11+#0.02 0.12+0.02 0.11+0.03 0.11+0.02 0.08+0.08
Ci13iso 0.20+0.03 0.25#0.01 0.22+0.04 0.24+0.06 0.21+0.03 0.23+0.04 0.22+0.04
Ci14:1 1.054#0.17 1.23+0.05 1.18+0.05 1.19+0.14 1.20+0.13 1.15+0.12 1.15+0.20
C14:0 10.78+0.80 11.41+0.41 11.28+0.45 11.45+0.5511.57+0.55 11.16+0.42 11.93+0.87
i-C14:0 0.39+0.03 0.47+0.02 0.44+0.05 0.45+0.07 0.44+0.03 0.43+0.06 0.42+0.06
a-C14:0 0.85+0.05 1.00+0.06 0.95+0.10 0.96+0.16 0.96+0.06 0.93#0.15 0.92+0.11
C15:0 1.7340.06 1.87+0.04 1.84+0.06 1.76+0.03 1.80+0.13 1.76+0.15 1.76+0.20
C15:0iso 0.51+0.02 0.58+0.03 0.54+0.08 0.57+0.08 0.54+0.06 0.54+0.08 0.52+0.07
C16:1 (transA®)  0.12+0.01 0.14+0.02 0.14+0.01 0.13+0.02 0.13+0.02 0.13+0.02 0.12+0.03
C16:1(cisA®) 1.91+0.04 1.94+0.04 1.95+0.02 1.96+0.10 1.93+0.06 1.88+#0.06 1.85+0.22
C16:1 A" 0.03+0.01 0.03+0.01 0.03+0.01 0.03+0.00 0.03+0.01 0.03+0.01 0.03+0.00
C16:0 31.97+£1.29 29.98+0.71 30.92+1.65 31.30+0.46 31.50+0.88 30.64+0.98 32.52+1.95
C16:0iso 0.56+0.02 0.64+0.04 0.61+0.06 0.63+0.09 0.60+0.05 0.59+0.09 0.55+0.06
C16:0 ante 0.82+0.02 0.95+0.08 0.91+0.11 0.93#0.16 0.91+0.11 0.87#0.15 0.80+0.06
C17:0 1.0440.03 1.13+0.04 1.11+0.07 1.11+0.12 1.06+0.08 1.06+#0.11 0.99+0.12
C18:2 2.53+0.11 2.26+0.14 2.39+0.26 2.37#0.12 2.40+#0.04 2.41+0.19 2.16%0.40
C18:1 (cisA®) 23.90+0.70 24.18+3.4024.66+3.18 23.30+0.64 23.11+1.26 23.26+1.23 23.12+2.20
C18:1 (transA®)  0.36+0.03 0.33+0.02 0.25+0.22 0.34+0.03 0.33+0.06 0.35+0.03 0.34%0.04
c18:1 A™) 1.2740.01 1.04+0.07 1.07+0.09 1.17+0.09 1.12+#0.16 1.17#0.17 1.16%0.14
C18:0 15.31+0.39 13.99+0.89 14.58+1.06 14.77+0.68 14.38+0.63 14.62+0.96 14.06+1.44
C19:1 0.12+0.02 0.15+0.02 0.14+0.03 0.15+#0.02 0.14+0.01 0.14#0.02 0.13#0.00
C19:0 0.08+0.01 0.13+0.04 0.11+0.01 0.11+0.02 0.09+0.02 0.10£0.03 0.10+0.00
C20:4 0.17+0.03 0.18+0.01 0.15+0.03 0.15+0.03 0.14+0.03 0.16%#0.03 0.17+0.01
C20:3 0.13+0.01 0.13+0.01 0.12+0.01 0.11+0.02 0.10£0.01 0.12#0.01 0.12+0.01
C20:1 n9 (cis 11) 0.16+0.03 0.19+0.01 0.18+0.02 0.17#0.02 0.16+£0.02 0.18+0.03 0.17+0.03
C20:0 0.26+0.03 0.27+0.01 0.28+0.03 0.26%£0.04 0.24+0.01 0.29%#0.03 0.26%0.03
Total SFA 64.37+0.56 63.58+3.36 63.79+2.60 64.51+0.85 64.88+1.76 64.80+0.94 65.75+1.57
Total MUFA 27.28+0.53 27.84+3.36 28.26+3.23 26.92+0.59 26.68+1.20 26.77+1.04 26.44+1.75
Total PUFA 3.00+0.11 2.75+0.15 2.88+0.22 2.84+0.11 2.82+0.05 2.89+0.16 2.47+0.67

2 Data (ug §) are means + standard deviation; means in the samwere not significantly differenf(

>0.05); -, not detected.
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Table 2

Volatile organic compounds (with retention timed,)Rletected in whole milk before and after plasreatment?®

Volatile compound RT Control Treatment time (min)
(min) 3 6 9 12 15 20 min

Octane 4.278  0.29+0.12 - 0.16£0.04 0.23+0.12 0.24+0.18 0.09+0.02 0.13+0.02
Acetone 4.761 0.43+0.08 0.30+0.16 0.31+0.16 0.13+0.04 0.19+0.09 0.24+0.10 0.27+0.16
1-Octene 5.036  0.12+0.09 - - - 0.1940.06 0.29+0.09 0.20%0.04
2-Methylpropenal 6.062 - - - - 0.1440.01 0.28+0.08 0.20+0.03
2-Butanone 6.463  0.06+0.03 0.11+0.08 0.11+0.06 - 0.12+0.10 0.16+0.08 0.12+0.05
Ethanol 7.173  0.21+0.15 0.37#0.17 0.45#0.11 0.90+0.47 0.95+0.57 0.80+0.13 1.07%0.40
2 Pentanone 8.333  0.70£0.280.89+0.65 0.41+0.20 0.32+0.02 0.40+0.22 0.70+0.69 0.78+0.88
Methyl-isobutyl-ketone 8.973  0.27+0.09 0.26+0.12 0.45#0.17 0.40#0.04 0.441+0.04 0.40+0.10 0.47%0.14
1-Decene 9.515 - - - - - 0.31+0.12 0.50+0.28
2-Butenal 9.869 - 0.07+0.04 0.29+0.36 0.08+0.02 0.11+0.11 0.14+0.08 0.19+0.18
5-Methyl-3-hexanone 10.461 0.43+0.210.3940.21 0.32#0.03 0.29+0.01 0.28+0.08 0.22+0.08 0.25%0.00
Hexanal 10.623 2.12+1.82 1.25+0.68 1.46+0.65 1.55+0.56 1.51+0.26 1.58+0.46 2.85+0.94
4-Methyl-2-hexanone 11.424 1.13+0.420.7240.26 0.79#0.06 0.67+0.04 0.85+0.37 0.64+0.15 0.83%0.50
Ethyl-benzene 11.634 0.30+0.21 - 0.2410.04 0.25%+0.14 0.37£0.22 0.52+0.34 0.79+0.47
4-Methyl-3-penten-2-one 11.783 3.45+0.952.60+1.85 4.61+0.44 3.86+0.93 4.77+1.07 4.11+0.15 3.45+0.44
2,6-Dimethyl-4-heptanone 12.417 4.00+2.432.54+2.17 3.88+1.35 3.17+1.56 4.20+1.88 4.10+0.37 3.76%1.50
2-Heptanone** 12.664 1.96+0.82 0.84+0.52 0.63+0.42 0.42+0.07 0.27+0.28 0.74+0.06 0.15+0.02
Heptanal 12.724 - - 0.2740.22 0.25+0.13 0.56+0.40 0.59+0.48 0.9310.26
2-Hexanol 13.098 1.17+1.31 0.70+0.63 0.44+0.11 0.42+0.12 0.52+0.10 0.46+0.11 0.36+0.21
5-Methyl-3-hexanol 13.350 0.13+0.08 0.15+0.07 0.18+0.03 0.15+0.03 0.19+0.03 0.21+0.01 0.10+0.14
2-Hexenal** 13.464 0.78+0.28 0.52+0.29 0.31+0.05 0.64+0.28 0.55+0.08 0.62+0.15 1.88+0.6%
Cloro 1 octane 13.808 0.48+0.57 0.21+0.09 0.15+0.07 0.20+0.06 0.27+0.31 0.29+0.19 0.55+0.25
Styrene 14.157 0.1740.10 0.16+0.06 0.47+0.37 0.29+0.24 0.69+0.28 1.75+0.90 0.89+1.05
2,2,4,6,6-Pentamethyl-3-Heptene 14.231 0.60+0.78 - - - - -
2-Octanane 14.478 - - - - 0.07+0.010.09+0.04 0.15+0.04
Octanal 14558 0.50+0.40 0.64+0.78 0.51+0.46 0.43+0.30 0.54+0.37 0.77+0.44 1.29+0.75
2,5-Octanedione 14974 - 0.15+0.15- - - ) -
2-Heptanal 15.270 - 0.3310.45 0.07+0.01 0.08+0.00 0.06+0.03 0.11+0.07 0.33+0.41
Tetradecane 15.904 0.12+0.100.12+0.08 0.04+0.01 0.07+0.01 0.114+0.04 0.09+0.02 0.12+0.02
2-Nonanone 16.127 0.72+0.42 0.35+0.06 0.42+0.28 0.39+0.08 0.32+0.02 0.29+0.09 0.34+0.04
Nonanal*** 16.223 0.68+0.14 3.49+2.05 1.14+0.13 1.68+0.40 3.26+1.42 2.17+0.33 8.80+0.61
2-Octenal* 16.914 0.07+0.04 2.26+3.88 - 0.24+0.12 0.26+0.07 0.25+0.10 0.56+0.69
3 Furaldehyde 17.377 0.38+0.230.74+0.69 0.24+0.17 0.29+0.20 0.34+0.30 0.56+0.22 0.76%0.53
3-Cyclohexene-1-carboxaldehyde  17.558 - - 0.05+0.00.07£0.02 0.11+0.08 0.18+0.08 0.13+0.03
Decanal 17.748 0.20+0.13 0.20+0.17 0.15+0.05 0.20+0.02 0.17+0.08 0.27+0.16 0.29+0.14
1-Octanol* 18.297 0.23+0.21 0.17+0.17 0.13#0.11 0.18+0.07 0.15+0.08 0.20+0.07 0.62+0.18
2-Nonenal 18.386 - 0.27£0.35 0.04+0.01 0.041#0.02 0.04+0.02 0.06+0.02 0.24+0.27
Benzaldehyde*** 18.446 0.21+0.16 0.29+0.06 0.46x0.23 0.48+0.18 0.66+0.16 1.45+0.50 1.04+0.08
Nonadecane 18.736 1.25+0.770.21+0.03 0.38#0.23 0.30+0.14 0.26+0.23  0.43+0.46 0.28%0.36
2-Undecanone 19.082 0.18+0.120.12+0.03 0.10+0.08 0.09+0.04 0.08+0.02 0.11+0.09 0.09+0.00
Total ketones 12.02+2.2611.17+0.87 11.66+1.49 9.65+2.62 12.02+2.70 10.60+0.77 10.49+1.33
Total aldehydes** 7.30£0.56 3.34+1.24 5.84+2.90 6.752.90 7.25+2.93 7.60+0.01 20.79%5.18
Total alcohols 0.80+0.23 1.45+0.40 1.1940.17 1.70+0.59 1.83+0.63 1.68+0.25 2.06%0.53

@ Data (1g) are means * standard deviation (-, atsaded); means followed by the different supepsdeitter within the same

row are significantly different at a level indicdtafter the compound name?<0.05; **P<0.01; ***P<0.001.
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